1
|
Seo DH, Oh GH, Song JM, Heo JW, Park S, Bae H, Park JH, Kim T. Compositionally Graded MoS 2xTe 2(1-x)/MoS 2 van der Waals Heterostructures for Ultrathin Photovoltaic Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47944-47951. [PMID: 39215688 DOI: 10.1021/acsami.4c10637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
van der Waals heterojunctions utilizing two-dimensional (2D) transition-metal dichalcogenide (TMD) materials have emerged as focal points in the field of optoelectronic devices, encompassing applications in light-emitting devices, photodetectors, solar cells, and beyond. In this study, we transferred few-atomic-layer films of compositionally graded ternary MoS2xTe2(1-x) alloys onto metal-organic chemical vapor deposition-grown molybdenum disulfide (MoS2) as p- and n-type structures, leading to the creation of a van der Waals vertical heterostructure. The characteristics of the fabricated MoS2xTe2(1-x)/MoS2 vertical-stacked heterojunction were investigated considering the influence of tellurium (Te) incorporation. The systematic variation of parameter x (i.e., 0.8, 0.6, 0.5, 0.3, and 0) allowed for an exploration of the impact of Te incorporation on the photovoltaic performance of these heterojunctions. As a result, the power conversion efficiency was enhanced by approximately 6 orders of magnitude with increasing Te concentration; notably, photoresponsivities as high as ∼6.4 A/W were achieved. These findings emphasize the potential for enhancing ultrathin solar energy conversion in heterojunctions based on 2D TMDs.
Collapse
Affiliation(s)
- Dong Hyun Seo
- School of Advanced Fusion Studies and AI Semiconductor, University of Seoul, Seoul 02504, Republic of Korea
- 2D Epi, inc, 567 Baekje-daero, Jeonju 54896, Republic of Korea
| | - Guen Hyung Oh
- 2D Epi, inc, 567 Baekje-daero, Jeonju 54896, Republic of Korea
| | - Jong Min Song
- School of Advanced Fusion Studies and AI Semiconductor, University of Seoul, Seoul 02504, Republic of Korea
- 2D Epi, inc, 567 Baekje-daero, Jeonju 54896, Republic of Korea
| | - Ji Won Heo
- School of Advanced Fusion Studies and AI Semiconductor, University of Seoul, Seoul 02504, Republic of Korea
- 2D Epi, inc, 567 Baekje-daero, Jeonju 54896, Republic of Korea
| | - Sungjune Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hagyoul Bae
- Department of Electronic Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Joo Hyung Park
- Photovoltaics Research Department, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - TaeWan Kim
- School of Advanced Fusion Studies and AI Semiconductor, University of Seoul, Seoul 02504, Republic of Korea
- 2D Epi, inc, 567 Baekje-daero, Jeonju 54896, Republic of Korea
| |
Collapse
|
2
|
Wu R, Zhang H, Ma H, Zhao B, Li W, Chen Y, Liu J, Liang J, Qin Q, Qi W, Chen L, Li J, Li B, Duan X. Synthesis, Modulation, and Application of Two-Dimensional TMD Heterostructures. Chem Rev 2024; 124:10112-10191. [PMID: 39189449 DOI: 10.1021/acs.chemrev.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMD) heterostructures have attracted a lot of attention due to their rich material diversity and stack geometry, precise controllability of structure and properties, and potential practical applications. These heterostructures not only overcome the inherent limitations of individual materials but also enable the realization of new properties through appropriate combinations, establishing a platform to explore new physical and chemical properties at micro-nano-pico scales. In this review, we systematically summarize the latest research progress in the synthesis, modulation, and application of 2D TMD heterostructures. We first introduce the latest techniques for fabricating 2D TMD heterostructures, examining the rationale, mechanisms, advantages, and disadvantages of each strategy. Furthermore, we emphasize the importance of characteristic modulation in 2D TMD heterostructures and discuss some approaches to achieve novel functionalities. Then, we summarize the representative applications of 2D TMD heterostructures. Finally, we highlight the challenges and future perspectives in the synthesis and device fabrication of 2D TMD heterostructures and provide some feasible solutions.
Collapse
Affiliation(s)
- Ruixia Wu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hongmei Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Huifang Ma
- Innovation Center for Gallium Oxide Semiconductor (IC-GAO), National and Local Joint Engineering Laboratory for RF Integration and Micro-Assembly Technologies, College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- School of Flexible Electronics (Future Technologies) Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bei Zhao
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing 211189, China
| | - Wei Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianteng Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jingyi Liang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qiuyin Qin
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weixu Qi
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Liang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jia Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bo Li
- Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
3
|
Yin L, Cheng R, Ding J, Jiang J, Hou Y, Feng X, Wen Y, He J. Two-Dimensional Semiconductors and Transistors for Future Integrated Circuits. ACS NANO 2024; 18:7739-7768. [PMID: 38456396 DOI: 10.1021/acsnano.3c10900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Silicon transistors are approaching their physical limit, calling for the emergence of a technological revolution. As the acknowledged ultimate version of transistor channels, 2D semiconductors are of interest for the development of post-Moore electronics due to their useful properties and all-in-one potentials. Here, the promise and current status of 2D semiconductors and transistors are reviewed, from materials and devices to integrated applications. First, we outline the evolution and challenges of silicon-based integrated circuits, followed by a detailed discussion on the properties and preparation strategies of 2D semiconductors and van der Waals heterostructures. Subsequently, the significant progress of 2D transistors, including device optimization, large-scale integration, and unconventional devices, are presented. We also examine 2D semiconductors for advanced heterogeneous and multifunctional integration beyond CMOS. Finally, the key technical challenges and potential strategies for 2D transistors and integrated circuits are also discussed. We envision that the field of 2D semiconductors and transistors could yield substantial progress in the upcoming years and hope this review will trigger the interest of scientists planning their next experiment.
Collapse
Affiliation(s)
- Lei Yin
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Ruiqing Cheng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jiahui Ding
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jian Jiang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yutang Hou
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xiaoqiang Feng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yao Wen
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan 430072, People's Republic of China
- Wuhan Institute of Quantum Technology, Wuhan 430206, People's Republic of China
| |
Collapse
|
4
|
Chen D, Anantharaman SB, Wu J, Qiu DY, Jariwala D, Guo P. Optical spectroscopic detection of Schottky barrier height at a two-dimensional transition-metal dichalcogenide/metal interface. NANOSCALE 2024; 16:5169-5176. [PMID: 38390639 DOI: 10.1039/d3nr05799b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Atomically thin two-dimensional transition-metal dichalcogenides (2D-TMDs) have emerged as semiconductors for next-generation nanoelectronics. As 2D-TMD-based devices typically utilize metals as the contacts, it is crucial to understand the properties of the 2D-TMD/metal interface, including the characteristics of the Schottky barriers formed at the semiconductor-metal junction. Conventional methods for investigating the Schottky barrier height (SBH) at these interfaces predominantly rely on contact-based electrical measurements with complex gating structures. In this study, we introduce an all-optical approach for non-contact measurement of the SBH, utilizing high-quality WS2/Au heterostructures as a model system. Our approach employs a below-bandgap pump to excite hot carriers from the gold into WS2 with varying thicknesses. By monitoring the resultant carrier density changes within the WS2 layers with a broadband probe, we traced the dynamics and magnitude of charge transfer across the interface. A systematic sweep of the pump wavelength enables us to determine the SBH values and unveil an inverse relationship between the SBH and the thickness of the WS2 layers. First-principles calculations reveal the correlation between the probability of injection and the density of states near the conduction band minimum of WS2. The versatile optical methodology for probing TMD/metal interfaces can shed light on the intricate charge transfer characteristics within various 2D heterostructures, facilitating the development of more efficient and scalable nano-electronic and optoelectronic technologies.
Collapse
Affiliation(s)
- Du Chen
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA.
- Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
| | - Surendra B Anantharaman
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jinyuan Wu
- Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520, USA
| | - Diana Y Qiu
- Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT 06520, USA
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peijun Guo
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA.
- Energy Sciences Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
5
|
Huang JT, Bai B, Han YX, Feng PY, Wang XJ, Li XZ, Huang GY, Sun HB. Super-Resolution Exciton Imaging of Nanobubbles in 2D Semiconductors with Near-Field Nanophotoluminescence Microscopy. ACS NANO 2024; 18:272-280. [PMID: 38096138 DOI: 10.1021/acsnano.3c06102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Two-dimensional (2D) semiconductors, such as transition metal dichalcogenides, have emerged as important candidate materials for next-generation chip-scale optoelectronic devices with the development of large-scale production techniques, such as chemical vapor deposition (CVD). However, 2D materials need to be transferred to other target substrates after growth, during which various micro- and nanoscale defects, such as nanobubbles, are inevitably generated. These nanodefects not only influence the uniformity of 2D semiconductors but also may significantly alter the local optoelectronic properties of the composed devices. Hence, super-resolution discrimination and characterization of nanodefects are highly demanded. Here, we report a near-field nanophotoluminescence (nano-PL) microscope that can quickly screen nanobubbles and investigate their impact on local excitonic properties of 2D semiconductors by directly visualize the PL emission distribution with a very high spatial resolution of ∼10 nm, far below the optical diffraction limit, and a high speed of 10 ms/point under ambient conditions. By using nano-PL microscopy to map the exciton and trion emission intensity distributions in transferred CVD-grown monolayer tungsten disulfide (1L-WS2) flakes, it is found that the PL intensity decreases by 13.4% as the height of the nanobubble increases by every nanometer, which is mainly caused by the suppression of trion emission due to the strong doping effect from the substrate. In addition to the nanobubbles, other types of nanodefects, such as cracks, stacks, and grain boundaries, can also be characterized. The nano-PL method is proven to be a powerful tool for the nondestructive quality inspection of nanodefects as well as the super-resolution exploration of local optoelectronic properties of 2D materials.
Collapse
Affiliation(s)
- Jia-Tai Huang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Benfeng Bai
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Yu-Xiao Han
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Peng-Yi Feng
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Xiao-Jie Wang
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Xiao-Ze Li
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Guan-Yao Huang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory of CO2 Utilization and Reduction Technology, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Hong-Bo Sun
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Panasci SE, Deretzis I, Schilirò E, La Magna A, Roccaforte F, Koos A, Nemeth M, Pécz B, Cannas M, Agnello S, Giannazzo F. Interface Properties of MoS 2 van der Waals Heterojunctions with GaN. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:133. [PMID: 38251098 PMCID: PMC10818867 DOI: 10.3390/nano14020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024]
Abstract
The combination of the unique physical properties of molybdenum disulfide (MoS2) with those of gallium nitride (GaN) and related group-III nitride semiconductors have recently attracted increasing scientific interest for the realization of innovative electronic and optoelectronic devices. A deep understanding of MoS2/GaN interface properties represents the key to properly tailor the electronic and optical behavior of devices based on this heterostructure. In this study, monolayer (1L) MoS2 was grown on GaN-on-sapphire substrates by chemical vapor deposition (CVD) at 700 °C. The structural, chemical, vibrational, and light emission properties of the MoS2/GaN heterostructure were investigated in detail by the combination of microscopic/spectroscopic techniques and ab initio calculations. XPS analyses on as-grown samples showed the formation of stoichiometric MoS2. According to micro-Raman spectroscopy, monolayer MoS2 domains on GaN exhibit an average n-type doping of (0.11 ± 0.12) × 1013 cm-2 and a small tensile strain (ε ≈ 0.25%), whereas an intense light emission at 1.87 eV was revealed by PL analyses. Furthermore, a gap at the interface was shown by cross-sectional TEM analysis, confirming the van der Waals (vdW) bond between MoS2 and GaN. Finally, density functional theory (DFT) calculations of the heterostructure were carried out, considering three different configurations of the interface, i.e., (i) an ideal Ga-terminated GaN surface, (ii) the passivation of Ga surface by a monolayer of oxygen (O), and (iii) the presence of an ultrathin Ga2O3 layer. This latter model predicts the formation of a vdW interface and a strong n-type doping of MoS2, in closer agreement with the experimental observations.
Collapse
Affiliation(s)
- Salvatore Ethan Panasci
- National Research Council-Institute for Microelectronics and Microsystems (CNR-IMM), Z.I. Strada VIII 5, 95121 Catania, Italy; (I.D.); (E.S.); (A.L.M.); (F.R.); (S.A.); (F.G.)
| | - Ioannis Deretzis
- National Research Council-Institute for Microelectronics and Microsystems (CNR-IMM), Z.I. Strada VIII 5, 95121 Catania, Italy; (I.D.); (E.S.); (A.L.M.); (F.R.); (S.A.); (F.G.)
| | - Emanuela Schilirò
- National Research Council-Institute for Microelectronics and Microsystems (CNR-IMM), Z.I. Strada VIII 5, 95121 Catania, Italy; (I.D.); (E.S.); (A.L.M.); (F.R.); (S.A.); (F.G.)
| | - Antonino La Magna
- National Research Council-Institute for Microelectronics and Microsystems (CNR-IMM), Z.I. Strada VIII 5, 95121 Catania, Italy; (I.D.); (E.S.); (A.L.M.); (F.R.); (S.A.); (F.G.)
| | - Fabrizio Roccaforte
- National Research Council-Institute for Microelectronics and Microsystems (CNR-IMM), Z.I. Strada VIII 5, 95121 Catania, Italy; (I.D.); (E.S.); (A.L.M.); (F.R.); (S.A.); (F.G.)
| | - Antal Koos
- HUN-REN Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege ut 29-33, 1121 Budapest, Hungary; (A.K.); (M.N.)
| | - Miklos Nemeth
- HUN-REN Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege ut 29-33, 1121 Budapest, Hungary; (A.K.); (M.N.)
| | - Béla Pécz
- HUN-REN Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege ut 29-33, 1121 Budapest, Hungary; (A.K.); (M.N.)
| | - Marco Cannas
- Department of Physics and Chemistry Emilio Segrè, University of Palermo, Via Archirafi 36, 90123 Palermo, Italy;
| | - Simonpietro Agnello
- National Research Council-Institute for Microelectronics and Microsystems (CNR-IMM), Z.I. Strada VIII 5, 95121 Catania, Italy; (I.D.); (E.S.); (A.L.M.); (F.R.); (S.A.); (F.G.)
- Department of Physics and Chemistry Emilio Segrè, University of Palermo, Via Archirafi 36, 90123 Palermo, Italy;
- ATEN Center, University of Palermo, Viale delle Scienze Ed. 18, 90128 Palermo, Italy
| | - Filippo Giannazzo
- National Research Council-Institute for Microelectronics and Microsystems (CNR-IMM), Z.I. Strada VIII 5, 95121 Catania, Italy; (I.D.); (E.S.); (A.L.M.); (F.R.); (S.A.); (F.G.)
| |
Collapse
|
7
|
Konthoujam JS, Lin YS, Chang YH, Lin HT, Chang CY, Zhang YW, Lin SY, Kuo HC, Shih MH. Dynamical characteristics of AC-driven hybrid WSe 2 monolayer/AlGaInP quantum wells light-emitting device. DISCOVER NANO 2023; 18:140. [PMID: 37943364 PMCID: PMC10635932 DOI: 10.1186/s11671-023-03920-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
The exploration of functional light-emitting devices and numerous optoelectronic applications can be accomplished on an elegant platform provided by rapidly developing transition metal dichalcogenides (TMDCs). However, TMDCs-based light emitting devices encounter certain serious difficulties, such as high resistance losses from ohmic contacts or the need for complex heterostructures, which restricts the device applications. Despite the fact that AC-driven light emitting devices have developed ways to overcome these challenges, there is still a significant demand for multiple wavelength emission from a single device, which is necessary for full color light emitting devices. Here, we developed a dual-color AC-driven light-emitting device by integrating the WSe2 monolayer and AlGaInP-GaInP multiple quantum well (MQW) structures in the form of capacitor structure using AlOx insulating layer between the two emitters. In order to comprehend the characteristics of the hybrid device under various driving circumstances, we investigate the frequency-dependent EL intensity of the hybrid device using an equivalent RC circuit model. The time-resolved electroluminescence (TREL) characteristics of the hybrid device were analyzed in details to elucidate the underlying physical mechanisms governing its performance under varying applied frequencies. This dual-color hybrid light-emitting device enables the use of 2-D TMDC-based light emitters in a wider range of applications, including broad-band LEDs, quantum display systems, and chip-scale optoelectronic integrated systems.
Collapse
Affiliation(s)
| | - Yen-Shou Lin
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei, 11529, Taiwan
- Department of Photonics and Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Ya-Hui Chang
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei, 11529, Taiwan
- Department of Photonics and Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Hsiang-Ting Lin
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei, 11529, Taiwan
| | - Chiao-Yun Chang
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Wei Zhang
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Shih-Yen Lin
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei, 11529, Taiwan
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Hao-Chung Kuo
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei, 11529, Taiwan
- Department of Photonics and Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Min-Hsiung Shih
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei, 11529, Taiwan.
- Department of Photonics and Institute of Electro-Optical Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.
- Department of Photonics, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
8
|
Lau CS, Das S, Verzhbitskiy IA, Huang D, Zhang Y, Talha-Dean T, Fu W, Venkatakrishnarao D, Johnson Goh KE. Dielectrics for Two-Dimensional Transition-Metal Dichalcogenide Applications. ACS NANO 2023. [PMID: 37257134 DOI: 10.1021/acsnano.3c03455] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Despite over a decade of intense research efforts, the full potential of two-dimensional transition-metal dichalcogenides continues to be limited by major challenges. The lack of compatible and scalable dielectric materials and integration techniques restrict device performances and their commercial applications. Conventional dielectric integration techniques for bulk semiconductors are difficult to adapt for atomically thin two-dimensional materials. This review provides a brief introduction into various common and emerging dielectric synthesis and integration techniques and discusses their applicability for 2D transition metal dichalcogenides. Dielectric integration for various applications is reviewed in subsequent sections including nanoelectronics, optoelectronics, flexible electronics, valleytronics, biosensing, quantum information processing, and quantum sensing. For each application, we introduce basic device working principles, discuss the specific dielectric requirements, review current progress, present key challenges, and offer insights into future prospects and opportunities.
Collapse
Affiliation(s)
- Chit Siong Lau
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Sarthak Das
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Ivan A Verzhbitskiy
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Ding Huang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yiyu Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Teymour Talha-Dean
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Physics and Astronomy, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Wei Fu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Dasari Venkatakrishnarao
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Kuan Eng Johnson Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117551, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| |
Collapse
|
9
|
Chang S, Gu H, Zhang H, Wang X, Li Q, Cui Y, Dai WL. Facile construction of a robust CuS@NaNbO 3 nanorod composite: A unique p-n heterojunction structure with superior performance in photocatalytic hydrogen evolution. J Colloid Interface Sci 2023; 644:304-314. [PMID: 37120879 DOI: 10.1016/j.jcis.2023.04.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Abstract
The construction of heterojunctions is commonly regarded as an efficient way to promote the production of hydrogen via photocatalytic water splitting through the enhancement of interfacial interactions. The p-n heterojunction is an important kind of heterojunction with an inner electric field based on the different properties of semiconductors. In this work, we reported the synthesis of a novel CuS/NaNbO3 p-n heterojunction by depositing CuS nanoparticles on the external surface of NaNbO3 nanorods, using a facile calcination and hydrothermal method. Through the screening of different ratios, the optimum hydrogen production activity reached 1603 μmol·g-1·h-1, which is much higher than that of NaNbO3 (3.6 times) and CuS (2.7 times). Subsequent characterizations proved semiconductor properties and the existence of p-n heterojunction interactions between the two materials, which inhibited the recombination of photogenerated carriers and improved the efficiency of electron transfer. This work provides a meaningful strategy to utilize the p-n heterojunction structure for the promotion of photocatalytic hydrogen production.
Collapse
Affiliation(s)
- Shengyuan Chang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, PR China
| | - Huajun Gu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, PR China
| | - Huihui Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, PR China
| | - Xinglin Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, PR China
| | - Qin Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, PR China
| | | | - Wei-Lin Dai
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, PR China.
| |
Collapse
|
10
|
Babar ZUD, Raza A, Cassinese A, Iannotti V. Two Dimensional Heterostructures for Optoelectronics: Current Status and Future Perspective. Molecules 2023; 28:2275. [PMID: 36903520 PMCID: PMC10005545 DOI: 10.3390/molecules28052275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
Researchers have found various families of two-dimensional (2D) materials and associated heterostructures through detailed theoretical work and experimental efforts. Such primitive studies provide a framework to investigate novel physical/chemical characteristics and technological aspects from micro to nano and pico scale. Two-dimensional van der Waals (vdW) materials and their heterostructures can be obtained to enable high-frequency broadband through a sophisticated combination of stacking order, orientation, and interlayer interactions. These heterostructures have been the focus of much recent research due to their potential applications in optoelectronics. Growing the layers of one kind of 2D material over the other, controlling absorption spectra via external bias, and external doping proposes an additional degree of freedom to modulate the properties of such materials. This mini review focuses on current state-of-the-art material design, manufacturing techniques, and strategies to design novel heterostructures. In addition to a discussion of fabrication techniques, it includes a comprehensive analysis of the electrical and optical properties of vdW heterostructures (vdWHs), particularly emphasizing the energy-band alignment. In the following sections, we discuss specific optoelectronic devices, such as light-emitting diodes (LEDs), photovoltaics, acoustic cavities, and biomedical photodetectors. Furthermore, this also includes a discussion of four different 2D-based photodetector configurations according to their stacking order. Moreover, we discuss the challenges that remain to be addressed in order to realize the full potential of these materials for optoelectronics applications. Finally, as future perspectives, we present some key directions and express our subjective assessment of upcoming trends in the field.
Collapse
Affiliation(s)
- Zaheer Ud Din Babar
- Scuola Superiore Meridionale (SSM), University of Naples Federico II, Largo S. Marcellino 10, 80138 Naples, Italy
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Ali Raza
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Antonio Cassinese
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
- CNR–SPIN (Institute for Superconductors, Oxides and Other Innovative Materials and Devices), Piazzale V. Tecchio 80, 80125 Naples, Italy
| | - Vincenzo Iannotti
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
- CNR–SPIN (Institute for Superconductors, Oxides and Other Innovative Materials and Devices), Piazzale V. Tecchio 80, 80125 Naples, Italy
| |
Collapse
|
11
|
Chang YH, Lin YS, James Singh K, Lin HT, Chang CY, Chen ZZ, Zhang YW, Lin SY, Kuo HC, Shih MH. AC-driven multicolor electroluminescence from a hybrid WSe 2 monolayer/AlGaInP quantum well light-emitting device. NANOSCALE 2023; 15:1347-1356. [PMID: 36562246 DOI: 10.1039/d2nr03725d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Light-emitting diodes (LEDs) are used widely, but when operated at a low-voltage direct current (DC), they consume unnecessary power because a converter must be used to convert it to an alternating current (AC). DC flow across devices also causes charge accumulation at a high current density, leading to lowered LED reliability. In contrast, gallium-nitride-based LEDs can be operated without an AC-DC converter being required, potentially leading to greater energy efficiency and reliability. In this study, we developed a multicolor AC-driven light-emitting device by integrating a WSe2 monolayer and AlGaInP-GaInP multiple quantum well (MQW) structures. The CVD-grown WSe2 monolayer was placed on the top of an AlGaInP-based light-emitting diode (LED) wafer to create a two-dimensional/three-dimensional heterostructure. The interfaces of these hybrid devices are characterized and verified through transmission electron microscopy and energy-dispersive X-ray spectroscopy techniques. More than 20% energy conversion from the AlGaInP MQWs to the WSe2 monolayer was observed to boost the WSe2 monolayer emissions. The voltage dependence of the electroluminescence intensity was characterized. Electroluminescence intensity-voltage characteristic curves indicated that thermionic emission was the mechanism underlying carrier injection across the potential barrier at the Ag-WSe2 monolayer interface at low voltage, whereas Fowler-Nordheim emission was the mechanism at voltages higher than approximately 8.0 V. These multi-color hybrid light-emitting devices both expand the wavelength range of 2-D TMDC-based light emitters and support their implementation in applications such as chip-scale optoelectronic integrated systems, broad-band LEDs, and quantum display systems.
Collapse
Affiliation(s)
- Ya-Hui Chang
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yen-Shou Lin
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Konthoujam James Singh
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hsiang-Ting Lin
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
| | - Chiao-Yun Chang
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
- Department of Electrical Engineering, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Zheng-Zhe Chen
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
- Department of Physics, National Taiwan University, Taipei, Taiwan, Taipei 10617, Taiwan
| | - Yu-Wei Zhang
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Yen Lin
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
- Graduate Institute of Electronics Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Hao-Chung Kuo
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Min-Hsiung Shih
- Research Center for Applied Sciences (RCAS), Academia Sinica, Taipei 11529, Taiwan.
- Department of Photonics and Institute of Electro-Optical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Photonics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
12
|
Fayaz M, Muhammad S, Bashir K, Khan A, Alam Q, Amin B, Idrees M. Tunable optoelectronic and photocatalytic properties of BAs-BSe van der Waals heterostructures by strain engineering. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Cao X, Lei Z, Zhao S, Tao L, Zheng Z, Feng X, Li J, Zhao Y. Te/SnS 2 tunneling heterojunctions as high-performance photodetectors with superior self-powered properties. NANOSCALE ADVANCES 2022; 4:4296-4303. [PMID: 36321139 PMCID: PMC9552753 DOI: 10.1039/d2na00507g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/28/2022] [Indexed: 06/16/2023]
Abstract
The tunneling heterojunctions made of two-dimensional (2D) materials have been explored to have many intriguing properties, such as ultrahigh rectification and on/off ratio, superior photoresponsivity, and improved photoresponse speed, showing great potential in achieving multifunctional and high-performance electronic and optoelectronic devices. Here, we report a systematic study of the tunneling heterojunctions consisting of 2D tellurium (Te) and Tin disulfide (SnS2). The Te/SnS2 heterojunctions possess type-II band alignment and can transfer to type-III one under reverse bias, showing a reverse rectification ratio of about 5000 and a current on/off ratio over 104. The tunneling heterojunctions as photodetectors exhibit an ultrahigh photoresponsivity of 50.5 A W-1 in the visible range, along with a dramatically enhanced photoresponse speed. Furthermore, due to the reasonable type-II band alignment and negligible band bending at the interface, Te/SnS2 heterojunctions at zero bias exhibit excellent self-powered performance with a high responsivity of 2.21 A W-1 and external quantum efficiency of 678%. The proposed heterostructure in this work provides a useful guideline for the rational design of a high-performance self-powered photodetector.
Collapse
Affiliation(s)
- Xuanhao Cao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Zehong Lei
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Shuting Zhao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Lili Tao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Zhaoqiang Zheng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Xing Feng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China
| | - Jingbo Li
- Guangdong Key Lab of Chip and Integration Technology, Institute of Semiconductors, South China Normal University Guangzhou 510631 P. R. China
| | - Yu Zhao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Material and Energy, Guangdong University of Technology Guangzhou 510006 China
| |
Collapse
|
14
|
Uddin SZ, Higashitarumizu N, Kim H, Rahman IKMR, Javey A. Efficiency Roll-Off Free Electroluminescence from Monolayer WSe 2. NANO LETTERS 2022; 22:5316-5321. [PMID: 35729730 DOI: 10.1021/acs.nanolett.2c01311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Exciton-exciton annihilation (EEA) is a nonradiative process commonly observed in excitonic materials at high exciton densities. Like Auger recombination, EEA degrades luminescence efficiency at high exciton densities and causes efficiency roll-off in light-emitting devices. Near-unity photoluminescence quantum yield has been demonstrated in transition metal dichalcogenides (TMDCs) at all exciton densities with optimal band structure modification mediated by strain. Although the recombination pathways in TMDCs are well understood, the practical application of light-emitting devices has been challenging. Here, we demonstrate a roll-off free electroluminescence (EL) device composed of TMDC monolayers tunable by strain. We show a 2 orders of magnitude EL enhancement from the WSe2 monolayer by applying a small strain of 0.5%. We attain an internal quantum efficiency of 8% at all injection rates. Finally, we demonstrate transient EL turn-on voltages as small as the band gap. Our approach will contribute to practical applications of roll-off free optoelectronic devices based on excitonic materials.
Collapse
Affiliation(s)
- Shiekh Zia Uddin
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Naoki Higashitarumizu
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hyungjin Kim
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - I K M Reaz Rahman
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ali Javey
- Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
15
|
Resolving the Mechanism of Acoustic Plasmon Instability in Graphene Doped by Alkali Metals. Int J Mol Sci 2022; 23:ijms23094770. [PMID: 35563161 PMCID: PMC9103692 DOI: 10.3390/ijms23094770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 01/06/2023] Open
Abstract
Graphene doped by alkali atoms (ACx) supports two heavily populated bands (π and σ) crossing the Fermi level, which enables the formation of two intense two-dimensional plasmons: the Dirac plasmon (DP) and the acoustic plasmon (AP). Although the mechanism of the formation of these plasmons in electrostatically biased graphene or at noble metal surfaces is well known, the mechanism of their formation in alkali-doped graphenes is still not completely understood. We shall demonstrate that two isoelectronic systems, KC8 and CsC8, support substantially different plasmonic spectra: the KC8 supports a sharp DP and a well-defined AP, while the CsC8 supports a broad DP and does not support an AP at all. We shall demonstrate that the AP in an ACx is not, as previously believed, just a consequence of the interplay of the π and σ intraband transitions, but a very subtle interplay between these transitions and the background screening, caused by the out-of-plane interband C(π)→A(σ) transitions.
Collapse
|
16
|
Fan J, Sun M. Transition Metal Dichalcogenides (TMDCs) Heterostructures: Synthesis, Excitons and Photoelectric Properties. CHEM REC 2022; 22:e202100313. [PMID: 35452180 DOI: 10.1002/tcr.202100313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/22/2022] [Accepted: 04/11/2022] [Indexed: 11/06/2022]
Abstract
Transition metal dichalcogenides (TMDCs) have good flexibility, light absorption, and carrier mobility, and can be used to fabricate wearable devices and photodetectors. In addition, the band gaps of these materials are adjustable, which are related to the number of stacking layers. The the material properties can be changed by vertically stacking TMDCs to form van der Waals (vdW) heterostructures. Compared with single-layer TMDC, the vdW heterostructure has better light response and more efficient photoelectric conversion. Interlayer excitons formed in vdW heterostructure have a longer exciton lifetime and unique valley selectivity compared with intralayer excitons, which promotes the research on TMDCs materials in photoelectric field, valley electronics, carrier dynamics, etc. In this paper, the methods of synthesizing heterostructures are introduced. Photoelectric properties, valley dynamics, electronic properties and related applications of TMDCs vdW heterostructures are also discussed. Heterostructures stacked with different materials, stacking modes, and twist angles all can affect the properties. Hence, it brings more creativity and research direction to the material field.
Collapse
Affiliation(s)
- Jianuo Fan
- School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| | - Mengtao Sun
- School of Mathematics and Physics, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing, 100083, PR China
| |
Collapse
|
17
|
Huang L, Krasnok A, Alú A, Yu Y, Neshev D, Miroshnichenko AE. Enhanced light-matter interaction in two-dimensional transition metal dichalcogenides. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:046401. [PMID: 34939940 DOI: 10.1088/1361-6633/ac45f9] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/16/2021] [Indexed: 05/27/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMDC) materials, such as MoS2, WS2, MoSe2, and WSe2, have received extensive attention in the past decade due to their extraordinary electronic, optical and thermal properties. They evolve from indirect bandgap semiconductors to direct bandgap semiconductors while their layer number is reduced from a few layers to a monolayer limit. Consequently, there is strong photoluminescence in a monolayer (1L) TMDC due to the large quantum yield. Moreover, such monolayer semiconductors have two other exciting properties: large binding energy of excitons and valley polarization. These properties make them become ideal materials for various electronic, photonic and optoelectronic devices. However, their performance is limited by the relatively weak light-matter interactions due to their atomically thin form factor. Resonant nanophotonic structures provide a viable way to address this issue and enhance light-matter interactions in 2D TMDCs. Here, we provide an overview of this research area, showcasing relevant applications, including exotic light emission, absorption and scattering features. We start by overviewing the concept of excitons in 1L-TMDC and the fundamental theory of cavity-enhanced emission, followed by a discussion on the recent progress of enhanced light emission, strong coupling and valleytronics. The atomically thin nature of 1L-TMDC enables a broad range of ways to tune its electric and optical properties. Thus, we continue by reviewing advances in TMDC-based tunable photonic devices. Next, we survey the recent progress in enhanced light absorption over narrow and broad bandwidths using 1L or few-layer TMDCs, and their applications for photovoltaics and photodetectors. We also review recent efforts of engineering light scattering, e.g., inducing Fano resonances, wavefront engineering in 1L or few-layer TMDCs by either integrating resonant structures, such as plasmonic/Mie resonant metasurfaces, or directly patterning monolayer/few layers TMDCs. We then overview the intriguing physical properties of different van der Waals heterostructures, and their applications in optoelectronic and photonic devices. Finally, we draw our opinion on potential opportunities and challenges in this rapidly developing field of research.
Collapse
Affiliation(s)
- Lujun Huang
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, 2600, Australia
| | - Alex Krasnok
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, United States of America
| | - Andrea Alú
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY 10031, United States of America
- Physics Program, Graduate Center, City University of New York, New York, NY 10016, United States of America
| | - Yiling Yu
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - Dragomir Neshev
- ARC Centre of Excellence for Transformative Meta-Optical Systems (TMOS), Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| | - Andrey E Miroshnichenko
- School of Engineering and Information Technology, University of New South Wales, Canberra, ACT, 2600, Australia
| |
Collapse
|
18
|
Pham PV, Bodepudi SC, Shehzad K, Liu Y, Xu Y, Yu B, Duan X. 2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and Challenges. Chem Rev 2022; 122:6514-6613. [PMID: 35133801 DOI: 10.1021/acs.chemrev.1c00735] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A grand family of two-dimensional (2D) materials and their heterostructures have been discovered through the extensive experimental and theoretical efforts of chemists, material scientists, physicists, and technologists. These pioneering works contribute to realizing the fundamental platforms to explore and analyze new physical/chemical properties and technological phenomena at the micro-nano-pico scales. Engineering 2D van der Waals (vdW) materials and their heterostructures via chemical and physical methods with a suitable choice of stacking order, thickness, and interlayer interactions enable exotic carrier dynamics, showing potential in high-frequency electronics, broadband optoelectronics, low-power neuromorphic computing, and ubiquitous electronics. This comprehensive review addresses recent advances in terms of representative 2D materials, the general fabrication methods, and characterization techniques and the vital role of the physical parameters affecting the quality of 2D heterostructures. The main emphasis is on 2D heterostructures and 3D-bulk (3D) hybrid systems exhibiting intrinsic quantum mechanical responses in the optical, valley, and topological states. Finally, we discuss the universality of 2D heterostructures with representative applications and trends for future electronics and optoelectronics (FEO) under the challenges and opportunities from physical, nanotechnological, and material synthesis perspectives.
Collapse
Affiliation(s)
- Phuong V Pham
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Srikrishna Chanakya Bodepudi
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Khurram Shehzad
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Yuan Liu
- School of Physics and Electronics, Hunan University, Hunan 410082, China
| | - Yang Xu
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Bin Yu
- School of Micro-Nano Electronics, Hangzhou Global Scientific and Technological Innovation Center (HIC), Zhejiang University, Xiaoshan 311200, China.,State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China.,ZJU-UIUC Joint Institute, Zhejiang University, Jiaxing 314400, China
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, California 90095-1569, United States
| |
Collapse
|
19
|
Vasić B, Ralević U, Aškrabić S, Čapeta D, Kralj M. Correlation between morphology and local mechanical and electrical properties of van der Waals heterostructures. NANOTECHNOLOGY 2022; 33:155707. [PMID: 34972096 DOI: 10.1088/1361-6528/ac475a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Properties of van der Waals (vdW) heterostructures strongly depend on the quality of the interface between two dimensional (2D) layers. Instead of having atomically flat, clean, and chemically inert interfaces without dangling bonds, top-down vdW heterostructures are associated with bubbles and intercalated layers (ILs) which trap contaminations appeared during fabrication process. We investigate their influence on local electrical and mechanical properties of MoS2/WS2heterostructures using atomic force microscopy (AFM) based methods. It is demonstrated that domains containing bubbles and ILs are locally softer, with increased friction and energy dissipation. Since they prevent sharp interfaces and efficient charge transfer between 2D layers, electrical current and contact potential difference are strongly decreased. In order to reestablish a close contact between MoS2and WS2layers, vdW heterostructures were locally flattened by scanning with AFM tip in contact mode or just locally pressed with an increased normal load. Subsequent electrical measurements reveal that the contact potential difference between two layers strongly increases due to enabled charge transfer, while localI/Vcurves exhibit increased conductivity without undesired potential barriers.
Collapse
Affiliation(s)
- Borislav Vasić
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Uroš Ralević
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Sonja Aškrabić
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Davor Čapeta
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička 46, 10000, Zagreb, Croatia
| | - Marko Kralj
- Center of Excellence for Advanced Materials and Sensing Devices, Institute of Physics, Bijenička 46, 10000, Zagreb, Croatia
| |
Collapse
|
20
|
Chen L, Jiang C, Yang M, Wang D, Shi C, Liu H, Cui G, Li X, Shi J. Electronic properties and interface contact of graphene/CrSiTe3 van der Waals heterostructures. Phys Chem Chem Phys 2022; 24:4280-4286. [DOI: 10.1039/d1cp04109f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electronic properties and interface contact of Graphene-based heterostructure Graphene/CrSiTe3 (Gr/CrSiTe3) is modulated by tuning the interfacial distance, along with appling an external electric field. Our first-principles calculations show that the...
Collapse
|
21
|
Romanov R, Kozodaev MG, Chernikova AG, Zabrosaev IV, Chouprik AA, Zarubin SS, Novikov SM, Volkov VS, Markeev AM. Thickness-Dependent Structural and Electrical Properties of WS 2 Nanosheets Obtained via the ALD-Grown WO 3 Sulfurization Technique as a Channel Material for Field-Effect Transistors. ACS OMEGA 2021; 6:34429-34437. [PMID: 34963928 PMCID: PMC8697369 DOI: 10.1021/acsomega.1c04532] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/24/2021] [Indexed: 05/14/2023]
Abstract
Ultrathin WS2 films are promising functional materials for electronic and optoelectronic devices. Therefore, their synthesis over a large area, allowing control over their thickness and structure, is an essential task. In this work, we investigated the influence of atomic layer deposition (ALD)-grown WO3 seed-film thickness on the structural and electrical properties of WS2 nanosheets obtained via a sulfurization technique. Transmission electron microscopy indicated that the thinnest (1.9 nm) film contains rather big (up to 50 nm) WS2 grains in the amorphous matrix. The signs of incomplete sulfurization, namely, oxysulfide phase presence, were found by X-ray photoemission spectroscopy analysis. The increase in the seed-film thickness of up to 4.7 nm resulted in a visible grain size decrease down to 15-20 nm, which was accompanied by defect suppression. The observed structural evolution affected the film resistivity, which was found to decrease from ∼106 to 103 (μΩ·cm) within the investigated thickness range. These results show that the thickness of the ALD-grown seed layer may strongly affect the resultant WS2 structure and properties. Most valuably, it was shown that the growth of the thinnest WS2 film (3-4 monolayers) is most challenging due to the amorphous intergrain phase formation, and further investigations focused on preventing the intergrain phase formation should be conducted.
Collapse
|
22
|
Qin L, Lu Y, Li Q, Wang Z, Wang J, Tang B, Zhou W, Yuan C, Wang Q, Wang L. General synthesis of mixed-dimensional van der Waals heterostructures with hexagonal symmetry. NANOTECHNOLOGY 2021; 32:505610. [PMID: 34551405 DOI: 10.1088/1361-6528/ac291d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
The combination of two-dimensional (2D) materials with non-2D materials (quantum dots, nanowires and bulk materials), i.e. mixed-dimensional van der Waals (md-vdW) heterostructures endow 2D materials with remarkable electronics properties. However, it remains a big challenge to synthesize md-vdW heterostructures because of the difference of crystal symmetry between 2D and non-2D materials. Meanwhile, it is difficult to initiate the nucleation due to the lack of chemical active sites on chemical inert surfaces of 2D materials. Herein, we design a general chemical vapor deposition method for synthesizing a broad class of md-vdW heterostructures with well-aligned hexagonal symmetry including MoS2/FeS, MoS2/CoS, MoS2/MnS, MoS2/ZnS, Mo(SxSe1-x)2/ZnSxSe1-x, Mo(SxSe1-x)2/CdSxSe1-x. Combining with DFT calculation, we find that the hexagonal symmetry and the centered clusters of MoS2and Mo(SxSe1-x)2nanoflakes are two crucial factors to launch the hexagonally oriented growth and nucleation of non-2D materials on 2D materials. Our discovery opens an opportunity for the versatile hetero-integration of 2D materials and allows systematic investigation of physical properties in a wide variety of md-vdW heterostructures.
Collapse
Affiliation(s)
- Liyun Qin
- Department of Physics, Nanchang University, Nanchang 330031, People's Republic of China
| | - Yan Lu
- Department of Physics, Nanchang University, Nanchang 330031, People's Republic of China
| | - Qinliang Li
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Normal University, Nanchang 330022, People's Republic of China
- School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Zhendong Wang
- Department of Physics, Nanchang University, Nanchang 330031, People's Republic of China
| | - Jianyu Wang
- Department of Physics, Nanchang University, Nanchang 330031, People's Republic of China
| | - Binbing Tang
- Institute for Advanced Study, Nanchang University, Nanchang 330031, People's Republic of China
| | - Wenda Zhou
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Normal University, Nanchang 330022, People's Republic of China
- School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Cailei Yuan
- Jiangxi Key Laboratory of Nanomaterials and Sensors, Jiangxi Normal University, Nanchang 330022, People's Republic of China
- School of Physics, Communication and Electronics, Jiangxi Normal University, Nanchang 330022, People's Republic of China
| | - Qisheng Wang
- Department of Physics, Nanchang University, Nanchang 330031, People's Republic of China
| | - Li Wang
- Department of Physics, Nanchang University, Nanchang 330031, People's Republic of China
| |
Collapse
|
23
|
Ullah SS, Farooq M, Din HU, Alam Q, Idrees M, Bilal M, Amin B. First principles study of electronic and optical properties and photocatalytic performance of GaN-SiS van der Waals heterostructure. RSC Adv 2021; 11:32996-33003. [PMID: 35493575 PMCID: PMC9042296 DOI: 10.1039/d1ra06011b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/21/2021] [Indexed: 11/21/2022] Open
Abstract
The vertical stacking of two-dimensional materials via van der Waals (vdW) interaction is a promising technique for tailoring the physical properties and fabricating potential devices to be applied in the emerging fields of materials science and nanotechnology. The structural, electronic and optical properties and photocatalytic performance of a GaN-SiS vdW heterostructure were explored using first principles calculations. The most stable stacking configuration found energetically stable, possesses a direct staggered band gap, which is crucial for separating photogenerated charged carriers in different constituents and is efficacious for solar cells. Further, the charge transfer occurred from the SiS to GaN layer, indicating that SiS exhibits p-type doping in the GaN-SiS heterobilayer. Interestingly, a systematic red-shift was observed in the optical absorption spectra of the understudy heterobilayer system. Moreover, the conduction band edge and valence band edge of the monolayers and corresponding heterostructure were located above and below the standard redox potentials for photocatalytic water splitting, making these systems promising for water dissociation for hydrogen fuel production. The results provide a route to design the GaN-SiS vdW heterostructure for the practical realization of next-generation light detection and energy harvesting devices.
Collapse
Affiliation(s)
- S S Ullah
- Department of Physics, Hazara University Mansehra Pakistan
| | - M Farooq
- Department of Physics, Hazara University Mansehra Pakistan
| | - H U Din
- Department of Physics, Abbottabad University of Science and Technology Abbottabad 22010 Pakistan
- Department of Physics, Bacha Khan University Charsadda Pakistan
| | - Q Alam
- Department of Physics, Hazara University Mansehra Pakistan
| | - M Idrees
- Department of Physics, Abbottabad University of Science and Technology Abbottabad 22010 Pakistan
| | - M Bilal
- Department of Physics, Abbottabad University of Science and Technology Abbottabad 22010 Pakistan
| | - B Amin
- Department of Physics, Abbottabad University of Science and Technology Abbottabad 22010 Pakistan
| |
Collapse
|
24
|
Alrebdi TA, Amin B. Van der Waals heterostructure of Janus transition metal dichalcogenides monolayers (WSSe-WX2 (X=S, Se)). Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
25
|
Alam Q, Muhammad S, Idrees M, Hieu NV, Binh NTT, Nguyen C, Amin B. First-principles study of the electronic structures and optical and photocatalytic performances of van der Waals heterostructures of SiS, P and SiC monolayers. RSC Adv 2021; 11:14263-14268. [PMID: 35423989 PMCID: PMC8697698 DOI: 10.1039/d0ra10808a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/15/2021] [Indexed: 11/26/2022] Open
Abstract
Designing van der Waals (vdW) heterostructures of two-dimensional materials is an efficient way to realize amazing properties as well as open up opportunities for applications in solar energy conversion, nanoelectronic and optoelectronic devices. The electronic structures and optical and photocatalytic properties of SiS, P and SiC van der Waals (vdW) heterostructures are investigated by (hybrid) first-principles calculations. Both binding energy and thermal stability spectra calculations confirm the stability of these heterostructures. Similar to the corresponding parent monolayers, SiS–P (SiS–SiC) vdW heterostructures are found to be indirect type-II bandgap semiconductors. Furthermore, absorption spectra are calculated to understand the optical behavior of these systems, where the lowest energy transitions lie in the visible region. The valence and conduction band edges straddle the standard redox potentials of SiS, P and SiC vdW heterostructures, making them promising candidates for water splitting in acidic solution. The electronic structures and optical and photocatalytic properties of SiS, P and SiC van der Waals (vdW) heterostructures are investigated by (hybrid) first-principles calculations.![]()
Collapse
Affiliation(s)
- Qaisar Alam
- Department of Physics, Hazara University Mansehra Pakistan
| | - S Muhammad
- Department of Physics, Hazara University Mansehra Pakistan
| | - M Idrees
- Department of Physics, Hazara University Mansehra Pakistan
| | - Nguyen V Hieu
- Faculty of Physics, The University of Da Nang - University of Science and Education Da Nang Vietnam
| | - Nguyen T T Binh
- Department of Physics, Quang Binh University Quang Binh Vietnam
| | - C Nguyen
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam .,Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Bin Amin
- Department of Physics, Abbottabad University of Science and Technology Abbottabad 22010 Pakistan
| |
Collapse
|
26
|
|
27
|
Choi JM, Jang HY, Kim AR, Kwon JD, Cho B, Park MH, Kim Y. Ultra-flexible and rollable 2D-MoS 2/Si heterojunction-based near-infrared photodetector via direct synthesis. NANOSCALE 2021; 13:672-680. [PMID: 33346769 DOI: 10.1039/d0nr07091b] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Atomic two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted significant attention for application in various optoelectronic devices such as image sensors, biomedical imaging systems, and consumer electronics and in diverse spectroscopic analyses. However, a complicated fabrication process, involving transfer and alignment of as-synthesized 2D layers onto flexible target substrates, hinders the development of flexible high-performance heterojunction-based photodetectors. Herein, an ultra-flexible 2D-MoS2/Si heterojunction-based photodetector is successfully fabricated through atmospheric-pressure plasma enhanced chemical vapor deposition, which enables the direct deposition of multi-layered MoS2 onto a flexible Si substrate at low temperature (<200 °C). The photodetector is responsive to near infrared light (λ = 850 nm), showing responsivity of 10.07 mA W-1 and specific detectivity (D*) of 4.53 × 1010 Jones. The measured photocurrent as a function of light intensity exhibits good linearity with a power law exponent of 0.84, indicating negligible trapping/de-trapping of photo-generated carriers at the heterojunction interface, which facilitates photocarrier collection. Furthermore, the photodetectors can be bent with a small bending radius (5 mm) and wrapped around a glass rod, showing excellent photoresponsivity under various bending radii. Hence, the device exhibits excellent flexibility, rollability, and durability under harsh bending conditions. This photodetector has significant potential for use in next-generation flexible and patchable optoelectronic devices.
Collapse
Affiliation(s)
- Jung-Min Choi
- Materials Center for Energy Convergence, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Sungsan-gu, Changwon, Gyeongnam 51508, Republic of Korea. and School of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63-beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Hye Yeon Jang
- Department of Advanced Materials Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Chougju, Chungbuk 28644, Republic of Korea.
| | - Ah Ra Kim
- Materials Center for Energy Convergence, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Sungsan-gu, Changwon, Gyeongnam 51508, Republic of Korea.
| | - Jung-Dae Kwon
- Materials Center for Energy Convergence, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Sungsan-gu, Changwon, Gyeongnam 51508, Republic of Korea.
| | - Byungjin Cho
- Department of Advanced Materials Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Chougju, Chungbuk 28644, Republic of Korea.
| | - Min Hyuk Park
- School of Materials Science and Engineering, Pusan National University, 2 Busandaehak-ro 63-beon-gil, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Yonghun Kim
- Materials Center for Energy Convergence, Korea Institute of Materials Science (KIMS), 797 Changwondaero, Sungsan-gu, Changwon, Gyeongnam 51508, Republic of Korea.
| |
Collapse
|
28
|
Saleem M, Atiq S, Ramay SM, Mahmood A, ur Rehman A, Saad Khaliq H, Siddiqi SA. Investigations on electronic and optical properties of Ag:MoS2 co-sputtered thin films. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.138032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
First principles study of structural, optoelectronic and photocatalytic properties of SnS, SnSe monolayers and their van der Waals heterostructure. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110939] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Alrebdi TA, Amin B. Optoelectronic and photocatalytic applications of hBP-XMY (M = Mo, W; (X ≠ Y) = S, Se, Te) van der Waals heterostructures. Phys Chem Chem Phys 2020; 22:23028-23037. [PMID: 33047747 DOI: 10.1039/d0cp03926h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Stacking of layers via weak van der Waals interactions is an important technique for tuning the physical properties and designing viable electronic products. Using first-principles calculations, the geometry, electronic structure, and optical and photocatalytic performance of novel vdW heterostructures based on hexagonal boron phosphide (hBP) and Janus (XMY (M = Mo, W; (X ≠ Y) = S, Se, Te)) monolayers are investigated. Favorable (dynamically and energetically) stacking patterns of two different models of hBP-XMY heterostructures are presented with an alternative order of chalcogen atoms at opposite surfaces in SMSe. A direct type-II band alignment is obtained in both models of hBP-SMoSe, hBP-SWSe and hBP-SeWTe, while the rest are type-II indirect bandgap semiconductors. The Bader charge, and planer-averaged and plane-averaged charge density differences are investigated, which show that hBP donates electrons to the SMoSe and SWSe layer in the hBP-SMoSe and hBP-SWSe vdW heterostructure, while in the case of the hBP-SMoTe (hBP-SWTe) and hBP-SeMoTe (hBP-SeWTe) vdW heterostructures, the transfer of electrons is observed from SMoTe (SWTe) and SeMoTe (SeWTe) to hBP. The imaginary part of the dielectric function shows that the lowest energy transitions are dominated by excitons with a systematic red shift for heavier chalcogen atoms. Furthermore, the photocatalytic performance indicates that the hBP-XMY (M = Mo, W; (X ≠ Y) = S, Se, Te) vdW heterostructures in model-I are suitable for water splitting at pH = 0.
Collapse
Affiliation(s)
- Tahani A Alrebdi
- Department of Physics, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | | |
Collapse
|
31
|
Wang C, Yang F, Gao Y. The highly-efficient light-emitting diodes based on transition metal dichalcogenides: from architecture to performance. NANOSCALE ADVANCES 2020; 2:4323-4340. [PMID: 36132931 PMCID: PMC9418884 DOI: 10.1039/d0na00501k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/17/2020] [Indexed: 05/28/2023]
Abstract
Transition metal dichalcogenides (TMDCs) with layered architecture and excellent optoelectronic properties have been a hot spot for light-emitting diodes (LED). However, the light-emitting efficiency of TMDC LEDs is still low due to the large size limit of TMDC flakes and the inefficient device architecture. First and foremost, to develop the highly-efficient and reliable few-layer TMDC LEDs, the modulation of the electronic properties of TMDCs and TMDC heterostructures is necessary. In order to create efficient TMDC LEDs with prominent performance, an in-depth understanding of the working mechanism is needed. Besides conventional structures, the electric (or ionic liquid)-induced p-n junction of TMDCs is a useful configuration for multifunctional LED applications. The significant performances are contrasted in the four aspects of color, polarity, and external quantum efficiency. The color of light ranging from infrared to visible light can be acquired from TMDC LEDs by purposeful and selective architecture construction. To date, the maximum of the external quantum efficiency achieved by TMDC LEDs is 12%. In the demand for performance, the material and configuration of the nano device can be chosen according to this review. Moreover, novel electroluminescence devices involving single-photon emitters and alternative pulsed light emitters can expand their application scope. In this review, we provide an overview of the significant investigations that have provided a wealth of detailed information on TMDC electroluminescence devices at the molecular level.
Collapse
Affiliation(s)
- Caiyun Wang
- Center for Nanoscale Characterization & Devices (CNCD), School of Physics, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST) Wuhan 430074 P. R. China
| | - Fuchao Yang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University Wuhan 430062 China
| | - Yihua Gao
- Center for Nanoscale Characterization & Devices (CNCD), School of Physics, Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST) Wuhan 430074 P. R. China
| |
Collapse
|
32
|
Basyooni MA, Zaki SE, Shaban M, Eker YR, Yilmaz M. Efficient MoWO 3/VO 2/MoS 2/Si UV Schottky photodetectors; MoS 2 optimization and monoclinic VO 2 surface modifications. Sci Rep 2020; 10:15926. [PMID: 32985575 PMCID: PMC7522211 DOI: 10.1038/s41598-020-72990-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/09/2020] [Indexed: 11/21/2022] Open
Abstract
The distinctive properties of strongly correlated oxides provide a variety of possibilities for modulating the properties of 2D transition metal dichalcogenides semiconductors; which represent a new class of superior optical and optoelectronic interfacing semiconductors. We report a novel approach to scaling-up molybdenum disulfide (MoS2) by combining the techniques of chemical and physical vapor deposition (CVD and PVD) and interfacing with a thin layer of monoclinic VO2. MoWO3/VO2/MoS2 photodetectors were manufactured at different sputtering times by depositing molybdenum oxide layers using a PVD technique on p-type silicon substrates followed by a sulphurization process in the CVD chamber. The high quality and the excellent structural and absorption properties of MoWO3/VO2/MoS2/Si with MoS2 deposited for 60 s enables its use as an efficient UV photodetector. The electronically coupled monoclinic VO2 layer on MoS2/Si causes a redshift and intensive MoS2 Raman peaks. Interestingly, the incorporation of VO2 dramatically changes the ratio between A-exciton (ground state exciton) and trion photoluminescence intensities of VO2/(30 s)MoS2/Si from < 1 to > 1. By increasing the deposition time of MoS2 from 60 to 180 s, the relative intensity of the B-exciton/A-exciton increases, whereas the lowest ratio at deposition time of 60 s refers to the high quality and low defect densities of the VO2/(60 s)MoS2/Si structure. Both the VO2/(60 s)MoS2/Si trion and A-exciton peaks have higher intensities compared with (60 s) MoS2/Si structure. The MoWO3/VO2/(60 s)MoS2/Si photodetector displays the highest photocurrent gain of 1.6, 4.32 × 108 Jones detectivity, and ~ 1.0 × 1010 quantum efficiency at 365 nm. Moreover, the surface roughness and grains mapping are studied and a low semiconducting-metallic phase transition is observed at ~ 40 °C.
Collapse
Affiliation(s)
- Mohamed A Basyooni
- Nanophysics Laboratory, Department of NanoScience and NanoEngineering, Institute of Science and Technology, University of Necmettin Erbakan, Konya, 42060, Turkey
- Science and Technology Research and Application Center (BITAM), University of Necmettin Erbakan, Konya, 42060, Turkey
| | - Shrouk E Zaki
- Nanophysics Laboratory, Department of NanoScience and NanoEngineering, Institute of Science and Technology, University of Necmettin Erbakan, Konya, 42060, Turkey
| | - Mohamed Shaban
- Nanophotonics and Applications Laboratory, Department of Physics, Faculty of Science, Beni-Suef University, Beni Suef, 62514, Egypt.
- Department of Physics, Faculty of Science, Islamic University in Almadinah Almonawara, Almadinah Almonawara, 42351, Saudi Arabia.
| | - Yasin Ramazan Eker
- Department of Metallurgy and Material Engineering, Faculty of Engineering and Architecture, Necmettin Erbakan University, Konya, 42060, Turkey
- Science and Technology Research and Application Center (BITAM), University of Necmettin Erbakan, Konya, 42060, Turkey
| | - Mucahit Yilmaz
- Nanophysics Laboratory, Department of NanoScience and NanoEngineering, Institute of Science and Technology, University of Necmettin Erbakan, Konya, 42060, Turkey
| |
Collapse
|
33
|
Idrees M, Nguyen CV, Bui HD, Ahmad I, Amin B. van der Waals heterostructures based on MSSe (M = Mo, W) and graphene-like GaN: enhanced optoelectronic and photocatalytic properties for water splitting. Phys Chem Chem Phys 2020; 22:20704-20711. [PMID: 32901640 DOI: 10.1039/d0cp03434g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The geometric structure, electronic, optical and photocatalytic properties of MSSe-g-GaN (M = Mo, W) van der Waals (vdW) heterostructures are investigated by performing first-principles calculations. We find that the MoSSe-g-GaN heterostructure exhibits type-II band alignment for all stacking patterns. While the WSSe-g-GaN heterostructure forms the type-II or type-I band alignment for the stacking model-I or model II, respectively. The average electrostatic potential shows that the potential of g-GaN is deeper than the MSSe monolayer, leading to the formation of an electrostatic field across the interface, causing the transfer of photogenerated electrons and holes. Efficient interfacial formation of interface and charge transfer reduce the work function of MSSe-g-GaN vdW heterostructures as compared to the constituent monolayer. The difference in the carrier mobility for electrons and holes suggests that these heterostructures could be utilized for hole/electron separation. Absorption spectra demonstrate that strong absorption from infrared to visible light in these vdW heterostructures can be achieved. Appropriate valence and conduction band edge positions with standard redox potentials provide enough force to drive the photogenerated electrons and holes to dissociate water into H+/H2 and O2/H2O at pH = 0.
Collapse
Affiliation(s)
- M Idrees
- Department of Physics, Hazara University, Mansehra 21300, Pakistan
| | - Chuong V Nguyen
- Department of Materials Science and Engineering, Le Quy Don Technical University, Ha Noi 100000, Vietnam.
| | - H D Bui
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| | - Iftikhar Ahmad
- Department of Physics, University of Malakand, Chakdara, 18800, Pakistan
| | - Bin Amin
- Department of Physics, Abbottabad Uniersity of Science and Technology, Abbottabad 22010, Pakistan.
| |
Collapse
|
34
|
Rehman A, Park SJ. State of the art two-dimensional materials-based photodetectors: Prospects, challenges and future outlook. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Zhumagulov YV, Vagov A, Gulevich DR, Faria Junior PE, Perebeinos V. Trion induced photoluminescence of a doped MoS2 monolayer. J Chem Phys 2020; 153:044132. [DOI: 10.1063/5.0012971] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yaroslav V. Zhumagulov
- ITMO University, St. Petersburg 197101, Russia
- University of Regensburg, Regensburg 93040, Germany
| | | | | | | | - Vasili Perebeinos
- ITMO University, St. Petersburg 197101, Russia
- Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| |
Collapse
|
36
|
Idrees M, Din HU, Rehman SU, Shafiq M, Saeed Y, Bui HD, Nguyen CV, Amin B. Electronic properties and enhanced photocatalytic performance of van der Waals heterostructures of ZnO and Janus transition metal dichalcogenides. Phys Chem Chem Phys 2020; 22:10351-10359. [PMID: 32365147 DOI: 10.1039/d0cp01264e] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Vertical stacking of two-dimensional materials into layered van der Waals heterostructures has recently been considered as a promising candidate for photocatalytic and optoelectronic devices because it can combine the advantages of the individual 2D materials. Janus transition metal dichalcogenides (JTMDCs) have emerged as an appealing photocatalytic material due to the desirable electronic properties. Hence, in this work, we systematically investigate the geometric features, electronic properties, charge density difference, work function, band alignment and photocatalytic properties of ZnO-JTMDC heterostructures using first-principles calculations. Due to the different kinds of chalcogen atoms on both sides of JTMDC monolayers, two different possible stacking patterns of ZnO-JTMDC heterostructures have been constructed and considered. We find that all these stacking patterns of ZnO-JTMDC heterostructures are dynamically and energetically feasible. Moreover, both ZnO-MoSSe and ZnO-WSSe heterostructures are indirect band gap semiconductors and present type-I and type-II band alignments for model-I and model-II, respectively. The Rashba spin polarization of the ZnO-WSSe heterostructure for model-I is greater than that in the others. Furthermore, valence (conduction) band edge potentials are calculated to understand the photocatalytic behavior of these systems. Energetically favorable band edge positions in ZnO-Janus heterostructures make them suitable for water splitting at zero pH. We found that the ZnO-Janus heterostructures are promising candidates for water splitting with conduction and valence band edges positioned just outside of the redox interval.
Collapse
Affiliation(s)
- M Idrees
- Department of Physics, Hazara University, Mansehra 21300, Pakistan
| | - H U Din
- Department of Physics, Hazara University, Mansehra 21300, Pakistan
| | - Shafiq Ur Rehman
- College of Physics and Optoelectronic Engineering, Shenzhen University, Guangdong 518060, China
| | - M Shafiq
- Abbottabad Uniersity of Science and Technology, Abbottabad 22010, Pakistan.
| | - Yasir Saeed
- Abbottabad Uniersity of Science and Technology, Abbottabad 22010, Pakistan.
| | - H D Bui
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| | - Chuong V Nguyen
- Department of Materials Science and Engineering, Le Quy Don Technical University, Ha Noi 100000, Vietnam.
| | - Bin Amin
- Abbottabad Uniersity of Science and Technology, Abbottabad 22010, Pakistan.
| |
Collapse
|
37
|
Li F, Wang S, Yin H, Chen Y, Zhou Y, Huang J, Ai S. Photoelectrochemical Biosensor for DNA Formylation Detection in Genomic DNA of Maize Seedlings Based on Black Tio 2-Enhanced Photoactivity of MoS 2/WS 2 Heterojunction. ACS Sens 2020; 5:1092-1101. [PMID: 32159349 DOI: 10.1021/acssensors.0c00036] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
5-Formylcytosine (5fC) is a rare base found in mammalian DNA, which is thought to be involved in the demethylation of DNA. As a stable epigenetic modification, 5fC participates in gene regulation and cell differentiation, and plays an important role in the growth and development of plants. However, the abundance of 5fC is only as low as 0.002-0.02% of cytosine. Therefore, to further understand the functions of 5fC, a rapid, highly sensitive, and efficient method is needed for detecting 5fC. Herein, a novel photoelectrochemical (PEC) biosensor was constructed for 5fC detection, where a MoS2/WS2 nanosheet heterojunction was employed as a photoactive material, amino-functionalized Fe3O4 and SMCC were used as a linker, 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole was adopted as 5fC recognition reagent, and black TiO2 (B-TiO2) was used as a signal amplification unit. Under the optimal experimental conditions, this PEC biosensor showed a wide linear range of 0.01-200 nM and a low detection limit of 2.7 pM (S/N = 3). Due to the specific covalent reaction between -NH2 and -CHO, the biosensor presented high detection sensitivity, even discriminating 5fC with 5-methylcytosine and 5-hydroxymethylcytosine. The biosensor was then applied to investigate the effect of heavy metal Cd2+ on 5fC content in the root, stem, and leaves of maize seedlings.
Collapse
Affiliation(s)
- Fei Li
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian 271018, P. R. China
| | - Siyu Wang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian 271018, P. R. China
| | - Huanshun Yin
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian 271018, P. R. China
| | - Yan Chen
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian 271018, P. R. China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian 271018, P. R. China
| | - Jing Huang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian 271018, P. R. China
| | - Shiyun Ai
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Taian 271018, P. R. China
| |
Collapse
|
38
|
Han T, Liu H, Wang S, Chen S, Yang K. The Large-Scale Preparation and Optical Properties of MoS 2/WS 2 Vertical Hetero-Junction. Molecules 2020; 25:molecules25081857. [PMID: 32316579 PMCID: PMC7221688 DOI: 10.3390/molecules25081857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 11/16/2022] Open
Abstract
A variety of hetero-junctions can be constructed to form the basic structural units in the different optoelectronic devices, such as the photo-detectors, solar cells, sensors and light-emitting diodes. In our research, the large-area high-quality MoS2/WS2 vertical hetero-junction are prepared by the two-step atmospheric pressure chemical vapor deposition (APCVD) methods and the dry transfer method, and the corresponding optimal reaction conditions of MoS2/WS2 vertical hetero-junction are obtained. The morphology, composition and optical properties of MoS2/WS2 vertical hetero-junction are systematically characterized by the optical microscopy, Raman spectroscopy, photoluminescence spectroscopy, atomic force microscopy and the field emission scanning electron microscopy. Compared to the mechanical transfer method, the MoS2/WS2 vertical hetero-junction sample obtained by the APCVD and dry transfer methods have lower impurity content, cleaner interfaces and tighter interlayer coupling. Besides, the strong interlayer coupling and effective interlayer charge transfer of MoS2/WS2 vertical hetero-junction are also further studied. The photoluminescence intensity of MoS2/WS2 vertical hetero-junction is significantly reduced compared to the single MoS2 or WS2 material. In general, this research can help to achieve the large-scale preparation of various Van der Waals hetero-junctions, which can lay the foundation for the new application of optoelectronic devices.
Collapse
Affiliation(s)
| | - Hongxia Liu
- Correspondence: (H.L.); (S.W.); Tel.: +86-130-8756-8718 (H.L.); +86-150-9115-4611 (S.W.)
| | - Shulong Wang
- Correspondence: (H.L.); (S.W.); Tel.: +86-130-8756-8718 (H.L.); +86-150-9115-4611 (S.W.)
| | | | | |
Collapse
|
39
|
Lee J, Duong NT, Bang S, Park C, Nguyen DA, Jeon H, Jang J, Oh HM, Jeong MS. Modulation of Junction Modes in SnSe 2/MoTe 2 Broken-Gap van der Waals Heterostructure for Multifunctional Devices. NANO LETTERS 2020; 20:2370-2377. [PMID: 32031411 DOI: 10.1021/acs.nanolett.9b04926] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We study the electronic and optoelectronic properties of a broken-gap heterojunction composed of SnSe2 and MoTe2 with gate-controlled junction modes. Owing to the interband tunneling current, our device can act as an Esaki diode and a backward diode with a peak-to-valley current ratio approaching 5.7 at room temperature. Furthermore, under an 811 nm laser irradiation the heterostructure exhibits a photodetectivity of up to 7.5 × 1012 Jones. In addition, to harness the electrostatic gate bias, Voc can be tuned from negative to positive by switching from the accumulation mode to the depletion mode of the heterojunction. Additionally, a photovoltaic effect with a fill factor exceeding 41% was observed, which highlights the significant potential for optoelectronic applications. This study not only demonstrates high-performance multifunctional optoelectronics based on the SnSe2/MoTe2 heterostructure but also provides a comprehensive understanding of broken-band alignment and its applications.
Collapse
Affiliation(s)
- Juchan Lee
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ngoc Thanh Duong
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seungho Bang
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chulho Park
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Duc Anh Nguyen
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hobeom Jeon
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jiseong Jang
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hye Min Oh
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mun Seok Jeong
- Department of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
40
|
Interlayer excitons in van der Waals heterostructures: Binding energy, Stark shift, and field-induced dissociation. Sci Rep 2020; 10:5537. [PMID: 32218493 PMCID: PMC7099073 DOI: 10.1038/s41598-020-62431-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 03/12/2020] [Indexed: 11/17/2022] Open
Abstract
Photoexcited intralayer excitons in van der Waals heterostructures (vdWHs) with type-II band alignment have been observed to tunnel into interlayer excitons on ultrafast timescales. Such interlayer excitons have sufficiently long lifetimes that inducing dissociation with external in-plane electric fields becomes an attractive option of improving efficiency of photocurrent devices. In the present paper, we calculate interlayer exciton binding energies, Stark shifts, and dissociation rates for six different transition metal dichalcogenide (TMD) vdWHs using a numerical procedure based on exterior complex scaling (ECS). We utilize an analytical bilayer Keldysh potential describing the interaction between the electron-hole pair, and validate its accuracy by comparing to the full multilayer Poisson equation. Based on this model, we obtain an analytical weak-field expression for the exciton dissociation rate. The heterostructures analysed are MoS2/MoSe2, MoS2/WS2, MoS2/WSe2, MoSe2/WSe2, WS2/MoSe2, and WS2/WSe2 in various dielectric environments. For weak electric fields, we find that WS2/WSe2 supports the fastest dissociation rates among the six structures. We, furthermore, observe that exciton dissociation rates in vdWHs are significantly larger than in their monolayer counterparts.
Collapse
|
41
|
Yoshimura A, Koratkar N, Meunier V. Substitutional transition metal doping in MoS2: a first-principles study. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/ab7cb3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Abstract
Single-layer MoS2 is a direct-gap semiconductor whose band edges character is dominated by the d-orbitals of the Mo atoms. It follows that substitutional doping of the Mo atoms has a significant impact on the material’s electronic properties, namely the size of the band gap and the position of the Fermi level. Here, density functional theory is used along with the G0W0 method to examine the effects of substituting Mo with four different transition metal dopants: Nb, Tc, Ta, and Re. Nb and Ta possess one less valence electron than Mo does and are therefore p-type dopants, while Re and Tc are n-type dopants, having one more valence electron than Mo has. Four types of substitutional structures are considered for each dopant species: isolated atoms, lines, three-atom clusters centered on a S atom (c3s), and three-atom clusters centered on a hole (c3h). The c3h structure is found to be the most stable configuration for all dopant species. However, electronic structure calculations reveal that isolated dopants are preferable for efficient n- or p-type performance. Lastly, it is shown that photoluminescence measurements can provide valuable insight into the atomic structure of the doped material. Understanding these properties of substitutionally-doped MoS2 can allow for its successful implementation into cutting-edge solid state devices.
Collapse
|
42
|
Verhagen T, Guerra VLP, Haider G, Kalbac M, Vejpravova J. Towards the evaluation of defects in MoS 2 using cryogenic photoluminescence spectroscopy. NANOSCALE 2020; 12:3019-3028. [PMID: 31834348 DOI: 10.1039/c9nr07246b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Characterization of the type and density of defects in two-dimensional (2D) transition metal dichalcogenides (TMDs) is important as the nature of these defects strongly influences the electronic and optical properties of the material, especially its photoluminescence (PL). Defect characterization is not as straightforward as it is for graphene films, where the D and D' Raman scattering modes easily indicate the density and type of defects in the graphene layer. Thus, in addition to the Raman scattering analysis, other spectroscopic techniques are necessary to perform detailed characterization of atomically thin TMD layers. We demonstrate that PL spectroscopy performed at liquid helium temperatures reveals the key fingerprints of defects in TMDs and hence provides valuable information about their origin and concentration. In our study, we address defects in chemical vapor deposition (CVD)-grown MoS2 monolayers. A significant difference is observed between the as-grown monolayers compared with the CVD-grown monolayers transferred onto a Si/SiO2 substrate, which contain extra defects due to the transfer process. We demonstrate that the temperature-dependent Raman and PL micro-spectroscopy techniques enable disentangling the contributions and locations of various defect types in TMD systems.
Collapse
Affiliation(s)
- Tim Verhagen
- Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2, Czech Republic.
| | | | | | | | | |
Collapse
|
43
|
Nanotip Contacts for Electric Transport and Field Emission Characterization of Ultrathin MoS 2 Flakes. NANOMATERIALS 2020; 10:nano10010106. [PMID: 31947985 PMCID: PMC7023401 DOI: 10.3390/nano10010106] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 11/21/2022]
Abstract
We report a facile approach based on piezoelectric-driven nanotips inside a scanning electron microscope to contact and electrically characterize ultrathin MoS2 (molybdenum disulfide) flakes on a SiO2/Si (silicon dioxide/silicon) substrate. We apply such a method to analyze the electric transport and field emission properties of chemical vapor deposition-synthesized monolayer MoS2, used as the channel of back-gate field effect transistors. We study the effects of the gate-voltage range and sweeping time on the channel current and on its hysteretic behavior. We observe that the conduction of the MoS2 channel is affected by trap states. Moreover, we report a gate-controlled field emission current from the edge part of the MoS2 flake, evidencing a field enhancement factor of approximately 200 and a turn-on field of approximately 40 V/μm at a cathode–anode separation distance of 900 nm.
Collapse
|
44
|
Suzuki Y, Watanabe K. Excitons in two-dimensional atomic layer materials from time-dependent density functional theory: mono-layer and bi-layer hexagonal boron nitride and transition-metal dichalcogenides. Phys Chem Chem Phys 2020; 22:2908-2916. [DOI: 10.1039/c9cp06034k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Time-dependent density functional theory has been applied to the calculation of absorption spectra for two dimensional atomic layer materials: mono-layer and bi-layer hexagonal boron nitride and mono-layer transition metal dichalcogenides.
Collapse
Affiliation(s)
- Yasumitsu Suzuki
- Department of Physics
- Tokyo University of Science
- Tokyo 162-8601
- Japan
| | | |
Collapse
|
45
|
Pham KD, Tan LV, Idrees M, Amin B, Hieu NN, Phuc HV, Hoa LT, Chuong NV. Electronic structures, and optical and photocatalytic properties of the BP–BSe van der Waals heterostructures. NEW J CHEM 2020. [DOI: 10.1039/d0nj03236k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The combination of two-dimensional materials in the form of van der Waals (vdW) heterostructures has been shown to be an effective method for designing electronic and optoelectronic equipment.
Collapse
Affiliation(s)
- Khang D. Pham
- Laboratory of Applied Physics
- Advanced Institute of Materials Science
- Ton Duc Thang University
- Ho Chi Minh City
- Vietnam
| | - Lam V. Tan
- NTT Hi-Tech Institute
- Nguyen Tat Thanh University
- Ho Chi Minh City
- Vietnam
| | - M. Idrees
- Department of Physics
- Hazara University
- Mansehra 21300
- Pakistan
| | - Bin Amin
- Department of Physics
- Abbottabad University of Science and Technology
- Abbottabad 22010
- Pakistan
| | - Nguyen N. Hieu
- Institute of Research and Development
- Duy Tan University
- Da Nang 550000
- Vietnam
- Faculty of Natural Sciences
| | - Huynh V. Phuc
- Division of Theoretical Physics
- Dong Thap University
- Cao Lanh 870000
- Vietnam
| | - Le T. Hoa
- Institute of Research and Development
- Duy Tan University
- Da Nang 550000
- Vietnam
- Faculty of Natural Sciences
| | - Nguyen V. Chuong
- Department of Materials Science and Engineering
- Le Quy Don Technical University
- Ha Noi
- Vietnam
| |
Collapse
|
46
|
Idrees M, Fawad M, Bilal M, Saeed Y, Nguyen C, Amin B. Van der Waals heterostructures of SiC and Janus MSSe (M = Mo, W) monolayers: a first principles study. RSC Adv 2020; 10:25801-25807. [PMID: 35518624 PMCID: PMC9055313 DOI: 10.1039/d0ra04433d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022] Open
Abstract
Favorable stacking patterns of two models with alternative orders of chalcogen atoms in SiC-MSSe (M = Mo, W) vdW heterostructures are investigated using density functional theory calculations. Both model-I and model-II of the SiC-MSSe (M = Mo, W) vdW heterostructures show type-II band alignment, while the spin orbit coupling effect causes considerable Rashba spin splitting. Furthermore, the plane-average electrostatic potential is also calculated to investigate the potential drops across the heterostructure and work function. The imaginary part of the dielectric function reveals that the first optical transition is dominated by excitons with high absorption in the visible region for both heterostructures. Appropriate band alignments with standard water redox potentials enable the capability of these heterostructures to dissociate water into H+/H2 and O2/H2O. Using DFT calculations, we have investigated the electronic structure, Rashba effect, optical and photocatalytic performance of SiC-MSSe (M = Mo, W) van der Waals heterostructures with different stacking patterns of chalcogen atoms.![]()
Collapse
Affiliation(s)
- M. Idrees
- Department of Physics
- Hazara University
- Mansehra 21300
- Pakistan
| | - M. Fawad
- Department of Physics
- Hazara University
- Mansehra 21300
- Pakistan
| | - M. Bilal
- Department of Physics
- Abbottabad University of Science and Technology
- Abbottabad 22010
- Pakistan
| | - Y. Saeed
- Department of Physics
- Abbottabad University of Science and Technology
- Abbottabad 22010
- Pakistan
| | - C. Nguyen
- Institute of Research and Development
- Duy Tan University
- Da Nang 550000
- Vietnam
| | - Bin Amin
- Department of Physics
- Abbottabad University of Science and Technology
- Abbottabad 22010
- Pakistan
| |
Collapse
|
47
|
Thickness-dependent photoelectric properties of MoS 2/Si heterostructure solar cells. Sci Rep 2019; 9:17381. [PMID: 31758067 PMCID: PMC6874606 DOI: 10.1038/s41598-019-53936-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 10/01/2019] [Indexed: 11/18/2022] Open
Abstract
In order to obtain the optimal photoelectric properties of vertical stacked MoS2/Si heterostructure solar cells, we propose a theoretical model to address the relationship among film thickness, atomic bond identities and related physical quantities in terms of bond relaxation mechanism and detailed balance principle. We find that the vertical stacked MoS2/Si can form type II band alignment, and its photoelectric conversion efficiency (PCE) enhances with increasing MoS2 thickness. Moreover, the optimal PCE in MoS2/Si can reach 24.76%, inferring that a possible design way can be achieved based on the layered transition metal dichalcogenides and silicon.
Collapse
|
48
|
Lee JB, Lim YR, Katiyar AK, Song W, Lim J, Bae S, Kim TW, Lee SK, Ahn JH. Direct Synthesis of a Self-Assembled WSe 2 /MoS 2 Heterostructure Array and its Optoelectrical Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904194. [PMID: 31512307 DOI: 10.1002/adma.201904194] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Functional van der Waals heterojunctions of transition metal dichalcogenides are emerging as a potential candidate for the basis of next-generation logic devices and optoelectronics. However, the complexity of synthesis processes so far has delayed the successful integration of the heterostructure device array within a large scale, which is necessary for practical applications. Here, a direct synthesis method is introduced to fabricate an array of self-assembled WSe2 /MoS2 heterostructures through facile solution-based directional precipitation. By manipulating the internal convection flow (i.e., Marangoni flow) of the solution, the WSe2 wires are selectively stacked over the MoS2 wires at a specific angle, which enables the formation of parallel- and cross-aligned heterostructures. The realized WSe2 /MoS2 -based p-n heterojunction shows not only high rectification (ideality factor: 1.18) but also promising optoelectrical properties with a high responsivity of 5.39 A W-1 and response speed of 16 µs. As a feasible application, a WSe2 /MoS2 -based photodiode array (10 × 10) is demonstrated, which proves that the photosensing system can detect the position and intensity of an external light source. The solution-based growth of hierarchical structures with various alignments could offer a method for the further development of large-area electronic and optoelectronic applications.
Collapse
Affiliation(s)
- Jae-Bok Lee
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Yi Rang Lim
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Ajit K Katiyar
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Wooseok Song
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Jongsun Lim
- Thin Film Materials Research Center, Korea Research Institute of Chemical Technology (KRICT), 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Sukang Bae
- Functional Composite Materials Research Center, Korea Institute of Science and Technology, Chudong-ro 92, Bongdong-eup, Wanju-gun, Jeonbuk, 55324, Republic of Korea
| | - Tae-Wook Kim
- Functional Composite Materials Research Center, Korea Institute of Science and Technology, Chudong-ro 92, Bongdong-eup, Wanju-gun, Jeonbuk, 55324, Republic of Korea
| | - Seoung-Ki Lee
- Functional Composite Materials Research Center, Korea Institute of Science and Technology, Chudong-ro 92, Bongdong-eup, Wanju-gun, Jeonbuk, 55324, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|
49
|
Wang Y, Song N, Yang X, Zhang J, Xu B, Li M, Zheng Y, Yang D. Tailoring the electronic properties of graphyne/blue phosphorene heterostructure via external electric field and vertical strain. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Kaviraj B, Sahoo D. Retracted Article: Physics of excitons and their transport in two dimensional transition metal dichalcogenide semiconductors. RSC Adv 2019; 9:25439-25461. [PMID: 35530097 PMCID: PMC9070122 DOI: 10.1039/c9ra03769a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 07/17/2019] [Indexed: 11/21/2022] Open
Abstract
Two-dimensional (2D) group-VI transition metal dichalcogenide (TMD) semiconductors, such as MoS2, MoSe2, WS2 and others manifest strong light matter coupling and exhibit direct band gaps which lie in the visible and infrared spectral regimes. These properties make them potentially interesting candidates for applications in optics and optoelectronics. The excitons found in these materials are tightly bound and dominate the optical response, even at room temperatures. Large binding energies and unique exciton fine structure make these materials an ideal platform to study exciton behaviors in two-dimensional systems. This review article mainly focuses on studies of mechanisms that control dynamics of excitons in 2D systems - an area where there remains a lack of consensus in spite of extensive research. Firstly, we focus on the kinetics of dark and bright excitons based on a rate equation model and discuss on the role of previous 'unsuspected' dark excitons in controlling valley polarization. Intrinsically, dark and bright exciton energy splitting plays a key role in modulating the dynamics. In the second part, we review the excitation energy-dependent possible characteristic relaxation pathways of photoexcited carriers in monolayer and bilayer systems. In the third part, we review the extrinsic factors, in particular the defects that are so prevalent in single layer TMDs, affecting exciton dynamics, transport and non-radiative recombination such as exciton-exciton annihilation. Lastly, the optical response due to pump-induced changes in TMD monolayers have been reviewed using femtosecond pump-probe spectroscopy which facilitates the analysis of underlying physical process just after the excitation.
Collapse
Affiliation(s)
- Bhaskar Kaviraj
- Department of Physics, School of Natural Sciences, Shiv Nadar University NH91, Gautam Budh Nagar Greater Noida Uttar Pradesh 201314 India
| | - Dhirendra Sahoo
- Department of Physics, School of Natural Sciences, Shiv Nadar University NH91, Gautam Budh Nagar Greater Noida Uttar Pradesh 201314 India
| |
Collapse
|