1
|
Zhang H, Li L, Li W, Yin H, Wang H, Ke X. Endosomal pH, Redox Dual-Sensitive Prodrug Micelles Based on Hyaluronic Acid for Intracellular Camptothecin Delivery and Active Tumor Targeting in Cancer Therapy. Pharmaceutics 2024; 16:1327. [PMID: 39458656 PMCID: PMC11511143 DOI: 10.3390/pharmaceutics16101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: CPT is a pentacyclic monoterpene alkaloid with a wide spectrum of antitumor activity. Its clinical application is restricted due to poor water solubility, instability, and high toxicity. We developed a new kind of multifunctional micelles to improve its solubility, reduce the side effecs, and obtain enhanced antitumor effects. Methods: We constructed HA-CPT nano-self-assembly prodrug micelles, which combined the advantages of pH-sensitivity, redox-sensitivity, and active targeting ability to CD44 receptor-overexpressing cancer cells. To synthesize dual sensitive HA-CPT conjugates, CPT was conjugated with HA by pH-sensitive histidine (His) and redox-sensitive 3,3'-dithiodipropionic acid (DTPA). In vitro, we studied the cellular uptake and antitumor effect for tumor cell lines. In vivo, we explored the bio-distribution and antitumor effects of the micelles in HCT 116 tumor bearing nude mice. Results: The dual-sensitive and active targeting HA-His-ss-CPT micelles was proved to be highly efficient in CPT delivery by the in vitro cellular uptake study. The HA-His-ss-CPT micelles escaped from endosomes of tumor cells within 4 h after cellular uptake due to the proton sponge effect of the conjugating His and then quickly released CPT in the cytosol by glutathione (GSH). In mice, HA-His-ss-CPT micelles displayed efficient tumor accumulation and conspicuous inhibition of tumor growth. Conclusions: The novel, dual-sensitive, active targeting nano-prodrug micelles exhibited high efficiency in drug delivery and cancer therapy. This "all in one" drug delivery system can be realized in an ingenious structure and avoid intricate synthesis. This construction strategy can illume the design of nanocarriers responding to endogenous stimuli in tumors.
Collapse
Affiliation(s)
- Huiping Zhang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
- School of Pharmacy, Jining Medical College, Rizhao 276826, China; (W.L.); (H.Y.)
| | - Liang Li
- Modern Tranditional Chinese Medicine Research Institute, Jiangsu Kanion Pharmaceutical Co., Ltd., Lianyungang 222000, China;
| | - Wei Li
- School of Pharmacy, Jining Medical College, Rizhao 276826, China; (W.L.); (H.Y.)
| | - Hongxia Yin
- School of Pharmacy, Jining Medical College, Rizhao 276826, China; (W.L.); (H.Y.)
| | - Huiyun Wang
- School of Pharmacy, Jining Medical College, Rizhao 276826, China; (W.L.); (H.Y.)
| | - Xue Ke
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China;
| |
Collapse
|
2
|
Zhang S, Yang G, Zhang Q, Fan Y, Tang M, Shen L, Zhu D, Zhang G, Yard B. PEGylation renders carnosine resistant to hydrolysis by serum carnosinase and increases renal carnosine levels. Amino Acids 2024; 56:44. [PMID: 38960916 PMCID: PMC11222247 DOI: 10.1007/s00726-024-03405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Carnosine's protective effect in rodent models of glycoxidative stress have provided a rational for translation of these findings in therapeutic concepts in patient with diabetic kidney disease. In contrast to rodents however, carnosine is rapidly degraded by the carnosinase-1 enzyme. To overcome this hurdle, we sought to protect hydrolysis of carnosine by conjugation to Methoxypolyethylene glycol amine (mPEG-NH2). PEGylated carnosine (PEG-car) was used to study the hydrolysis of carnosine by human serum as well as to compare the pharmacokinetics of PEG-car and L-carnosine in mice after intravenous (IV) injection. While L-carnosine was rapidly hydrolyzed in human serum, PEG-car was highly resistant to hydrolysis. Addition of unconjugated PEG to carnosine or PEG-car did not influence hydrolysis of carnosine in serum. In mice PEG-car and L-carnosine exhibited similar pharmacokinetics in serum but differed in half-life time (t1/2) in kidney, with PEG-car showing a significantly higher t1/2 compared to L-carnosine. Hence, PEGylation of carnosine is an effective approach to prevent carnosine degradations and to achieve higher renal carnosine levels. However, further studies are warranted to test if the protective properties of carnosine are preserved after PEGylation.
Collapse
Affiliation(s)
- Shiqi Zhang
- Department of Endocrinology, The first affiliated hospital of Anhui Medical University, Hefei, 230022, China.
| | - Guang Yang
- Department of Endocrinology, The first affiliated hospital of Anhui Medical University, Hefei, 230022, China
| | - Qinqin Zhang
- Department of Endocrinology, The first affiliated hospital of Anhui Medical University, Hefei, 230022, China
| | - Yuying Fan
- Department of Endocrinology, The first affiliated hospital of Anhui Medical University, Hefei, 230022, China
| | - Mingna Tang
- Department of Endocrinology, The first affiliated hospital of Anhui Medical University, Hefei, 230022, China
| | - Liuhai Shen
- Department of Nuclear Medicine, Provincial Peoplès Hospital, Anhui No. 2, Hefei, 230041, China
| | - Dongchun Zhu
- Department of Pharmacy, The first affiliated hospital of Anhui Medical University, Hefei, 230022, China
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Benito Yard
- Vth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Center Mannheim, University of Heidelberg, 68167, Mannheim, Germany
| |
Collapse
|
3
|
Shnaikat SG, Shakya AK, Bardaweel SK. Formulation, development and evaluation of hyaluronic acid-conjugated liposomal nanoparticles loaded with regorafenib and curcumin and their in vitro evaluation on colorectal cancer cell lines. Saudi Pharm J 2024; 32:102099. [PMID: 38817822 PMCID: PMC11135027 DOI: 10.1016/j.jsps.2024.102099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 05/12/2024] [Indexed: 06/01/2024] Open
Abstract
Colorectal cancer is one of the major causes of global cancer, with chemotherapy and radiation therapy being effective but limited due to low specificity. Regorafenib, a multikinase inhibitor, provides hope to patients with metastatic colorectal cancer and was approved by the FDA in 2012. However, due to resistance issues and adverse events, its efficacy is compromised, necessitating further refinement. Meanwhile, curcumin, a compound of turmeric, exhibits anticancer effects through antioxidant and anti-inflammatory actions, induction of the apoptosis, arrest of cell cycle, inhibition of angiogenesis, and modulation of signaling pathways. Unfortunately, its clinical utility is limited by its poor bioavailability, pointing towards innovative drug delivery strategies for enhanced efficacy in colorectal cancer treatment. Hyaluronic acid (HA)-decorated liposomes (LIPO) have been developed to target colorectal cells through an overexpressed CD44 receptor, increasing antitumor and antimetastasis efficacy. This study investigates the possibility of loading curcumin (CUR) or regorafenib (REGO) into a liposomal formulation for passive and HA-actively targeted treatment, evaluating its critical quality attributes (CQA) (size, zeta potential, polydispersity index) and cytotoxic activity in the HT29 colorectal cancer cell line. The average particle size of the plain liposomes and those decorated with HA was 144.00 ± 0.78 nm and 140.77 ± 1.64 nm, respectively. In contrast, curcumin-loaded plain liposomes and HA-decorated liposomes had 140 ± 2.46 nm and 164.53 ± 15.13 nm, respectively. The prepared liposomes had a spherical shape with a narrow size distribution and an acceptable zeta potential of less than -30 mV. The encapsulation efficiency was 99.2 % ± 0.3 and 99.9 ± 0.2 % for HA-decorated and bare regorafenib loaded. The % EE was 98.9 ± 0.2 % and 97.5 ± 0.2 % for bare liposomal nanoparticles loaded with curcumin and coated with curcumin. The IC50 of free REGO, CUR, REGO-LIPO, CUR-LIPO, REGO-LIPO-HA and CUR-LIPO-HA were 20.17 ± 0.78, 64.4 ± 0.33, 224.8 ± 0.06, 49.66 ± 0.22, 73.66 ± 0.6, and 27.86 ± 0.49 µM, respectively. The MTT assay in HT29 cells showed significant cytotoxic activity of the HA-decorated liposomal formulation compared to the base uncoated formulation, indicating that hyaluronic acid-targeted liposomes loaded with regorafenib or curcumin could be a promising targeted formulation against colorectal cancer cells.
Collapse
Affiliation(s)
| | - Ashok K. Shakya
- Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | | |
Collapse
|
4
|
Saadh MJ, Mustafa MA, Kumar A, Alamir HTA, Kumar A, Khudair SA, Faisal A, Alubiady MHS, Jalal SS, Shafik SS, Ahmad I, Khry FAF, Abosaoda MK. Stealth Nanocarriers in Cancer Therapy: a Comprehensive Review of Design, Functionality, and Clinical Applications. AAPS PharmSciTech 2024; 25:140. [PMID: 38890191 DOI: 10.1208/s12249-024-02843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Nanotechnology has significantly transformed cancer treatment by introducing innovative methods for delivering drugs effectively. This literature review provided an in-depth analysis of the role of nanocarriers in cancer therapy, with a particular focus on the critical concept of the 'stealth effect.' The stealth effect refers to the ability of nanocarriers to evade the immune system and overcome physiological barriers. The review investigated the design and composition of various nanocarriers, such as liposomes, micelles, and inorganic nanoparticles, highlighting the importance of surface modifications and functionalization. The complex interaction between the immune system, opsonization, phagocytosis, and the protein corona was examined to understand the stealth effect. The review carefully evaluated strategies to enhance the stealth effect, including surface coating with polymers, biomimetic camouflage, and targeting ligands. The in vivo behavior of stealth nanocarriers and their impact on pharmacokinetics, biodistribution, and toxicity were also systematically examined. Additionally, the review presented clinical applications, case studies of approved nanocarrier-based cancer therapies, and emerging formulations in clinical trials. Future directions and obstacles in the field, such as advancements in nanocarrier engineering, personalized nanomedicine, regulatory considerations, and ethical implications, were discussed in detail. The review concluded by summarizing key findings and emphasizing the transformative potential of stealth nanocarriers in revolutionizing cancer therapy. This review enhanced the comprehension of nanocarrier-based cancer therapies and their potential impact by providing insights into advanced studies, clinical applications, and regulatory considerations.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, India
| | | | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, 247341, Uttar Pradesh, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | | | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | | | - Sarah Salah Jalal
- College of Pharmacy, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Shafik Shaker Shafik
- Experimental Nuclear Radiation Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Faeza A F Khry
- Faculty of pharmacy, department of pharmaceutics, Al-Esraa University, Baghdad, Iraq
| | - Munther Kadhim Abosaoda
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Qadisiyyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
5
|
Vy Phan TT, Mondal S, Santhamoorthy M, Truong TT, Nguyen TP, Oh J. Hyaluronic acid functionalized iron-platinum nanoparticles for photothermal therapy and photoacoustic imaging. Colloids Surf B Biointerfaces 2024; 238:113910. [PMID: 38640797 DOI: 10.1016/j.colsurfb.2024.113910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
This study represents an innovative approach to construct multi-functional nanoplatforms for cancer diagnosis and therapy by combining hyaluronic acid (HA) with iron-platinum nanoparticles (FePt NPs). These HA-coated FePt NPs, referred to as FePt@HA NPs, demonstrated remarkable biocompatibility, high absorption, and excellent light-to-heat conversion properties in the near-infrared (NIR) region, making them ideal candidates for photothermal therapy (PTT). In vitro studies revealed their effective cancer cell eradication under NIR laser irradiation, while in vivo experiments on mice showcased their superior heating capabilities. Moreover, FePt@HA NPs exhibited a distinct and strong photoacoustic (PA) signal, facilitating enhanced and precise intra-tumoral PA imaging. Our results highlight the potential of FePt@HA NPs as promising photothermal agents for future PTT applications. They offer high selectivity, precision, and minimal side effects in cancer treatment, along with their valuable PA imaging application for tumor localization and characterization.
Collapse
Affiliation(s)
- Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Danang 550000, Viet Nam; Department of Environmental and Chemical Engineering, Duy Tan University, Danang 550000, Viet Nam
| | - Sudip Mondal
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, the Republic of Korea
| | | | - Thi Thuy Truong
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, the Republic of Korea
| | - Thanh Phuoc Nguyen
- Department of Mechatronics, Cao Thang Technical College, Ho Chi Minh City 700000, Viet Nam
| | - Junghwan Oh
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, the Republic of Korea; Ohlabs Corp, Busan 48513, the Republic of Korea; Department of Biomedical Engineering, Pukyong National University, Busan 48513, the Republic of Korea.
| |
Collapse
|
6
|
Huang J, Chen J. Pharmacokinetics and pharmacodynamic evaluation of hyaluronic acid-modified imatinib-loaded PEGylated liposomes in CD44-positive Gist882 tumor-bearing mice. J Liposome Res 2024; 34:97-112. [PMID: 37401372 DOI: 10.1080/08982104.2023.2228888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
To develop a PEGylated and CD44-targeted liposomes, enabled by surface coating with hyaluronic acid (HA) via amide bond to improve the efficacy of imatinib mesylate (IM), for tumor-targeted cytoplasmic drug delivery. HA was covalently grafted on DSPE-PEG2000-NH2 polymer. HA-modified or unmodified PEGylated liposomes were prepared with ethanol injection method, and the stability, drug release, and cytotoxicity of these liposomes were studied. Meanwhile, intracellular drug delivery efficiency, antitumor efficacy, and pharmacokinetics were also investigated. Ex vivo fluorescence biodistribution was also detected by small animal imaging. In addition, endocytosis mechanism was also explored HA-coated PEGylated liposomes (137.5 nm ± 10.24) had a negative zeta potential (-29.3 mV ± 5.44) and high drug loading (27.8%, w/w). The liposomes were stable with cumulative drug leakage (<60%) under physiological conditions. Blank liposomes were nontoxic to Gist882 cells, and IM-loaded liposomes had higher cytotoxicity to Gist882 cells. HA-modified PEGylated liposomes were internalized more effectively than non-HA coating via CD44-mediated endocytosis. Besides, the cellular uptake of HA-modified liposomes also partly depends on caveolin-medicated endocytosis and micropinocytosis. In rats, both liposomes produced a prolonged half-life of IM (HA/Lp/IM: 14.97h; Lp/IM: 11.15h) by 3- to 4.5-folds compared with the IM solution (3.61h). HA-decorated PEGylated liposomes encapsulated IM exhibited strong inhibitory effect on tumor growth in Gist882 cell-bearing nude mice and formation of 2D/3D tumor spheroids. The Ki67 immunohistochemistry result was consistent with the above results. IM-loaded PEGylated liposomes modified with HA exerted the excellent anti-tumor effect on tumor-bearing mice and more drugs accumulated into the tumor site.
Collapse
Affiliation(s)
- Ju Huang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences Peking Union Medical College, Beijing, China
| | - Jian Chen
- Department of Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| |
Collapse
|
7
|
Myint SS, Laomeephol C, Thamnium S, Chamni S, Luckanagul JA. Hyaluronic Acid Nanogels: A Promising Platform for Therapeutic and Theranostic Applications. Pharmaceutics 2023; 15:2671. [PMID: 38140012 PMCID: PMC10747897 DOI: 10.3390/pharmaceutics15122671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/18/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Hyaluronic acid (HA) nanogels are a versatile class of nanomaterials with specific properties, such as biocompatibility, hygroscopicity, and biodegradability. HA nanogels exhibit excellent colloidal stability and high encapsulation capacity, making them promising tools for a wide range of biomedical applications. HA nanogels can be fabricated using various methods, including polyelectrolyte complexation, self-assembly, and chemical crosslinking. The fabrication parameters can be tailored to control the physicochemical properties of HA nanogels, such as size, shape, surface charge, and porosity, enabling the rational design of HA nanogels for specific applications. Stimulus-responsive nanogels are a type of HA nanogels that can respond to external stimuli, such as pH, temperature, enzyme, and redox potential. This property allows the controlled release of encapsulated therapeutic agents in response to specific physiological conditions. HA nanogels can be engineered to encapsulate a variety of therapeutic agents, such as conventional drugs, genes, and proteins. They can then be delivered to target tissues with high efficiency. HA nanogels are still under development, but they have the potential to become powerful tools for a wide range of theranostic or solely therapeutic applications, including anticancer therapy, gene therapy, drug delivery, and bioimaging.
Collapse
Affiliation(s)
- Su Sundee Myint
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.S.M.); (S.C.)
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Chavee Laomeephol
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Biomaterial Engineering in Medical and Health, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirikool Thamnium
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Supakarn Chamni
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (S.S.M.); (S.C.)
- Natural Products and Nanoparticles Research Unit (NP2), Chulalongkorn University, Bangkok 10330, Thailand
| | - Jittima Amie Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
- Center of Excellence in Biomaterial Engineering in Medical and Health, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Liu X, Gao J, Cui X, Nie S, Wu X, Zhang L, Tang P, Liu J, Li M. Functionalized 3D-Printed PLA Biomimetic Scaffold for Repairing Critical-Size Bone Defects. Bioengineering (Basel) 2023; 10:1019. [PMID: 37760121 PMCID: PMC10526104 DOI: 10.3390/bioengineering10091019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
The treatment of critical-size bone defects remains a complicated clinical challenge. Recently, bone tissue engineering has emerged as a potential therapeutic approach for defect repair. This study examined the biocompatibility and repair efficacy of hydroxyapatite-mineralized bionic polylactic acid (PLA) scaffolds, which were prepared through a combination of 3D printing technology, plasma modification, collagen coating, and hydroxyapatite mineralization coating techniques. Physicochemical analysis, mechanical testing, and in vitro and animal experiments were conducted to elucidate the impact of structural design and microenvironment on osteogenesis. Results indicated that the PLA scaffold exhibited a porosity of 84.1% and a pore size of 350 μm, and its macrostructure was maintained following functionalization modification. The functionalized scaffold demonstrated favorable hydrophilicity and biocompatibility and promoted cell adhesion, proliferation, and the expression of osteogenic genes such as ALP, OPN, Col-1, OCN, and RUNX2. Moreover, the scaffold was able to effectively repair critical-size bone defects in the rabbit radius, suggesting a novel strategy for the treatment of critical-size bone defects.
Collapse
Affiliation(s)
- Xiao Liu
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.); (J.G.)
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Jianpeng Gao
- Medical School of Chinese PLA, Beijing 100853, China; (X.L.); (J.G.)
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Xiang Cui
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Shaobo Nie
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Xiaoyong Wu
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Licheng Zhang
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Peifu Tang
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Jianheng Liu
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Ming Li
- Department of Orthopaedics, The Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; (X.C.); (S.N.); (X.W.); (L.Z.); (P.T.)
- National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| |
Collapse
|
9
|
Paul P, Nair R, Mahajan S, Gupta U, Aalhate M, Maji I, Singh PK. Traversing the diverse avenues of exopolysaccharides-based nanocarriers in the management of cancer. Carbohydr Polym 2023; 312:120821. [PMID: 37059549 DOI: 10.1016/j.carbpol.2023.120821] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Exopolysaccharides are unique polymers generated by living organisms such as algae, fungi and bacteria to protect them from environmental factors. After a fermentative process, these polymers are extracted from the medium culture. Exopolysaccharides have been explored for their anti-viral, anti-bacterial, anti-tumor, and immunomodulatory effects. Specifically, they have acquired massive attention in novel drug delivery strategies owing to their indispensable properties like biocompatibility, biodegradability, and lack of irritation. Exopolysaccharides such as dextran, alginate, hyaluronic acid, pullulan, xanthan gum, gellan gum, levan, curdlan, cellulose, chitosan, mauran, and schizophyllan exhibited excellent drug carrier properties. Specific exopolysaccharides, such as levan, chitosan, and curdlan, have demonstrated significant antitumor activity. Moreover, chitosan, hyaluronic acid and pullulan can be employed as targeting ligands decorated on nanoplatforms for effective active tumor targeting. This review shields light on the classification, unique characteristics, antitumor activities and nanocarrier properties of exopolysaccharides. In addition, in vitro human cell line experiments and preclinical studies associated with exopolysaccharide-based nanocarriers have also been highlighted.
Collapse
Affiliation(s)
- Priti Paul
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Rahul Nair
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India.
| |
Collapse
|
10
|
Suksiriworapong J, Pongprasert N, Bunsupa S, Taresco V, Crucitti VC, Janurai T, Phruttiwanichakun P, Sakchaisri K, Wongrakpanich A. CD44-Targeted Lipid Polymer Hybrid Nanoparticles Enhance Anti-Breast Cancer Effect of Cordyceps militaris Extracts. Pharmaceutics 2023; 15:1771. [PMID: 37376218 DOI: 10.3390/pharmaceutics15061771] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
This study aimed to improve the anticancer effect of Cordyceps militaris herbal extract (CME) on breast cancer cells with hyaluronic acid (HYA) surface-decorated lipid polymer hybrid nanoparticles (LPNPs) and evaluate the applicability of a synthesized poly(glycerol adipate) (PGA) polymer for LPNP preparation. Firstly, cholesterol- and vitamin E-grafted PGA polymers (PGA-CH and PGA-VE, respectively) were fabricated, with and without maleimide-ended polyethylene glycol. Subsequently, CME, which contained an active cordycepin equaling 9.89% of its weight, was encapsulated in the LPNPs. The results revealed that the synthesized polymers could be used to prepare CME-loaded LPNPs. The LPNP formulations containing Mal-PEG were decorated with cysteine-grafted HYA via thiol-maleimide reactions. The HYA-decorated PGA-based LPNPs substantially enhanced the anticancer effect of CME against MDA-MB-231 and MCF-7 breast cancer cells by enhancing cellular uptake through CD44 receptor-mediated endocytosis. This study demonstrated the successful targeted delivery of CME to the CD44 receptors of tumor cells by HYA-conjugated PGA-based LPNPs and the new application of synthesized PGA-CH- and PGA-VE-based polymers in LPNP preparation. The developed LPNPs showed promising potential for the targeted delivery of herbal extracts for cancer treatment and clear potential for translation in in vivo experiments.
Collapse
Affiliation(s)
| | - Nutthachai Pongprasert
- Division of Postharvest Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Somnuk Bunsupa
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Valentina Cuzzucoli Crucitti
- Centre for Additive Manufacturing and Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK
| | - Thitapa Janurai
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | | - Krisada Sakchaisri
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | |
Collapse
|
11
|
Ren QL, Wang Q, Zhang XQ, Wang M, Hu H, Tang JJ, Yang XT, Ran YH, Liu HH, Song ZX, Liu JG, Li XL. Anticancer Activity of Diosgenin and Its Molecular Mechanism. Chin J Integr Med 2023:10.1007/s11655-023-3693-1. [PMID: 36940072 PMCID: PMC10026233 DOI: 10.1007/s11655-023-3693-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 03/21/2023]
Abstract
Diosgenin, a steroidal sapogenin, obtained from Trigonella foenum-graecum, Dioscorea, and Rhizoma polgonati, has shown high potential and interest in the treatment of various cancers such as oral squamous cell carcinoma, laryngeal cancer, esophageal cancer, liver cancer, gastric cancer, lung cancer, cervical cancer, prostate cancer, glioma, and leukemia. This article aims to provide an overview of the in vivo, in vitro, and clinical studies reporting the diosgenin's anticancer effects. Preclinical studies have shown promising effects of diosgenin on inhibiting tumor cell proliferation and growth, promoting apoptosis, inducing differentiation and autophagy, inhibiting tumor cell metastasis and invasion, blocking cell cycle, regulating immunity and improving gut microbiome. Clinical investigations have revealed clinical dosage and safety property of diosgenin. Furthermore, in order to improve the biological activity and bioavailability of diosgenin, this review focuses on the development of diosgenin nano drug carriers, combined drugs and the diosgenin derivatives. However, further designed trials are needed to unravel the diosgenin's deficiencies in clinical application.
Collapse
Affiliation(s)
- Qun-Li Ren
- Special Key Laboratory of Microbial Resources and Drug Development, Higher Education Institution, Zunyi, Guizhou Province, 563000, China
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Qian Wang
- Special Key Laboratory of Microbial Resources and Drug Development, Higher Education Institution, Zunyi, Guizhou Province, 563000, China
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Xin-Qun Zhang
- Zheng'an County people's Hospital, Zunyi, Guizhou Province, 563000, China
| | - Miao Wang
- Special Key Laboratory of Microbial Resources and Drug Development, Higher Education Institution, Zunyi, Guizhou Province, 563000, China
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Huan Hu
- Special Key Laboratory of Microbial Resources and Drug Development, Higher Education Institution, Zunyi, Guizhou Province, 563000, China
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Jun-Jie Tang
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Xiong-Tong Yang
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Ying-Hui Ran
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Huan-Huan Liu
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Zhi-Xing Song
- School of Basic Medicine, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Jian-Guo Liu
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China
| | - Xiao-Lan Li
- Special Key Laboratory of Microbial Resources and Drug Development, Higher Education Institution, Zunyi, Guizhou Province, 563000, China.
- School of Stomatology, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China.
- Institute of Life Sciences, Zunyi Medical University, Zunyi, Guizhou Province, 563000, China.
| |
Collapse
|
12
|
Hye T, Moinuddin SM, Sarkar T, Nguyen T, Saha D, Ahsan F. An evolving perspective on novel modified release drug delivery systems for inhalational therapy. Expert Opin Drug Deliv 2023; 20:335-348. [PMID: 36720629 PMCID: PMC10699164 DOI: 10.1080/17425247.2023.2175814] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Drugs delivered via the lungs are predominantly used to treat various respiratory disorders, including asthma, chronic obstructive pulmonary diseases, respiratory tract infections and lung cancers, and pulmonary vascular diseases such as pulmonary hypertension. To treat respiratory diseases, targeted, modified or controlled release inhalation formulations are desirable for improved patient compliance and superior therapeutic outcome. AREAS COVERED This review summarizes the important factors that have an impact on the inhalable modified release formulation approaches with a focus toward various formulation strategies, including dissolution rate-controlled systems, drug complexes, site-specific delivery, drug-polymer conjugates, and drug-polymer matrix systems, lipid matrix particles, nanosystems, and formulations that can bypass clearance via mucociliary system and alveolar macrophages. EXPERT OPINION Inhaled modified release formulations can potentially reduce dosing frequency by extending drug's residence time in the lungs. However, inhalable modified or controlled release drug delivery systems remain unexplored and underdeveloped from the commercialization perspective. This review paper addresses the current state-of-the-art of inhaled controlled release formulations, elaborates on the avenues for developing newer technologies for formulating various drugs with tailored release profiles after inhalational delivery and explains the challenges associated with translational feasibility of modified release inhalable formulations.
Collapse
Affiliation(s)
- Tanvirul Hye
- Oakland University William Beaumont School of Medicine, 586 Pioneer Dr, 48309, Rochester, MI, USA
| | - Sakib M. Moinuddin
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, 95757, Elk Grove, CA, USA
- East Bay Institute for Research & Education (EBIRE), 95655, Mather, CA, USA
| | - Tanoy Sarkar
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, 95757, Elk Grove, CA, USA
- East Bay Institute for Research & Education (EBIRE), 95655, Mather, CA, USA
| | - Trieu Nguyen
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, 95757, Elk Grove, CA, USA
- East Bay Institute for Research & Education (EBIRE), 95655, Mather, CA, USA
| | - Dipongkor Saha
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, 95757, Elk Grove, CA, USA
| | - Fakhrul Ahsan
- California Northstate University, College of Pharmacy, 9700 West Taron Drive, 95757, Elk Grove, CA, USA
- East Bay Institute for Research & Education (EBIRE), 95655, Mather, CA, USA
- MedLuidics, 95757, Elk Grove, CA, USA
| |
Collapse
|
13
|
Gomes IP, Silva JDO, Cassali GD, De Barros ALB, Leite EA. Cisplatin-Loaded Thermosensitive Liposomes Functionalized with Hyaluronic Acid: Cytotoxicity and In Vivo Acute Toxicity Evaluation. Pharmaceutics 2023; 15:pharmaceutics15020583. [PMID: 36839905 PMCID: PMC9961010 DOI: 10.3390/pharmaceutics15020583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Cisplatin (CDDP) is a potent antitumor drug used in first-line chemotherapy against several solid tumors, including breast cancer. However, toxicities and drug resistance limit its clinical application. Thermosensitive liposome (TSL) functionalized with hyaluronic acid (HA) containing cisplatin (TSL-CDDP-HA) was developed by our research group aiming to promote the release of CDDP in the tumor region under hyperthermia conditions, as well as to decrease toxicity. Thus, this study aimed to evaluate this new formulation (HA-coated TSL-CDDP) concerning in vitro behavior and in vivo toxicity compared to non-coated TSL-CDDP and free CDDP. Cytotoxicity assays and nuclear morphology were carried out against triple-negative breast cancer cells (MDA-MB-231), while an in vivo toxicity study was performed using healthy Swiss mice. The results showed an increase (around 3-fold) in cytotoxicity of the cationic formulation (non-coated TSL-CDDP) compared to free CDDP. On the other hand, TSL-CDDP treatment induced the appearance of 2.5-fold more senescent cells with alteration of nuclear morphology than the free drug after hyperthermia condition. Furthermore, the association of liposomal formulations treatment with hyperthermia increased the percentage of apoptotic cells compared to those without heating. The percentage of apoptotic cells was 1.7-fold higher for TSL-CDDP-HA than for TSL-CDDP. For the in vivo toxicity data, the TSL-CDDP treatment was also toxic to healthy cells, inducing nephrotoxicity with a significant increase in urea levels compared to the saline control group (73.1 ± 2.4 vs. 49.2 ± 2.8 mg/mL). On the other hand, the HA-coated TSL-CDDP eliminated the damages related to the use of CDDP since the animals did not show changes in hematological and biochemical examinations and histological analyses. Thus, data suggest that this new formulation is a potential candidate for the intravenous therapy of solid tumors.
Collapse
Affiliation(s)
- Isabela Pereira Gomes
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Juliana de Oliveira Silva
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Geovanni Dantas Cassali
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - André Luís Branco De Barros
- Department of Clinical and Toxicological Analyses, Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
| | - Elaine Amaral Leite
- Department of Pharmaceutical Products, Faculty of Pharmacy, Federal University of Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil
- Correspondence: or ; Tel.: +55-3134096944; Fax: +55-3134096935
| |
Collapse
|
14
|
Ilvesroiha E, Lauren P, Uema N, Kikuchi K, Takashima Y, Laaksonen T, Lajunen T. Establishing a simple perfusion cell culture system for light-activated liposomes. Sci Rep 2023; 13:2050. [PMID: 36739469 PMCID: PMC9899206 DOI: 10.1038/s41598-023-29215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/31/2023] [Indexed: 02/06/2023] Open
Abstract
The off-target effects of light-activated or targeted liposomes are difficult to distinguish in traditional well plate experiments. Additionally, the absence of fluid flow in traditional cell models can lead to overestimation of nanoparticle uptake. In this paper, we established a perfusion cell culture platform to study light-activated liposomes and determined the effect of flow on the liposomal cell uptake. The optimal cell culturing parameters for the A549 cells under flow conditions were determined by monitoring cell viability. To determine optimal liposome treatment times, particle uptake was measured with flow cytometry. The suitability of commercial QuasiVivo flow-chambers for near-infrared light activation was assessed with a calcein release study. The chamber material did not hinder the light activation and subsequent calcein release from the liposomes. Furthermore, our results show that the standard cell culturing techniques are not directly translatable to flow cultures. For non-coated liposomes, the uptake was hindered by flow. Interestingly, hyaluronic acid coating diminished the uptake differences between the flow and static conditions. The study demonstrates that flow affects the liposomal uptake by lung cancer cell line A549. The flow also complicates the cell attachment of A549 cells. Moreover, we show that the QuasiVivo platform is suitable for light-activation studies.
Collapse
Affiliation(s)
- Eija Ilvesroiha
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland.
| | - Patrick Lauren
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
| | - Natsumi Uema
- Department of Formulation Sciences and Technology, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Kanako Kikuchi
- Department of Formulation Sciences and Technology, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Yuuki Takashima
- Department of Formulation Sciences and Technology, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
| | - Timo Laaksonen
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
- Faculty of Engineering and Natural Sciences, Tampere University, 33720, Tampere, Finland
| | - Tatu Lajunen
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00790, Helsinki, Finland
- Department of Formulation Sciences and Technology, Tokyo University of Pharmacy and Life Sciences, Tokyo, 192-0392, Japan
- Faculty of Health Sciences, University of Eastern Finland, 70600, Kuopio, Finland
| |
Collapse
|
15
|
Chen Y, Huang Y, Li Q, Luo Z, Zhang Z, Huang H, Sun J, Zhang L, Sun R, Bain DJ, Conway JF, Lu B, Li S. Targeting Xkr8 via nanoparticle-mediated in situ co-delivery of siRNA and chemotherapy drugs for cancer immunochemotherapy. NATURE NANOTECHNOLOGY 2023; 18:193-204. [PMID: 36424448 PMCID: PMC9974593 DOI: 10.1038/s41565-022-01266-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/19/2022] [Indexed: 05/14/2023]
Abstract
Activation of scramblases is one of the mechanisms that regulates the exposure of phosphatidylserine to the cell surface, a process that plays an important role in tumour immunosuppression. Here we show that chemotherapeutic agents induce overexpression of Xkr8, a scramblase activated during apoptosis, at the transcriptional level in cancer cells, both in vitro and in vivo. Based on this finding, we developed a nanocarrier for co-delivery of Xkr8 short interfering RNA and the FuOXP prodrug to tumours. Intravenous injection of our nanocarrier led to significant inhibition of tumour growth in colon and pancreatic cancer models along with increased antitumour immune response. Targeting Xkr8 in combination with chemotherapy may represent a novel strategy for the treatment of various types of cancers.
Collapse
Affiliation(s)
- Yuang Chen
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Qinzhe Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhangyi Luo
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ziqian Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Haozhe Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - LinXinTian Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA
| | - Runzi Sun
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Daniel J Bain
- Department of Geology and Environmental Science, University of Pittsburgh, Pittsburgh, PA, USA
| | - James F Conway
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Binfeng Lu
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Laomeephol C, Areecheewakul S, Tawinwung S, Suppipat K, Chunhacha P, Neves NM, Luckanagul JA. Potential roles of hyaluronic acid in in vivo CAR T cell reprogramming for cancer immunotherapy. NANOSCALE 2022; 14:17821-17840. [PMID: 36472072 DOI: 10.1039/d2nr05949e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chimeric antigen receptor (CAR) T cell therapy has recently shown unprecedented clinical efficacy for cancer treatment, particularly of hematological malignancies. However, the complex manufacturing processes that involve ex vivo genetic modification of autologous T cells limits its therapeutic application. CAR T cells generated in vivo provide a valid alternative immunotherapy, "off-the-shelf", for cancer treatment. This approach requires carriers for the delivery of CAR-encoding constructs, which are plasmid DNA or messenger RNA, to T cells for CAR expression to help eradicate the tumor. As such, there are a growing number of studies reporting gene delivery systems for in vivo CAR T cell therapy based on viral vectors and polymeric nanoparticles. Hyaluronic acid (HA) is a natural biopolymer that can serve for gene delivery, because of its inherent properties of cell recognition and internalization, as well as its biodegradability, biocompatibility, and presence of functional groups for the chemical conjugation of targeting ligands. In this review, the potential of HA in the delivery of CAR constructs is discussed on the basis of previous experience of HA-based nanoparticles for gene therapy. Furthermore, current studies on CAR carriers for in vivo-generated CAR T cells are included, giving an idea of a rational design of HA-based systems for the more efficient delivery of CAR to circulating T cells.
Collapse
Affiliation(s)
- Chavee Laomeephol
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Sudartip Areecheewakul
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supannikar Tawinwung
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Chulalongkorn University Cancer Immunology Excellence Center, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Koramit Suppipat
- Chulalongkorn University Cancer Immunology Excellence Center, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Chulalongkorn University Stem Cell and Cell Therapy Research Center, Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Preedakorn Chunhacha
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nuno M Neves
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Jittima Amie Luckanagul
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand.
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
17
|
Zeng X, Wang Y, Huang YS, Han J, Sun W, Butt HJ, Liang XJ, Wu S. Amphiphilic Metallodrug Assemblies with Red-Light-Enhanced Cellular Internalization and Tumor Penetration for Anticancer Phototherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205461. [PMID: 36366920 DOI: 10.1002/smll.202205461] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Metallodrugs are widely used in cancer treatment. The modification of metallodrugs with polyethylene glycol (PEGylation) prolongs blood circulation and improves drug accumulation in tumors; it represents a general strategy for drug delivery. However, PEGylation hinders cellular internalization and tumor penetration, which reduce therapeutic efficacy. Herein, the red-light-enhanced cellular internalization and tumor penetration of a PEGylated anticancer agent, PEGylated Ru complex (Ru-PEG), are reported upon. Ru-PEG contains a red-light-cleavable PEG ligand, anticancer Ru complex moiety, and fluorescent pyrene group for imaging and self-assembly. Ru-PEG self-assembles into vesicles that circulate in the bloodstream and accumulate in the tumors. Red-light irradiation induces dePEGylation and changes the Ru-PEG vesicles to large compound micelles with smaller diameters and higher zeta potentials, which enhance tumor penetration and cellular internalization. Red-light irradiation also generates intracellular 1 O2 , which induces the death of cancer cells. This work presents a new strategy to enhance the cellular internalization and tumor penetration of anticancer agents for efficient phototherapy.
Collapse
Affiliation(s)
- Xiaolong Zeng
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yufei Wang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun-Shuai Huang
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jianxiong Han
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Hi-Tech Zone, Dalian, 116024, China
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Anhui Key Laboratory of Optoelectronic Science and Technology, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
18
|
Lim C, Shin Y, Lee S, Lee S, Lee MY, Shin BS, Oh KT. Dynamic drug release state and PEG length in PEGylated liposomal formulations define the distribution and pharmacological performance of drug. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
19
|
Fujii S, Sakurai K. Zwitterionic Amino Acid Polymer-Grafted Core-Crosslinked Particle toward Tumor Delivery. Biomacromolecules 2022; 23:3968-3977. [PMID: 36018790 DOI: 10.1021/acs.biomac.2c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Zwitterionic amino acid polymers (ZAPs) exhibit biocompatibility and recognition capability for amino acid transporters (AATs) overexpressed on cancer cells. They are potential cancer-targeting ligands in nanoparticle-based nanomedicines utilized in cancer chemotherapy. Here, a poly(glutamine methacrylate) (pGlnMA)-grafted core-crosslinked particle (pGlnMA-CCP) is prepared through the formation of nanoemulsions stabilized using amphiphilic block copolymers comprising pGlnMA as the hydrophilic block. The chain conformation of the grafted polymer and the particle structure of pGlnMA-CCP are precisely elucidated by dynamic light scattering, X-ray scattering, and transmission electron microscopy. pGlnMA-CCP demonstrates active cellular uptake and deep penetration behaviors for cancer cells and spheroids, respectively, via an AAT-mediated mechanism. The in vivo pharmacokinetics of pGlnMA-CCP is practically comparable to those of a CCP covered with poly(polyethylene glycol methacrylate) (pPEGMA), which inhibits protein adsorption and prolongs blood retention, implying that the biocompatible properties of pGlnMA are similar to those of pPEGMA. Furthermore, pGlnMA-CCP accumulates in cancer tissues at a higher level than that of pPEGMA systems. The results demonstrate that the properties of cancer targetability, tumor permeability, efficient tumor accumulation, and biocompatibility can be obtained by grafting pGlnMA onto nanoparticles, suggesting a high potential of pGlnMA as a ligand for cancer-targeting nanomedicines.
Collapse
Affiliation(s)
- Shota Fujii
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| |
Collapse
|
20
|
Kanamaru T, Sakurai K, Fujii S. Impact of Polyethylene Glycol (PEG) Conformations on the In Vivo Fate and Drug Release Behavior of PEGylated Core-Cross-Linked Polymeric Nanoparticles. Biomacromolecules 2022; 23:3909-3918. [PMID: 35943243 DOI: 10.1021/acs.biomac.2c00730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In cancer chemotherapy, core-cross-linked particles (CCPs) are a promising drug carrier due to their high structural stability in an in vivo environment, resulting in improved tumor delivery. A biocompatible polymer of polyethylene glycol (PEG) is often utilized to coat the surface of CCPs to avoid nonspecific adsorption of proteins in vivo. The PEG density and conformation on the particle surface are important structural factors that determine the in vivo fate of such PEGylated nanoparticles, including their pharmacokinetics and pharmacodynamics. However, contrary to expectations, we found no significant differences in the in vivo pharmacokinetics and pharmacodynamics of the PEGylated CCPs with the different PEG densities including mushroom, brush, and dense brush conformations. On the contrary, the in vivo release kinetics of hydrophilic and hydrophobic model drugs from the PEGylated CCPs was strongly dependent on the PEG conformation and the drug polarity. This may be related to the water-swelling degree in the particle PEG layer, which promotes and inhibits the diffusion of hydrophilic and hydrophobic drugs, respectively, from the particle core to the water phase. Our results provide guidelines for the design of cancer-targeting nanomedicine based on PEGylated CCPs.
Collapse
Affiliation(s)
- Takuma Kanamaru
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| | - Shota Fujii
- Department of Chemistry and Biochemistry, University of Kitakyushu, 1-1 Hibikino, Kitakyushu, Fukuoka 808-0135, Japan
| |
Collapse
|
21
|
Sun L, Chen L, Yang K, Dai WF, Yang Y, Cui X, Yang B, Wang C. A multiple functional supramolecular system for synergetic treatments of hepatocellular carcinoma. Int J Pharm 2022; 619:121716. [PMID: 35367586 DOI: 10.1016/j.ijpharm.2022.121716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/10/2022] [Accepted: 03/29/2022] [Indexed: 01/06/2023]
Abstract
In the current times, achieving specific targeted and controllable drug delivery remains one of the major challenges in the treatment of hepatocellular carcinoma (HCC). The present study reported the development of a multiple functional indocyanine green (ICG)-cyclodextrin (CD) system, wherein loaded etoposide (EPS) was used as the model chemotherapeutic drug. In the developed system, ICG segment served as a photosensitizer for photothermal therapy (PTT) and the targeting moiety, which was primarily attributed to the specific retention properties in HCC tissues. The Ex vivo evaluation showed that ICG-CD@EPS exhibited a laser-triggered release profile with the photothermal efficiency and cytotoxicity towards HepG2 cells. In vivo evaluation suggested that ICG could navigate the systems to HCC tissues and retained at the site for 48 h, producing a drug accumulation in HCC. Further, laser irradiation boosted EPS release and local hyperthermia effects in HCC. Thus, the present study explored a novel and specific HCC targeting mechanism, and provided a feasible and controllable strategy for synergistic PTT and chemotherapy treatments for HCC.
Collapse
Affiliation(s)
- Lijing Sun
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Liyuan Chen
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ke Yang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming 650500, China
| | - Wei Feng Dai
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Ye Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiuming Cui
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
| | - Bo Yang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| | - Chengxiao Wang
- School of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
22
|
Zhao S, Luo Y, Chang Z, Liu C, Li T, Gan L, Huang Y, Sun Q. BSA-Coated Gold Nanorods for NIR-II Photothermal Therapy. NANOSCALE RESEARCH LETTERS 2021; 16:170. [PMID: 34842995 PMCID: PMC8630206 DOI: 10.1186/s11671-021-03627-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The second near infrared window is considered to be the optimal optical window for medical imaging and therapy as its capability of deep tissue penetration. The preparation of the gold nanorods with long wavelength absorption and low cytotoxicity is still a challenge. A series gold nanorods with large aspect ratio have been synthesized. Strong plasma absorption in the second near infrared window from 1000 to 1300 nm could be observed. The biocompatibility of the synthesized gold nanorods is dramatically improved via coating by bovine serum albumin (BSA), while the optical properties of which remains. The breast cancer tumor-bearing mouse could be well treated by the prepared gold nanorods with the NIR-II light intensity as low as 0.75 W/cm2. In summary, these results demonstrate the feasibility of using low illumination dose to treat tumor in the NIR-II region via the large aspect ratio gould nanoparticles.
Collapse
Affiliation(s)
- Shubi Zhao
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative InnovationCenter for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Yiqun Luo
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative InnovationCenter for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zong Chang
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Chenchen Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Tong Li
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative InnovationCenter for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lu Gan
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative InnovationCenter for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yong Huang
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Key Laboratory of Bio-Targeting Theranostics, Collaborative InnovationCenter for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Qinchao Sun
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
23
|
Chen C, Chen Y, Dai X, Li J, Jia S, Wang S, Liu Y. Multicharge β-cyclodextrin supramolecular assembly for ATP capture and drug release. Chem Commun (Camb) 2021; 57:2812-2815. [PMID: 33605284 DOI: 10.1039/d1cc00292a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A hyaluronidase-responsive polysaccharide supramolecular assembly was constructed from an amphiphilic β-cyclodextrin bearing seven hexylimidazolium units (AMCD), adamantyl-grafted hyaluronic acid, and chlorambucil, which showed specific cancer cell targeting and controlled drug release abilities. Interestingly, ternary supramolecular assembly can disassemble in the presence of hyaluronidase, and the released AMCD can assemble with ATP to form a stable 1 : 1 complex, which enhanced the efficacy of chlorambucil on cancer chemotherapy by inhibiting ATP hydrolysis.
Collapse
Affiliation(s)
- Changhui Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xianyin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Jingjing Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Shanshan Jia
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Shuaipeng Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
24
|
Mojarad-Jabali S, Farshbaf M, Walker PR, Hemmati S, Fatahi Y, Zakeri-Milani P, Sarfraz M, Valizadeh H. An update on actively targeted liposomes in advanced drug delivery to glioma. Int J Pharm 2021; 602:120645. [PMID: 33915182 DOI: 10.1016/j.ijpharm.2021.120645] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/12/2022]
Abstract
High-grade glioma is one of the most aggressive types of cancer with a low survival rate ranging from 12 to 15 months after the first diagnosis. Though being the most common strategy for glioma therapy, conventional chemotherapy suffers providing the therapeutic dosage of common therapeutics mostly because of limited permeability of blood-brain barrier (BBB), and blood-brain tumor barrier (BBTB) to anticancer agents. Among various nanoformulations, liposomes are considered as the most popular carriers aimed for glioma therapy. However, non-targeted liposomes which passively accumulate in most of the cancer tissues mainly through the enhanced permeation and retention effect (EPR), may not be applicable for glioma therapy due to BBB tight junctions. In the recent decade, the surface modification of liposomes with different active targeting ligands has shown promising results by getting different chemotherapeutics across the BBB and BBTB and leading them into the glioma cells. The present review discusses the major barriers for drug delivery systems to glioma, elaborates the existing mechanisms for liposomes to traverse across the BBB, and explores the main strategies for incorporation of targeting ligands onto the liposomes. It subsequently investigates the most recent and relevant studies of actively targeted liposomes modified with antibodies, aptamers, monosaccharides, polysaccharides, proteins, and peptides applied for effective glioma therapy, and highlights the common challenges facing this area. Finally, the actively targeted liposomes undergoing preclinical and clinical studies for delivery of different anticancer agents to glioma cells will be reviewed.
Collapse
Affiliation(s)
- Solmaz Mojarad-Jabali
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoud Farshbaf
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Paul R Walker
- Center for Translational Research in Onco-Hematology, Department of Medicine, University of Geneva and Division of Oncology, Geneva University Hospitals, Geneva, Switzerland
| | - Salar Hemmati
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Fatahi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvin Zakeri-Milani
- Liver and Gastrointestinal Diseases Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates
| | - Hadi Valizadeh
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran; Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
25
|
Cauzzo J, Jayakumar N, Ahluwalia BS, Ahmad A, Škalko-Basnet N. Characterization of Liposomes Using Quantitative Phase Microscopy (QPM). Pharmaceutics 2021; 13:pharmaceutics13050590. [PMID: 33919040 PMCID: PMC8142990 DOI: 10.3390/pharmaceutics13050590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 11/16/2022] Open
Abstract
The rapid development of nanomedicine and drug delivery systems calls for new and effective characterization techniques that can accurately characterize both the properties and the behavior of nanosystems. Standard methods such as dynamic light scattering (DLS) and fluorescent-based assays present challenges in terms of system's instability, machine sensitivity, and loss of tracking ability, among others. In this study, we explore some of the downsides of batch-mode analyses and fluorescent labeling, while introducing quantitative phase microscopy (QPM) as a label-free complimentary characterization technique. Liposomes were used as a model nanocarrier for their therapeutic relevance and structural versatility. A successful immobilization of liposomes in a non-dried setup allowed for static imaging conditions in an off-axis phase microscope. Image reconstruction was then performed with a phase-shifting algorithm providing high spatial resolution. Our results show the potential of QPM to localize subdiffraction-limited liposomes, estimate their size, and track their integrity over time. Moreover, QPM full-field-of-view images enable the estimation of a single-particle-based size distribution, providing an alternative to the batch mode approach. QPM thus overcomes some of the drawbacks of the conventional methods, serving as a relevant complimentary technique in the characterization of nanosystems.
Collapse
Affiliation(s)
- Jennifer Cauzzo
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway;
| | - Nikhil Jayakumar
- Optical Nanoscopy Research Group, Department of Physics and Technology, Faculty of Science and Technology, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway; (N.J.); (B.S.A.); (A.A.)
| | - Balpreet Singh Ahluwalia
- Optical Nanoscopy Research Group, Department of Physics and Technology, Faculty of Science and Technology, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway; (N.J.); (B.S.A.); (A.A.)
| | - Azeem Ahmad
- Optical Nanoscopy Research Group, Department of Physics and Technology, Faculty of Science and Technology, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway; (N.J.); (B.S.A.); (A.A.)
| | - Nataša Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, Faculty of Health Sciences, University of Tromsø The Arctic University of Norway, N-9037 Tromsø, Norway;
- Correspondence: ; Tel.: +47-776-46-640
| |
Collapse
|
26
|
Synthesis and Characterization of Diosgenin Encapsulated Poly-ε-Caprolactone-Pluronic Nanoparticles and Its Effect on Brain Cancer Cells. Polymers (Basel) 2021; 13:polym13081322. [PMID: 33919483 PMCID: PMC8073865 DOI: 10.3390/polym13081322] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 01/21/2023] Open
Abstract
Diosgenin encapsulated PCL-Pluronic nanoparticles (PCL-F68-D-NPs) were developed using the nanoprecipitation method to improve performance in brain cancer (glioblastoma) therapy. The nanoparticles were characterized by dynamic light scattering (DLS)/Zeta potential, Fourier-transform infrared (FTIR) spectra, X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), and Transmission electron microscopy (TEM). The encapsulation efficiency, loading efficiency, and yield were calculated. The in vitro release rate was determined, and the kinetic model of diosgenin release was plotted and ascertained. The cytotoxicity was checked by MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide)assay against U87-MG cells (glioblastoma cell lines). The obtained nanoparticles demonstrated good size distribution, stability, morphology, chemical, and mechanical properties. The nanoparticles also possessed high encapsulation efficiency, loading efficiency, and yield. The release rate of Diosgenin was shown in a sustained manner. The in vitro cytotoxicity of PCL-F68-D-NPs showed higher toxicity against U87-MG cells than free Diosgenin.
Collapse
|
27
|
Wang B, Hu W, Yan H, Chen G, Zhang Y, Mao J, Wang L. Lung cancer chemotherapy using nanoparticles: Enhanced target ability of redox-responsive and pH-sensitive cisplatin prodrug and paclitaxel. Biomed Pharmacother 2021; 136:111249. [PMID: 33450493 DOI: 10.1016/j.biopha.2021.111249] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 01/29/2023] Open
Abstract
Platinum-based combination therapy is more effective and less toxic, but lack of targeting, and is not capable to enrich in the tumor zone. To obstacle these drawbacks, prodrug and nanotechnology strategies have been investigated in this study. GSH-responsive and pH-responsive cisplatin prodrug was synthesized. Cisplatin prodrug and paclitaxel co-loaded nanoparticles: DDP-P/PTX NPs were constructed. The drug release behavior and cytotoxicity of nanoparticles was assessed in vitro. In vivo anticancer efficiency and toxicity were evaluated on lung cancer bearing mice animal model. DDP-P/PTX NPs had a nanoscale size of 112.9 ± 3.5 nm. A reduction and pH triggered drug release with a synergistic tumor cell inhibition ability was observed by DDP-P/PTX NPs. DDP-P/PTX NPs also exhibited high tumor distribution, low systemic toxicity and remarkable antitumor effects in vivo. DDP-P/PTX NPs could be applied as promising anticancer system for the treatment of NSCLC.
Collapse
Affiliation(s)
- Baohua Wang
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, People's Republic of China
| | - Wenxia Hu
- Department of Respiratory Medicine, The Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Hongjiang Yan
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei Province, People's Republic of China
| | - Ge Chen
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Yaozhong Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Junjie Mao
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China
| | - Lei Wang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Tumor Hospital of Hebei Province, Shijiazhuang, 050011, Hebei Province, People's Republic of China.
| |
Collapse
|
28
|
Ma W, Chen Q, Xu W, Yu M, Yang Y, Zou B, Zhang YS, Ding J, Yu Z. Self-targeting visualizable hyaluronate nanogel for synchronized intracellular release of doxorubicin and cisplatin in combating multidrug-resistant breast cancer. NANO RESEARCH 2021; 14:846-857. [DOI: 10.1007/s12274-020-3124-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 08/29/2023]
|
29
|
Izci M, Maksoudian C, Manshian BB, Soenen SJ. The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors. Chem Rev 2021; 121:1746-1803. [PMID: 33445874 PMCID: PMC7883342 DOI: 10.1021/acs.chemrev.0c00779] [Citation(s) in RCA: 237] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 02/08/2023]
Abstract
Nanomaterial (NM) delivery to solid tumors has been the focus of intense research for over a decade. Classically, scientists have tried to improve NM delivery by employing passive or active targeting strategies, making use of the so-called enhanced permeability and retention (EPR) effect. This phenomenon is made possible due to the leaky tumor vasculature through which NMs can leave the bloodstream, traverse through the gaps in the endothelial lining of the vessels, and enter the tumor. Recent studies have shown that despite many efforts to employ the EPR effect, this process remains very poor. Furthermore, the role of the EPR effect has been called into question, where it has been suggested that NMs enter the tumor via active mechanisms and not through the endothelial gaps. In this review, we provide a short overview of the EPR and mechanisms to enhance it, after which we focus on alternative delivery strategies that do not solely rely on EPR in itself but can offer interesting pharmacological, physical, and biological solutions for enhanced delivery. We discuss the strengths and shortcomings of these different strategies and suggest combinatorial approaches as the ideal path forward.
Collapse
Affiliation(s)
- Mukaddes Izci
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Christy Maksoudian
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Bella B. Manshian
- Translational
Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Stefaan J. Soenen
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| |
Collapse
|
30
|
Polycaprolactone Nanoparticles as Promising Candidates for Nanocarriers in Novel Nanomedicines. Pharmaceutics 2021; 13:pharmaceutics13020191. [PMID: 33535563 PMCID: PMC7912766 DOI: 10.3390/pharmaceutics13020191] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 01/04/2023] Open
Abstract
An investigation of the interactions between bio-polymeric nanoparticles (NPs) and the RAW 264.7 mouse murine macrophage cell line has been presented. The cell viability, immunological response, and endocytosis efficiency of NPs were studied. Biopolymeric NPs were synthesized from a nanoemulsion using the phase inversion composition (PIC) technique. The two types of biopolymeric NPs that were obtained consisted of a biocompatible polymer, polycaprolactone (PCL), either with or without its copolymer with poly(ethylene glycol) (PCL-b-PEG). Both types of synthesized PCL NPs passed the first in vitro quality assessments as potential drug nanocarriers. Non-pegylated PCL NPs were internalized more effectively and the clathrin-mediated pathway was involved in that process. The investigated NPs did not affect the viability of the cells and did not elicit an immune response in the RAW 264.7 cells (neither a significant increase in the expression of genes encoding pro-inflammatory cytokines nor NO (nitric oxide) production were observed). It may be concluded that the synthesized NPs are promising candidates as nanocarriers of therapeutic compounds.
Collapse
|
31
|
Liu Y, Castro Bravo KM, Liu J. Targeted liposomal drug delivery: a nanoscience and biophysical perspective. NANOSCALE HORIZONS 2021; 6:78-94. [PMID: 33400747 DOI: 10.1039/d0nh00605j] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liposomes are a unique platform for drug delivery, and a number of liposomal formulations have already been commercialized. Doxil is a representative example, which uses PEGylated liposomes to load doxorubicin for cancer therapy. Its delivery relies on the enhanced permeability and retention (EPR) effect or passive targeting. Drug loading can be achieved using both standard liposomes and also those containing a solid core such as mesoporous silica and poly(lactide-co-glycolide) (PLGA). Developments have also been made on active targeted delivery using bioaffinity ligands such as small molecules, antibodies, peptides and aptamers. Compared to other types of nanoparticles, the surface of liposomes is fluid, allowing dynamic organization of targeting ligands to achieve optimal binding to cell surface receptors. This review article summarizes development of liposomal targeted drug delivery systems, with an emphasis on the biophysical properties of lipids. In both passive and active targeting, the effects of liposome size, charge, fluidity, rigidity, head-group chemistry and PEGylation are discussed along with recent examples. Most of the examples are focused on targeting tumors or cancer cells. Finally, a few examples of commercialized formulations are described, and some future research opportunities are discussed.
Collapse
Affiliation(s)
- Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | | | | |
Collapse
|
32
|
Yang Z, Zhao L, Wang X, He Z, Wang Y. Ratiometric Delivery of Mitoxantrone and Berberine Co-encapsulated Liposomes to Improve Antitumor Efficiency and Decrease Cardiac Toxicity. AAPS PharmSciTech 2021; 22:46. [PMID: 33442785 DOI: 10.1208/s12249-020-01910-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/18/2020] [Indexed: 12/28/2022] Open
Abstract
Combination therapy is one of the most common clinical practices in the treatment of malignancies. Synergistic effects, however, are produced only when optimal ratios of combined drugs were delivered to tumor cells. Thus, carriers co-encapsulating of multiple drugs are widely utilized for coordinated delivery. Herein, co-encapsulated pegylated liposomal formulation of mitoxantrone (MIT) and berberine (BER) at an optimal ratio has been developed (MBL) with high encapsulation efficiency (EE) and drug loading in order to achieve the purpose of ratiometric loading and delivery. MBL can not only extend blood circulation but also enhance tumor accumulation for both MIT and BER. More importantly, MBL can maintain the originally desired drug ratio in tumors within 48 h of intravenous injection for synergistic therapy. Compared with the liposomal formulation of MIT-treated group (ML), the progression of tumor growth was inhibited significantly in murine 4T1 breast tumor model after the treatment of MBL, as well as a lower cardiac toxicity. In addition, MBL evidently prolonged the survival of mice with L1210 ascitic tumor model. In summary, such a strategy of co-encapsulated liposomes could improve the clinical applications against multiple cancers.
Collapse
|
33
|
Formation of Uni-Lamellar Vesicles in Mixtures of DPPC with PEO-b-PCL Amphiphilic Diblock Copolymers. Polymers (Basel) 2020; 13:polym13010004. [PMID: 33375022 PMCID: PMC7792791 DOI: 10.3390/polym13010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022] Open
Abstract
The ability of mixtures of 1.2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and the amphiphilic diblock copolymers poly (ethylene oxide)-block-poly(ε-caprolactone) (PEO-b-PCL) to stabilize uni-lamellar nano-vesicles is reported. Small angle neutron scattering (SANS) is used to define their size distribution and bilayer structure and resolve the copresence of aggregates and clusters in solution. The vesicles have a broad size distribution which is compatible with bilayer membranes of relatively low bending stiffness. Their mean diameter increases moderately with temperature and their number density and mass is higher in the case of the diblock copolymer with the larger hydrophobic block. Bayesian analysis is performed in order to justify the use of the particular SANS fitting model and confirm the reliability of the extracted parameters. This study shows that amphiphilic block copolymers can be effectively used to prepare mixed lipid-block copolymer vesicles with controlled lamellarity and a significant potential as nanocarriers for drug delivery.
Collapse
|
34
|
Arpicco S, Bartkowski M, Barge A, Zonari D, Serpe L, Milla P, Dosio F, Stella B, Giordani S. Effects of the Molecular Weight of Hyaluronic Acid in a Carbon Nanotube Drug Delivery Conjugate. Front Chem 2020; 8:578008. [PMID: 33381490 PMCID: PMC7767879 DOI: 10.3389/fchem.2020.578008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/13/2020] [Indexed: 01/15/2023] Open
Abstract
Hyaluronic acid (HA) is a ubiquitous biopolymer involved in many pathophysiological roles. One HA receptor, the cluster of differentiation CD44 protein, is often overexpressed in tumor cells. As such, HA has attracted considerable interest in the development of drug delivery formulations, given its intrinsic targetability toward CD44 overexpressing cells. The present study is focused on examining the correlation of HA molecular weight with its targetability properties. A library of conjugates obtained by linking the amino group of the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (DMPE) to the carboxylic residues of HA of different molecular weight (6.4, 17, 51, 200, and 1,500 kDa) were synthesized and fully characterized. The HA-DMPE conjugates were then used to non-covalently functionalize the highly hydrophobic single-walled carbon nanotubes (CNT), and further encapsulate the anticancer drug doxorubicin (DOX). Our results show that the complexes DOX/CNT/HA-DMPE maintain very good and stable dispersibility. Drug release studies indicated a pH-responsive release of the drug from the nanocarrier. Cell viability tests demonstrated that all HA modified CNTs have good biocompatibility, and specific targeting toward cells overexpressing the CD44 receptor. Among all the molecular weights tested, the 200 kDa HA showed the highest increase in cellular uptake and cytotoxic activity. All these promising attributes make CNT/HA200-DMPE a “smart” platform for tumor-targeted delivery of anticancer agents.
Collapse
Affiliation(s)
- Silvia Arpicco
- Department of Drug Science and Technology, University of Torino, Turin, Italy
| | - Michał Bartkowski
- School of Chemical Sciences, Dublin City University (DCU), Dublin, Ireland
| | - Alessandro Barge
- Department of Drug Science and Technology, University of Torino, Turin, Italy
| | - Daniele Zonari
- Department of Drug Science and Technology, University of Torino, Turin, Italy
| | - Loredana Serpe
- Department of Drug Science and Technology, University of Torino, Turin, Italy
| | - Paola Milla
- Department of Drug Science and Technology, University of Torino, Turin, Italy
| | - Franco Dosio
- Department of Drug Science and Technology, University of Torino, Turin, Italy
| | - Barbara Stella
- Department of Drug Science and Technology, University of Torino, Turin, Italy
| | - Silvia Giordani
- School of Chemical Sciences, Dublin City University (DCU), Dublin, Ireland
| |
Collapse
|
35
|
Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Adv Drug Deliv Rev 2020; 167:170-188. [PMID: 32622022 DOI: 10.1016/j.addr.2020.06.030] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
The widespread development of nanocarriers to deliver chemotherapeutics to specific tumor sites has been motivated by the lack of selective targeting during chemotherapy inducing serious side effects and low therapeutic efficacy. The utmost challenge in targeted cancer therapies is the ineffective drug delivery system, in which the drug-loaded nanocarriers are hindered by multiple complex biological barriers that compromise the therapeutic efficacy. Despite considerable progress engineering novel nanoplatforms for the delivery of chemotherapeutics, there has been limited success in a clinical setting. In this review, we identify and analyze design strategies for improved therapeutic efficacy and unique properties of nanoplatforms, including liposomes, polymeric micelles, nanogels, and dendrimers. We provide a comprehensive and integral description of key biological barriers that nanoplatforms are exposed to during their in vivo journey and discuss associated strategies to overcome these barriers based on the latest research and information available in the field. We expect this review to provide constructive information for the rational design of more effective nanoplatforms to advance precision therapies and accelerate their clinical translation.
Collapse
|
36
|
Zhou WL, Chen Y, Yu Q, Zhang H, Liu ZX, Dai XY, Li JJ, Liu Y. Ultralong purely organic aqueous phosphorescence supramolecular polymer for targeted tumor cell imaging. Nat Commun 2020; 11:4655. [PMID: 32938918 PMCID: PMC7494876 DOI: 10.1038/s41467-020-18520-7] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Purely organic room-temperature phosphorescence has attracted attention for bioimaging but can be quenched in aqueous systems. Here we report a water-soluble ultralong organic room-temperature phosphorescent supramolecular polymer by combining cucurbit[n]uril (CB[7], CB[8]) and hyaluronic acid (HA) as a tumor-targeting ligand conjugated to a 4-(4-bromophenyl)pyridin-1-ium bromide (BrBP) phosphor. The result shows that CB[7] mediated pseudorotaxane polymer CB[7]/HA-BrBP changes from small spherical aggregates to a linear array, whereas complexation with CB[8] results in biaxial pseudorotaxane polymer CB[8]/HA-BrBP which transforms to relatively large aggregates. Owing to the more stable 1:2 inclusion complex between CB[8] and BrBP and the multiple hydrogen bonds, this supramolecular polymer has ultralong purely organic RTP lifetime in water up to 4.33 ms with a quantum yield of 7.58%. Benefiting from the targeting property of HA, this supramolecular polymer is successfully applied for cancer cell targeted phosphorescence imaging of mitochondria.
Collapse
Affiliation(s)
- Wei-Lei Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Qilin Yu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Haoyang Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhi-Xue Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xian-Yin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jing-Jing Li
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China.
| |
Collapse
|
37
|
Recent advances of sorafenib nanoformulations for cancer therapy: Smart nanosystem and combination therapy. Asian J Pharm Sci 2020; 16:318-336. [PMID: 34276821 PMCID: PMC8261086 DOI: 10.1016/j.ajps.2020.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/01/2020] [Accepted: 07/25/2020] [Indexed: 12/21/2022] Open
Abstract
Sorafenib, a molecular targeted multi-kinase inhibitor, has received considerable interests in recent years due to its significant profiles of efficacy in cancer therapy. However, poor pharmacokinetic properties such as limited water solubility, rapid elimination and metabolism lead to low bioavailability, restricting its further clinical application. Over the past decade, with substantial progress achieved in the development of nanotechnology, various types of smart sorafenib nanoformulations have been developed to improve the targetability as well as the bioavailability of sorafenib. In this review, we summarize various aspects from the preparation and characterization to the evaluation of antitumor efficacy of numerous stimuli-responsive sorafenib nanodelivery systems, particularly with emphasis on their mechanism of drug release and tumor microenvironment response. In addition, this review makes great effort to summarize the nanosystem-based combination therapy of sorafenib with other antitumor agents, which can provide detailed information for further synergistic cancer therapy. In the final section of this review, we also provide a detailed discussion of future challenges and prospects of designing and developing ideal sorafenib nanoformulations for clinical cancer therapy.
Collapse
|
38
|
Li XY, Wang JH, Gu LY, Yao XM, Cai FY, Jing M, Li XT, Ju RJ. Dual variable of drug loaded micelles in both particle and electrical charge on gastric cancer treatment. J Drug Target 2020; 28:1071-1084. [PMID: 32484364 DOI: 10.1080/1061186x.2020.1777419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Gastric cancer is a malignant tumour characterised by the uncontrolled cell growth. The incidence and mortality of gastric cancer remain high for the invasion and metastasis. We are urgently seeking a risk-free and effective treatment strategy for gastric cancer. In this study, paclitaxel and tetrandrine were encapsulated in the inner core of micelles, and DSPE-PEG2000-CPP and HA were modified on the micellar surface. HA/CPP modified paclitaxel plus tetrandrine micelles had a suitable particle size (90 nm) for permeating tumour tissue. The zeta potential of the targeting micelles was 8.37 mV after hydrolysis by HAase solution. Results of in vitro experiments indicated that HA/CPP modified paclitaxel plus tetrandrine micelles + HAase could enhance the intracellular uptake, inhibit the formation of neovascularization, block the process of EMT and destroy the invasion and metastasis. In vivo assays indicated that HA/CPP modified paclitaxel plus tetrandrine micelles could be selectively accumulated into tumour sites and exhibited the strong antitumor activity with negligible toxicity. These results suggested that HA/CPP modified paclitaxel plus tetrandrine micelles might provide a new strategy for treating gastric cancer.
Collapse
Affiliation(s)
- Xiu-Ying Li
- School of Pharmacy, Shanxi University of Chinese Medicine, Jinzhong, China
| | - Jian-Hua Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Li-Yan Gu
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xue-Min Yao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Fu-Yi Cai
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Ming Jing
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xue-Tao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Rui-Jun Ju
- Department of Pharmaceutical Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| |
Collapse
|
39
|
Wu B, Zhang LJ, Zhang CJ, Deng K, Ao YW, Mei H, Zhou W, Wang CX, Yu H, Huang SW. Effect of Poly(ethylene glycol) (PEG) Surface Density on the Fate and Antitumor Efficacy of Redox-Sensitive Hybrid Nanoparticles. ACS Biomater Sci Eng 2020; 6:3975-3983. [PMID: 33463329 DOI: 10.1021/acsbiomaterials.0c00516] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effects of poly(ethylene glycol) (PEG) on improving the biological compatibility and circulation time of nanocarriers are determined by the surface density of PEG on nanoparticles. PEG with high surface density on nanocarriers has greater accumulation in tumor tissues. However, this impairs the release of drugs loaded in the nanoparticles in the tumor tissues. The relations and internal regularities between the controlled stripping of PEG of nanoparticles and its fate and antitumor efficacy in vivo remain unsolved. Redox-sensitive hybrid nanoparticles coated with varied PEG densities were prepared by blending a redox-sensitive polymer of DLPE-SS-MPEG. To keep identical nanoproperties, these nanoparticles were prepared with a similar size distribution of around 100 nm. The effects of controlled stripping of PEG on antitumor activities of nanoparticles were then investigated. As the PEG surface density increased, lower cellular internalization by tumor cells was observed. However, nanoparticles with higher controlled stripping of PEG showed greater accumulation in tumor tissues and advanced antitumor activities in vivo.
Collapse
Affiliation(s)
- Bo Wu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, P. R. China.,Key Laboratory of Biomedical Polymers, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Liu-Jie Zhang
- Key Laboratory of Biomedical Polymers, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Cai-Ju Zhang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, P. R. China
| | - Kai Deng
- Key Laboratory of Biomedical Polymers, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Ya-Wen Ao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, P. R. China
| | - Hao Mei
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, P. R. China
| | - Wei Zhou
- Key Laboratory of Biomedical Polymers, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Cai-Xia Wang
- Key Laboratory of Biomedical Polymers, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hui Yu
- Key Laboratory of Biomedical Polymers, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Shi-Wen Huang
- Key Laboratory of Biomedical Polymers, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
40
|
Chi J, Ma Q, Shen Z, Ma C, Zhu W, Han S, Liang Y, Cao J, Sun Y. Targeted nanocarriers based on iodinated-cyanine dyes as immunomodulators for synergistic phototherapy. NANOSCALE 2020; 12:11008-11025. [PMID: 32301458 DOI: 10.1039/c9nr10674j] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photodynamic therapy (PDT), as one of the most powerful photo-therapeutic strategies for cancer treatment with minimum invasiveness, can effectively damage local tumor cells and significantly induce systemic antitumor immunity. However, current nanotechnology-assisted PDT-immunomodulators have either poor penetration for deep tumors or low singlet oxygen generation. Herein, we construct a novel theranostic nanocarrier (HA-PEG-CyI, HPC) by inducing the self-assembly of PEGylated CyI and attaching the ligand HA to its surface. The prepared HPC can be used as an ideal PDT-immunomodulator for synergistic cancer therapy. CyI is an iodinated-cyanine dye with enhanced singlet oxygen generation ability as well as excellent photo-to-photothermal and near-infrared fluorescence imaging properties. Under 808 nm laser irradiation, the prepared HPC can generate both reactive oxygen species (ROS) and elevate temperature which can subsequently result in apoptosis and necrosis at tumor sites. Moreover, the HPC-induced cell death can generate a series of acute inflammatory reactions, leading to systemic immunity induction and secondary death of tumor cells, which further results in reducing tumor recurrence. In vitro and in vivo results show that HPC can enhance the tumor targeting efficacy, generate ROS efficiently and exhibit a high temperature response under NIR irradiation, which working together can activate immune responses for synergistic phototherapy on tumor cells. Accordingly, the proposed multi-functional HPC nanocarriers represent an important advance in PDT and can be used as a superior cancer treatment strategy with great promise for clinical applications.
Collapse
Affiliation(s)
- Jinnan Chi
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Huang C, Chen F, Zhang L, Yang Y, Yang X, Pan W. 99mTc Radiolabeled HA/TPGS-Based Curcumin-Loaded Nanoparticle for Breast Cancer Synergistic Theranostics: Design, in vitro and in vivo Evaluation. Int J Nanomedicine 2020; 15:2987-2998. [PMID: 32431497 PMCID: PMC7200226 DOI: 10.2147/ijn.s242490] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 04/09/2020] [Indexed: 12/11/2022] Open
Abstract
Background Emerging cancer therapy requires highly sensitive diagnosis in combination with cancer-targeting therapy. In this study, a self-assembled pH-sensitive curcumin (Cur)-loaded nanoparticle of 99mTc radiolabeled hyaluronan-cholesteryl hemisuccinate conjugates (HA-CHEMS) and D-a-tocopheryl polyethylene glycol succinate (TPGS) was prepared for breast cancer synergistic theranostics. Materials and Methods The synthesized amphiphilic HA-CHEMS conjugates and TPGS self-assembled into Cur-loaded nanoparticles (HA-CHEMS-Cur-TPGS NPs) in an aqueous environment. The physicochemical properties of HA-CHEMS-Cur-TPGS NPs were characterized by transmission electron microscopy (TEM) and dynamic lighter scattering (DLS). The in vitro cytotoxicity of HA-CHEMS-Cur-TPGS NPs against breast cancer cells was evaluated by using the methyl thiazolyl tetrazolium (MTT) assay. Moreover, the in vivo animal experiments of HA-CHEMS-Cur-TPGS NPs including SPECT/CT imaging biodistribution and antitumor efficiency were investigated in 4T1 tumor-bearing BALB/c mice; furthermore, pharmacokinetics were investigated in healthy mice. Results HA-CHEMS-Cur-TPGS NPs exhibited high curcumin loading, uniform particle size distribution, and excellent stability in vitro. In the cytotoxicity assay, HA-CHEMS-Cur-TPGS NPs showed remarkably higher cytotoxicity to 4T1 cells with an IC50 value at 38 μg/mL, compared with free curcumin (77 μg/mL). Moreover, HA-CHEMS-Cur-TPGS NPs could be effectively and stably radiolabeled with 99mTc. The SPECT images showed that 99mTc-HA-CHEMS-Cur-TPGS NPs could target the 4T1 tumor up to 4.85±0.24%ID/g at 4 h post-injection in BALB/c mice. More importantly, the in vivo antitumor efficacy studies showed that HA-CHEMS-Cur-TPGS NPs greatly inhibited the tumor growth without resulting in obvious toxicities to major organs. Conclusion The results indicated that HA-CHEMS-Cur-TPGS NPs with stable 99mTc labeling and high curcumin-loading capacity hold great potential for breast cancer synergistic theranostics.
Collapse
Affiliation(s)
- Chong Huang
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.,School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Fen Chen
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, People's Republic of China.,Zhejiang Jingxin Pharmaceutical Co., Ltd, Xinchang 312500, People's Republic of China
| | - Ling Zhang
- Department of Biotherapy, Cancer Research Institute, The First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Yue Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Xinggang Yang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Weisan Pan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| |
Collapse
|
42
|
Liang S, Chen Y, Zhang S, Cao Y, Duan J, Wang Y, Sun Z. RhB-encapsulating silica nanoparticles modified with PEG impact the vascular endothelial function in endothelial cells and zebrafish model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134493. [PMID: 32000304 DOI: 10.1016/j.scitotenv.2019.134493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Silica nanoparticles (SiNPs) have been widely used in human health related products, such as food additives, cosmetics and even drug delivery, gene therapy or bioimaging. Recently, a first-in-human clinical trial based on polyethylene glycol (PEG)-modified SiNPs had been approved by US FDA to trace melanoma. However, as a nano-based drug delivery system, its biocompatibility and vascular toxicity are still largely unknown. Thus, we synthesized the fluorescent SiNPs to explore the biocompatibility and vascular endothelial function, and compare different biological effects caused by PEG-modified and unmodified SiNPs in cells and zebrafish model. The characterizations of SiNPs and PEG-modified SiNPs were analyzed by TEM, SEM, AFM and DLS, which exhibited relatively good stable and dispersive. Compared with SiNPs, PEG-modified SiNPs had markedly reduced the inflammatory response and vascular damage in Tg (fli-1: EGFP) and Tg (mpo: GFP) transgenic zebrafish lines, respectively. Consistent with the in vivo results, the PEG-modified SiNPs had been found to significantly decline the levels of ROS, inflammatory cytokines and mitochondrial-mediated apoptosis in vascular endothelial cells compared to SiNPs, and the ROS scavenger NAC could effectively alleviate the above adverse effects induced by nanoparticles. Our results suggested that the PEG-modified SiNPs could become more safety via increasing the biocompatibility and decreasing cellular toxicities in living organisms.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Shiming Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, PR China
| | - Yuanyuan Cao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Yapei Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
43
|
Lin ZL, Ding J, Sun GP, Li D, He SS, Liang XF, Huang XR, Xie J. Application of Paclitaxel-loaded EGFR Peptide-conjugated Magnetic Polymeric Liposomes for Liver Cancer Therapy. Curr Med Sci 2020; 40:145-154. [PMID: 32166677 DOI: 10.1007/s11596-020-2158-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 11/26/2019] [Indexed: 12/12/2022]
Abstract
Developing the methodologies that allow for safe and effective delivery of therapeutic drugs to target sites is a very important research area in cancer therapy. In this study, polyethylene glycol (PEG)-coated magnetic polymeric liposome (MPL) nanoparticles (NPs) assembled from octadecyl quaternized carboxymethyl chitosan (OQC), PEGylated OQC, cholesterol, and magnetic NPs, and functionalized with epithelial growth factor receptor (EGFR) peptide, were successfully prepared for in-vivo liver targeting. The two-step liver targeting strategy, based on both magnetic force and EGFR peptide conjugation, was evaluated in a subcutaneous hepatocellular carcinoma model of nude mouse. The results showed that EGFR-conjugated MPLs not only accumulated in the liver by magnetic force, but could also diffuse into tumor cells as a result of EGFR targeting. In addition, paclitaxel (PTX) was incorporated into small EGFR-conjugated MPLs (102.0±0.7 nm), resulting in spherical particles with high drug encapsulation efficiency (>90%). The use of the magnetic targeting for enhancing the transport of PTX-loaded EGFR-conjugated MPLs to the tumor site was further confirmed by detecting PTX levels. In conclusion, PTX-loaded EGFR-conjugated MPLs could potentially be used as an effective drug delivery system for targeted liver cancer therapy.
Collapse
Affiliation(s)
- Zhen-Lv Lin
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Jian Ding
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.
| | - Guo-Ping Sun
- Department of Pharmacy, Qingdao Seventh People's Hospital, Qingdao, 266034, China
| | - Dan Li
- Department of Gastroenterology, Union Hospital of Fujian Medical University, Fuzhou, 350001, China.
| | - Shan-Shan He
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Xiao-Fei Liang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Xun-Ru Huang
- Department of Gastroenterology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Jie Xie
- Department of Emergency, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China.,Department of Gastroenterology, Hospital of Fujian Normal University, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
44
|
Gautam M, Thapa RK, Gupta B, Soe ZC, Ou W, Poudel K, Jin SG, Choi HG, Yong CS, Kim JO. Phytosterol-loaded CD44 receptor-targeted PEGylated nano-hybrid phyto-liposomes for synergistic chemotherapy. Expert Opin Drug Deliv 2020; 17:423-434. [DOI: 10.1080/17425247.2020.1727442] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Milan Gautam
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Raj Kumar Thapa
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Biki Gupta
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Zar Chi Soe
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Wenquan Ou
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Kishwor Poudel
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Sung Giu Jin
- Department of Pharmaceutical Engineering, Dankook University, Dongnam-gu, Republic of Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, Sangnok-gu, Republic of Korea
| | - Chul Soon Yong
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | - Jong Oh Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
45
|
de Oliveira JK, Ueda-Nakamura T, Corrêa AG, Petrilli R, Lopez RFV, Nakamura CV, Auzely-Velty R. Liposome-based nanocarrier loaded with a new quinoxaline derivative for the treatment of cutaneous leishmaniasis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 110:110720. [PMID: 32204033 DOI: 10.1016/j.msec.2020.110720] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/24/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023]
Abstract
The use of nanocarriers for drug delivery is a strategy aimed to improve therapeutic indices through changes in their pharmacokinetic and pharmacodynamic characteristics. Liposomes are well-investigated nanocarriers for drug delivery to macrophage-targeted therapy, the main hosts of intracellular pathogens of some infectious diseases, such as leishmaniasis. In this study, we developed hyaluronic acid (HA)-coated liposomes by different methods that can encapsulate a new quinoxaline derivative, the LSPN331, to increase its solubility and improve its bioavailability. The surface modification of liposomes and their physicochemical characteristics may depend on the coating method, which may be a critical parameter with regard to the route of administration of the antileishmanial drug. Liposomes with identical phospholipid composition containing the same drug were developed, and different biological responses were verified, and our hypothesis is that it is related to the type of modification of the surface. Different physicochemical characterization techniques (dynamic light scattering, transmission electron microscopy and UV-vis quantification of labeled-HA) were used to confirm the successful modification of liposomes as well as their stability upon storage. The encapsulation of LSPN331 was performed using HPLC method, and the entrapment efficiency (EE%) was satisfatory in all formulations, considering results of similar formulations in the literature. Furthermore, in vitro and in vivo studies were carried out to evaluate the efficacy against the parasite Leishmania amazonensis. The in vitro activity was maintained or even improved and HA-coated liposomes showed the ability to target to the site of action by the proposed routes of administration, topically and intravenously. Both formulations are promising for future tests of antileishmania activity in vivo.
Collapse
Affiliation(s)
| | - Tânia Ueda-Nakamura
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | | | - Raquel Petrilli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto USP, Ribeirão Preto, SP, Brazil
| | | | - Celso Vataru Nakamura
- Programa de Pós Graduação em Ciências Farmacêuticas, Universidade Estadual de Maringá, Maringá, PR, Brazil.
| | - Rachel Auzely-Velty
- Centre de Recherches sur les Macromolécules Végétales, Cermav, Université Grenoble Alpes, Grenoble, France.
| |
Collapse
|
46
|
Wang SY, Hu HZ, Qing XC, Zhang ZC, Shao ZW. Recent advances of drug delivery nanocarriers in osteosarcoma treatment. J Cancer 2020; 11:69-82. [PMID: 31892974 PMCID: PMC6930408 DOI: 10.7150/jca.36588] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma is the most common primary malignant bone tumor mainly occurred in children and adolescence, and chemotherapy is limited for the side effects and development of drug resistance. Advances in nanotechnology and knowledge of cancer biology have led to significant improvements in developing tumor-targeted drug delivery nanocarriers, and some have even entered clinically application. Delivery of chemotherapeutic agents by functionalized smart nanocarriers could protect the drugs from rapid clearance, prolong the circulating time, and increase the drug concentration at tumor sites, thus enhancing the therapeutic efficacy and reducing side effects. Various drug delivery nanocarriers have been designed and tested for osteosarcoma treatment, but most of them are still at experimental stage, and more further studies are needed before clinical application. In this present review, we briefly describe the types of commonly used nanocarriers in osteosarcoma treatment, and discuss the strategies for osteosarcoma-targeted delivery and controlled release of drugs. The application of nanoparticles in the management of metastatic osteosarcoma is also briefly discussed. The purpose of this article is to present an overview of recent progress of nanoscale drug delivery platforms in osteosarcoma, and inspire new ideas to develop more effective therapeutic options.
Collapse
Affiliation(s)
- Shang-Yu Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hong-Zhi Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiang-Cheng Qing
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhi-Cai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zeng-Wu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
47
|
Zhang YH, Zhang YM, Sheng X, Wang J, Liu Y. Enzyme-responsive fluorescent camptothecin prodrug/polysaccharide supramolecular assembly for targeted cellular imaging and in situ controlled drug release. Chem Commun (Camb) 2020; 56:1042-1045. [DOI: 10.1039/c9cc08491f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
An enzyme-responsive polysaccharide assembly was constructed, which possesses low cytotoxicity, targeted imaging and controlled drug release, while providing a concurrent means for the real-time tracking of drug delivery.
Collapse
Affiliation(s)
- Yu-Hui Zhang
- College of Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- P. R. China
- Department of Chemistry
| | - Ying-Ming Zhang
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| | - Xianliang Sheng
- College of Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- P. R. China
| | - Jie Wang
- College of Science
- Inner Mongolia Agricultural University
- Hohhot 010018
- P. R. China
| | - Yu Liu
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
48
|
Roque MC, Franco MS, Vilela JMC, Andrade MS, de Barros ALB, Leite EA, Oliveira MC. Development of Long-Circulating and Fusogenic Liposomes Co-encapsulating Paclitaxel and Doxorubicin in Synergistic Ratio for the Treatment of Breast Cancer. Curr Drug Deliv 2019; 16:829-838. [DOI: 10.2174/1567201816666191016112717] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/26/2019] [Accepted: 09/19/2019] [Indexed: 11/22/2022]
Abstract
Background:
The co-encapsulation of paclitaxel (PTX) and doxorubicin (DXR) in liposomes
has the potential to offer pharmacokinetic and pharmacodynamic advantages, providing delivery of both
drugs to the tumor at the ratio required for synergism.
Objective:
To prepare and characterize long-circulating and fusogenic liposomes co-encapsulating PTX
and DXR in the 1:10 molar ratio (LCFL-PTX/DXR).
Methods:
LCFL-PTX/DXR was prepared by the lipid film formation method. The release of PTX and
DXR from liposomes was performed using a dialysis method. Studies of cytotoxicity, synergism, and
cellular uptake were also carried out.
Results:
The encapsulation percentage of PTX and DXR was 74.1 ± 1.8 % and 89.6 ± 12.3%, respectively,
and the mean diameter of the liposomes was 244.4 ± 28.1 nm. The vesicles remained stable for
30 days after their preparation. The drugs were simultaneously released from vesicles during 36 hours,
maintaining the drugs combination in the previously established ratio. Cytotoxicity studies using 4T1
breast cancer cells showed lower inhibitory concentration 50% (IC50) value for LCFL-PTX/DXR treatment
(0.27 ± 0.11 µm) compared to the values of free drugs treatment. In addition, the combination
index (CI) assessed for treatment with LCFL-PTX/DXR was equal to 0.11 ± 0.04, showing strong synergism
between the drugs. Cell uptake studies have confirmed that the molar ratio between PTX and
DXR is maintained when the drugs are administered in liposomes.
Conclusion:
It was possible to obtain LCFL-PTX/DXR suitable for intravenous administration, capable
of releasing the drugs in a fixed synergistic molar ratio in the tumor region.
Collapse
Affiliation(s)
- Marjorie Coimbra Roque
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marina Santiago Franco
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - André Luís Branco de Barros
- Department of Clinical and Toxicological Analyzes, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elaine Amaral Leite
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mônica Cristina Oliveira
- Department of Pharmaceutical Products, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
49
|
Teng C, Chai Z, Yuan Z, Ren L, Lin C, Yan Z, He W, Qin C, Yang L, Han X, Yin L. Desirable PEGylation for improving tumor selectivity of hyaluronic acid-based nanoparticles via low hepatic captured, long circulation times and CD44 receptor-mediated tumor targeting. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102105. [PMID: 31740406 DOI: 10.1016/j.nano.2019.102105] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 08/26/2019] [Accepted: 09/27/2019] [Indexed: 01/25/2023]
Abstract
PEG coating was regarded as one effective method to improve the tumor-targeting efficiency of hyaluronic acid-based nanoparticles (HBN). However, the research of interaction between PEG coating and different receptors such as stabilin-2 and CD44 was limited. Herein, we synthesized a series of PEGylated hyaluronic acid with Curcumin (PHCs) to evaluate the role of PEG coating density in the interaction between HA and its receptors, which influenced tissues targeting activity, pharmacokinetic profiles and therapeutic efficacy of HBN. Compared with other counterparts, PHC HBN with about 5% PEG coating density preferably accumulated in the tumor mass, rather than in the liver, and hold desirable anti-cancer effect. These results indicated that to obtain optimized anticancer effect of HBN, the cellular uptake efficiency between different types of the cells should be carefully balanced by different PEG densities.
Collapse
Affiliation(s)
- Chao Teng
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Zhuodong Chai
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Zhongyue Yuan
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China; University of the Pacific, Stockton, California, USA
| | - Lianjie Ren
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China; Center for Drug Evaluation, CFDA, Beijing, PR China
| | - Chenshi Lin
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Zhen Yan
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Chao Qin
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Lei Yang
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China
| | - Xiaopeng Han
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China.
| | - Lifang Yin
- School of Pharmacy, China Pharmaceutical University, Nanjing, PR China.
| |
Collapse
|
50
|
Saeed-Zidane M, Tesfaye D, Mohammed Shaker Y, Tholen E, Neuhoff C, Rings F, Held E, Hoelker M, Schellander K, Salilew-Wondim D. Hyaluronic acid and epidermal growth factor improved the bovine embryo quality by regulating the DNA methylation and expression patterns of the focal adhesion pathway. PLoS One 2019; 14:e0223753. [PMID: 31661494 PMCID: PMC6818761 DOI: 10.1371/journal.pone.0223753] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 09/27/2019] [Indexed: 11/19/2022] Open
Abstract
Focal adhesion pathway is one of the key molecular pathways affected by suboptimal culture conditions during embryonic development. The epidermal growth factor (EGF) and hyaluronic acid (HA) are believed to be involved in the focal adhesion pathway function by regulating the adherence of the molecules to the extracellular matrix. However, regulatory and molecular mechanisms through which the EGF and HA could influence the embryo development is not clear. Therefore, this study aimed to investigate the effect of continued or stage specific supplementation of EGF and/or HA on the developmental competence and quality of bovine preimplantation embryos and the subsequent consequences on the expression and DNA methylation patterns of genes involved in the focal adhesion pathway. The results revealed that, the supplementation of EGF or HA from zygote to the blastocysts stage reduced the level of reactive oxygen species and increased hatching rate after thawing. On the other hand, HA decreased the apoptotic nuclei and increased blastocyst compared to EGF supplemented group. Gene expression and DNA methylation analysis in the resulting blastocysts indicated that, combined supplementation of EGF and HA increased the expression of genes involved in focal adhesion pathway while supplementation of EGF, HA or a combination of EGF and HA during the entire preimplantation period changed the DNA methylation patterns of genes involved in focal adhesion pathway. On the other hand, blastocysts developed in culture media supplemented with EGF + HA until the 16-cell stage exhibited higher expression level of genes involved in focal adhesion pathway compared to those supplemented after the 16-cell stage. Conversely, the DNA methylation level of candidate genes was increased in the blastocysts obtained from embryos cultured in media supplemented with EGF + HA after 16-cell stage. In conclusion, supplementation of bovine embryos with EGF and/or HA during the entire preimplantation period or in a stage specific manner altered the DNA methylation and expression patterns of candidate genes involved in the focal adhesion pathway which was in turn associated with the observed embryonic developmental competence and quality.
Collapse
Affiliation(s)
- Mohammed Saeed-Zidane
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- Animal and Poultry Physiology Department, Animal and Poultry Production Division, Desert Research Center, Mataria, Cairo, Egypt
| | - Dawit Tesfaye
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
- Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| | - Yousri Mohammed Shaker
- Animal and Poultry Physiology Department, Animal and Poultry Production Division, Desert Research Center, Mataria, Cairo, Egypt
| | - Ernst Tholen
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
| | - Christiane Neuhoff
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
| | - Franca Rings
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
| | - Eva Held
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
| | - Michael Hoelker
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
- Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| | - Karl Schellander
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
- Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| | - Dessie Salilew-Wondim
- Institute of Animal Science, Department of Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|