1
|
Vinzant K, Rashid M, Clouse DE, Ghosh P, Quadir M, Davis VA, Khodakovskaya MV. From Plants to Plants: Plant-Derived Biological Polymers as Sustainable and Safe Nanocarriers for Direct Delivery of DNA to Plant Cells. NANO LETTERS 2025; 25:5572-5581. [PMID: 40139733 PMCID: PMC11987027 DOI: 10.1021/acs.nanolett.4c05489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Sustainable plant-derived biopolymers cellulose nanocrystals (CNC) and Zein protein were used to deliver plasmid DNA with a reporter GFP gene (pDNA) to plant cells. CNC and Zein were modified with the cationic agent 2,3-epoxypropyltrimethylammonium chloride (EPTMAC) to electrostatically bind the biopolymers to negatively charged pDNA. Established pDNA-CNC and pDNA-Zeins conjugates were delivered to tobacco cells by leaf injection and vacuum infiltration of tobacco leaves and seedlings. Both methods effectively provided transient GFP expression in exposed plant cells that was visualized by confocal microscopy and confirmed by qRT-PCR (GFP gene expression) and Western blot (GFP protein expression). Our findings support the idea that nanopolymers derived from agricultural waste residues can successfully be used to advance plant transformation and gene editing. Delivering genetic material using biocompatible, plant-based nanopolymers in large-scale vacuum infiltration of plant tissues reduces existing limitations of plant transformation and increases the speed of the transformation process.
Collapse
Affiliation(s)
- Kari Vinzant
- University
of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Mohammad Rashid
- University
of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | | | - Pratyusha Ghosh
- North
Dakota State University, Fargo, North Dakota 58108, United States
| | - Mohiuddin Quadir
- North
Dakota State University, Fargo, North Dakota 58108, United States
| | | | | |
Collapse
|
2
|
Lee D, Lee J, Kim W, Suh Y, Park J, Kim S, Kim Y, Kwon S, Jeong S. Systematic Selection of High-Affinity ssDNA Sequences to Carbon Nanotubes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308915. [PMID: 38932669 PMCID: PMC11348070 DOI: 10.1002/advs.202308915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Single-walled carbon nanotubes (SWCNTs) have gained significant interest for their potential in biomedicine and nanoelectronics. The functionalization of SWCNTs with single-stranded DNA (ssDNA) enables the precise control of SWCNT alignment and the development of optical and electronic biosensors. This study addresses the current gaps in the field by employing high-throughput systematic selection, enriching high-affinity ssDNA sequences from a vast random library. Specific base compositions and patterns are identified that govern the binding affinity between ssDNA and SWCNTs. Molecular dynamics simulations validate the stability of ssDNA conformations on SWCNTs and reveal the pivotal role of hydrogen bonds in this interaction. Additionally, it is demonstrated that machine learning could accurately distinguish high-affinity ssDNA sequences, providing an accessible model on a dedicated webpage (http://service.k-medai.com/ssdna4cnt). These findings open new avenues for high-affinity ssDNA-SWCNT constructs for stable and sensitive molecular detection across diverse scientific disciplines.
Collapse
Affiliation(s)
- Dakyeon Lee
- School of Biomedical Convergence EngineeringPusan National UniversityYangsan50612Republic of Korea
- Department of ChemistryPohang University of Science and TechnologyPohang37673Republic of Korea
| | - Jaekang Lee
- School of Biomedical Convergence EngineeringPusan National UniversityYangsan50612Republic of Korea
| | - Woojin Kim
- Department of Materials Science and EngineeringKookmin UniversitySeoul02707Republic of Korea
| | - Yeongjoo Suh
- School of Biomedical Convergence EngineeringPusan National UniversityYangsan50612Republic of Korea
| | - Jiwoo Park
- School of Biomedical Convergence EngineeringPusan National UniversityYangsan50612Republic of Korea
| | - Sungjee Kim
- Department of ChemistryPohang University of Science and TechnologyPohang37673Republic of Korea
| | - YongJoo Kim
- Department of Materials Science and EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Sunyoung Kwon
- School of Biomedical Convergence EngineeringPusan National UniversityYangsan50612Republic of Korea
- Center for Artificial Intelligence ResearchPusan National UniversityBusan46241Republic of Korea
| | - Sanghwa Jeong
- School of Biomedical Convergence EngineeringPusan National UniversityYangsan50612Republic of Korea
| |
Collapse
|
3
|
Pawar P, Anumalla S, Sharma S. Role of carbon nanotubes (CNTs) in transgenic plant development. Biotechnol Bioeng 2023; 120:3493-3500. [PMID: 37691181 DOI: 10.1002/bit.28550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/16/2023] [Accepted: 08/26/2023] [Indexed: 09/12/2023]
Abstract
Carbon nanotubes (CNTs) are nanostructures, allotropes of carbon which are made up of graphene sheets wrapped around it forming cylindrical structures. CNTs have been regarded to have interesting and attractive physical and chemical properties and have been tremendously used in genetic engineering. Understanding the role of CNTs in development of transgenic plants, review of research papers in the field was done. CNTs are classified into two categories: the single-walled and multiwalled (MWCNTs) structures. They are valuable vectors in various biomedicine fields such as Gene delivery, Drug delivery, Immunotherapy, Tissue engineering, and Biomedical imaging and also, they deliver the DNA without damaging the cells. Based on recent studies, the functionalization of CNTs when combined with some other suitable molecules can drastically subside their toxic effects. Having unique properties such as small size, larger surface area is useful in delivering DNA into mammalian cells as well. Modifications in CNTs can make nucleic acids adhere to them even more efficiently. Also, MWCNTs are crucial in delivery DNA into the cytoplasm. Based on other methods, the CNTs-DNA are a preferred choice and the inclination toward double-stranded DNA is used over single-stranded DNA in gene delivery shows effective results. The only downside of CNTs is that they are hydrophobic and are difficult to form an aqueous solution, thus limiting their applicability. This review will aid you in comprehending useful knowledge related to a general overview of topics related to CNTs.
Collapse
Affiliation(s)
- Praniti Pawar
- Department of Life Sciences, K.C. College, Mumbai, India
| | | | - Suvarna Sharma
- Department of Life Sciences, K.C. College, Mumbai, India
| |
Collapse
|
4
|
Komarova T, Ilina I, Taliansky M, Ershova N. Nanoplatforms for the Delivery of Nucleic Acids into Plant Cells. Int J Mol Sci 2023; 24:16665. [PMID: 38068987 PMCID: PMC10706211 DOI: 10.3390/ijms242316665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Nanocarriers are widely used for efficient delivery of different cargo into mammalian cells; however, delivery into plant cells remains a challenging issue due to physical and mechanical barriers such as the cuticle and cell wall. Here, we discuss recent progress on biodegradable and biosafe nanomaterials that were demonstrated to be applicable to the delivery of nucleic acids into plant cells. This review covers studies the object of which is the plant cell and the cargo for the nanocarrier is either DNA or RNA. The following nanoplatforms that could be potentially used for nucleic acid foliar delivery via spraying are discussed: mesoporous silica nanoparticles, layered double hydroxides (nanoclay), carbon-based materials (carbon dots and single-walled nanotubes), chitosan and, finally, cell-penetrating peptides (CPPs). Hybrid nanomaterials, for example, chitosan- or CPP-functionalized carbon nanotubes, are taken into account. The selected nanocarriers are analyzed according to the following aspects: biosafety, adjustability for the particular cargo and task (e.g., organelle targeting), penetration efficiency and ability to protect nucleic acid from environmental and cellular factors (pH, UV, nucleases, etc.) and to mediate the gradual and timely release of cargo. In addition, we discuss the method of application, experimental system and approaches that are used to assess the efficiency of the tested formulation in the overviewed studies. This review presents recent progress in developing the most promising nanoparticle-based materials that are applicable to both laboratory experiments and field applications.
Collapse
Affiliation(s)
- Tatiana Komarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (I.I.); (M.T.); (N.E.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Irina Ilina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (I.I.); (M.T.); (N.E.)
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (I.I.); (M.T.); (N.E.)
| | - Natalia Ershova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (I.I.); (M.T.); (N.E.)
- Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| |
Collapse
|
5
|
Yadav A, Kelich P, Kallmyer N, Reuel NF, Vuković L. Characterizing the Interactions of Cell-Membrane-Disrupting Peptides with Lipid-Functionalized Single-Walled Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24084-24096. [PMID: 37184257 PMCID: PMC10310319 DOI: 10.1021/acsami.3c01217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Lipid-functionalized single-walled carbon nanotubes (SWNTs) have garnered significant interest for their potential use in a wide range of biomedical applications. In this work, we used molecular dynamics simulations to study the equilibrium properties of SWNTs surrounded by the phosphatidylcholine (POPC) corona phase and their interactions with three cell membrane disruptor peptides: colistin, TAT peptide, and crotamine-derived peptide. Our results show that SWNTs favor asymmetrical positioning within the POPC corona, so that one side of the SWNT, covered by the thinnest part of the corona, comes in contact with charged and polar functional groups of POPC and water. We also observed that colistin and TAT insert deeply into the POPC corona, while crotamine-derived peptide only adsorbs to the corona surface. In separate simulations, we show that three examined peptides exhibit similar insertion and adsorption behaviors when interacting with POPC bilayers, confirming that peptide-induced perturbations to POPC in conjugates and bilayers are similar in nature and magnitude. Furthermore, we observed correlations between the peptide-induced structural perturbations and the near-infrared emission of the lipid-functionalized SWNTs, which suggest that the optical signal of the conjugates transduces the morphological changes in the lipid corona. Overall, our findings indicate that lipid-functionalized SWNTs could serve as simplified cell membrane model systems for prescreening of new antimicrobial compounds that disrupt cell membranes.
Collapse
Affiliation(s)
- Anju Yadav
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, United States of America
| | - Payam Kelich
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, United States of America
| | | | - Nigel F. Reuel
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, 50011, United States of America
| | - Lela Vuković
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, United States of America
| |
Collapse
|
6
|
Ma J, Wang G, Ding X, Wang F, Zhu C, Rong Y. Carbon-Based Nanomaterials as Drug Delivery Agents for Colorectal Cancer: Clinical Preface to Colorectal Cancer Citing Their Markers and Existing Theranostic Approaches. ACS OMEGA 2023; 8:10656-10668. [PMID: 37008124 PMCID: PMC10061522 DOI: 10.1021/acsomega.2c06242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 02/23/2023] [Indexed: 06/19/2023]
Abstract
Colorectal cancer (CRC) is one of the universally established cancers with a higher incidence rate. Novel progression toward cancer prevention and cancer care among countries in transition should be considered seriously for controlling CRC. Hence, several cutting edge technologies are ongoing for high performance cancer therapeutics over the past few decades. Several drug-delivery systems of the nanoregime are relatively new in this arena compared to the previous treatment modes such as chemo- or radiotherapy to mitigate cancer. Based on this background, the epidemiology, pathophysiology, clinical presentation, treatment possibilities, and theragnostic markers for CRC were revealed. Since the use of carbon nanotubes (CNTs) for the management of CRC has been less studied, the present review analyzes the preclinical studies on the application of carbon nanotubes for drug delivery and CRC therapy owing to their inherent properties. It also investigates the toxicity of CNTs on normal cells for safety testing and the clinical use of carbon nanoparticles (CNPs) for tumor localization. To conclude, this review recommends the clinical application of carbon-based nanomaterials further for the management of CRC in diagnosis and as carriers or therapeutic adjuvants.
Collapse
Affiliation(s)
- Jiheng Ma
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Guofang Wang
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Xiaoyu Ding
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Fulin Wang
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Chunning Zhu
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| | - Yunxia Rong
- Department
of Oncology, Danyang Hospital of Traditional
Chinese Medicine, Zhenjiang 212300, Jiangsu Province, China
| |
Collapse
|
7
|
Graván P, Aguilera-Garrido A, Marchal JA, Navarro-Marchal SA, Galisteo-González F. Lipid-core nanoparticles: Classification, preparation methods, routes of administration and recent advances in cancer treatment. Adv Colloid Interface Sci 2023; 314:102871. [PMID: 36958181 DOI: 10.1016/j.cis.2023.102871] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Nanotechnological drug delivery platforms represent a new paradigm for cancer therapeutics as they improve the pharmacokinetic profile and distribution of chemotherapeutic agents over conventional formulations. Among nanoparticles, lipid-based nanoplatforms possessing a lipid core, that is, lipid-core nanoparticles (LCNPs), have gained increasing interest due to lipid properties such as high solubilizing potential, versatility, biocompatibility, and biodegradability. However, due to the wide spectrum of morphologies and types of LCNPs, there is a lack of consensus regarding their terminology and classification. According to the current state-of-the-art in this critical review, LCNPs are defined and classified based on the state of their lipidic components in liquid lipid nanoparticles (LLNs). These include lipid nanoemulsions (LNEs) and lipid nanocapsules (LNCs), solid lipid nanoparticles (SLNs) and nanostructured lipid nanocarriers (NLCs). In addition, we present a comprehensive and comparative description of the methods employed for their preparation, routes of administration and the fundamental role of physicochemical properties of LCNPs for efficient antitumoral drug-delivery application. Market available LCNPs, clinical trials and preclinical in vivo studies of promising LCNPs as potential treatments for different cancer pathologies are summarized.
Collapse
Affiliation(s)
- Pablo Graván
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Aixa Aguilera-Garrido
- Department of Applied Physics, Faculty of Science, University of Granada, 18071 Granada, Spain
| | - Juan Antonio Marchal
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria de Granada ibs.GRANADA, 18012 Granada, Spain; Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D - Biofabrication and 3D (bio)printing laboratory, University of Granada, 18100 Granada, Spain
| | - Saúl A Navarro-Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain; Excellence Research Unit Modelling Nature (MNat), University of Granada, 18016 Granada, Spain; Cancer Research UK Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, EH4 2XU Edinburgh, UK.
| | | |
Collapse
|
8
|
Yadav A, Kelich P, Kallmyer NE, Reuel NF, VukoviÄ L. Characterizing the Interactions of Cell Membrane-Disrupting Peptides with Lipid-Functionalized Single-Walled Carbon Nanotube Systems for Antimicrobial Screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.25.525557. [PMID: 36747775 PMCID: PMC9900920 DOI: 10.1101/2023.01.25.525557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Lipid-functionalized single-walled carbon nanotubes (SWNTs) have garnered significant interest for their potential use in a wide range of biomedical applications. In this work, we used molecular dynamics simulations to study the equilibrium properties of SWNTs surrounded by the phosphatidylcholine (POPC) corona phase, and their interactions with three cell membrane disruptor peptides: colistin, TAT peptide, and crotamine-derived peptide. Our results show that SWNTs favor asymmetrical positioning within the POPC corona, so that one side of the SWNT, covered by the thinnest part of the corona, comes in contact with charged and polar functional groups of POPC and water. We also observed that colistin and TAT insert deeply into POPC corona, while crotamine-derived peptide only adsorbs to the corona surface. Compared to crotamine-derived peptide, colistin and TAT also induce larger perturbations in the thinnest region of the corona, by allowing more water molecules to directly contact the SWNT surface. In separate simulations, we show that three examined peptides exhibit similar insertion and adsorption behaviors when interacting with POPC bilayers, confirming that peptide-induced perturbations to POPC in conjugates and bilayers are similar in nature and magnitude. Furthermore, we observed correlations between the peptide-induced structural perturbations and the near-infrared emission of the lipid-functionalized SWNTs, which suggest that the optical signal of the conjugates transduces the morphological changes in the lipid corona. Overall, our findings indicate that lipid-functionalized SWNTs could serve as simplified cell membrane model systems for pre-screening of new antimicrobial compounds that disrupt cell membranes.
Collapse
|
9
|
Ruiu A, González-Méndez I, Sorroza-Martínez K, Rivera E. Drug delivery aspects of carbon nanotubes. EMERGING APPLICATIONS OF CARBON NANOTUBES IN DRUG AND GENE DELIVERY 2023:119-155. [DOI: 10.1016/b978-0-323-85199-2.00008-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Pu Z, Wei Y, Sun Y, Wang Y, Zhu S. Carbon Nanotubes as Carriers in Drug Delivery for Non-Small Cell Lung Cancer, Mechanistic Analysis of Their Carcinogenic Potential, Safety Profiling and Identification of Biomarkers. Int J Nanomedicine 2022; 17:6157-6180. [PMID: 36523423 PMCID: PMC9744892 DOI: 10.2147/ijn.s384592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/23/2022] [Indexed: 04/04/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) is a global burden leading to millions of deaths worldwide every year. Nanomedicine refers to the use of materials at the nanoscale for drug delivery and subsequent therapeutic approaches in cancer. Carbon nanotubes (CNTs) are widely used as nanocarriers for therapeutic molecules such as plasmids, siRNAs, antisense agents, aptamers and molecules related to the immunotherapy for several cancers. They are usually functionalized and loaded with standard drug molecules to improve their therapeutic efficiency. Functionalization and drug loading possibly decrease the genotoxic and carcinogenic potential of CNTs. In addition, the targeted cytotoxic properties of the drug improve and undesired toxicity decreases after drug loading and/or conjugation with proteins, including antibodies. For intended drug delivery, a lysosomal pH of 5.5 is more suitable and effective for the slow and extended release of cytotoxic drugs than a physiological of pH 7.4. Remarkably, CNTs possess intrinsic antitumor properties and are usually internalized by endocytosis. After being internalized, several mechanisms are involved in the therapeutic and carcinogenic effects of CNTs. They are generally safe for therapy, and their toxicity profile remains dependent on their physicochemical properties. Moreover, the dose, route, duration of exposure, surface properties and degradative potential determine the toxicity outcomes of CNTs locally or systemically. In summary, the use of CNTs in drug delivery and NSCLC therapy, as well as their genotoxic and carcinogenic potential and the possible mechanisms, has been discussed in this review. The therapeutic index is generally high for NSCLC cells treated with drug-loaded CNTs; therefore, they are effective carriers in implementing targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Zhongjian Pu
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, 216600, People’s Republic of China
| | - Yujia Wei
- School of Medicine, Yangzhou University, Yangzhou, 225009, People’s Republic of China
- Department of General Practice, Suzhou Wuzhong Hospital of Traditional Chinese Medicine, Suzhou, 215101, People’s Republic of China
| | - Yuanpeng Sun
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, 216600, People’s Republic of China
| | - Yajun Wang
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, 216600, People’s Republic of China
| | - Shilin Zhu
- Department of Oncology, Haian Hospital of Traditional Chinese Medicine, Haian, 216600, People’s Republic of China
| |
Collapse
|
11
|
Panczyk T, Nieszporek J, Nieszporek K. Molecular Dynamics Simulations of Interactions between Human Telomeric i-Motif Deoxyribonucleic Acid and Functionalized Graphene. J Phys Chem B 2022; 126:6671-6681. [PMID: 36036695 PMCID: PMC9465685 DOI: 10.1021/acs.jpcb.2c04327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/08/2022] [Indexed: 11/30/2022]
Abstract
The work deals with molecular dynamics (MD) simulations of protonated, human telomeric i-motif deoxyribonucleic acid (DNA) with functionalized graphene. We studied three different graphene sheets: unmodified graphene with hydrogen atoms attached to their edges and two functionalized ones. The functionalization of graphene edge consists in attaching partially protonated or dissociated amine and carboxyl groups. We found that in all cases the protonated i-motif adsorbs strongly on the graphene surface. The biased MD simulations showed that the work necessary to drag the i-motif out from amine-doped graphene is about twice larger than that in other cases. In general, the system i-motif/amine-doped graphene stands out from the rest, e.g., in this case, the i-motif adsorbs its side with 3' and 5' ends oriented in the opposite to surface direction. In other cases, the DNA fragment is adsorbed to graphene by 3' and 5' ends. In all cases, the adsorption on graphene influences the i-motif internal structure by changing the distances between i-motif strands as well as stretching or shortening the DNA chain, but only in the case of amine-doped graphene the adsorption affects internal H-bonds formed between nucleotides inside the i-motif structure.
Collapse
Affiliation(s)
- Tomasz Panczyk
- Institute
of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, Cracow 30239, Poland
| | - Jolanta Nieszporek
- Department
of Analytical Chemistry, Institute of Chemical
Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, pl. Maria Curie-Sklodowska 3, Lublin 20031, Poland
| | - Krzysztof Nieszporek
- Department
of Theoretical Chemistry, Institute of Chemical
Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University, pl. Maria Curie-Sklodowska 3, Lublin 20031, Poland
| |
Collapse
|
12
|
Photoactivatable nanoCRISPR/Cas9 System Based on crRNA Reversibly Immobilized on Carbon Nanoparticles. Int J Mol Sci 2021; 22:ijms222010919. [PMID: 34681578 PMCID: PMC8539621 DOI: 10.3390/ijms222010919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 11/23/2022] Open
Abstract
Here, we proposed a new approach to engineering a photoactivatable CRISPR/Cas9 gene-editing system. The novel nanoCRISPR/Cas9 system is based on the use of auxiliary photocleavable oligodeoxyribonucleotides (PC-DNAs) complementary to crRNA. PC-DNAs contained up to three UV-sensitive linkers made of 1-(2-nitrophenyl)-1,2-ethanediol inside the oligonucleotide chain. Immobilizing PC-DNAs on the surface of carbon nanoparticles through 3′-terminal pyrene residue provided sufficient blocking of crRNA (and corresponding Cas9 activity) before UV irradiation and allows for crRNA release after UV irradiation at 365 nm, which restores Cas9 activity. We optimized the length of blocking photocleavable oligonucleotide, number of linkers, time of irradiation, and the type of carbon nanoparticles. Based on the results, we consider the nanoCRISPR/Cas9 system involving carbon-encapsulated iron nanoparticles the most promising. It provides the greatest difference of functional activity before/after irradiation and can be used in prospective for magnetic field-controlled delivery of CRISPR system into the target cells or tissues and spatiotemporal gene editing induced by UV irradiation.
Collapse
|
13
|
Wang W, Li X, Tang K, Song Z, Luo X. A AuNP-capped cage fluorescent biosensor based on controlled-release and cyclic enzymatic amplification for ultrasensitive detection of ATP. J Mater Chem B 2021; 8:5945-5951. [PMID: 32667018 DOI: 10.1039/d0tb00666a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Gold nanodevices have attracted extensive interest in the detection of specific targets within cells. However, constructing gold sensing devices that can be activated by the simulation of remote applications remains a huge challenge. Here, we report a Au nanoparticle (AuNP)-capped cage fluorescent biosensor based on controlled-release and Exonuclease III (Exo III) assisted cyclic enzymatic amplification that can be activated by adenosine triphosphate (ATP). In the system, AuNPs were used as the building blocks to cap the pores of Au nanocages (AuNCs) loaded with Rhodamine B (RhB) molecules through the hybridization of DNA. The RhB fluorescent molecules were finally released with the help of Exo III in the presence of ATP for detection purposes. Ultimately, the biosensor leads to a wide linear ATP detection range from 1.0 × 10-9 to 1.0 × 10-7 M with a limit of detection (LOD) down to 0.88 nM. In addition, it also has good selectivity for ATP to distinguish between ATP and ATP analogues such as cytidine triphosphate (CTP), guanosine triphosphate (GTP), and uridine triphosphate (UTP). Therefore, as a convenient and sensitive biosensor, it is expected to be widely used in the biomedical field.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Optic-eletric Sensing and Analytical Chemistry for Life Science, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | | | | | | | | |
Collapse
|
14
|
Zou M, Du Y, Liu R, Zheng Z, Xu J. Nanocarrier-delivered small interfering RNA for chemoresistant ovarian cancer therapy. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1648. [PMID: 33682310 DOI: 10.1002/wrna.1648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/09/2021] [Accepted: 02/14/2021] [Indexed: 12/13/2022]
Abstract
Ovarian cancer is the fifth leading cause of cancer-related death in women in the United States. Because success in early screening is limited, and most patients with advanced disease develop resistance to multiple treatment modalities, the overall prognosis of ovarian cancer is poor. Despite the revolutionary role of surgery and chemotherapy in curing ovarian cancer, recurrence remains a major challenge in treatment. Thus, improving our understanding of the pathogenesis of ovarian cancer is essential for developing more effective treatments. In this review, we analyze the underlying molecular mechanisms leading to chemotherapy resistance. We discuss the clinical benefits and potential challenges of using nanocarrier-delivered small interfering RNA to treat chemotherapy-resistant ovarian cancer. We aim to elicit collaborative studies on nanocarrier-delivered small interfering RNA to improve the long-term survival rate and quality of life of patients with ovarian cancer. This article is categorized under: RNA Methods > RNA Nanotechnology Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
Collapse
Affiliation(s)
- Mingyuan Zou
- Medical School of Southeast University, Nanjing, Jiangsu, China
| | - Yue Du
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruizhen Liu
- The First People's Hospital of Wu'an, Wu'an, Hebei, China
| | - Zeliang Zheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Jian Xu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Kim J, Eygeris Y, Gupta M, Sahay G. Self-assembled mRNA vaccines. Adv Drug Deliv Rev 2021; 170:83-112. [PMID: 33400957 PMCID: PMC7837307 DOI: 10.1016/j.addr.2020.12.014] [Citation(s) in RCA: 301] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 01/08/2023]
Abstract
mRNA vaccines have evolved from being a mere curiosity to emerging as COVID-19 vaccine front-runners. Recent advancements in the field of RNA technology, vaccinology, and nanotechnology have generated interest in delivering safe and effective mRNA therapeutics. In this review, we discuss design and self-assembly of mRNA vaccines. Self-assembly, a spontaneous organization of individual molecules, allows for design of nanoparticles with customizable properties. We highlight the materials commonly utilized to deliver mRNA, their physicochemical characteristics, and other relevant considerations, such as mRNA optimization, routes of administration, cellular fate, and immune activation, that are important for successful mRNA vaccination. We also examine the COVID-19 mRNA vaccines currently in clinical trials. mRNA vaccines are ready for the clinic, showing tremendous promise in the COVID-19 vaccine race, and have pushed the boundaries of gene therapy.
Collapse
Affiliation(s)
- Jeonghwan Kim
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 South Moody Avenue, Portland, Oregon 97201, USA
| | - Yulia Eygeris
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 South Moody Avenue, Portland, Oregon 97201, USA
| | - Mohit Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 South Moody Avenue, Portland, Oregon 97201, USA
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Robertson Life Science Building, 2730 South Moody Avenue, Portland, Oregon 97201, USA; Department of Biomedical Engineering, Oregon Health & Science University, Robertson Life Science Building, 2730 South Moody Avenue, Portland, Oregon 97201, USA; Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, Oregon 97239, USA.
| |
Collapse
|
16
|
Li Y, Zhang T, Huang J, Dong H, Xie J, Jia L. Biostable Double-Strand Circular Aptamers Conjugated Onto Dendrimers for Specific Capture and Inhibition of Circulating Leukemia Cells. Onco Targets Ther 2021; 13:13465-13477. [PMID: 33447051 PMCID: PMC7801922 DOI: 10.2147/ott.s287720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/15/2020] [Indexed: 11/23/2022] Open
Abstract
Background/Objective Circulating tumor cells (CTCs) are known as the root of cancer metastasis. Capture and inhibition of CTCs may prevent metastasis. Due to the rarity of CTCs in vivo, the current technology about CTCs capture is still challenging. The aim of our study was to conjugate the enhanced biostable double-strand (ds) circular aptamer (dApR) with dendrimers for capturing and restraining CTCs in vitro and in vivo. Methods CEM-targeting aptamer (Ap) was looped by ligation after phosphorylation to form circular ds aptamer dApR, which was then conjugated to dendrimers by biotin-streptavidin affinity reaction and named as G-dApR. The physicochemical properties of G-dApR were characterized by using PAGE gel electrophoresis, UV, DLS, AFM, fluorophotometer and laser confocal microscope. Biostability of G-dApR was also analyzed by gel electrophoresis. Confocal microscopy and flow cytometry were then performed to determine the binding specificity of G-dApR to CEM cells and the captured CTCs in mice and in human blood. Apoptosis of the captured cells was finally evaluated by using MTT assay, DAPI staining, AO/EB staining, cell cycle analysis and Annexin V-FITC/PI staining. Results Physicochemical characterization demonstrated the entity of dApR and G-dApR, and the nano-size of G-dApR (about 180 nm in aqueous phase). G-dApR exhibited the excellent biostability that confers their resistance to nuclease-mediated biodegradation in serum for at least 6 days. In our established CTCs model, we found that G-dApR could specifically and sensitively capture CTCs not non-target cells even in the presence of millions of interfering cells (108), in mice and in human blood. Finally, the activity of captured CTCs was significantly down-regulated by G-dApR, resulting in apoptosis. Conclusion We created the enhanced biostable dApR-coated dendrimers (G-dApR) that could specifically capture and restrain CTCs in vitro and in vivo for preventing CTC-mediated cancer metastasis.
Collapse
Affiliation(s)
- Yu Li
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, People's Republic of China
| | - Ting Zhang
- Cancer Metastasis Alert and Prevention Center, and Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350002, People's Republic of China
| | - Jing Huang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, People's Republic of China
| | - Haiyan Dong
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350122, People's Republic of China
| | - Jingjing Xie
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian 361102, People's Republic of China
| | - Lee Jia
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian 350108, People's Republic of China
| |
Collapse
|
17
|
Mohajeri M, Behnam B, Tasbandi A, Jamialahmadi T, Sahebkar A. Carbon-based Nanomaterials and Curcumin: A Review of Biosensing Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1291:55-74. [PMID: 34331684 DOI: 10.1007/978-3-030-56153-6_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Curcumin, the main active constituent of turmeric (Curcuma longa L.), is a naturally occurring phenolic compound with a wide variety of pharmacological activities. Although it has multiple pharmaceutical properties, its bioavailability and industrial usage are hindered due to rapid hydrolysis and low water solubility. Due to the growing market of curcumin, exact determination of curcumin in trade and human biological samples is important for monitoring therapeutic actions. Different nanomaterials have been suggested for sensing curcumin; and in this case, carbon-based nanomaterials (CNMs) are one of the most outstanding developments in nanomedicine, biosensing, and regenerative medicine. There are a considerable number of reports which have shown interesting potential of CNMs-based biosensors in the sensitive and selective detection of curcumin. Therefore, this review aims to increase understanding the interaction of curcumin with CNMs in the context of biosensing.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behzad Behnam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran. .,Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran. .,Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Aida Tasbandi
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran.,Department of Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. .,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland. .,Halal Research Center of IRI, FDA, Tehran, Iran.
| |
Collapse
|
18
|
Li X, Li YC, Li S, Xiao R, Ling Y, Li Q, Hou X, Wang X. One-Step Exfoliation/Etching Method to Produce Chitosan-Stabilized Holey Graphene Nanosheets for Superior DNA Adsorption. ACS APPLIED BIO MATERIALS 2020; 3:8542-8550. [DOI: 10.1021/acsabm.0c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoyun Li
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yi-Chen Li
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shanshan Li
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Renhua Xiao
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yingchen Ling
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Quhuan Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xu Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Research Institute for Biomimetics and Soft Matter, College of Physical Science and Technology, Xiamen University, Xiamen 361005, China
| | - Xiaoying Wang
- State Key Laboratory of Pulp & Paper Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
19
|
Wang B, Huang J, Zhang M, Wang Y, Wang H, Ma Y, Zhao X, Wang X, Liu C, Huang H, Liu Y, Lu F, Yu H, Shao M, Kang Z. Carbon Dots Enable Efficient Delivery of Functional DNA in Plants. ACS APPLIED BIO MATERIALS 2020; 3:8857-8864. [DOI: 10.1021/acsabm.0c01170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | - Changhong Liu
- Key Laboratory of Plant Functional Genomics of Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, P. R. China
| | | | | | - Fang Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Hengxiu Yu
- Key Laboratory of Plant Functional Genomics of Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, P. R. China
| | | | | |
Collapse
|
20
|
Moradi Kashkooli F, Soltani M, Souri M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. J Control Release 2020; 327:316-349. [PMID: 32800878 DOI: 10.1016/j.jconrel.2020.08.012] [Citation(s) in RCA: 229] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/07/2020] [Accepted: 08/08/2020] [Indexed: 12/14/2022]
Abstract
Advances in nanomedicine, including early cancer detection, targeted drug delivery, and personalized approaches to cancer treatment are on the rise. For example, targeted drug delivery systems can improve intracellular delivery because of their multifunctionality. Novel endogenous-based and exogenous-based stimulus-responsive drug delivery systems have been proposed to prevent the cancer progression with proper drug delivery. To control effective dose loading and sustained release, targeted permeability and individual variability can now be described in more-complex ways, such as by combining internal and external stimuli. Despite these advances in release control, certain challenges remain and are identified in this research, which emphasizes the control of drug release and applications of nanoparticle-based drug delivery systems. Using a multiscale and multidisciplinary approach, this study investigates and analyzes drug delivery and release strategies in the nanoparticle-based treatment of cancer, both mathematically and clinically.
Collapse
Affiliation(s)
- Farshad Moradi Kashkooli
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Applied Mathematics, University of Waterloo, Waterloo, ON, Canada..
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada; Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| |
Collapse
|
21
|
Demirer GS, Zhang H, Goh NS, Pinals RL, Chang R, Landry MP. Carbon nanocarriers deliver siRNA to intact plant cells for efficient gene knockdown. SCIENCE ADVANCES 2020; 6:eaaz0495. [PMID: 32637592 PMCID: PMC7314522 DOI: 10.1126/sciadv.aaz0495] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 05/08/2020] [Indexed: 05/19/2023]
Abstract
Posttranscriptional gene silencing (PTGS) is a powerful tool to understand and control plant metabolic pathways, which is central to plant biotechnology. PTGS is commonly accomplished through delivery of small interfering RNA (siRNA) into cells. Standard plant siRNA delivery methods (Agrobacterium and viruses) involve coding siRNA into DNA vectors and are only tractable for certain plant species. Here, we develop a nanotube-based platform for direct delivery of siRNA and show high silencing efficiency in intact plant cells. We demonstrate that nanotubes successfully deliver siRNA and silence endogenous genes, owing to effective intracellular delivery and nanotube-induced protection of siRNA from nuclease degradation. This study establishes that nanotubes could enable a myriad of plant biotechnology applications that rely on RNA delivery to intact cells.
Collapse
Affiliation(s)
- Gozde S. Demirer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Huan Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Natalie S. Goh
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rebecca L. Pinals
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Roger Chang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Markita P. Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Institute, Berkeley, CA 94702, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
22
|
Samanta D, Ebrahimi SB, Mirkin CA. Nucleic-Acid Structures as Intracellular Probes for Live Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901743. [PMID: 31271253 PMCID: PMC6942251 DOI: 10.1002/adma.201901743] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/08/2019] [Indexed: 05/02/2023]
Abstract
The chemical composition of cells at the molecular level determines their growth, differentiation, structure, and function. Probing this composition is powerful because it provides invaluable insight into chemical processes inside cells and in certain cases allows disease diagnosis based on molecular profiles. However, many techniques analyze fixed cells or lysates of bulk populations, in which information about dynamics and cellular heterogeneity is lost. Recently, nucleic-acid-based probes have emerged as a promising platform for the detection of a wide variety of intracellular analytes in live cells with single-cell resolution. Recent advances in this field are described and common strategies for probe design, types of targets that can be identified, current limitations, and future directions are discussed.
Collapse
Affiliation(s)
- Devleena Samanta
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Sasha B Ebrahimi
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Chad A Mirkin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| |
Collapse
|
23
|
Mujtaba M, Khawar KM, Camara MC, Carvalho LB, Fraceto LF, Morsi RE, Elsabee MZ, Kaya M, Labidi J, Ullah H, Wang D. Chitosan-based delivery systems for plants: A brief overview of recent advances and future directions. Int J Biol Macromol 2020; 154:683-697. [PMID: 32194112 DOI: 10.1016/j.ijbiomac.2020.03.128] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/12/2020] [Accepted: 03/14/2020] [Indexed: 01/11/2023]
Abstract
Chitosan has been termed as the most well-known among biopolymers, receiving widespread attention from researchers in various fields mainly, agriculture, food, and health. Chitosan is a deacetylated derivative of chitin, mainly isolated from waste shells of the phylum Arthropoda after their consumption as food. Chitosan molecules can be easily modified for adsorption and slow release of plant growth regulators, herbicides, pesticides, and fertilizers, etc. Chitosan as a carrier and control release matrix that offers many benefits including; protection of biomolecules from harsh environmental conditions such as pH, light, temperatures and prolonged release of active ingredients from its matrix consequently protecting the plant's cells from the hazardous effects of burst release. In the current review, tends to discuss the recent advances in the area of chitosan application as a control release system. Also, future recommendations will be made in light of current advancements and major gaps.
Collapse
Affiliation(s)
- Muhammad Mujtaba
- Institute of Biotechnology, Ankara University, Ankara 06110, Turkey
| | - Khalid Mahmood Khawar
- Ankara University, Faculty of Agriculture, Department of Field Crops, 06100 Ankara, Turkey
| | - Marcela Candido Camara
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Department of Environmental Engineering, Sorocaba, Brazil
| | - Lucas Bragança Carvalho
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Department of Environmental Engineering, Sorocaba, Brazil
| | - Leonardo Fernandes Fraceto
- São Paulo State University (UNESP), Institute of Science and Technology of Sorocaba, Department of Environmental Engineering, Sorocaba, Brazil
| | - Rania E Morsi
- Egyptian Petroleum Research Institute, Nasr City, 11727 Cairo, Egypt; EPRI-Nanotechnology Center, Egyptian Petroleum Research Institute, 11727 Cairo, Egypt
| | - Maher Z Elsabee
- Department of Chemistry, Faculty of Science, Cairo University, 12613 Cairo, Egypt
| | - Murat Kaya
- Department of Biotechnology and Molecular Biology, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Jalel Labidi
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Europa 1, 20018 Donostia-San Sebastian, Spain
| | - Hidayat Ullah
- Department of Agriculture, The University of Swabi, Anbar, 23561 Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Depeng Wang
- College of Life Science, Linyi University, Linyi 276000, Shandong, China.
| |
Collapse
|
24
|
Shin SW, Yuk JS, Chun SH, Lim YT, Um SH. Hybrid material of structural DNA with inorganic compound: synthesis, applications, and perspective. NANO CONVERGENCE 2020; 7:2. [PMID: 31903521 PMCID: PMC6943097 DOI: 10.1186/s40580-019-0211-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/01/2019] [Indexed: 05/06/2023]
Abstract
Owing to its precise manipulation in nanoscale, DNA as a genetic code becomes a promising and generic material in lots of nanotechnological outstanding exploitations. The nanoscale assembly of nucleic acids in aqueous solution has showed very remarkable capability that is not achievable from any other material resources. In the meantime, their striking role played by effective intracellular interactions have been identified, making these more attractive for a variety of biological applications. Lately, a number of interesting attempts have been made to augment their marvelous diagnostic and therapeutic capabilities, as being integrated with inorganic compounds involving gold, iron oxide, quantum dot, upconversion, etc. It was profoundly studied how structural DNA-inorganic hybrid materials have complemented with each other in a synergistic way for better-graded biological performances. Such hybrid materials consisting of both structural DNAs and inorganics are gradually receiving much attention as a practical and future-oriented material substitute. However, any special review articles highlighting the significant and innovative materials have yet to be published. At the first time, we here demonstrate novel hybrid complexes made of structural DNAs and inorganics for some practical applications.
Collapse
Affiliation(s)
- Seung Won Shin
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419 South Korea
| | - Ji Soo Yuk
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419 South Korea
| | - Sang Hun Chun
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419 South Korea
| | - Yong Taik Lim
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419 South Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419 South Korea
| | - Soong Ho Um
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419 South Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do 16419 South Korea
| |
Collapse
|
25
|
Afrasiabi S, Pourhajibagher M, Raoofian R, Tabarzad M, Bahador A. Therapeutic applications of nucleic acid aptamers in microbial infections. J Biomed Sci 2020; 27:6. [PMID: 31900238 PMCID: PMC6941257 DOI: 10.1186/s12929-019-0611-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023] Open
Abstract
Today, the treatment of bacterial infections is a major challenge, due to growing rate of multidrug-resistant bacteria, complication of treatment and increased healthcare costs. Moreover, new treatments for bacterial infections are limited. Oligonucleotide aptamers are single stranded DNAs or RNAs with target-selective high-affinity feature, which considered as nucleic acid-based affinity ligands, replacing monoclonal antibodies. The aptamer-based systems have been found to be talented tools in the treatment of microbial infections, regarding their promising anti-biofilm and antimicrobial activities; they can reduce or inhibit the effects of bacterial toxins, and inhibit pathogen invasion to immune cell, as well as they can be used in drug delivery systems. The focus of this review is on the therapeutic applications of aptamers in infections. In this regard, an introduction of infections and related challenges were presented, first. Then, aptamer definition and selection, with a brief history of aptamers development against various pathogens and toxins were reviewed. Diverse strategies of aptamer application in drug delivery, as well as, the effect of aptamers on the immune system, as the main natural agents of human defense against pathogens, were also discussed. Finally, the future trends in clinical applications of this technology were discussed.
Collapse
Affiliation(s)
- Shima Afrasiabi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Raoofian
- Legal Medicine Research Center, Legal Medicine Organization, Tehran, Iran
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Bahador
- Oral Microbiology Laboratory, Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Cunningham FJ, Demirer GS, Goh NS, Zhang H, Landry MP. Nanobiolistics: An Emerging Genetic Transformation Approach. Methods Mol Biol 2020; 2124:141-159. [PMID: 32277452 PMCID: PMC10461872 DOI: 10.1007/978-1-0716-0356-7_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biolistic delivery of biomolecular cargoes to plants with micron-scale projectiles is a well-established technique in plant biotechnology. However, the relatively large micron-scale biolistic projectiles can result in tissue damage, low regeneration efficiency, and create difficulties for the biolistic transformation of isomorphic small cells or subcellular target organelles (i.e., mitochondria and plastids). As an alternative to micron-sized carriers, nanomaterials provide a promising approach for biomolecule delivery to plants. While most studies exploring nanoscale biolistic carriers have been carried out in animal cells and tissues, which lack a cell wall, we can nonetheless extrapolate their utility for nanobiolistic delivery of biomolecules in plant targets. Specifically, nanobiolistics has shown promising results for use in animal systems, in which nanoscale projectiles yield lower levels of cell and tissue damage while maintaining similar transformation efficiencies as their micron-scale counterparts. In this chapter, we specifically discuss biolistic delivery of nanoparticles for plant genetic transformation purposes and identify the figures of merit requiring optimization for broad-scale implementation of nanobiolistics in plant genetic transformations.
Collapse
Affiliation(s)
- Francis J Cunningham
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Gozde S Demirer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Natalie S Goh
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Huan Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
27
|
Pimentel LS, Turini CA, Santos PS, Morais MAD, Souza AG, Barbosa MB, Martins EMDN, Coutinho LB, Furtado CA, Ladeira LO, Martins JR, Goulart LR, Faria PCBD. Balanced Th1/Th2 immune response induced by MSP1a functional motif coupled to multiwalled carbon nanotubes as anti-anaplasmosis vaccine in murine model. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102137. [PMID: 31857182 DOI: 10.1016/j.nano.2019.102137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/02/2019] [Accepted: 11/22/2019] [Indexed: 12/21/2022]
Abstract
Anaplasmosis is one of the most prevalent tick-borne diseases of cattle caused by Anaplasma marginale. MSP1a surface protein has been shown to be involved in eliciting immunity to infected cattle. Carbon nanotubes (CNTs) has been increasingly highlighted due to their needle like structure, which contain multiple attachment sites for biomolecules and may interact with or cross biological membranes, increasing antigen availability to immune system. Here, we have successfully designed a nanocomplex of a synthetic peptide noncovalently attached to multiwalled CNT (MWCNT). Peptide comprising the core motif of the MSP1a was efficiently adsorb onto the nanoparticle surface. The MWCNT-Am1 nanocomplex exhibited high stability and good dispersibility and in vivo immunization showed high levels of IgG1 and IgG2a, followed by increased expression of pro-inflammatory and anti-inflammatory cytokines. This is a proof-of-concept of a nanovaccine that was able to generate a strong immune response compared to the common antigen-adjuvant vaccine without the nanoparticles.
Collapse
Affiliation(s)
- Leticia Santos Pimentel
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil.
| | - Carolina Alvarenga Turini
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Paula Souza Santos
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Mariana Abilio de Morais
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Aline Gomes Souza
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Mariana Botelho Barbosa
- Laboratory of Chemistry of Carbon Nanostructures, Nuclear Technology Development Center, CDTN, Belo Horizonte, MG, Brazil
| | | | | | - Clascídia Aparecida Furtado
- Laboratory of Chemistry of Carbon Nanostructures, Nuclear Technology Development Center, CDTN, Belo Horizonte, MG, Brazil
| | - Luiz Orlando Ladeira
- Laboratory of Nanomaterials, Department of Physics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - João Ricardo Martins
- Laboratory of Parasitology, Institute of Veterinary Research Desidério Finamor, Eldorado do Sul, RS, Brazil
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | |
Collapse
|
28
|
Hendler-Neumark A, Bisker G. Fluorescent Single-Walled Carbon Nanotubes for Protein Detection. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5403. [PMID: 31817932 PMCID: PMC6960995 DOI: 10.3390/s19245403] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 01/06/2023]
Abstract
Nanosensors have a central role in recent approaches to molecular recognition in applications like imaging, drug delivery systems, and phototherapy. Fluorescent nanoparticles are particularly attractive for such tasks owing to their emission signal that can serve as optical reporter for location or environmental properties. Single-walled carbon nanotubes (SWCNTs) fluoresce in the near-infrared part of the spectrum, where biological samples are relatively transparent, and they do not photobleach or blink. These unique optical properties and their biocompatibility make SWCNTs attractive for a variety of biomedical applications. Here, we review recent advancements in protein recognition using SWCNTs functionalized with either natural recognition moieties or synthetic heteropolymers. We emphasize the benefits of the versatile applicability of the SWCNT sensors in different systems ranging from single-molecule level to in-vivo sensing in whole animal models. Finally, we discuss challenges, opportunities, and future perspectives.
Collapse
Affiliation(s)
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel Aviv 6997801, Israel;
| |
Collapse
|
29
|
Hasan MT, Campbell E, Sizova O, Lyle V, Akkaraju G, Kirkpatrick DL, Naumov AV. Multi-Drug/Gene NASH Therapy Delivery and Selective Hyperspectral NIR Imaging Using Chirality-Sorted Single-Walled Carbon Nanotubes. Cancers (Basel) 2019; 11:E1175. [PMID: 31416250 PMCID: PMC6721580 DOI: 10.3390/cancers11081175] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/10/2019] [Accepted: 08/11/2019] [Indexed: 01/21/2023] Open
Abstract
Single-walled carbon nanotubes (SWCNTs) can serve as drug delivery/biological imaging agents, as they exhibit intrinsic fluorescence in the near-infrared, allowing for deeper tissue imaging while providing therapeutic transport. In this work, CoMoCAT (Cobalt Molybdenum Catalyst) SWCNTs, chirality-sorted by aqueous two-phase extraction, are utilized for the first time to deliver a drug/gene combination therapy and image each therapeutic component separately via chirality-specific SWCNT fluorescence. Each of (7,5) and (7,6) sorted SWCNTs were non-covalently loaded with their specific payload: the PI3 kinase inhibitor targeting liver fibrosis or CCR5 siRNA targeting inflammatory pathways with the goal of addressing these processes in nonalcoholic steatohepatitis (NASH), ultimately to prevent its progression to hepatocellular carcinoma. PX-866-(7,5) SWCNTs and siRNA-(7,6) SWCNTs were each imaged via characteristic SWCNT emission at 1024/1120 nm in HepG2 and HeLa cells by hyperspectral fluorescence microscopy. Wavelength-resolved imaging verified the intracellular transport of each SWCNT chirality and drug release. The therapeutic efficacy of each formulation was further demonstrated by the dose-dependent cytotoxicity of SWCNT-bound PX-866 and >90% knockdown of CCR5 expression with SWCNT/siRNA transfection. This study verifies the feasibility of utilizing chirality-sorted SWCNTs for the delivery and component-specific imaging of combination therapies, also suggesting a novel nanotherapeutic approach for addressing the progressions of NASH to hepatocellular carcinoma.
Collapse
Affiliation(s)
- Md Tanvir Hasan
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, USA
| | - Elizabeth Campbell
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, USA
| | - Olga Sizova
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Veronica Lyle
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, USA
| | - Giridhar Akkaraju
- Department of Biology, Texas Christian University, 2955 South University Drive, Fort Worth, TX 76129, USA
| | | | - Anton V Naumov
- Department of Physics and Astronomy, Texas Christian University, TCU Box 298840, Fort Worth, TX 76129, USA.
| |
Collapse
|
30
|
Wang X, Jin N, Wang Q, Liu T, Liu K, Li Y, Bai Y, Chen X. MiRNA Delivery System Based on Stimuli-Responsive Gold Nanoparticle Aggregates for Multimodal Tumor Therapy. ACS APPLIED BIO MATERIALS 2019; 2:2833-2839. [DOI: 10.1021/acsabm.9b00240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Xiangdong Wang
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi’an Jiao Tong University, Xi’an, China, 714049
| | - Nuo Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi 714032, China
| | - Qiao Wang
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi’an Jiao Tong University, Xi’an, China, 714049
| | - Tao Liu
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi’an Jiao Tong University, Xi’an, China, 714049
| | - Kangcan Liu
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi’an Jiao Tong University, Xi’an, China, 714049
| | - Yan Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi 714032, China
| | - Yongkang Bai
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi’an Jiao Tong University, Xi’an, China, 714049
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi’an Jiao Tong University, Xi’an, China, 714049
| |
Collapse
|
31
|
Demirer GS, Zhang H, Matos JL, Goh NS, Cunningham FJ, Sung Y, Chang R, Aditham AJ, Chio L, Cho MJ, Staskawicz B, Landry MP. High aspect ratio nanomaterials enable delivery of functional genetic material without DNA integration in mature plants. NATURE NANOTECHNOLOGY 2019; 14:456-464. [PMID: 30804481 PMCID: PMC10461892 DOI: 10.1038/s41565-019-0382-5] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/18/2019] [Indexed: 05/19/2023]
Abstract
Genetic engineering of plants is at the core of sustainability efforts, natural product synthesis and crop engineering. The plant cell wall is a barrier that limits the ease and throughput of exogenous biomolecule delivery to plants. Current delivery methods either suffer from host-range limitations, low transformation efficiencies, tissue damage or unavoidable DNA integration into the host genome. Here, we demonstrate efficient diffusion-based biomolecule delivery into intact plants of several species with pristine and chemically functionalized high aspect ratio nanomaterials. Efficient DNA delivery and strong protein expression without transgene integration is accomplished in Nicotiana benthamiana (Nb), Eruca sativa (arugula), Triticum aestivum (wheat) and Gossypium hirsutum (cotton) leaves and arugula protoplasts. We find that nanomaterials not only facilitate biomolecule transport into plant cells but also protect polynucleotides from nuclease degradation. Our work provides a tool for species-independent and passive delivery of genetic material, without transgene integration, into plant cells for diverse biotechnology applications.
Collapse
Affiliation(s)
- Gozde S Demirer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Huan Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Juliana L Matos
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute (IGI), Berkeley, CA, USA
| | - Natalie S Goh
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Francis J Cunningham
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Younghun Sung
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Roger Chang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Abhishek J Aditham
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Linda Chio
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Myeong-Je Cho
- Innovative Genomics Institute (IGI), Berkeley, CA, USA
| | - Brian Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Innovative Genomics Institute (IGI), Berkeley, CA, USA
| | - Markita P Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA.
- Innovative Genomics Institute (IGI), Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
32
|
Kwak SY, Lew TTS, Sweeney CJ, Koman VB, Wong MH, Bohmert-Tatarev K, Snell KD, Seo JS, Chua NH, Strano MS. Chloroplast-selective gene delivery and expression in planta using chitosan-complexed single-walled carbon nanotube carriers. NATURE NANOTECHNOLOGY 2019; 14:447-455. [PMID: 30804482 DOI: 10.1038/s41565-019-0375-4] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 01/14/2019] [Indexed: 05/19/2023]
Abstract
Plant genetic engineering is an important tool used in current efforts in crop improvement, pharmaceutical product biosynthesis and sustainable agriculture. However, conventional genetic engineering techniques target the nuclear genome, prompting concerns about the proliferation of foreign genes to weedy relatives. Chloroplast transformation does not have this limitation, since the plastid genome is maternally inherited in most plants, motivating the need for organelle-specific and selective nanocarriers. Here, we rationally designed chitosan-complexed single-walled carbon nanotubes, utilizing the lipid exchange envelope penetration mechanism. The single-walled carbon nanotubes selectively deliver plasmid DNA to chloroplasts of different plant species without external biolistic or chemical aid. We demonstrate chloroplast-targeted transgene delivery and transient expression in mature Eruca sativa, Nasturtium officinale, Nicotiana tabacum and Spinacia oleracea plants and in isolated Arabidopsis thaliana mesophyll protoplasts. This nanoparticle-mediated chloroplast transgene delivery tool provides practical advantages over current delivery techniques as a potential transformation method for mature plants to benefit plant bioengineering and biological studies.
Collapse
Affiliation(s)
- Seon-Yeong Kwak
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Connor J Sweeney
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Min Hao Wong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | | | - Jun Sung Seo
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Nam-Hai Chua
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
33
|
Wang C, Tan R, Li J, Zhang Z. Exonuclease I-assisted fluorescent method for ochratoxin A detection using iron-doped porous carbon, nitrogen-doped graphene quantum dots, and double magnetic separation. Anal Bioanal Chem 2019; 411:2405-2414. [PMID: 30828760 DOI: 10.1007/s00216-019-01684-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/29/2019] [Accepted: 02/11/2019] [Indexed: 01/21/2023]
Abstract
In this paper, a fluorescent method was developed for ochratoxin A (OTA) detection that uses iron-doped porous carbon (MPC) and aptamer-functionalized nitrogen-doped graphene quantum dots (NGQDs-Apt) as probes. In this method, the adsorbance of the NGQDs-Apt on the MPC due to a π-π interaction between the aptamer and the MPC results in the quenching of the fluorescence of the NGQDs-Apt. However, since OTA interacts strongly with the aptamer, the presence of OTA leads to the detachment of the NGQDs-Apt from the MPC, resulting in the resumption of fluorescence from the NGQDs-Apt. When exonuclease I (Exo I) is also added to the solution, this exonuclease specifically digests the aptamer, leading to the release of the OTA back into the solution. This free OTA then interacts with another MPC-NGQDs-Apt system, inducing the release of more NGQDs into the solution, which enhances the fluorescent intensity compared to that of the system with no Exo I. Utilizing this behavior of OTA in the presence of NGQDs-Apt, it was possible to detect concentrations of OTA ranging from 10 to 5000 nM, with a limit of detection of 2.28 nM. Our method was tested by applying it to the detection of OTA in wheat and corn samples. This method has four advantages: (1) the magnetic porous carbon is easy to prepare, its porosity enhances its loading capacity for NGQDs, it highly efficiently quenches the fluorescence of the NGQDs, and its magnetic properties facilitate the separation of the MPC from other species in solution; (2) applying double magnetic separation decreases the background signal; (3) Exo I digests the free aptamer effectively, which allows the resulting free OTA to induce the release of more NGQDs-Apt, ultimately enhancing the fluorescent signal; and (4) the proposed method presented high sensitivity and a wide linear detection range. This method may prove helpful in food safety analysis and new biosensor development (achieved by using different aptamer sequences to that used in the present work). Graphical abstract Exonuclease I (Exo I)-assisted fluorescent method for ochratoxin A (OTA) detection using magnetic porous carbon (MPC), nitrogen-doped graphene quantum dots (NGQDs), and double magnetic separation.
Collapse
Affiliation(s)
- Chengke Wang
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Rong Tan
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Jiangyu Li
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zexiang Zhang
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| |
Collapse
|
34
|
Jafarbeglou M, Abdouss M. Fabricating Hybrid Microsphere Substrate Based PLGA-CNT with In Situ Drug Release: Characterization and In Vitro Evaluation. ChemistrySelect 2019. [DOI: 10.1002/slct.201803326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maryam Jafarbeglou
- Department of Nanotechnology; Amirkabir University of Technology; Hafez Ave. Tehran Iran
| | - Majid Abdouss
- Department of Chemistry; Amirkabir University of Technology; Hafez Ave. Tehran Iran
| |
Collapse
|
35
|
Gong X, Yu C, Zhang Y, Sun Y, Ye L, Li J. Carbon nanoparticle-protected RNA aptasensor for amplified fluorescent determination of theophylline in serum based on nuclease-aided signal amplification. RSC Adv 2019; 9:33898-33902. [PMID: 35528922 PMCID: PMC9073590 DOI: 10.1039/c9ra06798a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 09/17/2019] [Indexed: 12/22/2022] Open
Abstract
A carbon nanoparticle (CNP) and Cryonase-aided method that realizes the amplified fluorescent detection of theophylline was proposed.
Collapse
Affiliation(s)
- Xiaoyu Gong
- Longgang District People's Hospital of Shenzhen
- Shenzhen
- P. R. China
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine
- Hubei University of Chinese Medicine
| | - Chi Yu
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine
- Hubei University of Chinese Medicine
- Wuhan
- P. R. China
| | - Yichang Zhang
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine
- Hubei University of Chinese Medicine
- Wuhan
- P. R. China
| | - Yuan Sun
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine
- Hubei University of Chinese Medicine
- Wuhan
- P. R. China
| | - Lin Ye
- Department of General Surgery
- Union Hospital
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan
| | - Juan Li
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine
- Hubei University of Chinese Medicine
- Wuhan
- P. R. China
| |
Collapse
|
36
|
Malik P, Mukherjee TK. Recent advances in gold and silver nanoparticle based therapies for lung and breast cancers. Int J Pharm 2018; 553:483-509. [DOI: 10.1016/j.ijpharm.2018.10.048] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/20/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023]
|
37
|
Wiraja C, Yeo DC, Lio DCS, Zheng M, Xu C. Functional Imaging with Nucleic-Acid-Based Sensors: Technology, Application and Future Healthcare Prospects. Chembiochem 2018; 20:437-450. [PMID: 30230165 DOI: 10.1002/cbic.201800430] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 12/11/2022]
Abstract
Timely monitoring and assessment of human health plays a crucial role in maintaining the wellbeing of our advancing society. In addition to medical tools and devices, suitable probe agents are crucial to assist such monitoring, either in passive or active ways (i.e., sensors) through inducible signals. In this review we highlight recent developments in activatable optical sensors based on nucleic acids. Sensing mechanisms and bio-applications of these nucleic acid sensors in ex vivo assays, intracellular or in vivo settings are described. In addition, we discuss the limitations of these sensors and how nanotechnology can complement/enhance sensor properties to promote translation into clinical applications.
Collapse
Affiliation(s)
- Christian Wiraja
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - David C Yeo
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Daniel Chin Shiuan Lio
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Mengjia Zheng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.,NTU-Northwestern Institute for Nanomedicine, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
38
|
Lew TTS, Wong MH, Kwak SY, Sinclair R, Koman VB, Strano MS. Rational Design Principles for the Transport and Subcellular Distribution of Nanomaterials into Plant Protoplasts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802086. [PMID: 30191658 DOI: 10.1002/smll.201802086] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/09/2018] [Indexed: 05/24/2023]
Abstract
The ability to control the subcellular localization of nanoparticles within living plants offers unique advantages for targeted biomolecule delivery and enables important applications in plant bioengineering. However, the mechanism of nanoparticle transport past plant biological membranes is poorly understood. Here, a mechanistic study of nanoparticle cellular uptake into plant protoplasts is presented. An experimentally validated mathematical model of lipid exchange envelope penetration mechanism for protoplasts, which predicts that the subcellular distribution of nanoparticles in plant cells is dictated by the particle size and the magnitude of the zeta potential, is advanced. The mechanism is completely generic, describing nanoparticles ranging from quantum dots, gold and silica nanoparticles, nanoceria, and single-walled carbon nanotubes (SWNTs). In addition, the use of imaging flow cytometry to investigate the influence of protoplasts' morphological characteristics on nanoparticle uptake efficiency is demonstrated. Using DNA-wrapped SWNTs as model nanoparticles, it is found that glycerolipids, the predominant lipids in chloroplast membranes, exhibit stronger lipid-nanoparticle interaction than phospholipids, the major constituent in protoplast membrane. This work can guide the rational design of nanoparticles for targeted delivery into specific compartments within plant cells without the use of chemical or mechanical aid, potentially enabling various plant engineering applications.
Collapse
Affiliation(s)
- Tedrick Thomas Salim Lew
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Min Hao Wong
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Seon-Yeong Kwak
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Rosalie Sinclair
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Volodymyr B Koman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael S Strano
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
39
|
Wu SJ, Schuergers N, Lin KH, Gillen AJ, Corminboeuf C, Boghossian AA. Restriction Enzyme Analysis of Double-Stranded DNA on Pristine Single-Walled Carbon Nanotubes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37386-37395. [PMID: 30277379 DOI: 10.1021/acsami.8b12287] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanoprobes such as single-walled carbon nanotubes (SWCNTs) are capable of label-free detection that benefits from intrinsic and photostable near-infrared fluorescence. Despite the growing number of SWCNT-based applications, uncertainty surrounding the nature of double-stranded DNA (dsDNA) immobilization on pristine SWCNTs has limited their use as optical sensors for probing DNA-protein interactions. To address this limitation, we study enzyme activity on unmodified dsDNA strands immobilized on pristine SWCNTs. Restriction enzyme activity on various dsDNA sequences was used to verify the retention of the dsDNA's native conformation on the nanotube surface and to quantitatively compare the degree of dsDNA accessibility. We report a 2.8-fold enhancement in initial enzyme activity in the presence of surfactants. Förster resonance electron transfer (FRET) analysis attributes this enhancement to increased dsDNA displacement from the SWCNT surface. Furthermore, the accessibility of native dsDNA was found to vary with DNA configuration and the spacing between the restriction site and the nanotube surface, with a minimum spacing of four base pairs (bp) from the anchoring site needed to preserve enzyme activity. Molecular dynamics (MD) simulations verify that the anchored dsDNA remains within the vicinity of the SWCNT, revealing an unprecedented bimodal displacement of the bp nearest to SWCNT surface. Together, these findings illustrate the successful immobilization of native dsDNA on pristine SWCNTs, offering a new near-infrared platform for exploring vital DNA processes.
Collapse
Affiliation(s)
- Shang-Jung Wu
- Institute of Chemical Sciences and Engineering (ISIC) , École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015 , Switzerland
| | - Nils Schuergers
- Institute of Chemical Sciences and Engineering (ISIC) , École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015 , Switzerland
| | - Kun-Han Lin
- Institute of Chemical Sciences and Engineering (ISIC) , École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015 , Switzerland
| | - Alice J Gillen
- Institute of Chemical Sciences and Engineering (ISIC) , École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015 , Switzerland
| | - Clémence Corminboeuf
- Institute of Chemical Sciences and Engineering (ISIC) , École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015 , Switzerland
| | - Ardemis A Boghossian
- Institute of Chemical Sciences and Engineering (ISIC) , École Polytechnique Fédérale de Lausanne (EPFL) , Lausanne CH-1015 , Switzerland
| |
Collapse
|
40
|
Ranganath SH. Bioengineered cellular and cell membrane-derived vehicles for actively targeted drug delivery: So near and yet so far. Adv Drug Deliv Rev 2018; 132:57-80. [PMID: 29935987 DOI: 10.1016/j.addr.2018.06.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/31/2018] [Accepted: 06/18/2018] [Indexed: 12/16/2022]
Abstract
Cellular carriers for drug delivery are attractive alternatives to synthetic nanoparticles owing to their innate homing/targeting abilities. Here, we review molecular interactions involved in the homing of Mesenchymal stem cells (MSCs) and other cell types to understand the process of designing and engineering highly efficient, actively targeting cellular vehicles. In addition, we comprehensively discuss various genetic and non-genetic strategies and propose futuristic approaches of engineering MSC homing using micro/nanotechnology and high throughput small molecule screening. Most of the targeting abilities of a cell come from its plasma membrane, thus, efforts to harness cell membranes as drug delivery vehicles are gaining importance and are highlighted here. We also recognize and report the lack of detailed characterization of cell membranes in terms of safety, structural integrity, targeting functionality, and drug transport. Finally, we provide insights on future development of bioengineered cellular and cell membrane-derived vesicles for successful clinical translation.
Collapse
Affiliation(s)
- Sudhir H Ranganath
- Bio-INvENT Lab, Department of Chemical Engineering, Siddaganga Institute of Technology, B.H. Road, Tumakuru, 572103, Karnataka, India.
| |
Collapse
|
41
|
Dong H, Han L, Wang J, Xie J, Gao Y, Xie F, Jia L. In vivo inhibition of circulating tumor cells by two apoptosis-promoting circular aptamers with enhanced specificity. J Control Release 2018; 280:99-112. [PMID: 29746957 DOI: 10.1016/j.jconrel.2018.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/30/2018] [Accepted: 05/05/2018] [Indexed: 12/21/2022]
Abstract
Circulating tumor cells (CTCs) are known as the root cause of cancer metastasis that accounts for 90% of cancer death. Owing to the rarity of blood CTCs and their microenvironmental complexity, the existing biotechnology could not precisely capture and apoptosize CTCs in vivo for cancer metastasis prevention. Here, we designed two double strand circular aptamers aimed to simultaneously target MUC1 and HER2 surface biomarkers on mesenchymal cancer cells. The circular aptamers are composed of a capture arm for binding and seizing CTCs and a circular body for resisting degradation by exonucleases. We conjugated the two circular aptamers onto dendrimer PAMAM G4.5 (dcAp1-G-dcAp2), and the conjugate entity showed both significantly-enhanced biostability in serum for days compared with their linear counterparts and capture specificity in RBC (1:108) compared with their single circular aptamers. dcAp1-G-dcAp2 apoptosized the targeted cells and inhibited their bioenergetic activities significantly by lowing △Ψm, ATP and lactate productions while increasing ROS production. dcAp1-G-dcAp2 captured CTCs in mice in vivo and in patient blood. This study lays the foundation for developing multiple biostable circular aptamers and conjugating them together to precisely capture and apoptosize mesenchymal CTCs in vivo.
Collapse
Affiliation(s)
- Haiyan Dong
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China; Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian 350108, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350108, China
| | - Longyu Han
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jie Wang
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jingjing Xie
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Fangwei Xie
- Oncology Department, Fuzhou General Hospital, 156 Western Two-Circle North Road, Fuzhou, Fujian 350025, China
| | - Lee Jia
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
42
|
Abstract
In 2015, cancer was the cause of almost 22% of deaths worldwide. The high frequency of relapsing diseases and metastasis requires the development of new diagnostic and therapeutic approaches, and the use of nanomaterials is a promising tool for fighting cancer. Among the more extensively studied nanomaterials are carbon nanotubes (CNTs), synthesized as graphene sheets, whose spiral shape is varied in length and thickness. Their physicochemical features, such as the resistance to tension, and thermal and electrical conductivity, allow their application in several fields. In this review, we show evidence supporting the applicability of CNTs in biomedical practice as nanocarriers for drugs and immunomodulatory material, emphasizing their potential for use in cancer treatment.
Collapse
|
43
|
Wang S, Mao B, Wu M, Liang J, Deng L. Influence of aptamer-targeted antibiofilm agents for treatment of Pseudomonas aeruginosa biofilms. Antonie van Leeuwenhoek 2017; 111:199-208. [PMID: 29098517 DOI: 10.1007/s10482-017-0941-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
Biofilms are bacterial communities consisting of numerous extracellular polymeric substances. Infections caused by biofilm-forming bacteria are considered to be a major threat to health security and so novel approaches to control biofilm are of importance. Aptamers are single-strand nucleic acid molecules that have high selectivity to their targets. Single-walled carbon nanotubes (SWNTs) are common nanomaterials and have been shown to be toxic to bacterial biofilms. The aim of this study was to test whether an aptamer could play a role as targeting agents to enhance the efficiency of anti-biofilm agents. Hence, two complexes (aptamer-SWNTs and aptamer-ciprofloxacin-SWNTs) based on an aptamer which targets Pseudomonas aeruginosa and SWNTs were constructed. Both complexes were assessed against P. aeruginosa biofilms. In vitro tests demonstrated that the aptamer-SWNTs could inhibit ~36% more biofilm formation than SWNTs alone. Similarly, the aptamer-ciprofloxacin-SWNTs had a higher anti-biofilm efficiency than either component or simple mixtures of two components. Our study underscores the potential of aptamers as targeting agents for anti-biofilm compounds, as well as providing a new strategy to control biofilms.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory of Developmental Biology of Freshwater, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.,Changsha Institute for Food and Drug Control, Changsha, 410081, Hunan, People's Republic of China
| | - Biyao Mao
- State Key Laboratory of Developmental Biology of Freshwater, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Mingxi Wu
- State Key Laboratory of Developmental Biology of Freshwater, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Jingjing Liang
- State Key Laboratory of Developmental Biology of Freshwater, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China
| | - Le Deng
- State Key Laboratory of Developmental Biology of Freshwater, College of Life Science, Hunan Normal University, Changsha, 410081, Hunan, People's Republic of China.
| |
Collapse
|
44
|
Zhang C, Wu R, Li Y, Zhang Q, Yang J. Programmable Regulation of DNA Conjugation to Gold Nanoparticles via Strand Displacement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12285-12290. [PMID: 28976767 DOI: 10.1021/acs.langmuir.7b02620] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Methods for conjugating DNA to gold nanoparticles (AuNPs) have recently attracted considerable attention. The ability to control such conjugation in a programmable way is of great interest. Here, we have developed a logic-based method for manipulating the conjugation of thiolated DNA species to AuNPs via cascading DNA strand displacement. Using this method, several logic-based operation systems are established and up to three kinds of DNA signals are introduced at the same time. In addition, a more sensitive catalytic logic-based operation is also achieved based on an entropy-driven process. In the experiment, all of the DNA/AuNPs conjugation results are verified by agrose gel. This strategy promises great potential for automatically conjugating DNA stands onto label-free gold nanoparticles and can be extended to constructing DNA/nanoparticle devices for applications in diagnostics, biosensing, and molecular robotics.
Collapse
Affiliation(s)
- Cheng Zhang
- Institute of Software, School of Electronics Engineering and Computer Science, Peking University, Key laboratory of High Confidence Software Technologies, Ministry of Education, Beijing 100871, China
| | - Ranfeng Wu
- School of Control and Computer Engineering, North China Electric Power University , Beijing 102206, China
| | - Yifan Li
- School of Control and Computer Engineering, North China Electric Power University , Beijing 102206, China
| | - Qiang Zhang
- College of Computer Science and Technology, Dalian University of Technology , Dalian, 116624, China
| | - Jing Yang
- School of Control and Computer Engineering, North China Electric Power University , Beijing 102206, China
| |
Collapse
|
45
|
Suppressing mosaicism by Au nanowire injector-driven direct delivery of plasmids into mouse embryos. Biomaterials 2017; 138:169-178. [DOI: 10.1016/j.biomaterials.2017.05.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/12/2022]
|
46
|
Hashkavayi AB, Raoof JB, Ojani R. Construction of a highly sensitive signal-on aptasensor based on gold nanoparticles/functionalized silica nanoparticles for selective detection of tryptophan. Anal Bioanal Chem 2017; 409:6429-6438. [PMID: 28852807 DOI: 10.1007/s00216-017-0588-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 07/11/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023]
Abstract
In this work, a highly sensitive, low-cost, and label-free aptasensor based on signal-on mechanisms of response was developed by immobilizing the aptamer on gold nanoparticles (AuNPs)/amine-functionalized silica nanoparticle (FSN)/screen-printed electrode (SPE) surface for highly selective electrochemical detection of tryptophan (Trp). The hemin (Hem), which interacted with the guanine bases of the aptamer, worked as a redox indicator to generate a readable electrochemical signal. The changes in the charge transfer resistance have been monitored using the voltammetry and electrochemical impedance spectroscopic (EIS) techniques. The peak current of Hem linearly increased with increasing concentration of Trp, in differential pulse voltammetry, from 0.06 to 250 nM with a detection limit of 0.026 nM. Also, the results obtained from EIS studies showed that the Trp was detected sensitively with the fabricated aptasensor in the range of 0.06-250 nM. The detection limit is 0.01 nM, much lower than that obtained by most of the reported electrochemical methods. The usage of aptamer as a recognition layer led to a sensor with high affinity for Trp, compared with control amino acids of tyrosine, histidine, arginine, lysine, valine, and methionine. The usability of the aptasensor was successfully evaluated by the determination of Trp in a human blood serum sample. Thus, the sensor could provide a promising plan for the construction of aptasensors. Graphical abstract Schematic outline the principle for tryptophan aptasensing.
Collapse
Affiliation(s)
- Ayemeh Bagheri Hashkavayi
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-1467, Iran
| | - Jahan Bakhsh Raoof
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-1467, Iran.
| | - Reza Ojani
- Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar, 47416-1467, Iran
| |
Collapse
|
47
|
Shearer CJ, Yu L, Fenati R, Sibley AJ, Quinton JS, Gibson CT, Ellis AV, Andersson GG, Shapter JG. Adsorption and Desorption of Single‐Stranded DNA from Single‐Walled Carbon Nanotubes. Chem Asian J 2017; 12:1625-1634. [DOI: 10.1002/asia.201700446] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/11/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Cameron J. Shearer
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
| | - LePing Yu
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
| | - Renzo Fenati
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
- Present Address: School of Chemical and Biomolecular Engineering University of Melbourne, Parkville Victoria 3010 Australia
| | - Alexander J. Sibley
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
| | - Jamie S. Quinton
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
| | - Christopher T. Gibson
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
| | - Amanda V. Ellis
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
- Present Address: School of Chemical and Biomolecular Engineering University of Melbourne, Parkville Victoria 3010 Australia
| | - Gunther G. Andersson
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
| | - Joseph G. Shapter
- Flinders Centre for NanoScale Science and Technology School of Chemical and Physical Science Flinders University Sturt Rd Bedford Park South Australia 5042 Australia
| |
Collapse
|
48
|
Kumar S, Rani R, Dilbaghi N, Tankeshwar K, Kim KH. Carbon nanotubes: a novel material for multifaceted applications in human healthcare. Chem Soc Rev 2017; 46:158-196. [DOI: 10.1039/c6cs00517a] [Citation(s) in RCA: 263] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Remarkable advances achieved in modern material technology, especially in device fabrication, have facilitated diverse materials to expand the list of their application fields.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Bio and Nano Technology
- Guru Jambheshwar University of Science and Technology
- Hisar
- India
| | - Ruma Rani
- Department of Bio and Nano Technology
- Guru Jambheshwar University of Science and Technology
- Hisar
- India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology
- Guru Jambheshwar University of Science and Technology
- Hisar
- India
| | - K. Tankeshwar
- Department of Bio and Nano Technology
- Guru Jambheshwar University of Science and Technology
- Hisar
- India
- Department of Physics
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering
- Hanyang University
- Seoul 04763
- Republic of Korea
| |
Collapse
|
49
|
Vincent M, de Lázaro I, Kostarelos K. Graphene materials as 2D non-viral gene transfer vector platforms. Gene Ther 2016; 24:123-132. [PMID: 27874854 DOI: 10.1038/gt.2016.79] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 09/25/2016] [Accepted: 10/13/2016] [Indexed: 12/18/2022]
Abstract
Advances in genomics and gene therapy could offer solutions to many diseases that remain incurable today, however, one of the critical reasons halting clinical progress is due to the difficulty in designing efficient and safe delivery vectors for the appropriate genetic cargo. Safety and large-scale production concerns counter-balance the high gene transfer efficiency achieved with viral vectors, while non-viral strategies have yet to become sufficiently efficient. The extraordinary physicochemical, optical and photothermal properties of graphene-based materials (GBMs) could offer two-dimensional components for the design of nucleic acid carrier systems. We discuss here such properties and their implications for the optimization of gene delivery. While the design of such vectors is still in its infancy, we provide here an exhaustive and up-to-date analysis of the studies that have explored GBMs as gene transfer vectors, focusing on the functionalization strategies followed to improve vector performance and on the biological effects attained.
Collapse
Affiliation(s)
- M Vincent
- Nanomedicine Laboratory, Faculty of Medical and Human Sciences and National Graphene Institute, University of Manchester, Manchester, UK
| | - I de Lázaro
- Nanomedicine Laboratory, Faculty of Medical and Human Sciences and National Graphene Institute, University of Manchester, Manchester, UK
| | - K Kostarelos
- Nanomedicine Laboratory, Faculty of Medical and Human Sciences and National Graphene Institute, University of Manchester, Manchester, UK
| |
Collapse
|
50
|
Pramanik D, Maiti PK. Dendrimer assisted dispersion of carbon nanotubes: a molecular dynamics study. SOFT MATTER 2016; 12:8512-8520. [PMID: 27714360 DOI: 10.1039/c6sm02015a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Various unique physical, chemical, mechanical and electronic properties of carbon nanotubes (CNTs) make them very useful materials for diverse potential application in many fields. Experimentally synthesized CNTs are generally found in bundle geometry with a mixture of different chiralities and present a unique challenge to separate them. In this paper we have proposed the PAMAM dendrimer to be an ideal candidate for this separation. To estimate the efficiency of the dendrimer for the dispersion of CNTs from the bundle geometry, we have calculated potential of mean forces (PMF). Our PMF study of two dendrimer-wrapped CNTs shows lesser binding affinity compared to the two bare CNTs. PMF study shows that the binding affinity decreases for non-protonated dendrimer, and for the protonated case the interaction is fully repulsive in nature. For both the non-protonated as well as protonated cases, the PMF increases gradually with increasing dendrimer generations from 2 to 4 compared to the bare PMF. We have performed PMF calculations with (6,5) and (6,6) chirality to study the chirality dependence of PMF. Our study shows that the PMFs between two (6,5) and two (6,6) CNTs respectively are ∼-29 kcal mol-1 and ∼-27 kcal mol-1. Calculated PMF for protonated dendrimer-wrapped chiral CNTs is more compared to the protonated dendrimer-wrapped armchair CNTs for all the generations studied. However, for non-protonated dendrimer-wrapped CNTs, such chirality dependence is not very prominent. Our study suggests that the dispersion efficiency of the protonated dendrimer is more compared to the non-protonated dendrimer and can be used as an effective dispersing agent for the dispersion of CNTs from the bundle geometry.
Collapse
Affiliation(s)
- Debabrata Pramanik
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|