1
|
Patel Y, Manturthi S, Tiwari S, Gahunia E, Courtemanche A, Gandelman M, Côté M, Gadde S. Development of Pro-resolving and Pro-efferocytic Nanoparticles for Atherosclerosis Therapy. ACS Pharmacol Transl Sci 2024; 7:3086-3095. [PMID: 39416959 PMCID: PMC11475319 DOI: 10.1021/acsptsci.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 10/19/2024]
Abstract
Atherosclerosis is a major contributor to cardiovascular diseases with a high global prevalence. It is characterized by the formation of lipid-laden plaques in the arteries, which eventually lead to plaque rupture and thrombosis. While the current lipid-lowering therapies are generally effective in lowering the risk of cardiovascular events, they do not address the underlying causes of disease. Defective resolution of inflammation and impaired efferocytosis are the main driving forces of atherosclerosis. Macrophages recognize cells for clearance by the expression of "eat me" and "do not eat me" signals, including the CD47-SIRPα axis. However, the "do not eat me" signal CD47 is overexpressed in atherosclerotic plaques, leading to compromised efferocytosis and secondary necrosis. In this context, prophagocytic antibodies have been explored to stimulate the clearance of apoptotic cells, but they are nonspecific and impact healthy tissues. In macrophages, downstream of signal regulatory protein α, lie protein tyrosine phosphatases, SHP 1/2, which can serve as effective targets for selectively phagocytosing apoptotic cells. While increasing the efferocytosis targets the end stages of lesion development, the underlying issue of inflammation still persists. Simultaneously increasing efferocytosis and reducing inflammation can be effective therapeutic strategies for managing atherosclerosis. For instance, IL-10 is a key anti-inflammatory mediator that enhances efferocytosis via phosphoSTAT3 (pSTAT3) activation. In this study, we developed a combination nanotherapy by encapsulating an SHP-1 inhibitor (NSC 87877) and IL-10 in a single nanoparticle platform [(S + IL)-NPs] to enhance efferocytosis and inflammation resolution. Our studies suggest that (S + IL)-NPs successfully encapsulated both agents, entered the macrophages, and delivered the agents into intracellular compartments. Additionally, (S + IL)-NPs decreased inflammation by suppressing pro-inflammatory markers and enhancing anti-inflammatory mediators. They also exhibited the potential for improved phagocytic activity via pSTAT3 activation. Our nanomedicine-mediated upregulation of the anti-inflammatory and efferocytic responses in macrophages shows promise for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yukta Patel
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research
Institute, Ottawa, Ontario K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Shireesha Manturthi
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research
Institute, Ottawa, Ontario K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Saras Tiwari
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research
Institute, Ottawa, Ontario K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Esha Gahunia
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research
Institute, Ottawa, Ontario K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Amandine Courtemanche
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research
Institute, Ottawa, Ontario K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Michelle Gandelman
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research
Institute, Ottawa, Ontario K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Marceline Côté
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Department
of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Suresh Gadde
- Department
of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Kidney
Research Centre, Ottawa Hospital Research
Institute, Ottawa, Ontario K1H 8M5, Canada
- Ottawa
Institute of Systems Biology, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Centre
for Infection, Immunity, and Inflammation, Faculty of Medicine, University of Ottawa, Ottawa K1H 8M5, Canada
- Ottawa−Carleton
Institute for Biomedical Engineering (OCIBME), Ottawa K1N 6N5, Canada
| |
Collapse
|
2
|
Misra R, Fung G, Sharma S, Hu J, Kirkitadze M. Assessment of Tunable Resistive Pulse Sensing (TRPS) Technology for Particle Size Distribution in Vaccine Formulations - A Comparative Study with Dynamic Light Scattering. Pharm Res 2024; 41:1021-1029. [PMID: 38649535 DOI: 10.1007/s11095-024-03698-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/07/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE A comparative assessment was performed to evaluate the potential of particle sizing by an ensemble based conventional dynamic light scattering (DLS) technique and an emerging technology based on tunable resistive pulse sensing (TRPS) using particle by particle approach by evaluating three different types of vaccine formulations representing three case studies and showing the limitation of each technique, instrument variability, sensitivity, and the resolution in mixed population. METHODS Three types of in-house vaccine formulations- a protein antigen, an outer membrane vesicle and viral particles were simultaneously evaluated by TRPS based Exoid and two DLS instruments-Zetatrac and Zetasizer for particle size distribution, aggregates, and resolution of polydisperse species. RESULTS The data from first case study show the risk of possible size overestimation and size averaging in polydisperse samples in DLS measurements which can be addressed by the TRPS analysis. It also shows how TRPS may be utilized only to large size antigens due to its limited size range. The second case study highlights the difference in the sensitivities of two DLS instruments working on the same principle. The third case study show that how TRPS can better resolve the large aggregate species compare to DLS in polydisperse samples. CONCLUSION This analysis shows that TRPS can be used as an orthogonal technique in addition to conventional DLS based methods for more precise and in-depth characterization. Both techniques are efficient in size characterization and produce comparable results, however the choice will depend on the type of formulation and size range to be evaluated.
Collapse
Affiliation(s)
- Rahul Misra
- Vaccine CMC Development and Supply, Analytical Sciences, Sanofi, Toronto, Ontario, M2R 3T4, Canada.
| | - Ginny Fung
- Vaccine CMC Development and Supply, Analytical Sciences, Sanofi, Toronto, Ontario, M2R 3T4, Canada
| | - Siddhant Sharma
- Vaccine CMC Development and Supply, Analytical Sciences, Sanofi, Toronto, Ontario, M2R 3T4, Canada
| | - Jian Hu
- Vaccine CMC Development and Supply, Analytical Sciences, Sanofi, Toronto, Ontario, M2R 3T4, Canada
| | - Marina Kirkitadze
- Vaccine CMC Development and Supply, Analytical Sciences, Sanofi, Toronto, Ontario, M2R 3T4, Canada
| |
Collapse
|
3
|
Mitroo D, Das DN, Hamilton PD, Kumfer BM, Ravi N. Combustion conditions influence toxicity of flame-generated soot to ocular (ARPE-19) cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123307. [PMID: 38190877 DOI: 10.1016/j.envpol.2024.123307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 12/18/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024]
Abstract
Soot is a prevalent aerosol found both indoors and outdoors that has several sources, such as natural (e.g., wildfires), civilian (e.g., cooking), or military (e.g., burn pit operation). Additionally, within the sources, factors that influence the physicochemical properties of the soot include combustion temperature, oxygen availability, and fuel type. Being able to reproduce soot in the laboratory and systematically assess its toxicity is important in the pursuit of elucidating pathologies associated with its exposure. Of the organs of interest, we targeted the eye given the scant attention received. Yet, air pollution constituents such as soot have been linked to diseases such as age-related macular degeneration and proliferative vitreoretinopathy. We developed a bench-scale system to synthesize different types of soot, that is, soot with a systematically varied physical attributes or chemical composition. We used common analytical techniques to probe such properties, and used statistical analyses to correlate them with toxicity in vitro using ARPE-19 cells. Within the range of flame conditions studied, we find that soot toxicity increases with increasing oxygen concentration in fuel-rich premixed flames, and weakly increases with decreasing flame temperature. Additionally, soot particles produced in premixed flames are generally smaller in size, exhibit a lesser fractal structure, and are considerably more toxic to ARPE-19 cells than soot particles produced in non-premixed flames.
Collapse
Affiliation(s)
- Dhruv Mitroo
- Veterans Research and Education Foundation, St. Louis, MO, 63103, USA; Veterans Affairs Medical Center, St. Louis, MO, 63103, USA
| | - Durgesh N Das
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis MO 63110, USA
| | - Paul D Hamilton
- Veterans Research and Education Foundation, St. Louis, MO, 63103, USA; Veterans Affairs Medical Center, St. Louis, MO, 63103, USA
| | - Benjamin M Kumfer
- Center for Aerosol Science and Engineering, Department of Energy, Environmental, and Chemical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Nathan Ravi
- Veterans Research and Education Foundation, St. Louis, MO, 63103, USA; Veterans Affairs Medical Center, St. Louis, MO, 63103, USA; Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis MO 63110, USA; Center for Aerosol Science and Engineering, Department of Energy, Environmental, and Chemical Engineering, Washington University, St. Louis, MO 63130, USA.
| |
Collapse
|
4
|
Saunders C, de Villiers CA, Stevens MM. Single Particle Chemical Characterisation of Nanoformulations for Cargo Delivery. AAPS J 2023; 25:94. [PMID: 37783923 DOI: 10.1208/s12248-023-00855-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/25/2023] [Indexed: 10/04/2023] Open
Abstract
Nanoparticles can encapsulate a range of therapeutics, from small molecule drugs to sensitive biologics, to significantly improve their biodistribution and biostability. Whilst the regulatory approval of several of these nanoformulations has proven their translatability, there remain several hurdles to the translation of future nanoformulations, leading to a high rate of candidate nanoformulations failing during the drug development process. One barrier is that the difficulty in tightly controlling nanoscale particle synthesis leads to particle-to-particle heterogeneity, which hinders manufacturing and quality control, and regulatory quality checks. To understand and mitigate this heterogeneity requires advancements in nanoformulation characterisation beyond traditional bulk methods to more precise, single particle techniques. In this review, we compare commercially available single particle techniques, with a particular focus on single particle Raman spectroscopy, to provide a guide to adoption of these methods into development workflows, to ultimately reduce barriers to the translation of future nanoformulations.
Collapse
Affiliation(s)
- Catherine Saunders
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Camille A de Villiers
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK.
- The Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK.
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
- Institute of Biomedical Engineering, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
5
|
Reliable assessment of carbon black nanomaterial of a variety of cell culture media for in vitro toxicity assays by asymmetrical flow field-flow fractionation. Anal Bioanal Chem 2023; 415:2121-2132. [PMID: 36829041 PMCID: PMC10079754 DOI: 10.1007/s00216-023-04597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/26/2023]
Abstract
Carbon black nanomaterial (CB-NM), as an industrial product with a large number of applications, poses a high risk of exposure, and its impact on health needs to be assessed. The most common testing platform for engineered (E)NMs is in vitro toxicity assessment, which requires prior ENM dispersion, stabilization, and characterization in cell culture media. Here, asymmetric flow field-flow fractionation (AF4) coupled to UV-Vis and dynamic light scattering (DLS) detectors in series was used for the study of CB dispersions in cell culture media, optimizing instrumental variables and working conditions. It was possible to disperse CB in a non-ionic surfactant aqueous solution due to the steric effect provided by surfactant molecules attached on the CB surface which prevented agglomeration. The protection provided by the surfactant or by culture media alone was insufficient to ensure good dispersion stability needed for carrying out in vitro toxicity studies. On the other hand, cell culture media in combination with the surfactant improved dispersion stability considerably, enabling the generation of shorter particles and a more favourable zeta potential magnitude, leading to greater stability due to electrostatic repulsion. It was demonstrated that the presence of amino acids in the culture media improved the monodisperse nature and stability of the CB dispersions, and resulted in a turn towards more negative zeta potential values when the pH was above the amino acid isoelectric point (IEP). Culture media used in real cell culture scenarios were also tested, and in vitro toxicity assays were developed optimizing the compatible amount of surfactant.
Collapse
|
6
|
Sanjuan-Navarro L, Moliner-Martínez Y, Campíns-Falcó P. The state of art of nanocarbon black as analyte in a variety of matrices: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
7
|
Ahmad A, Imran M, Sharma N. Precision Nanotoxicology in Drug Development: Current Trends and Challenges in Safety and Toxicity Implications of Customized Multifunctional Nanocarriers for Drug-Delivery Applications. Pharmaceutics 2022; 14:2463. [PMID: 36432653 PMCID: PMC9697541 DOI: 10.3390/pharmaceutics14112463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/06/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022] Open
Abstract
The dire need for the assessment of human and environmental endangerments of nanoparticulate material has motivated the formulation of novel scientific tools and techniques to detect, quantify, and characterize these nanomaterials. Several of these paradigms possess enormous possibilities for applications in many of the realms of nanotoxicology. Furthermore, in a large number of cases, the limited capabilities to assess the environmental and human toxicological outcomes of customized and tailored multifunctional nanoparticles used for drug delivery have hindered their full exploitation in preclinical and clinical settings. With the ever-compounded availability of nanoparticulate materials in commercialized settings, an ever-arising popular debate has been egressing on whether the social, human, and environmental costs associated with the risks of nanomaterials outweigh their profits. Here we briefly review the various health, pharmaceutical, and regulatory aspects of nanotoxicology of engineered multifunctional nanoparticles in vitro and in vivo. Several aspects and issues encountered during the safety and toxicity assessments of these drug-delivery nanocarriers have also been summarized. Furthermore, recent trends implicated in the nanotoxicological evaluations of nanoparticulate matter in vitro and in vivo have also been discussed. Due to the absence of robust and rigid regulatory guidelines, researchers currently frequently encounter a larger number of challenges in the toxicology assessment of nanocarriers, which have also been briefly discussed here. Nanotoxicology has an appreciable and significant part in the clinical translational development as well as commercialization potential of nanocarriers; hence these aspects have also been touched upon. Finally, a brief overview has been provided regarding some of the nanocarrier-based medicines that are currently undergoing clinical trials, and some of those which have recently been commercialized and are available for patients. It is expected that this review will instigate an appreciable interest in the research community working in the arena of pharmaceutical drug development and nanoformulation-based drug delivery.
Collapse
Affiliation(s)
- Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mohammad Imran
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane 4102, Australia
| | - Nisha Sharma
- Division of Nephrology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
8
|
Berger S, Berger M, Bantz C, Maskos M, Wagner E. Performance of nanoparticles for biomedical applications: The in vitro/ in vivo discrepancy. BIOPHYSICS REVIEWS 2022; 3:011303. [PMID: 38505225 PMCID: PMC10903387 DOI: 10.1063/5.0073494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/04/2022] [Indexed: 03/21/2024]
Abstract
Nanomedicine has a great potential to revolutionize the therapeutic landscape. However, up-to-date results obtained from in vitro experiments predict the in vivo performance of nanoparticles weakly or not at all. There is a need for in vitro experiments that better resemble the in vivo reality. As a result, animal experiments can be reduced, and potent in vivo candidates will not be missed. It is important to gain a deeper knowledge about nanoparticle characteristics in physiological environment. In this context, the protein corona plays a crucial role. Its formation process including driving forces, kinetics, and influencing factors has to be explored in more detail. There exist different methods for the investigation of the protein corona and its impact on physico-chemical and biological properties of nanoparticles, which are compiled and critically reflected in this review article. The obtained information about the protein corona can be exploited to optimize nanoparticles for in vivo application. Still the translation from in vitro to in vivo remains challenging. Functional in vitro screening under physiological conditions such as in full serum, in 3D multicellular spheroids/organoids, or under flow conditions is recommended. Innovative in vivo screening using barcoded nanoparticles can simultaneously test more than hundred samples regarding biodistribution and functional delivery within a single mouse.
Collapse
Affiliation(s)
- Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig–Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Martin Berger
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Christoph Bantz
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Str. 18-20, D-55129 Mainz, Germany
| | | | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig–Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
9
|
Izci M, Maksoudian C, Manshian BB, Soenen SJ. The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors. Chem Rev 2021; 121:1746-1803. [PMID: 33445874 PMCID: PMC7883342 DOI: 10.1021/acs.chemrev.0c00779] [Citation(s) in RCA: 246] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 02/08/2023]
Abstract
Nanomaterial (NM) delivery to solid tumors has been the focus of intense research for over a decade. Classically, scientists have tried to improve NM delivery by employing passive or active targeting strategies, making use of the so-called enhanced permeability and retention (EPR) effect. This phenomenon is made possible due to the leaky tumor vasculature through which NMs can leave the bloodstream, traverse through the gaps in the endothelial lining of the vessels, and enter the tumor. Recent studies have shown that despite many efforts to employ the EPR effect, this process remains very poor. Furthermore, the role of the EPR effect has been called into question, where it has been suggested that NMs enter the tumor via active mechanisms and not through the endothelial gaps. In this review, we provide a short overview of the EPR and mechanisms to enhance it, after which we focus on alternative delivery strategies that do not solely rely on EPR in itself but can offer interesting pharmacological, physical, and biological solutions for enhanced delivery. We discuss the strengths and shortcomings of these different strategies and suggest combinatorial approaches as the ideal path forward.
Collapse
Affiliation(s)
- Mukaddes Izci
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Christy Maksoudian
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Bella B. Manshian
- Translational
Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Stefaan J. Soenen
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| |
Collapse
|
10
|
Integrated sensor networks with error correction for multiplexed particle tracking in microfluidic chips. Biosens Bioelectron 2021; 174:112818. [DOI: 10.1016/j.bios.2020.112818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/03/2020] [Accepted: 11/10/2020] [Indexed: 01/18/2023]
|
11
|
Tarrahi R, Mahjouri S, Khataee A. A review on in vivo and in vitro nanotoxicological studies in plants: A headlight for future targets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111697. [PMID: 33396028 DOI: 10.1016/j.ecoenv.2020.111697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/01/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Owing to the unique properties and useful applications in numerous fields, nanomaterials (NMs) received a great attention. The mass production of NMs has raised major concern for the environment. Recently, some altered growth patterns in plants have been reported due to the plant-NMs interactions. However, for NMs safe applications in agriculture and medicine, a comprehensive understanding of bio-nano interactions is crucial. The main goal of this review article is to summarize the results of the toxicological studies that have shown the in vitro and in vivo interactions of NMs with plants. The toxicity mechanisms are briefly discussed in plants as the defense mechanism works to overcome the stress caused by NMs implications. Indeed, the impact of NMs on plants varies significantly with many factors including physicochemical properties of NMs, culture media, and plant species. To investigate the impacts, dose metrics is an important analysis for assaying toxicity and is discussed in the present article to broadly open up different aspects of nanotoxicological investigations. To access reliable quantification and measurement in laboratories, standardized methodologies are crucial for precise dose delivery of NMs to plants during exposure. Altogether, the information is significant to researchers to describe restrictions and future perspectives.
Collapse
Affiliation(s)
- Roshanak Tarrahi
- Health Promotion Research Center, Iran University of Medical Sciences, 14496-14535 Tehran, Iran
| | - Sepideh Mahjouri
- Department of Biological Sciences, Faculty of Basic Sciences, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Рeoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation.
| |
Collapse
|
12
|
Albalawi F, Hussein MZ, Fakurazi S, Masarudin MJ. Engineered Nanomaterials: The Challenges and Opportunities for Nanomedicines. Int J Nanomedicine 2021; 16:161-184. [PMID: 33447033 PMCID: PMC7802788 DOI: 10.2147/ijn.s288236] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/05/2020] [Indexed: 12/14/2022] Open
Abstract
The emergence of nanotechnology as a key enabling technology over the past years has opened avenues for new and innovative applications in nanomedicine. From the business aspect, the nanomedicine market was estimated to worth USD 293.1 billion by 2022 with a perception of market growth to USD 350.8 billion in 2025. Despite these opportunities, the underlying challenges for the future of engineered nanomaterials (ENMs) in nanomedicine research became a significant obstacle in bringing ENMs into clinical stages. These challenges include the capability to design bias-free methods in evaluating ENMs' toxicity due to the lack of suitable detection and inconsistent characterization techniques. Therefore, in this literature review, the state-of-the-art of engineered nanomaterials in nanomedicine, their toxicology issues, the working framework in developing a toxicology benchmark and technical characterization techniques in determining the toxicity of ENMs from the reported literature are explored.
Collapse
Affiliation(s)
- Fahad Albalawi
- Department of Medical Laboratory and Blood Bank, King Fahad Specialist Hospital-Tabuk, Tabuk, Saudi Arabia
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Zobir Hussein
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Natural Medicine and Product Research Laboratory Institute of Bioscience, Serdang, Selangor, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
13
|
Clogston JD, Hackley VA, Prina-Mello A, Puri S, Sonzini S, Soo PL. Sizing up the Next Generation of Nanomedicines. Pharm Res 2019; 37:6. [PMID: 31828540 DOI: 10.1007/s11095-019-2736-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/20/2019] [Indexed: 01/30/2023]
Abstract
During the past two decades the nanomedicine field has experienced significant progress. To date, over sixty nanoparticle (NP) formulations have been approved in the US and EU while many others are in clinical or preclinical development, indicating a concerted effort to translate promising bench research to commercially viable pharmaceutical products. The use of NPs as novel drug delivery systems, for example, can improve drug safety and efficacy profiles and enable access to intracellular domains of diseased cells, thus paving the way to previously intractable biological targets. However, the measurement of their physicochemical properties presents substantial challenges relative to conventional injectable formulations. In this perspective, we focus exclusively on particle size, a core property and critical quality attribute of nanomedicines. We present an overview of relevant state-of-the-art technologies for particle sizing, highlighting the main parameters that can influence the selection of techniques suitable for a specific size range or material. We consider the increasing need, and associated challenge, to measure size in physiologically relevant media. We detail the importance of standards, key to validate any measurement, and the need for suitable reference materials for processes used to characterize novel and complex NPs. This perspective highlights issues critical to achieve compliance with regulatory guidelines and to support research and manufacturing quality control.
Collapse
Affiliation(s)
- Jeffrey D Clogston
- Nanotechnology Characterization Laboratory (NCL), Leidos Biomedical Research, Inc., Frederick, Maryland, USA.
| | - Vincent A Hackley
- National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, USA
| | | | | | | | - Patrick Lim Soo
- Pfizer Inc., Novel Delivery Technologies- PhRD, 68 Lowell Junction Road, Andover, Massachusetts, USA.
| |
Collapse
|
14
|
Nanoformulation properties, characterization, and behavior in complex biological matrices: Challenges and opportunities for brain-targeted drug delivery applications and enhanced translational potential. Adv Drug Deliv Rev 2019; 148:146-180. [PMID: 30797956 DOI: 10.1016/j.addr.2019.02.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/08/2019] [Accepted: 02/12/2019] [Indexed: 12/20/2022]
Abstract
Nanocarriers (synthetic/cell-based have attracted enormous interest for various therapeutic indications, including neurodegenerative disorders. A broader understanding of the impact of nanomedicines design is now required to enhance their translational potential. Nanoformulations in vivo journey is significantly affected by their physicochemical properties including the size, shape, hydrophobicity, elasticity, and surface charge/chemistry/morphology, which play a role as an interface with the biological environment. Understanding protein corona formation is crucial in characterizing nanocarriers and evaluating their interactions with biological systems. In this review, the types and properties of the brain-targeted nanocarriers are discussed. The biological factors and nanocarriers properties affecting their in vivo behavior are elaborated. The compositional description of cell culture and biological matrices, including proteins potentially relevant to protein corona built-up on nanoformulation especially for brain administration, is provided. Analytical techniques of characterizing nanocarriers in complex matrices, their advantages, limitations, and implementation challenges in industrial GMP environment are discussed. The uses of orthogonal complementary characterization approaches of nanocarriers are also covered.
Collapse
|
15
|
Modena MM, Rühle B, Burg TP, Wuttke S. Nanoparticle Characterization: What to Measure? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901556. [PMID: 31148285 DOI: 10.1002/adma.201901556] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 04/19/2019] [Indexed: 05/20/2023]
Abstract
What to measure? is a key question in nanoscience, and it is not straightforward to address as different physicochemical properties define a nanoparticle sample. Most prominent among these properties are size, shape, surface charge, and porosity. Today researchers have an unprecedented variety of measurement techniques at their disposal to assign precise numerical values to those parameters. However, methods based on different physical principles probe different aspects, not only of the particles themselves, but also of their preparation history and their environment at the time of measurement. Understanding these connections can be of great value for interpreting characterization results and ultimately controlling the nanoparticle structure-function relationship. Here, the current techniques that enable the precise measurement of these fundamental nanoparticle properties are presented and their practical advantages and disadvantages are discussed. Some recommendations of how the physicochemical parameters of nanoparticles should be investigated and how to fully characterize these properties in different environments according to the intended nanoparticle use are proposed. The intention is to improve comparability of nanoparticle properties and performance to ensure the successful transfer of scientific knowledge to industrial real-world applications.
Collapse
Affiliation(s)
- Mario M Modena
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, BS, Switzerland
| | - Bastian Rühle
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter - Str 11, 12489, Berlin, Germany
| | - Thomas P Burg
- Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
- Department of Electrical Engineering and Information Technology, Technische Universität Darmstadt, Merckstrasse 25, 64283, Darmstadt, Germany
| | - Stefan Wuttke
- Department of Chemistry, Center for NanoScience (CeNS), University of Munich (LMU), 81377, Munich, Germany
- BCMaterials, Basque Center for Materials, UPV/EHU Science Park, 48940, Leioa, Spain
| |
Collapse
|
16
|
Zhang Y, Demokritou P, Ryan DK, Bello D. Comprehensive Assessment of Short-Lived ROS and H 2O 2 in Laser Printer Emissions: Assessing the Relative Contribution of Metal Oxides and Organic Constituents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7574-7583. [PMID: 31120250 DOI: 10.1021/acs.est.8b05677] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Inhalation exposure to nanoparticles from toner-based laser printer and photocopier emissions (LPEs) induces airway inflammation and systemic oxidative stress, cytotoxicity, and genotoxicity (such as DNA damage). Recent evidence from human and in vitro studies suggests a strong role for oxidative stress caused by free radicals, such as reactive oxygen species (ROS), in the toxicity of laser printer emissions. However, the amount of ROS generated from laser printer nanoparticle emissions and the relative contribution of various fractions (vapors, organics, metals, and metal oxides) have not been investigated to-date. In this study, we aim to quantify short-lived ROS and H2O2 laser printer emissions, as well as the relative contribution of various fractions of LPEs in ROS generation. An aerosol chamber with HEPA filtered air was used to generate LPE emissions from one representative printer. In separate experiments, size fractionated LPEs were collected on filters (particles) or impingers (particles and vapors). The nanoscale fraction of LPEs (PM0.1) was further separated into the organic fraction and inorganic (transition metals/metal oxides) following a sequence of extraction with solvents and centrifugation. The short-lived ROS and H2O2 generated from each fraction were quantified with an acellular Trolox-based liquid chromatography-electrospray-tandem mass spectrometry (LC-ESI-MS/MS) method recently developed in our lab. The particulate fraction of LPEs PM0.1 generated 2.68 times more total ROS (sum of short-lived ROS and H2O2) than the vapor fraction. In tested LPEs, transition metal oxides, which constituted 3% by mass, produced 69× and 202× times more short-lived ROS and H2O2, respectively, on a mass basis, than the organic fraction. Furthermore, fresh PM0.1 generated 282× and 32× times more short-lived ROS and H2O2, respectively, than aged and processed PM0.1. We conclude that transition metal oxides, albeit a minor constituent of the LPE PM0.1 emissions, are the species responsible for the majority of acellular ROS in this printer. A larger range of printers should be tested in the future. Because transition metal oxides in toners originate primarily from engineering nanomaterials (ENMs) in printer toner powder, reformulation of toner powders to contain less of these ROS active metals is recommended.
Collapse
Affiliation(s)
- Yipei Zhang
- Department of Chemistry, Kennedy College of Sciences , University of Massachusetts Lowell , Lowell , Massachusetts 01854 , United States
| | - Philip Demokritou
- Department of Environmental Health and Harvard Center for Nanotechnology and Nanotoxicology , Harvard T. H. Chan School of Public Health , Boston , Massachusetts 02115 , United States
| | - David K Ryan
- Department of Chemistry, Kennedy College of Sciences , University of Massachusetts Lowell , Lowell , Massachusetts 01854 , United States
| | - Dhimiter Bello
- Department of Environmental Health and Harvard Center for Nanotechnology and Nanotoxicology , Harvard T. H. Chan School of Public Health , Boston , Massachusetts 02115 , United States
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences , University of Massachusetts Lowell , Lowell , Massachusetts 01854 , United States
| |
Collapse
|
17
|
Extracellular Microvesicles as New Industrial Therapeutic Frontiers. Trends Biotechnol 2019; 37:707-729. [DOI: 10.1016/j.tibtech.2018.11.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022]
|
18
|
Grabarek AD, Weinbuch D, Jiskoot W, Hawe A. Critical Evaluation of Microfluidic Resistive Pulse Sensing for Quantification and Sizing of Nanometer- and Micrometer-Sized Particles in Biopharmaceutical Products. J Pharm Sci 2018; 108:563-573. [PMID: 30176253 DOI: 10.1016/j.xphs.2018.08.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/31/2018] [Accepted: 08/14/2018] [Indexed: 10/28/2022]
Abstract
The objective was to evaluate performance, strengths, and limitations of the microfluidic resistive pulse sensing (MRPS) technique for the characterization of particles in the size range from about 50 to 2000 nm. MRPS, resonant mass measurement (RMM), nanoparticle tracking analysis (NTA) and dynamic light scattering were compared for the analysis of nanometer-sized polystyrene (PS) beads, liposomes, bacteria, and protein aggregates. An electrical conductivity of at least 3 mS/cm (equivalent to 25 mM NaCl) was determined as a key requirement for reliable analysis with MRPS. Particle size distributions of PS beads determined by MRPS, NTA, and RMM correlated well. However, counting precision varied significantly among the techniques and was best for RMM followed by MRPS and NTA. As determined by measuring single and mixed PS bead populations, MRPS showed the highest peak resolution for sizing. RMM and MRPS were superior over dynamic light scattering and NTA for the characterization of stressed protein samples. Finally, MRPS proved to be the only analytical technique able to characterize both bacteria and liposomes. In conclusion, MRPS is an orthogonal technique alongside other established techniques for a comprehensive analysis of a samples particle size distribution and particle concentration.
Collapse
Affiliation(s)
- Adam D Grabarek
- Coriolis Pharma Research GmbH, Fraunhoferstr, 18b, 82152 Martinsried, Munich, Germany; Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, PO Box 9502, 2300, RA, Leiden, The Netherlands
| | - Daniel Weinbuch
- Coriolis Pharma Research GmbH, Fraunhoferstr, 18b, 82152 Martinsried, Munich, Germany
| | - Wim Jiskoot
- Coriolis Pharma Research GmbH, Fraunhoferstr, 18b, 82152 Martinsried, Munich, Germany; Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, PO Box 9502, 2300, RA, Leiden, The Netherlands
| | - Andrea Hawe
- Coriolis Pharma Research GmbH, Fraunhoferstr, 18b, 82152 Martinsried, Munich, Germany.
| |
Collapse
|
19
|
Sohal IS, Cho YK, O'Fallon KS, Gaines P, Demokritou P, Bello D. Dissolution Behavior and Biodurability of Ingested Engineered Nanomaterials in the Gastrointestinal Environment. ACS NANO 2018; 12:8115-8128. [PMID: 30021067 DOI: 10.1021/acsnano.8b02978] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Engineered nanomaterials (ENM) are extensively used as food additives in numerous food products, and at present, little is known about the fate of ingested ENM (iENM) in the gastrointestinal (GI) environment. Here, we investigated the dissolution behavior, biodurability, and persistence of four major iENM (TiO2, SiO2, ZnO, and two Fe2O3) in individual simulated GI fluids (saliva, gastric, and intestinal) and a physiologically relevant digestion cascade (saliva → gastric → intestinal) in the fasted state over physiologically relevant time frames. TiO2 was found to be the most biodurable and persistent iENM in simulated GI fluids with a maximum of only 0.42% (4 μM Ti4+ ion release) dissolution in cascade digestion, followed by iron oxides, of which the rod-like morphology was more biodurable and persistent (0.7% maximum dissolution, 8.7 μM Fe3+) than the acicular one (2.27% maximum dissolution, 16.7 μM Fe3+) in the cascade digestion, respectively. SiO2 and ZnO were less biodurable than Fe2O3, with 65.5% (416 μM Si4+) and 100% (1718.1 μM Zn2+) dissolution in the gastric phase, respectively. In the intestinal phase, however, Si4+ ions reprecipitated, possibly due to sudden pH changes, while ZnO remained completely dissolved. These observations were also confirmed using high-resolution particle size and concentration, and electron microscopy, time-dependent analysis. In terms of decreasing biodurability and persistence in the simulated GI environment, the tested nanomaterials can be ranked as follows: TiO2 ≫ rod-like Fe2O3 > acicular Fe2O3 ≫ SiO2 > ZnO, which is in agreement with limited animal biokinetics data. Chronic uptake of these iENM as particles or ions by the GI tract, especially in the presence of a food matrix and authentic digestive media, and associated implications for human health warrants further investigation.
Collapse
Affiliation(s)
| | | | - Kevin S O'Fallon
- Development and Engineering Center , Natick Soldier Research , Natick , Massachusetts 01760 , United States
| | | | - Philip Demokritou
- Department of Environmental Health and the Harvard Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health , Harvard University , Boston , Massachusetts 02115 , United States
| | - Dhimiter Bello
- Department of Environmental Health and the Harvard Center for Nanotechnology and Nanotoxicology, Harvard T. H. Chan School of Public Health , Harvard University , Boston , Massachusetts 02115 , United States
| |
Collapse
|
20
|
Sohal IS, O'Fallon KS, Gaines P, Demokritou P, Bello D. Ingested engineered nanomaterials: state of science in nanotoxicity testing and future research needs. Part Fibre Toxicol 2018; 15:29. [PMID: 29970114 PMCID: PMC6029122 DOI: 10.1186/s12989-018-0265-1] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Engineered nanomaterials (ENM) are used extensively in food products to fulfill a number of roles, including enhancement of color and texture, for nutritional fortification, enhanced bioavailability, improved barrier properties of packaging, and enhanced food preservation. Safety assessment of ingested engineered nanomaterials (iENM) has gained interest in the nanotoxicology community in recent years. A variety of test systems and approaches have been used for such evaluations, with in vitro monoculture cell models being the most common test systems, owing to their low cost and ease-of-use. The goal of this review is to systematically assess the current state of science in toxicological testing of iENM, with particular emphasis on model test systems, their physiological relevance, methodological strengths and challenges, realistic doses (ranges and rates), and then to identify future research needs and priorities based on these assessments. METHODS Extensive searches were conducted in Google Scholar, PubMed and Web of Science to identify peer-reviewed literature on safety assessment of iENM over the last decade, using keywords such as "nanoparticle", "food", "toxicity", and combinations thereof. Relevant literature was assessed based on a set of criteria that included the relevance of nanomaterials tested; ENM physicochemical and morphological characterization; dispersion and dosimetry in an in vitro system; dose ranges employed, the rationale and dose realism; dissolution behavior of iENM; endpoints tested, and the main findings of each study. Observations were entered into an excel spreadsheet, transferred to Origin, from where summary statistics were calculated to assess patterns, trends, and research gaps. RESULTS A total of 650 peer-reviewed publications were identified from 2007 to 2017, of which 39 were deemed relevant. Only 21% of the studies used food grade nanomaterials for testing; adequate physicochemical and morphological characterization was performed in 53% of the studies. All in vitro studies lacked dosimetry and 60% of them did not provide a rationale for the doses tested and their relevance. Only 12% of the studies attempted to consider the dissolution kinetics of nanomaterials. Moreover, only 1 study attempted to prepare and characterize standardized nanoparticle dispersions. CONCLUSION We identified 5 clusters of factors deemed relevant to nanotoxicology of food-grade iENM: (i) using food-grade nanomaterials for toxicity testing; (ii) performing comprehensive physicochemical and morphological characterization of iENM in the dry state, (iii) establishing standard NP dispersions and their characterization in cell culture medium, (iv) employing realistic dose ranges and standardized in vitro dosimetry models, and (v) investigating dissolution kinetics and biotransformation behavior of iENM in synthetic media representative of the gastrointestinal (GI) tract fluids, including analyses in a fasted state and in the presence of a food matrix. We discussed how these factors, when not considered thoughtfully, could influence the results and generalizability of in vitro and in vivo testing. We conclude with a set of recommendations to guide future iENM toxicity studies and to develop/adopt more relevant in vitro model systems representative of in vivo animal and human iENM exposure scenarios.
Collapse
Affiliation(s)
- Ikjot Singh Sohal
- Biomedical Engineering & Biotechnology Program, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| | - Kevin S O'Fallon
- Natick Soldier Research, Development and Engineering Center, Natick, MA, 01760, USA
| | - Peter Gaines
- Department of Biological Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Philip Demokritou
- Harvard T.H. Chan School of Public Health, Department of Environmental Health and the Harvard Center for Nanotechnology and Nanotoxicology, Boston, MA, 02115, USA
| | - Dhimiter Bello
- Biomedical Engineering & Biotechnology Program, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
- Harvard T.H. Chan School of Public Health, Department of Environmental Health and the Harvard Center for Nanotechnology and Nanotoxicology, Boston, MA, 02115, USA.
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, 883 Broadway Street, Dugan 110-S, Lowell, MA, 01854, USA.
| |
Collapse
|
21
|
Wang L, Vivek R, Wu W, Wang G, Wang JY. Fabrication of Stable and Well-Dispersed Polyaniline–Polypyrrolidone Nanocomposite for Effective Photothermal Therapy. ACS Biomater Sci Eng 2018; 4:1880-1890. [DOI: 10.1021/acsbiomaterials.7b00910] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Liping Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Raju Vivek
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Weifeng Wu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guowu Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jin-Ye Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
22
|
Liu X, Sui B, Sun J. Size- and shape-dependent effects of titanium dioxide nanoparticles on the permeabilization of the blood-brain barrier. J Mater Chem B 2017; 5:9558-9570. [PMID: 32264570 DOI: 10.1039/c7tb01314k] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Titanium dioxide nanoparticles (TiO2-NPs) have been found to translocate into the brain by penetrating the blood-brain barrier (BBB), but it remains largely unknown how their physicochemical characteristics may impact BBB permeabilization. By testing TiO2 particles of different shapes and various sizes, we found that: (1) small, spherical TiO2-NPs permeabilized a BBB-like human brain microvasculature endothelial cell monolayer better than rod-like or large particles; (2) TiO2-NPs stimulated F-actin stress fiber formation, and induced paracellular gaps and ROCK II activation. The TiO2-NP-mediated BBB permeabilization was associated with intracellular uptake and cytoskeletal re-organization; and (3) in rats, spherical, small TiO2-NPs significantly increased the BBB permeability and entered the brain. The TiO2-NPs were accumulated in the brain, but no obvious pathological anomaly was observed in the cerebral cortex and hippocampus. Our study investigated the neurotoxicity of TiO2-NPs, thereby providing scientific evaluation for the potential biomedical applications of TiO2-NPs.
Collapse
Affiliation(s)
- Xin Liu
- Shanghai Biomaterials Research & Testing Center, Shanghai Key Laboratory of Stomatology, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, No. 427, Ju-men Road, Shanghai 200023, P. R. China.
| | | | | |
Collapse
|
23
|
Bartosewicz B, Michalska-Domańska M, Liszewska M, Zasada D, Jankiewicz BJ. Synthesis and characterization of noble metal-titania core-shell nanostructures with tunable shell thickness. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2017; 8:2083-2093. [PMID: 29090110 PMCID: PMC5647695 DOI: 10.3762/bjnano.8.208] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/04/2017] [Indexed: 06/07/2023]
Abstract
Core-shell nanostructures have found applications in many fields, including surface enhanced spectroscopy, catalysis and solar cells. Titania-coated noble metal nanoparticles, which combine the surface plasmon resonance properties of the core and the photoactivity of the shell, have great potential for these applications. However, the controllable synthesis of such nanostructures remains a challenge due to the high reactivity of titania precursors. Hence, a simple titania coating method that would allow better control over the shell formation is desired. A sol-gel based titania coating method, which allows control over the shell thickness, was developed and applied to the synthesis of Ag@TiO2 and Au@TiO2 with various shell thicknesses. The morphology of the synthesized structures was investigated using scanning electron microscopy (SEM). Their sizes and shell thicknesses were determined using tunable resistive pulse sensing (TRPS) technique. The optical properties of the synthesized structures were characterized using UV-vis spectroscopy. Ag@TiO2 and Au@TiO2 structures with shell thickness in the range of ≈40-70 nm and 90 nm, for the Ag and Au nanostructures respectively, were prepared using a method we developed and adapted, consisting of a change in the titania precursor concentration. The synthesized nanostructures exhibited significant absorption in the UV-vis range. The TRPS technique was shown to be a very useful tool for the characterization of metal-metal oxide core-shell nanostructures.
Collapse
Affiliation(s)
- Bartosz Bartosewicz
- Institute of Optoelectronics, Military University of Technology, Kaliskiego 2 Str. 00-908 Warsaw, Poland
| | - Marta Michalska-Domańska
- Institute of Optoelectronics, Military University of Technology, Kaliskiego 2 Str. 00-908 Warsaw, Poland
| | - Malwina Liszewska
- Institute of Optoelectronics, Military University of Technology, Kaliskiego 2 Str. 00-908 Warsaw, Poland
| | - Dariusz Zasada
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, Kaliskiego 2 Str. 00-908 Warsaw, Poland
| | - Bartłomiej J Jankiewicz
- Institute of Optoelectronics, Military University of Technology, Kaliskiego 2 Str. 00-908 Warsaw, Poland
| |
Collapse
|
24
|
Song Y, Zhang J, Li D. Microfluidic and Nanofluidic Resistive Pulse Sensing: A Review. MICROMACHINES 2017; 8:E204. [PMID: 30400393 PMCID: PMC6190343 DOI: 10.3390/mi8070204] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/11/2017] [Accepted: 06/21/2017] [Indexed: 12/31/2022]
Abstract
The resistive pulse sensing (RPS) method based on the Coulter principle is a powerful method for particle counting and sizing in electrolyte solutions. With the advancement of micro- and nano-fabrication technologies, microfluidic and nanofluidic resistive pulse sensing technologies and devices have been developed. Due to the unique advantages of microfluidics and nanofluidics, RPS sensors are enabled with more functions with greatly improved sensitivity and throughput and thus have wide applications in fields of biomedical research, clinical diagnosis, and so on. Firstly, this paper reviews some basic theories of particle sizing and counting. Emphasis is then given to the latest development of microfuidic and nanofluidic RPS technologies within the last 6 years, ranging from some new phenomena, methods of improving the sensitivity and throughput, and their applications, to some popular nanopore or nanochannel fabrication techniques. The future research directions and challenges on microfluidic and nanofluidic RPS are also outlined.
Collapse
Affiliation(s)
- Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Junyan Zhang
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China.
| | - Dongqing Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
25
|
Le Blond JS, Baxter PJ, Bello D, Raftis J, Molla YB, Cuadros J, Davey G. Haemolytic activity of soil from areas of varying podoconiosis endemicity in Ethiopia. PLoS One 2017; 12:e0177219. [PMID: 28493920 PMCID: PMC5426718 DOI: 10.1371/journal.pone.0177219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 04/24/2017] [Indexed: 02/05/2023] Open
Abstract
Background Podoconiosis, non-filarial elephantiasis, is a non-infectious disease found in tropical regions such as Ethiopia, localized in highland areas with volcanic soils cultivated by barefoot subsistence farmers. It is thought that soil particles can pass through the soles of the feet and taken up by the lymphatic system, leading to the characteristic chronic oedema of the lower legs that becomes disfiguring and disabling over time. Methods The close association of the disease with volcanic soils led us to investigate the characteristics of soil samples in an endemic area in Ethiopia to identify the potential causal constituents. We used the in vitro haemolysis assay and compared haemolytic activity (HA) with soil samples collected in a non-endemic region of the same area in Ethiopia. We included soil samples that had been previously characterized, in addition we present other data describing the characteristics of the soil and include pure phase mineral standards as comparisons. Results The bulk chemical composition of the soils were statistically significantly different between the podoconiosis-endemic and non-endemic areas, with the exception of CaO and Cr. Likewise, the soil mineralogy was statistically significant for iron oxide, feldspars, mica and chlorite. Smectite and kaolinite clays were widely present and elicited a strong HA, as did quartz, in comparison to other mineral phases tested, although no strong difference was found in HA between soils from the two areas. The relationship was further investigated with principle component analysis (PCA), which showed that a combination of an increase in Y, Zr and Al2O3, and a concurrent increase Fe2O3, TiO2, MnO and Ba in the soils increased HA. Conclusion The mineralogy and chemistry of the soils influenced the HA, although the interplay between the components is complex. Further research should consider the variable biopersistance, hygroscopicity and hardness of the minerals and further characterize the nano-scale particles.
Collapse
Affiliation(s)
- Jennifer S. Le Blond
- Department of Earth Sciences, Imperial College London, London, United Kingdom
- Core Research Labs, Natural History Museum, London, United Kingdom
- * E-mail:
| | - Peter J. Baxter
- Institute of Public Health, University of Cambridge, Cambridge, United Kingdom
| | - Dhimiter Bello
- Department of Work Environment, University of Massachusetts Lowell, MA, United States of America
| | - Jennifer Raftis
- The Queens Medical Research Institute, University of Edinburgh, Little France, Edinburgh, United Kingdom
| | - Yordanos B. Molla
- Department of Earth Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Wellcome Trust Centre for Global Health Research, Brighton and Sussex Medical School, University of Sussex, Brighton, East Sussex United Kingdom
| | - Javier Cuadros
- Department of Earth Sciences, Natural History Museum, London, United Kingdom
| | - Gail Davey
- Wellcome Trust Centre for Global Health Research, Brighton and Sussex Medical School, University of Sussex, Brighton, East Sussex United Kingdom
| |
Collapse
|
26
|
DeLoid GM, Cohen JM, Pyrgiotakis G, Demokritou P. Preparation, characterization, and in vitro dosimetry of dispersed, engineered nanomaterials. Nat Protoc 2017; 12:355-371. [PMID: 28102836 DOI: 10.1038/nprot.2016.172] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Evidence continues to grow of the importance of in vitro and in vivo dosimetry in the hazard assessment and ranking of engineered nanomaterials (ENMs). Accurate dose metrics are particularly important for in vitro cellular screening to assess the potential health risks or bioactivity of ENMs. To ensure meaningful and reproducible quantification of in vitro dose, with consistent measurement and reporting between laboratories, it is necessary to adopt standardized and integrated methodologies for (i) generation of stable ENM suspensions in cell culture media; (ii) colloidal characterization of suspended ENMs, particularly of properties that determine particle kinetics in an in vitro system (size distribution and formed agglomerate effective density); and (iii) robust numerical fate and transport modeling for accurate determination of the ENM dose delivered to cells over the course of the in vitro exposure. Here we present an integrated comprehensive protocol based on such a methodology for in vitro dosimetry, including detailed standardized procedures for each of these three critical aims. The entire protocol requires ∼6-12 h to complete.
Collapse
Affiliation(s)
- Glen M DeLoid
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Joel M Cohen
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Georgios Pyrgiotakis
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, HSPH-NIEHS Nanosafety Research Center, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
27
|
Lee SJ, Kang JY, Choi W, Kwak R. Nanopore Sensing in Aqueous Two-Phase System: Simultaneous Enhancement of Signal and Translocation Time via Conformal Coating. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1601725. [PMID: 27753235 DOI: 10.1002/smll.201601725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/15/2016] [Indexed: 06/06/2023]
Abstract
Nanofluidic resistive pulse sensing (RPS) has been extensively used to measure the size, concentration, and surface charge of nanoparticles in electrically conducting solutions. Although various methods have been explored for improving detection performances, intrinsic problems including the extremely low particle-to-pore volume ratio (<0.01%) and fast nanoparticle translocation (10-1000 µs) still induce difficulties in detection, such as low signal magnitudes and short translocation times. Herein, we present an aqueous two-phase system (ATPS) in a nanofluidic RPS for amplifying translocation signals and decreasing translocation speeds simultaneously. Two immiscible aqueous liquids build a liquid-liquid interface inside nanopores. As particles translocate from a high-affinity liquid phase into a lower-affinity one, the high-affinity liquid forms a conformal coating on the particles, which increases the effective particle size and amplifies the current-blockage signal. The translocation time is also increased, as the ATPS interface impedes the particle translocation. For 20 nm particles, 7.92-fold and 5.82-fold enhancements of signal magnitude and translocation time can be achieved. To our knowledge, this is the first attempt to improve nanofluidic RPS by treating an interface of solution reservoirs for manipulating target particles rather than nanopores. This direct particle manipulation allows us to solve the two intrinsic problems all at once.
Collapse
Affiliation(s)
- Sang Jun Lee
- School of Mechanical Engineering, Korea University, Seoul, 136-701, Republic of Korea
- Center for BioMicrosystems, Korea Institute of Science and Technology, Seoul, 136-791, Republic of Korea
| | - Ji Yoon Kang
- Center for BioMicrosystems, Korea Institute of Science and Technology, Seoul, 136-791, Republic of Korea
| | - Wonjoon Choi
- School of Mechanical Engineering, Korea University, Seoul, 136-701, Republic of Korea
| | - Rhokyun Kwak
- Center for BioMicrosystems, Korea Institute of Science and Technology, Seoul, 136-791, Republic of Korea
| |
Collapse
|
28
|
Mehn D, Caputo F, Rösslein M, Calzolai L, Saint-Antonin F, Courant T, Wick P, Gilliland D. Larger or more? Nanoparticle characterisation methods for recognition of dimers. RSC Adv 2017. [DOI: 10.1039/c7ra02432k] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Larger or more? Our article dissects the problem of understanding the origin of size heterogeneity in polydispersed nanoparticle samples.
Collapse
Affiliation(s)
- D. Mehn
- European Commission
- DG Joint Research Centre
- 21027 Ispra
- Italy
| | - F. Caputo
- Univ. Grenoble Alpes
- F38000 Grenoble
- France
- CEA, LETI, Minatec Campus
- Grenoble
| | - M. Rösslein
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- St. Gallen
- Switzerland
| | - L. Calzolai
- European Commission
- DG Joint Research Centre
- 21027 Ispra
- Italy
| | - F. Saint-Antonin
- Univ. Grenoble Alpes
- F38000 Grenoble
- France
- CEA, LITEN
- Minatec Campus
| | - T. Courant
- Univ. Grenoble Alpes
- F38000 Grenoble
- France
- CEA, LETI, Minatec Campus
- Grenoble
| | - P. Wick
- Empa
- Swiss Federal Laboratories for Materials Science and Technology
- St. Gallen
- Switzerland
| | - D. Gilliland
- European Commission
- DG Joint Research Centre
- 21027 Ispra
- Italy
| |
Collapse
|
29
|
Spyrogianni A, Herrmann IK, Lucas MS, Leroux JC, Sotiriou GA. Quantitative analysis of the deposited nanoparticle dose on cell cultures by optical absorption spectroscopy. Nanomedicine (Lond) 2016; 11:2483-96. [PMID: 27622851 DOI: 10.2217/nnm-2016-0243] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM The delivered nanoparticle dose to cells in vitro may depend on nanoparticle sedimentation rate. Here, the conditions under which optical absorption spectroscopy can be used to quantify the deposited nanoparticle dose in vitro are investigated. MATERIALS & METHODS Nanoparticle cytotoxicity in both upright and inverted cell culture orientations is studied in the presence and absence of serum. RESULTS Dissolvable nanoparticles, such as ZnO, exhibit no difference in upright and inverted cultures due to dissolved Zn(2+) ions that dominate cytotoxicity. Insoluble nanoparticles, however, exhibit different sedimentation rates and deposited doses that are linked to the observed cytotoxicity. CONCLUSION The combined use of upright-inverted cell orientations and optical absorption spectroscopy can provide a simple experimental approach to interpret in vitro nano-biointeractions.
Collapse
Affiliation(s)
- Anastasia Spyrogianni
- Particle Technology Laboratory, Institute of Process Engineering, Department of Mechanical & Process Engineering, ETH Zurich, Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| | - Inge K Herrmann
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science & Technology (Empa), Lerchenfeldstrasse 5, CH-9014 St Gallen, Switzerland
| | - Miriam S Lucas
- Scientific Center for Optical & Electron Microscopy (ScopeM), ETH Zurich, Auguste-Piccard-Hof 1, CH-8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Drug Formulation & Delivery, Institute of Pharmaceutical Sciences, Department of Chemistry & Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, CH-8093 Zurich, Switzerland
| | - Georgios A Sotiriou
- Drug Formulation & Delivery, Institute of Pharmaceutical Sciences, Department of Chemistry & Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, CH-8093 Zurich, Switzerland.,Department of Microbiology, Tumor & Cell Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| |
Collapse
|
30
|
Sivakumaran M, Platt M. Tunable resistive pulse sensing: potential applications in nanomedicine. Nanomedicine (Lond) 2016; 11:2197-214. [PMID: 27480794 DOI: 10.2217/nnm-2016-0097] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
An accurate characterization of nanomaterials used in clinical diagnosis and therapeutics is of paramount importance to realize the full potential of nanotechnology in medicine and to avoid unexpected and potentially harmful toxic effects due to these materials. A number of technical modalities are currently in use to study the physical, chemical and biological properties of nanomaterials but they all have advantages and disadvantages. In this review, we discuss the potential of a relative newcomer, tunable resistive pulse sensing, for the characterization of nanomaterials and its applications in nanodiagnostics.
Collapse
Affiliation(s)
| | - Mark Platt
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
31
|
Blundell ELCJ, Healey MJ, Holton E, Sivakumaran M, Manstana S, Platt M. Characterisation of the protein corona using tunable resistive pulse sensing: determining the change and distribution of a particle's surface charge. Anal Bioanal Chem 2016; 408:5757-5768. [PMID: 27287012 PMCID: PMC4958399 DOI: 10.1007/s00216-016-9678-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/27/2016] [Accepted: 05/31/2016] [Indexed: 11/30/2022]
Abstract
The zeta potential of the protein corona around carboxyl particles has been measured using tunable resistive pulse sensing (TRPS). A simple and rapid assay for characterising zeta potentials within buffer, serum and plasma is presented monitoring the change, magnitude and distribution of proteins on the particle surface. First, we measure the change in zeta potential of carboxyl-functionalised nanoparticles in solutions that contain biologically relevant concentrations of individual proteins, typically constituted in plasma and serum, and observe a significant difference in distributions and zeta values between room temperature and 37 °C assays. The effect is protein dependent, and the largest difference between the two temperatures is recorded for the γ-globulin protein where the mean zeta potential changes from -16.7 to -9.0 mV for 25 and 37 °C, respectively. This method is further applied to monitor particles placed into serum and/or plasma. A temperature-dependent change is again observed with serum showing a 4.9 mV difference in zeta potential between samples incubated at 25 and 37 °C; this shift was larger than that observed for samples in plasma (0.4 mV). Finally, we monitor the kinetics of the corona reorientation for particles initially placed into serum and then adding 5 % (V/V) plasma. The technology presented offers an interesting insight into protein corona structure and kinetics of formation measured in biologically relevant solutions, i.e. high protein, high salt levels, and its particle-by-particle analysis gives a measure of the distribution of particle zeta potential that may offer a better understanding of the behaviour of nanoparticles in solution. Graphical Abstract The relative velocity of a nanoparticle as it traverses a nanopore can be used to determine its zeta potential. Monitoring the changes in translocation speeds can therefore be used to follow changes to the surface chemistry/composition of 210 nm particles that were placed into protein rich solutions, serum and plasma. The particle-by-particle measurements allow the zeta potential and distribution of the particles to be characterised, illustrating the effects of protein concentration and temperature on the protein corona. When placed into a solution containing a mixture of proteins, the affinity of the protein to the particle's surface determines the corona structure, and is not dependent on the protein concentration.
Collapse
Affiliation(s)
- Emma L C J Blundell
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| | - Matthew J Healey
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| | - Elizabeth Holton
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK
| | - Muttuswamy Sivakumaran
- Peterborough City Hospital, Edith Cavell Campus, Bretton Gate, Peterborough, PE3 9GZ, UK
| | - Sarabjit Manstana
- Human Genomics Lab, Centre for Global Health and Human Development, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, UK
| | - Mark Platt
- Department of Chemistry, Loughborough University, Loughborough, LE11 3TU, UK.
| |
Collapse
|
32
|
McClements DJ, DeLoid G, Pyrgiotakis G, Shatkin JA, Xiao H, Demokritou P. The Role of the Food Matrix and Gastrointestinal Tract in the assessment of biological properties of ingested engineered nanomaterials (iENMs): State of the science and knowledge gaps. NANOIMPACT 2016; 3-4:47-57. [PMID: 29568810 PMCID: PMC5860850 DOI: 10.1016/j.impact.2016.10.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Many foods contain appreciable levels of engineered nanomaterials (ENMs) (diameter < 100 nm) that may be either intentionally or unintentionally added. These ENMs vary considerably in their compositions, dimensions, morphologies, physicochemical properties, and biological responses. From a toxicological point of view, it is often convenient to classify ingested ENMs (iENMs) as being either inorganic (such as TiO2, SiO2, Fe2O3, or Ag) or organic (such as lipid, protein, or carbohydrate), since the former tend to be indigestible and the latter are generally digestible. At present there is a relatively poor understanding of how different types of iENMs behave within the human gastrointestinal tract (GIT), and how the food matrix and biopolymers transform their physico-chemical properties and influence their gastrointestinal fate. This lack of knowledge confounds an understanding of their potential harmful effects on human health. The purpose of this article is to review our current understanding of the GIT fate of iENMs, and to highlight gaps where further research is urgently needed in assessing potential risks and toxicological implications of iENMs. In particular, a strong emphasis is given to the development of standardized screening methods that can be used to rapidly and accurately assess the toxicological properties of iENMs.
Collapse
Affiliation(s)
- David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
- corresponding authors: David Julian McClements, Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA. ; Tel: 413 545 1019. Philip Demokritou, Center for Nanotechnology an nanotoxicology, T.H. Chan School of Public Health, Harvard University, Boston MA 02115, , Tel 617 432-3481, Web: www.hsph.harvard.edu/nano
| | - Glen DeLoid
- Laboratory for Environmental Health NanoScience (LEHNS), Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Georgios Pyrgiotakis
- Laboratory for Environmental Health NanoScience (LEHNS), Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA 02115, USA
| | | | - Hang Xiao
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Philip Demokritou
- Laboratory for Environmental Health NanoScience (LEHNS), Center for Nanotechnology and Nanotoxicology, T. H. Chan School of Public Health, Harvard University, 665 Huntington Avenue, Boston, MA 02115, USA
- corresponding authors: David Julian McClements, Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA. ; Tel: 413 545 1019. Philip Demokritou, Center for Nanotechnology an nanotoxicology, T.H. Chan School of Public Health, Harvard University, Boston MA 02115, , Tel 617 432-3481, Web: www.hsph.harvard.edu/nano
| |
Collapse
|
33
|
Watson C, DeLoid GM, Pal A, Demokritou P. Buoyant Nanoparticles: Implications for Nano-Biointeractions in Cellular Studies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3172-3180. [PMID: 27135209 PMCID: PMC5089376 DOI: 10.1002/smll.201600314] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/04/2016] [Indexed: 05/18/2023]
Abstract
In the safety and efficacy assessment of novel nanomaterials, the role of nanoparticle (NP) kinetics in in vitro studies is often ignored although it has significant implications in dosimetry, hazard ranking, and nanomedicine efficacy. It is demonstrated here that certain nanoparticles are buoyant due to low effective densities of their formed agglomerates in culture media, which alters particle transport and deposition, dose-response relationships, and underestimates toxicity and bioactivity. To investigate this phenomenon, this study determines the size distribution, effective density, and assesses fate and transport for a test buoyant NP (polypropylene). To enable accurate dose-response assessment, an inverted 96-well cell culture platform is developed in which adherent cells are incubated above the buoyant particle suspension. The effect of buoyancy is assessed by comparing dose-toxicity responses in human macrophages after 24 h incubation in conventional and inverted culture systems. In the conventional culture system, no adverse effects are observed at any NP concentration tested (up to 250 μg mL(-1) ), whereas dose-dependent decreases in viability and increases in reactive oxygen species are observed in the inverted system. This work sheds light on an unknown issue that plays a significant role in vitro hazard screening and proposes a standardized methodology for buoyant NP assessments.
Collapse
Affiliation(s)
- C.Y. Watson
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115
| | - GM. DeLoid
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115
| | - A. Pal
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115
| | - P. Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115
| |
Collapse
|
34
|
Sikora A, Shard AG, Minelli C. Size and ζ-Potential Measurement of Silica Nanoparticles in Serum Using Tunable Resistive Pulse Sensing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2216-2224. [PMID: 26869024 DOI: 10.1021/acs.langmuir.5b04160] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The contact of nanoparticles with biological fluids such as serum results in rapid adsorption of proteins at the nanoparticle surface in a layer known as the "protein corona". Protein coatings modify and control the behavior of the nanoparticles potentially altering the aggregation state and cellular response, which may influence their fate and hazard to human health. Cells are likely to interact with the protein interface rather than with bare surface; therefore it is important to study the protein layer and develop appropriate measurement tools. In this study we investigate how adsorbed proteins from serum affect the size and the surface charge of plain and aminated silica nanoparticles. Particle size and size distributions in buffer and serum-based biological media were studied using tunable resistive pulse sensing (TRPS), as well as differential centrifugal sedimentation (DCS) and dynamic light scattering (DLS). Average and single particle ζ-potentials (related to surface charge) were also measured by electrophoretic light scattering (ELS) and TRPS, respectively. Size measurements showed an increase in size of the nanoparticles upon acquisition of a protein layer, thus allowing an estimation of its thickness. DLS proved incapable of providing an accurate measurement of the nanoparticles' size in serum due to the presence of agglomerates. The ability of TRPS to measure sample agglomeration was investigated by comparison with the high resolution technique of DCS. Particle-by-particle ζ-potential measurements by TRPS were consistent with those performed with ELS and allowed a description of the ζ-potential distribution within the samples.
Collapse
Affiliation(s)
- Aneta Sikora
- Analytical Science, National Physical Laboratory , Hampton Road, TW11 0LW Teddington, United Kingdom
| | - Alexander G Shard
- Analytical Science, National Physical Laboratory , Hampton Road, TW11 0LW Teddington, United Kingdom
| | - Caterina Minelli
- Analytical Science, National Physical Laboratory , Hampton Road, TW11 0LW Teddington, United Kingdom
| |
Collapse
|
35
|
Plasmonic nanoparticles and their characterization in physiological fluids. Colloids Surf B Biointerfaces 2016; 137:39-49. [DOI: 10.1016/j.colsurfb.2015.05.053] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/20/2015] [Accepted: 05/27/2015] [Indexed: 11/19/2022]
|
36
|
Lu X, Miousse IR, Pirela SV, Moore JK, Melnyk S, Koturbash I, Demokritou P. In vivo epigenetic effects induced by engineered nanomaterials: A case study of copper oxide and laser printer-emitted engineered nanoparticles. Nanotoxicology 2016. [PMID: 26559097 DOI: 10.3109/17435390.2015.1108473.in] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Evidence continues to grow on potential environmental health hazards associated with engineered nanomaterials (ENMs). While the geno- and cytotoxic effects of ENMs have been investigated, their potential to target the epigenome remains largely unknown. The aim of this study is two-fold: 1) determining whether or not industry relevant ENMs can affect the epigenome in vivo and 2) validating a recently developed in vitro epigenetic screening platform for inhaled ENMs. Laser printer-emitted engineered nanoparticles (PEPs) released from nano-enabled toners during consumer use and copper oxide (CuO) were chosen since these particles induced significant epigenetic changes in a recent in vitro companion study. In this study, the epigenetic alterations in lung tissue, alveolar macrophages and peripheral blood from intratracheally instilled mice were evaluated. The methylation of global DNA and transposable elements (TEs), the expression of the DNA methylation machinery and TEs, in addition to general toxicological effects in the lung were assessed. CuO exhibited higher cell-damaging potential to the lung, while PEPs showed a greater ability to target the epigenome. Alterations in the methylation status of global DNA and TEs, and expression of TEs and DNA machinery in mouse lung were observed after exposure to CuO and PEPs. Additionally, epigenetic changes were detected in the peripheral blood after PEPs exposure. Altogether, CuO and PEPs can induce epigenetic alterations in a mouse experimental model, which in turn confirms that the recently developed in vitro epigenetic platform using macrophage and epithelial cell lines can be successfully utilized in the epigenetic screening of ENMs.
Collapse
Affiliation(s)
- Xiaoyan Lu
- a Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health , Boston , MA , USA
| | - Isabelle R Miousse
- b Department of Environmental and Occupational Health , College of Public Health, University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Sandra V Pirela
- a Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health , Boston , MA , USA
| | - Jodene K Moore
- c Department of Systems Biology , Harvard Medical School , Boston , MA , USA , and
| | - Stepan Melnyk
- d Department of Pediatrics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Igor Koturbash
- b Department of Environmental and Occupational Health , College of Public Health, University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Philip Demokritou
- a Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health , Boston , MA , USA
| |
Collapse
|
37
|
Laramy CR, Brown KA, O'Brien MN, Mirkin CA. High-Throughput, Algorithmic Determination of Nanoparticle Structure from Electron Microscopy Images. ACS NANO 2015; 9:12488-12495. [PMID: 26588107 DOI: 10.1021/acsnano.5b05968] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Electron microscopy (EM) represents the most powerful tool to directly characterize the structure of individual nanoparticles. Accurate descriptions of nanoparticle populations with EM, however, are currently limited by the lack of tools to quantitatively analyze populations in a high-throughput manner. Herein, we report a computational method to algorithmically analyze EM images that allows for the first automated structural quantification of heterogeneous nanostructure populations, with species that differ in both size and shape. This allows one to accurately describe nanoscale structure at the bulk level, analogous to ensemble measurements with individual particle resolution. With our described EM protocol and our inclusion of freely available code for our algorithmic analysis, we aim to standardize EM characterization of nanostructure populations to increase reproducibility, objectivity, and throughput in measurements. We believe this work will have significant implications in diverse research areas involving nanomaterials, including, but not limited to, fundamental studies of structural control in nanoparticle synthesis, nanomaterial-based therapeutics and diagnostics, optoelectronics, and catalysis.
Collapse
Affiliation(s)
- Christine R Laramy
- Department of Chemical and Biological Engineering and ‡Department of Chemistry and International Institute for Nanotechnology, Northwestern University , Evanston, Illinois 60208, United States
| | - Keith A Brown
- Department of Chemical and Biological Engineering and ‡Department of Chemistry and International Institute for Nanotechnology, Northwestern University , Evanston, Illinois 60208, United States
| | - Matthew N O'Brien
- Department of Chemical and Biological Engineering and ‡Department of Chemistry and International Institute for Nanotechnology, Northwestern University , Evanston, Illinois 60208, United States
| | - Chad A Mirkin
- Department of Chemical and Biological Engineering and ‡Department of Chemistry and International Institute for Nanotechnology, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
38
|
Affiliation(s)
- Ian L. Gunsolus
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant
Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
39
|
Lu X, Miousse IR, Pirela SV, Moore JK, Melnyk S, Koturbash I, Demokritou P. In vivo epigenetic effects induced by engineered nanomaterials: A case study of copper oxide and laser printer-emitted engineered nanoparticles. Nanotoxicology 2015; 10:629-39. [PMID: 26559097 DOI: 10.3109/17435390.2015.1108473] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Evidence continues to grow on potential environmental health hazards associated with engineered nanomaterials (ENMs). While the geno- and cytotoxic effects of ENMs have been investigated, their potential to target the epigenome remains largely unknown. The aim of this study is two-fold: 1) determining whether or not industry relevant ENMs can affect the epigenome in vivo and 2) validating a recently developed in vitro epigenetic screening platform for inhaled ENMs. Laser printer-emitted engineered nanoparticles (PEPs) released from nano-enabled toners during consumer use and copper oxide (CuO) were chosen since these particles induced significant epigenetic changes in a recent in vitro companion study. In this study, the epigenetic alterations in lung tissue, alveolar macrophages and peripheral blood from intratracheally instilled mice were evaluated. The methylation of global DNA and transposable elements (TEs), the expression of the DNA methylation machinery and TEs, in addition to general toxicological effects in the lung were assessed. CuO exhibited higher cell-damaging potential to the lung, while PEPs showed a greater ability to target the epigenome. Alterations in the methylation status of global DNA and TEs, and expression of TEs and DNA machinery in mouse lung were observed after exposure to CuO and PEPs. Additionally, epigenetic changes were detected in the peripheral blood after PEPs exposure. Altogether, CuO and PEPs can induce epigenetic alterations in a mouse experimental model, which in turn confirms that the recently developed in vitro epigenetic platform using macrophage and epithelial cell lines can be successfully utilized in the epigenetic screening of ENMs.
Collapse
Affiliation(s)
- Xiaoyan Lu
- a Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health , Boston , MA , USA
| | - Isabelle R Miousse
- b Department of Environmental and Occupational Health , College of Public Health, University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Sandra V Pirela
- a Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health , Boston , MA , USA
| | - Jodene K Moore
- c Department of Systems Biology , Harvard Medical School , Boston , MA , USA , and
| | - Stepan Melnyk
- d Department of Pediatrics , University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Igor Koturbash
- b Department of Environmental and Occupational Health , College of Public Health, University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Philip Demokritou
- a Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health , Boston , MA , USA
| |
Collapse
|
40
|
DeLoid GM, Cohen JM, Pyrgiotakis G, Pirela SV, Pal A, Liu J, Srebric J, Demokritou P. Advanced computational modeling for in vitro nanomaterial dosimetry. Part Fibre Toxicol 2015; 12:32. [PMID: 26497802 PMCID: PMC4619515 DOI: 10.1186/s12989-015-0109-1] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/12/2015] [Indexed: 12/27/2022] Open
Abstract
Background Accurate and meaningful dose metrics are a basic requirement for in vitro screening to assess potential health risks of engineered nanomaterials (ENMs). Correctly and consistently quantifying what cells “see,” during an in vitro exposure requires standardized preparation of stable ENM suspensions, accurate characterizatoin of agglomerate sizes and effective densities, and predictive modeling of mass transport. Earlier transport models provided a marked improvement over administered concentration or total mass, but included assumptions that could produce sizable inaccuracies, most notably that all particles at the bottom of the well are adsorbed or taken up by cells, which would drive transport downward, resulting in overestimation of deposition. Methods Here we present development, validation and results of two robust computational transport models. Both three-dimensional computational fluid dynamics (CFD) and a newly-developed one-dimensional Distorted Grid (DG) model were used to estimate delivered dose metrics for industry-relevant metal oxide ENMs suspended in culture media. Both models allow simultaneous modeling of full size distributions for polydisperse ENM suspensions, and provide deposition metrics as well as concentration metrics over the extent of the well. The DG model also emulates the biokinetics at the particle-cell interface using a Langmuir isotherm, governed by a user-defined dissociation constant, KD, and allows modeling of ENM dissolution over time. Results Dose metrics predicted by the two models were in remarkably close agreement. The DG model was also validated by quantitative analysis of flash-frozen, cryosectioned columns of ENM suspensions. Results of simulations based on agglomerate size distributions differed substantially from those obtained using mean sizes. The effect of cellular adsorption on delivered dose was negligible for KD values consistent with non-specific binding (> 1 nM), whereas smaller values (≤ 1 nM) typical of specific high-affinity binding resulted in faster and eventual complete deposition of material. Conclusions The advanced models presented provide practical and robust tools for obtaining accurate dose metrics and concentration profiles across the well, for high-throughput screening of ENMs. The DG model allows rapid modeling that accommodates polydispersity, dissolution, and adsorption. Result of adsorption studies suggest that a reflective lower boundary condition is appropriate for modeling most in vitro ENM exposures. Electronic supplementary material The online version of this article (doi:10.1186/s12989-015-0109-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Glen M DeLoid
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA, 02115, USA.
| | - Joel M Cohen
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA, 02115, USA
| | - Georgios Pyrgiotakis
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA, 02115, USA
| | - Sandra V Pirela
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA, 02115, USA
| | - Anoop Pal
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA, 02115, USA
| | - Jiying Liu
- Department of Architectural Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.,School of Thermal Engineering, Shandong Jianzhu University, 1000 Fengming Rd, Jinan, China
| | - Jelena Srebric
- Department of Architectural Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.,Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 655 Huntington Ave, Boston, MA, 02115, USA.
| |
Collapse
|
41
|
Cohen JM, DeLoid GM, Demokritou P. A critical review of in vitro dosimetry for engineered nanomaterials. Nanomedicine (Lond) 2015; 10:3015-3032. [PMID: 26419834 DOI: 10.2217/nnm.15.129] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A major obstacle in the development of accurate cellular models for investigating nanobio interactions in vitro is determination of physiologically relevant measures of dose. Comparison of biological responses to nanoparticle exposure typically relies on administered dose metrics such as mass concentration of suspended particles, rather than the effective dose of particles that actually comes in contact with the cells over the time of exposure. Adoption of recently developed dosimetric methodologies will facilitate determination of effective dose delivered to cells in vitro, thereby improving the accuracy and reliability of in vitro screening data, validation of in vitro with in vivo data, and comparison across multiple datasets for the large variety of nanomaterials currently in the market.
Collapse
Affiliation(s)
- Joel M Cohen
- Center for Nanotechnology & Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115, USA
| | - Glen M DeLoid
- Center for Nanotechnology & Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115, USA
| | - Philip Demokritou
- Center for Nanotechnology & Nanotoxicology, Department of Environmental Health, Harvard School of Public Health, 655 Huntington Ave Boston, MA 02115, USA
| |
Collapse
|
42
|
Pal AK, Bello D, Cohen J, Demokritou P. Implications of in vitro dosimetry on toxicological ranking of low aspect ratio engineered nanomaterials. Nanotoxicology 2015; 9:871-85. [PMID: 25672815 DOI: 10.3109/17435390.2014.986670] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In vitro high throughput screening platforms based on mechanistic injury pathways are been used for hazard assessment of engineered nanomaterials (ENM). Toxicity screening and other in vitro nanotoxicology assessment efforts in essence compare and rank nanomaterials relative to each other. We hypothesize that this ranking of ENM is susceptible to dispersion and dosimetry protocols, which continue to be poorly standardized. Our objective was to quantitate the impact of dosimetry on toxicity ranking of ENM. A set of eight well-characterized and diverse low aspect ratio ENMs, were utilized. The recently developed in vitro dosimetry platform at Harvard, which includes preparation of fairly monodispersed suspensions, measurement of the effective density of formed agglomerates in culture media and fate and transport modeling was used for calculating the effective dose delivered to cells as a function of time. Changes in the dose-response relationships between the administered and delivered dose were investigated with two representative endpoints, cell viability and IL-8 production, in the human monocytic THP-1 cells. The slopes of administered/delivered dose-response relationships changed 1:4.94 times and were ENM-dependent. The overall relative ranking of ENM intrinsic toxicity also changed considerably, matching notably better the in vivo inflammation data (R(2 )= 0.97 versus 0.64). This standardized dispersion and dosimetry methodology presented here is generalizable to low aspect ratio ENMs. Our findings further reinforce the need to reanalyze and reinterpret in vitro ENM hazard ranking data published in the nanotoxicology literature in the light of dispersion and dosimetry considerations (or lack thereof) and to adopt these protocols in future in vitro nanotoxicology testing.
Collapse
Affiliation(s)
- Anoop K Pal
- a Biomedical Engineering and Biotechnology Program, University of Massachusetts , Lowell , MA , USA .,c Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health , Boston , MA , USA
| | - Dhimiter Bello
- b Department of Work Environment , College of Health Sciences, University of Massachusetts , Lowell , MA , USA , and.,c Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health , Boston , MA , USA
| | - Joel Cohen
- c Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health , Boston , MA , USA
| | - Philip Demokritou
- c Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard School of Public Health , Boston , MA , USA
| |
Collapse
|
43
|
Pal AK, Watson CY, Pirela SV, Singh D, Chalbot MCG, Kavouras I, Demokritou P. Linking Exposures of Particles Released From Nano-Enabled Products to Toxicology: An Integrated Methodology for Particle Sampling, Extraction, Dispersion, and Dosing. Toxicol Sci 2015; 146:321-33. [PMID: 25997654 PMCID: PMC4607749 DOI: 10.1093/toxsci/kfv095] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nano-enabled products (NEPs) represent a growing economic global market that integrates nanotechnology into our everyday lives. Increased consumer use and disposal of NEPs at their end of life has led to increased environmental, health and safety (EHS) concerns, due to the potential environmental release of constituent engineered nanomaterials (ENMs) used in the production of NEPs. Although, there is an urgent need to assess particulate matter (PM) release scenarios and potential EHS implications, no current standardized methodologies exist across the exposure-toxicological characterization continuum. Here, an integrated methodology is presented, that can be used to sample, extract, disperse and estimate relevant dose of life cycle-released PM (LCPM), for in vitro and in vivo toxicological studies. The proposed methodology was utilized to evaluate two "real world" LCPM systems simulating consumer use and disposal of NEPs. This multi-step integrated methodology consists of: (1) real-time monitoring and sampling of size fractionated LCPM; (2) efficient extraction of LCPM collected on substrates using aqueous or ethanol extraction protocols to ensure minimal physicochemical alterations; (3) optimized LCPM dispersion preparation and characterization; (4) use of dosimetric techniques for in vitro and in vivo toxicological studies. This comprehensive framework provides a standardized protocol to assess the release and toxicological implications of ENMs released across the life cycle of NEPs and will help in addressing important knowledge gaps in the field of nanotoxicology.
Collapse
Affiliation(s)
- Anoop K Pal
- *Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, and
| | - Christa Y Watson
- *Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, and
| | - Sandra V Pirela
- *Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, and
| | - Dilpreet Singh
- *Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, and
| | - Marie-Cecile G Chalbot
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences College of Public Health, 4301 West Markham, Little Rock, Arkansas 72205-7199
| | - Ilias Kavouras
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences College of Public Health, 4301 West Markham, Little Rock, Arkansas 72205-7199
| | - Philip Demokritou
- *Department of Environmental Health, Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, and
| |
Collapse
|
44
|
Fadeel B, Fornara A, Toprak MS, Bhattacharya K. Keeping it real: The importance of material characterization in nanotoxicology. Biochem Biophys Res Commun 2015; 468:498-503. [PMID: 26187673 DOI: 10.1016/j.bbrc.2015.06.178] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 06/23/2015] [Indexed: 12/12/2022]
Abstract
Nanomaterials are small and the small size and corresponding large surface area of nanomaterials confers specific properties, making these materials desirable for various applications, not least in medicine. However, it is pertinent to ask whether size is the only property that matters for the desirable or detrimental effects of nanomaterials? Indeed, it is important to know not only what the material looks like, but also what it is made of, as well as how the material interacts with its biological surroundings. It has been suggested that guidelines should be implemented on the types of information required in terms of physicochemical characterization of nanomaterials for toxicological studies in order to improve the quality and relevance of the published results. This is certainly a key issue, but it is important to keep in mind that material characterization should be fit-for-purpose, that is, the information gathered should be relevant for the end-points being studied.
Collapse
Affiliation(s)
- Bengt Fadeel
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Andrea Fornara
- Unit for Chemistry, Materials and Surfaces, SP Technical Research Institute of Sweden, 114 86 Stockholm, Sweden
| | - Muhammet S Toprak
- Functional Materials Division, Department of Materials and Nano Physics, Royal Institute of Technology, 164 40 Stockholm, Sweden
| | - Kunal Bhattacharya
- Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
45
|
Balog S, Rodriguez-Lorenzo L, Monnier CA, Obiols-Rabasa M, Rothen-Rutishauser B, Schurtenberger P, Petri-Fink A. Characterizing nanoparticles in complex biological media and physiological fluids with depolarized dynamic light scattering. NANOSCALE 2015; 7:5991-7. [PMID: 25631245 DOI: 10.1039/c4nr06538g] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Light scattering is one of the few techniques available to adequately characterize suspended nanoparticles (NPs) in real time and in situ. However, when it comes to NPs in multicomponent and optically complex aqueous matrices - such as biological media and physiological fluids - light scattering suffers from lack of selectivity, as distinguishing the relevant optical signals from the irrelevant ones is very challenging. We meet this challenge by building on depolarized scattering: Unwanted signals from the matrix are completely suppressed. This approach yields information with an unprecedented signal-to-noise ratio in favour of the NPs and NP-biomolecule corona complexes, which in turn opens the frontier to scattering-based studies addressing the behaviour of NPs in complex physiological/biological fluids.
Collapse
Affiliation(s)
- S Balog
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
46
|
Guo X, Xue L, Lv W, Liu Q, Li R, Li Z, Wang J. Facile synthesis of magnetic carboxymethylcellulose nanocarriers for pH-responsive delivery of doxorubicin. NEW J CHEM 2015. [DOI: 10.1039/c5nj01190f] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-functional magnetic carboxymethylcellulose nanocarriers were successfully synthesized via a facile solvothermal method.
Collapse
Affiliation(s)
- Xuejie Guo
- Center for Biomedical Materials and Engineering
- Harbin Engineering University
- Harbin 150001
- China
- Key Laboratory of Superlight Material and Surface Technology
| | - Li Xue
- Department of Cardiology
- Center of Vascular Diseases
- Fourth Affiliated Hospital of Harbin Medical University
- Harbin 150001
- China
| | - Weizhong Lv
- Center for Biomedical Materials and Engineering
- Harbin Engineering University
- Harbin 150001
- China
| | - Qi Liu
- Key Laboratory of Superlight Material and Surface Technology
- Ministry of Education
- Harbin Engineering University
- Harbin 150001
- China
| | - Rumin Li
- Key Laboratory of Superlight Material and Surface Technology
- Ministry of Education
- Harbin Engineering University
- Harbin 150001
- China
| | - Zhanshuang Li
- Key Laboratory of Superlight Material and Surface Technology
- Ministry of Education
- Harbin Engineering University
- Harbin 150001
- China
| | - Jun Wang
- Center for Biomedical Materials and Engineering
- Harbin Engineering University
- Harbin 150001
- China
- Key Laboratory of Superlight Material and Surface Technology
| |
Collapse
|
47
|
Abstract
This Review focusses on the recent surge in applied research using tunable resistive pulse sensing, a technique used to analyse submicron colloids in aqueous solutions on a particle-by-particle basis.
Collapse
Affiliation(s)
- Eva Weatherall
- The MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- New Zealand
- Callaghan Innovation
| | - Geoff R. Willmott
- The MacDiarmid Institute for Advanced Materials and Nanotechnology
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- New Zealand
- The Departments of Physics and Chemistry
| |
Collapse
|