1
|
Lee S, Godhulayyagari S, Nguyen ST, Lu JK, Ebrahimi SB, Samanta D. Signal Transduction Strategies for Analyte Detection Using DNA-Based Nanostructures. Angew Chem Int Ed Engl 2022; 61:e202202211. [PMID: 35307938 DOI: 10.1002/anie.202202211] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Indexed: 12/14/2022]
Abstract
The use of DNA-based nanostructures as probes has led to significant advances in chemical and biological sensing, allowing the detection of analytes in complex media, the understanding of fundamental biological processes, and the ability to diagnose diseases based on molecular signatures. The utility of these structures arises both from DNA's inherent ability to selectively recognize and bind a variety of chemical species and from the unique properties observed when DNA is restructured at the nanoscale. In this Minireview, we chronicle the most commonly used signal transduction strategies that have been interfaced with various DNA-based nanostructures. We discuss the types of analytes and the detection scenarios that are sought after, delineate the advantages and disadvantages of each signaling strategy, and outline the key considerations that guide the selection of each signaling method.
Collapse
Affiliation(s)
- Seungheon Lee
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| | - Shivudu Godhulayyagari
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| | - Shadler T Nguyen
- Department of Molecular Biosciences, The University of Texas at Austin, 2500 Speedway, Austin, TX 78712, USA
| | - Jasmine K Lu
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| | - Sasha B Ebrahimi
- Biopharmaceutical Product Sciences, GlaxoSmithKline, 1250 S Collegeville Road, Collegeville, PA 19426, USA
| | - Devleena Samanta
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Austin, TX 78712, USA
| |
Collapse
|
2
|
Keyvani F, Debnath N, Ayman Saleh M, Poudineh M. An integrated microfluidic electrochemical assay for cervical cancer detection at point-of-care testing. NANOSCALE 2022; 14:6761-6770. [PMID: 35506790 DOI: 10.1039/d1nr08252c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cervical cancer (CC) is a major health care problem in low- and middle-income countries, necessitating the development of low-cost and easy-to-use assays for CC detection at point-of-care (POC) settings. An integrated microfluidic electrochemical assay for CC detection, named IMEAC, is presented that has the potential for identifying CC circulating DNA in whole blood samples. The IMEAC consists of two main modules: a plasma separator device that isolates plasma from whole blood with high purity and without the need for any external forces connected to a graphene oxide-based electrochemical biosensor that uses specific probe molecules for the detection of CC circulating DNA molecules. We fully characterize the performance of the individual modules and show that the integrated assay can be utilized for target DNA detection in whole blood samples, thus potentially transforming CC detection and screening at remote locations.
Collapse
Affiliation(s)
- Fatemeh Keyvani
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Nandini Debnath
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Mahmoud Ayman Saleh
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mahla Poudineh
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
3
|
Lee S, Godhulayyagari S, Nguyen ST, Lu JK, Ebrahimi SB, Samanta D. Signal Transduction Strategies for Analyte Detection Using DNA‐Based Nanostructures. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Seungheon Lee
- Department of Chemistry The University of Texas at Austin 105 E 24th Street Austin TX 78712 USA
| | - Shivudu Godhulayyagari
- Department of Chemistry The University of Texas at Austin 105 E 24th Street Austin TX 78712 USA
| | - Shadler T. Nguyen
- Department of Molecular Biosciences The University of Texas at Austin 2500 Speedway Austin TX 78712 USA
| | - Jasmine K. Lu
- Department of Chemistry The University of Texas at Austin 105 E 24th Street Austin TX 78712 USA
| | - Sasha B. Ebrahimi
- Biopharmaceutical Product Sciences GlaxoSmithKline 1250 S Collegeville Road Collegeville PA 19426 USA
| | - Devleena Samanta
- Department of Chemistry The University of Texas at Austin 105 E 24th Street Austin TX 78712 USA
| |
Collapse
|
4
|
Wettasinghe AP, Singh N, Starcher CL, DiTusa CC, Ishak-Boushaki Z, Kahanda D, McMullen R, Motea EA, Slinker JD. Detecting Attomolar DNA-Damaging Anticancer Drug Activity in Cell Lysates with Electrochemical DNA Devices. ACS Sens 2021; 6:2622-2629. [PMID: 34156840 DOI: 10.1021/acssensors.1c00365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Here, we utilize electrochemical DNA devices to quantify and understand the cancer-specific DNA-damaging activity of an emerging drug in cellular lysates at femtomolar and attomolar concentrations. Isobutyl-deoxynyboquinone (IB-DNQ), a potent and tumor-selective NAD(P)H quinone oxidoreductase 1 (NQO1) bioactivatable drug, was prepared and biochemically verified in cancer cells highly expressing NQO1 (NQO1+) and knockdowns with low NQO1 expression (NQO1-) by Western blot, NQO1 activity analysis, survival assays, oxygen consumption rate, extracellular acidification rate, and peroxide production. Lysates from these cells and the IB-DNQ drug were then introduced to a chip system bearing an array of DNA-modified electrodes, and their DNA-damaging activity was quantified by changes in DNA-mediated electrochemistry arising from base-excision repair. Device-level controls of NQO1 activity and kinetic analysis were used to verify and further understand the IB-DNQ activity. A 380 aM IB-DNQ limit of detection and a 1.3 fM midpoint of damage were observed in NQO1+ lysates, both metrics 2 orders of magnitude lower than NQO1- lysates, indicating the high IB-DNQ potency and selectivity for NQO1+ cancers. The device-level damage midpoint concentration in NQO1+ lysates was over 8 orders of magnitude lower than cell survival benchmarks, likely due to poor IB-DNQ cellular uptake, demonstrating that these devices can identify promising drugs requiring improved cell permeability. Ultimately, these results indicate the noteworthy potency and selectivity of IB-DNQ and the high sensitivity and precision of electrochemical DNA devices to analyze agents/drugs involved in DNA-damaging chemotherapies.
Collapse
Affiliation(s)
- Ashan P. Wettasinghe
- Department of Physics, The University of Texas at Dallas, 800 W. Campbell Road, SCI 10, Richardson, Texas 75080, United States
| | - Naveen Singh
- Department of Biochemistry and Molecular Biology, Simon Comprehensive Cancer Center, Indiana University School of Medicine, 980 W. Walnut Street, Walther Hall R3 C551, Indianapolis, Indiana 46202, United States
| | - Colton L. Starcher
- Department of Biochemistry and Molecular Biology, Simon Comprehensive Cancer Center, Indiana University School of Medicine, 980 W. Walnut Street, Walther Hall R3 C551, Indianapolis, Indiana 46202, United States
| | - Chloe C. DiTusa
- Department of Physics, The University of Texas at Dallas, 800 W. Campbell Road, SCI 10, Richardson, Texas 75080, United States
| | - Zakari Ishak-Boushaki
- Department of Physics, The University of Texas at Dallas, 800 W. Campbell Road, SCI 10, Richardson, Texas 75080, United States
| | - Dimithree Kahanda
- Department of Physics, The University of Texas at Dallas, 800 W. Campbell Road, SCI 10, Richardson, Texas 75080, United States
- Department of Physics, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Reema McMullen
- Department of Physics, The University of Texas at Dallas, 800 W. Campbell Road, SCI 10, Richardson, Texas 75080, United States
| | - Edward A. Motea
- Department of Biochemistry and Molecular Biology, Simon Comprehensive Cancer Center, Indiana University School of Medicine, 980 W. Walnut Street, Walther Hall R3 C551, Indianapolis, Indiana 46202, United States
| | - Jason D. Slinker
- Department of Physics, The University of Texas at Dallas, 800 W. Campbell Road, SCI 10, Richardson, Texas 75080, United States
- Department of Materials Science and Engineering, The University of Texas at Dallas, 800 W. Campbell Road, SCI 10, Richardson, Texas 75080, United States
| |
Collapse
|
5
|
Li M, Yin F, Song L, Mao X, Li F, Fan C, Zuo X, Xia Q. Nucleic Acid Tests for Clinical Translation. Chem Rev 2021; 121:10469-10558. [PMID: 34254782 DOI: 10.1021/acs.chemrev.1c00241] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are natural biopolymers composed of nucleotides that store, transmit, and express genetic information. Overexpressed or underexpressed as well as mutated nucleic acids have been implicated in many diseases. Therefore, nucleic acid tests (NATs) are extremely important. Inspired by intracellular DNA replication and RNA transcription, in vitro NATs have been extensively developed to improve the detection specificity, sensitivity, and simplicity. The principles of NATs can be in general classified into three categories: nucleic acid hybridization, thermal-cycle or isothermal amplification, and signal amplification. Driven by pressing needs in clinical diagnosis and prevention of infectious diseases, NATs have evolved to be a rapidly advancing field. During the past ten years, an explosive increase of research interest in both basic research and clinical translation has been witnessed. In this review, we aim to provide comprehensive coverage of the progress to analyze nucleic acids, use nucleic acids as recognition probes, construct detection devices based on nucleic acids, and utilize nucleic acids in clinical diagnosis and other important fields. We also discuss the new frontiers in the field and the challenges to be addressed.
Collapse
Affiliation(s)
- Min Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fangfei Yin
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Song
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Xia
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
6
|
Zeng Y, Koo KM, Shen AG, Hu JM, Trau M. Nucleic Acid Hybridization-Based Noise Suppression for Ultraselective Multiplexed Amplification of Mutant Variants. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006370. [PMID: 33325632 DOI: 10.1002/smll.202006370] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/11/2020] [Indexed: 06/12/2023]
Abstract
The analysis of mutant nucleic acid (NA) variants can provide crucial clinical and biological insights for many diseases. Yet, existing analysis techniques are generally constrained by nonspecific "noise" signals from excessive wildtype background sequences, especially under rapid isothermal multiplexed target amplification conditions. Herein, the molecular hybridization chemistry between NA bases is manipulated to suppress noise signals and achieve ultraselective multiplexed detection of cancer gene fusion NA variants. Firstly, modified locked NA (LNA) bases are rationally introduced into oligonucleotide sequences as designed "locker probes" for high affinity hybridization to wildtype sequences, leading to enrichment of mutant variants for multiplexed isothermal amplification. Secondly, locker probes are coupled with a customized "proximity-programmed" (SERS) readout which allows precise control of hybridization-based plasmonic signaling to specifically detect multiple target amplicons within a single reaction. Moreover, the use of triple bond Raman reporters endows NA noise signal-free quantification in the Raman silent region (≈1800-2600 cm-1 ). With this dual molecular hybridization-based strategy, ultraselective multiplexed detection of gene fusion NA variants in cancer cellular models is actualized with successful noise suppression of native wildtype sequences. The distinct benefits of isothermal NA amplification and SERS multiplexing ability are simultaneously harnessed.
Collapse
Affiliation(s)
- Yi Zeng
- School of Printing and Packaging, Wuhan University, Wuhan, 430079, P. R. China
- The Centre of Analysis and Measurement of Wuhan University, Wuhan University, Wuhan, 430072, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Kevin M Koo
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- XING Technologies Pty Ltd, Sinnamon Park, Brisbane, QLD, 4073, Australia
- The University of Queensland Centre for Clinical Research (UQCCR), Brisbane, QLD, 4029, Australia
| | - Ai-Guo Shen
- School of Printing and Packaging, Wuhan University, Wuhan, 430079, P. R. China
| | - Ji-Ming Hu
- The Centre of Analysis and Measurement of Wuhan University, Wuhan University, Wuhan, 430072, P. R. China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
7
|
Park HJ, Lee SS. Detection of miR‐155 Using Two Types of Electrochemical Approaches. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hyeoun Ji Park
- Department of Pharmaceutical Engineering Soonchunhhyang University Chungnam 31538 South Korea
| | - Soo Suk Lee
- Department of Pharmaceutical Engineering Soonchunhhyang University Chungnam 31538 South Korea
| |
Collapse
|
8
|
Abstract
The development of biosensors for a range of analytes from small molecules to proteins to oligonucleotides is an intensely active field. Detection methods based on electrochemistry or on localized surface plasmon responses have advanced through using nanostructured electrodes prepared by electrodeposition, which is capable of preparing a wide range of different structures. Supported nanoparticles can be prepared by electrodeposition through applying fixed potentials, cycling potentials, and fixed current methods. Nanoparticle sizes, shapes, and surface densities can be controlled, and regular structures can be prepared by electrodeposition through templates. The incorporation of multiple nanomaterials into composite films can take advantage of the superior and potentially synergistic properties of each component. Nanostructured electrodes can provide supports for enzymes, antibodies, or oligonucleotides for creating sensors against many targets in areas such as genomic analysis, the detection of protein antigens, or the detection of small molecule metabolites. Detection can also be performed using electrochemical methods, and the nanostructured electrodes can greatly enhance electrochemical responses by carefully designed schemes. Biosensors based on electrodeposited nanostructures can contribute to the advancement of many goals in bioanalytical and clinical chemistry.
Collapse
|
9
|
De Luna P, Liang W, Mallick A, Shekhah O, García de Arquer FP, Proppe AH, Todorović P, Kelley SO, Sargent EH, Eddaoudi M. Metal-Organic Framework Thin Films on High-Curvature Nanostructures Toward Tandem Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31225-31232. [PMID: 30129364 DOI: 10.1021/acsami.8b04848] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In tandem catalysis, two distinct catalytic materials are interfaced to feed the product of one reaction into the next one. This approach, analogous to enzyme cascades, can potentially be used to upgrade small molecules such as CO2 to more valuable hydrocarbons. Here, we investigate the materials chemistry of metal-organic framework (MOF) thin films grown on gold nanostructured microelectrodes (AuNMEs), focusing on the key materials chemistry challenges necessary to enable the applications of these MOF/AuNME composites in tandem catalysis. We applied two growth methods-layer-by-layer and solvothermal-to grow a variety of MOF thin films on AuNMEs and then characterized them using scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The MOF@AuNME materials were then evaluated for electrocatalytic CO2 reduction. The morphology and crystallinity of the MOF thin films were examined, and it was found that MOF thin films were capable of dramatically suppressing CO production on AuNMEs and producing further-reduced carbon products such as CH4 and C2H4. This work illustrates the use of MOF thin films to tune the activity of an underlying CO2RR catalyst to produce further-reduced products.
Collapse
Affiliation(s)
- Phil De Luna
- Department of Materials Science and Engineering , University of Toronto , 184 College Street , Toronto , Ontario M5S 3E4 , Canada
| | - Weibin Liang
- Division of Physical Science and Engineering (PSE), Advanced Membranes and Porous Materials Center (AMPM), Functional Materials Design, Discovery and Development (FMD3) , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Arijit Mallick
- Division of Physical Science and Engineering (PSE), Advanced Membranes and Porous Materials Center (AMPM), Functional Materials Design, Discovery and Development (FMD3) , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - Osama Shekhah
- Division of Physical Science and Engineering (PSE), Advanced Membranes and Porous Materials Center (AMPM), Functional Materials Design, Discovery and Development (FMD3) , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| | - F Pelayo García de Arquer
- Department of Electrical and Computer Engineering , University of Toronto , 35 St George Street , Toronto , Ontario M5S 1A4 , Canada
| | - Andrew H Proppe
- Department of Electrical and Computer Engineering , University of Toronto , 35 St George Street , Toronto , Ontario M5S 1A4 , Canada
| | - Petar Todorović
- Department of Electrical and Computer Engineering , University of Toronto , 35 St George Street , Toronto , Ontario M5S 1A4 , Canada
| | | | - Edward H Sargent
- Department of Electrical and Computer Engineering , University of Toronto , 35 St George Street , Toronto , Ontario M5S 1A4 , Canada
| | - Mohamed Eddaoudi
- Division of Physical Science and Engineering (PSE), Advanced Membranes and Porous Materials Center (AMPM), Functional Materials Design, Discovery and Development (FMD3) , King Abdullah University of Science and Technology (KAUST) , Thuwal 23955-6900 , Kingdom of Saudi Arabia
| |
Collapse
|
10
|
Ye D, Zuo X, Fan C. DNA Nanotechnology-Enabled Interfacial Engineering for Biosensor Development. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:171-195. [PMID: 29490188 DOI: 10.1146/annurev-anchem-061417-010007] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biosensors represent biomimetic analytical tools for addressing increasing needs in medical diagnosis, environmental monitoring, security, and biodefense. Nevertheless, widespread real-world applications of biosensors remain challenging due to limitations of performance, including sensitivity, specificity, speed, and reproducibility. In this review, we present a DNA nanotechnology-enabled interfacial engineering approach for improving the performance of biosensors. We first introduce the main challenges of the biosensing interfaces, especially under the context of controlling the DNA interfacial assembly. We then summarize recent progress in DNA nanotechnology and efforts to harness DNA nanostructures to engineer various biological interfaces, with a particular focus on the use of framework nucleic acids. We also discuss the implementation of biosensors to detect physiologically relevant nucleic acids, proteins, small molecules, ions, and other biomarkers. This review highlights promising applications of DNA nanotechnology in interfacial engineering for biosensors and related areas.
Collapse
Affiliation(s)
- Dekai Ye
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolei Zuo
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
- Institute of Molecular Medicine, Renji Hospital, Schools of Medicine and Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- Division of Physical Biology and Bioimaging Center, Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
| |
Collapse
|
11
|
Sandbhor Gaikwad P, Banerjee R. Advances in point-of-care diagnostic devices in cancers. Analyst 2018; 143:1326-1348. [DOI: 10.1039/c7an01771e] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The early diagnosis and monitoring of the progress of cancers are limited due to the lack of adequate screening tools.
Collapse
Affiliation(s)
- Puja Sandbhor Gaikwad
- Research Scholar
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Bombay
- Mumbai
- India-400076
| | - Rinti Banerjee
- Department of Biosciences and Bioengineering
- Indian Institute of Technology Bombay
- Mumbai
- India-400076
| |
Collapse
|
12
|
Yang D, Cheng W, Chen X, Tang Y, Miao P. Ultrasensitive electrochemical detection of miRNA based on DNA strand displacement polymerization and Ca2+-dependent DNAzyme cleavage. Analyst 2018; 143:5352-5357. [DOI: 10.1039/c8an01555d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An ultrasensitive electrochemical sensing strategy for the detection of miRNA is developed combining strand displacement polymerization and a DNAzyme-catalyzed cleavage reaction.
Collapse
Affiliation(s)
- Dawei Yang
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- P. R. China
| | - Wenbo Cheng
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- P. R. China
| | - Xifeng Chen
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- P. R. China
| | - Yuguo Tang
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- P. R. China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology
- Chinese Academy of Sciences
- Suzhou 215163
- P. R. China
| |
Collapse
|
13
|
Mahshid SS, Vallée-Bélisle A, Kelley SO. Biomolecular Steric Hindrance Effects Are Enhanced on Nanostructured Microelectrodes. Anal Chem 2017; 89:9751-9757. [DOI: 10.1021/acs.analchem.7b01595] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Sahar Sadat Mahshid
- Department
of Pharmaceutical Science, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2 Canada
| | | | - Shana O. Kelley
- Department
of Pharmaceutical Science, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2 Canada
| |
Collapse
|
14
|
Zhou W, Mahshid SS, Wang W, Vallée-Bélisle A, Zandstra PW, Sargent EH, Kelley SO. Steric Hindrance Assay for Secreted Factors in Stem Cell Culture. ACS Sens 2017; 2:495-500. [PMID: 28723184 DOI: 10.1021/acssensors.7b00136] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ex vivo expansion of hematopoietic stem cells is significantly inhibited by secreted proteins that induce negative feedback loops. The ability to effectively monitor these factors is critical for their real-time regulation and control and, by extension, enhancing stem cell expansion. Here, we describe a novel monitoring strategy for the detection of soluble signaling factors in stem cell cultures using a DNA-based sensing mechanism on a chip-based nanostructured microelectrode platform. We combine DNA hybridization engineering with antibody-capturing chemistry in an amplified steric hindrance hybridization assay. This method enables the quantification of important secreted proteins, showcased by the detection of 10 pg·mL-1 level concentrations of three proteins in stem cell culture samples. This approach is the first universal nonsandwich technique that permits pg·mL-1 level quantification of small proteins in stem cell culture media without signal loss.
Collapse
Affiliation(s)
- Wendi Zhou
- Electrical
and Computer Engineering, University of Toronto, Toronto M5S 1A4 Canada
| | - Sahar S. Mahshid
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2 Canada
| | - Weijia Wang
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, Toronto M5S 3G9 Canada
| | | | - Peter W. Zandstra
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, Toronto M5S 3G9 Canada
| | - Edward H. Sargent
- Electrical
and Computer Engineering, University of Toronto, Toronto M5S 1A4 Canada
| | - Shana O. Kelley
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto M5S 3M2 Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, Toronto M5S 3G9 Canada
- Department
of Biochemistry, University of Toronto, Toronto M5S 1A8 Canada
| |
Collapse
|
15
|
De Luna P, Mahshid SS, Das J, Luan B, Sargent EH, Kelley SO, Zhou R. High-Curvature Nanostructuring Enhances Probe Display for Biomolecular Detection. NANO LETTERS 2017; 17:1289-1295. [PMID: 28075594 DOI: 10.1021/acs.nanolett.6b05153] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
High-curvature electrodes facilitate rapid and sensitive detection of a broad class of molecular analytes. These sensors have reached detection limits not attained using bulk macroscale materials. It has been proposed that immobilized DNA probes are displayed at a high deflection angle on the sensor surface, which allows greater accessibility and more efficient hybridization. Here we report the first use of all-atom molecular dynamics simulations coupled with electrochemical experiments to explore the dynamics of single-stranded DNA immobilized on high-curvature versus flat surfaces. We find that high-curvature structures suppress DNA probe aggregation among adjacent probes. This results in conformations that are more freely accessed by target molecules. The effect observed is amplified in the presence of highly charged cations commonly used in electrochemical biosensing. The results of the simulations agree with experiments that measure the degree of hybridization in the presence of mono-, di-, and trivalent cations. On high-curvature structures, hybridization current density increases as positive charge increases, whereas on flat electrodes, the trivalent cations cause aggregation due to electrostatic overscreening, which leads to decreased current density and less sensitive detection.
Collapse
Affiliation(s)
- Phil De Luna
- Computational Biology Center, IBM Thomas J. Watson Research Center , Yorktown Heights, New York 10598, United States
| | | | | | - Binquan Luan
- Computational Biology Center, IBM Thomas J. Watson Research Center , Yorktown Heights, New York 10598, United States
| | | | | | - Ruhong Zhou
- Computational Biology Center, IBM Thomas J. Watson Research Center , Yorktown Heights, New York 10598, United States
- Institute of Quantitative Biology and Medicine, SRMP and RAD-X, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University , Suzhou 215123, China
- Department of Chemistry, Columbia University , New York, New York 10027, United States
| |
Collapse
|
16
|
Allsop T, Mou C, Neal R, Mariani S, Nagel D, Tombelli S, Poole A, Kalli K, Hine A, Webb DJ, Culverhouse P, Mascini M, Minunni M, Bennion I. Real-time kinetic binding studies at attomolar concentrations in solution phase using a single-stage opto-biosensing platform based upon infrared surface plasmons. OPTICS EXPRESS 2017; 25:39-58. [PMID: 28085810 DOI: 10.1364/oe.25.000039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Here we present a new generic opto-bio-sensing platform combining immobilised aptamers on an infrared plasmonic sensing device generated by nano-structured thin film that demonstrates amongst the highest index spectral sensitivities of any optical fibre sensor yielding on average 3.4 × 104 nm/RIU in the aqueous index regime (with a figure of merit of 330) This offers a single stage, solution phase, atto-molar detection capability, whilst delivering real-time data for kinetic studies in water-based chemistry. The sensing platform is based upon optical fibre and has the potential to be multiplexed and used in remote sensing applications. As an example of the highly versatile capabilities of aptamer based detection using our platform, purified thrombin is detected down to 50 attomolar concentration using a volume of 1mm3 of solution without the use of any form of enhancement technique. Moreover, the device can detect nanomolar levels of thrombin in a flow cell, in the presence of 4.5% w/v albumin solution. These results are important, covering all concentrations in the human thrombin generation curve, including the problematic initial phase. Finally, selectivity is confirmed using complementary and non-complementary DNA sequences that yield performances similar to those obtained with thrombin.
Collapse
|
17
|
Khodakov D, Wang C, Zhang DY. Diagnostics based on nucleic acid sequence variant profiling: PCR, hybridization, and NGS approaches. Adv Drug Deliv Rev 2016; 105:3-19. [PMID: 27089811 DOI: 10.1016/j.addr.2016.04.005] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/21/2016] [Accepted: 04/06/2016] [Indexed: 12/22/2022]
Abstract
Nucleic acid sequence variations have been implicated in many diseases, and reliable detection and quantitation of DNA/RNA biomarkers can inform effective therapeutic action, enabling precision medicine. Nucleic acid analysis technologies being translated into the clinic can broadly be classified into hybridization, PCR, and sequencing, as well as their combinations. Here we review the molecular mechanisms of popular commercial assays, and their progress in translation into in vitro diagnostics.
Collapse
|
18
|
Hu X, Wang Y, Liu H, Wang J, Tan Y, Wang F, Yuan Q, Tan W. Naked eye detection of multiple tumor-related mRNAs from patients with photonic-crystal micropattern supported dual-modal upconversion bioprobes. Chem Sci 2016; 8:466-472. [PMID: 28616133 PMCID: PMC5458711 DOI: 10.1039/c6sc03401b] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/19/2016] [Indexed: 01/10/2023] Open
Abstract
We have designed a biochip-based mRNA detection device by combining a hydrophilic–hydrophobic micropattern with upconversion luminescence (UCL) probes.
Development of a portable device for the detection of multiple mRNAs is a significant need in the early diagnosis of cancer. We have designed a biochip-based mRNA detection device by combining a hydrophilic–hydrophobic micropattern with upconversion luminescence (UCL) probes. The device achieves highly sensitive detection, using the naked eye, of multiple mRNAs among patient samples. The high sensitivity is attributed to enrichment of the target concentration and a fluorescence enhancement effect. In addition, since the photonic crystal (PC) dot biochip is functionalized with dual-wavelength excitation UCL probes, two kinds of mRNAs in the heterogeneous biological samples are detected simultaneously, and the corresponding luminescence signals are captured using an unmodified camera phone. The biochip-based mRNA detection device reported here demonstrates that multiple mRNAs extracted from patient samples can be simultaneously and sensitively detected in a visual way without sophisticated instrumentation. Therefore, this device is promising for real-time detection of multiple biomarkers in patient samples, and it is anticipated that it will provide a powerful tool for convenient early diagnosis of cancer.
Collapse
Affiliation(s)
- Xiaoxia Hu
- Key Laboratory of Analytical Chemistry for Biology and Medicine , Ministry of Education , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , P. R. China .
| | - Yingqian Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine , Ministry of Education , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , P. R. China .
| | - Haoyang Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine , Ministry of Education , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , P. R. China .
| | - Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine , Ministry of Education , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , P. R. China .
| | - Yaning Tan
- Key Laboratory of Analytical Chemistry for Biology and Medicine , Ministry of Education , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , P. R. China .
| | - Fubing Wang
- Department of Laboratory Medicine & Center for Gene Diagnosis , Zhongnan Hospital , Wuhan University , Wuhan , P. R. China
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine , Ministry of Education , College of Chemistry and Molecular Sciences , Wuhan University , Wuhan , P. R. China .
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory , State Key Laboratory of Chemo/Bio-Sensing and Chemometrics , College of Biology and College of Chemistry and Chemical Engineering , Hunan University , Changsha , P. R. China.,Department of Chemistry , Center for Research at the Bio/Nano Interface , Health Cancer Center , UF Genetics Institute , McKnight Brain Institute , University of Florida , Gainesville , USA
| |
Collapse
|
19
|
Das J, Ivanov I, Sargent EH, Kelley SO. DNA Clutch Probes for Circulating Tumor DNA Analysis. J Am Chem Soc 2016; 138:11009-16. [DOI: 10.1021/jacs.6b05679] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | - Shana O. Kelley
- Department
of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| |
Collapse
|
20
|
Labib M, Sargent EH, Kelley SO. Electrochemical Methods for the Analysis of Clinically Relevant Biomolecules. Chem Rev 2016; 116:9001-90. [DOI: 10.1021/acs.chemrev.6b00220] [Citation(s) in RCA: 555] [Impact Index Per Article: 69.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mahmoud Labib
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | | | - Shana O. Kelley
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute
of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| |
Collapse
|
21
|
Li C, Wu D, Hu X, Xiang Y, Shu Y, Li G. One-Step Modification of Electrode Surface for Ultrasensitive and Highly Selective Detection of Nucleic Acids with Practical Applications. Anal Chem 2016; 88:7583-90. [DOI: 10.1021/acs.analchem.6b01250] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chao Li
- State Key Laboratory
of Pharmaceutical Biotechnology and Collaborative Innovation Center
of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Dan Wu
- State Key Laboratory
of Pharmaceutical Biotechnology and Collaborative Innovation Center
of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Xiaolu Hu
- State Key Laboratory
of Pharmaceutical Biotechnology and Collaborative Innovation Center
of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Yang Xiang
- State Key Laboratory
of Pharmaceutical Biotechnology and Collaborative Innovation Center
of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, P. R. China
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Genxi Li
- State Key Laboratory
of Pharmaceutical Biotechnology and Collaborative Innovation Center
of Chemistry for Life Sciences, Department of Biochemistry, Nanjing University, Nanjing 210093, P. R. China
- Laboratory of Biosensing Technology, School
of Life Sciences, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
22
|
Koo KM, Carrascosa LG, Shiddiky MJA, Trau M. Amplification-Free Detection of Gene Fusions in Prostate Cancer Urinary Samples Using mRNA-Gold Affinity Interactions. Anal Chem 2016; 88:6781-8. [PMID: 27299694 DOI: 10.1021/acs.analchem.6b01182] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A crucial issue in present-day prostate cancer (PCa) detection is the lack of specific biomarkers for accurately distinguishing between benign and malignant cancer forms. This is causing a high degree of overdiagnosis and overtreatment of otherwise clinically insignificant cases. As around half of all malignant PCa cases display a detectable gene fusion mutation between the TMPRSS2 promoter sequence and the ERG coding sequence (TMPRSS2:ERG) in urine, noninvasive screening of TMPRSS2:ERG mRNA in patient urine samples could improve the specificity of current PCa diagnosis. However, current gene fusion detection methodologies are largely dependent on RNA enzymatic amplification, which requires extensive sample manipulation, costly labels for detection, and is prone to bias/artifacts. Herein we introduce the first successful amplification-free electrochemical assay for direct detection of TMPRSS2:ERG mRNA in PCa urinary samples by selectively isolating and adsorbing TMPRSS2:ERG mRNA onto bare gold electrodes without requiring any surface modification. We demonstrated excellent limit-of-detection (10 cells) and specificity using PCa cell line models, and showcased clinical utility by accurately detecting TMPRSS2:ERG in a collection of 17 urinary samples obtained from PCa patients. Furthermore, these results were validated with the current gold standard reverse transcription (RT)-PCR approach with 100% concordance.
Collapse
Affiliation(s)
- Kevin M Koo
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Laura G Carrascosa
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Muhammad J A Shiddiky
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland , Brisbane, Queensland 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland , Brisbane, Queensland 4072, Australia
| |
Collapse
|
23
|
Safaei TS, Das J, Mahshid SS, Aldridge PM, Sargent EH, Kelley SO. Image-Reversal Soft Lithography: Fabrication of Ultrasensitive Biomolecular Detectors. Adv Healthc Mater 2016; 5:893-9. [PMID: 26865322 DOI: 10.1002/adhm.201501025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Indexed: 11/09/2022]
Abstract
Image-reversal soft lithography enables the straightforward fabrication of high-performance biosensors without requiringhigh-resolution photolitography.
Collapse
Affiliation(s)
- Tina Saberi Safaei
- Department of Electrical and Computer Engineering; Faculty of Applied Science and Engineering; University of Toronto; 10 King's College Road Toronto ON M5S 3G4 Canada
| | - Jagotamoy Das
- Department of Pharmaceutical Science; Leslie Dan Faculty of Pharmacy; University of Toronto; 144 College Street Toronto ON M5S 3M2 Canada
| | - Sahar Sadat Mahshid
- Department of Pharmaceutical Science; Leslie Dan Faculty of Pharmacy; University of Toronto; 144 College Street Toronto ON M5S 3M2 Canada
| | - Peter M. Aldridge
- Institute for Biomaterials and Biomedical Engineering; University of Toronto; 164 College Street Toronto ON M5S 3G9 Canada
| | - Edward H. Sargent
- Department of Electrical and Computer Engineering; Faculty of Applied Science and Engineering; University of Toronto; 10 King's College Road Toronto ON M5S 3G4 Canada
| | - Shana O. Kelley
- Department of Pharmaceutical Science; Leslie Dan Faculty of Pharmacy; University of Toronto; 144 College Street Toronto ON M5S 3M2 Canada
- Institute for Biomaterials and Biomedical Engineering; University of Toronto; 164 College Street Toronto ON M5S 3G9 Canada
- Department of Biochemistry; Faculty of Medicine; University of Toronto; 1 King's College Circle Toronto ON M5S 1A8 Canada
| |
Collapse
|
24
|
Sage AT, Besant JD, Mahmoudian L, Poudineh M, Bai X, Zamel R, Hsin M, Sargent EH, Cypel M, Liu M, Keshavjee S, Kelley SO. Fractal circuit sensors enable rapid quantification of biomarkers for donor lung assessment for transplantation. SCIENCE ADVANCES 2015; 1:e1500417. [PMID: 26601233 PMCID: PMC4643795 DOI: 10.1126/sciadv.1500417] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 06/24/2015] [Indexed: 05/29/2023]
Abstract
Biomarker profiling is being rapidly incorporated in many areas of modern medical practice to improve the precision of clinical decision-making. This potential improvement, however, has not been transferred to the practice of organ assessment and transplantation because previously developed gene-profiling techniques require an extended period of time to perform, making them unsuitable in the time-sensitive organ assessment process. We sought to develop a novel class of chip-based sensors that would enable rapid analysis of tissue levels of preimplantation mRNA markers that correlate with the development of primary graft dysfunction (PGD) in recipients after transplant. Using fractal circuit sensors (FraCS), three-dimensional metal structures with large surface areas, we were able to rapidly (<20 min) and reproducibly quantify small differences in the expression of interleukin-6 (IL-6), IL-10, and ATP11B mRNA in donor lung biopsies. A proof-of-concept study using 52 human donor lungs was performed to develop a model that was used to predict, with excellent sensitivity (74%) and specificity (91%), the incidence of PGD for a donor lung. Thus, the FraCS-based approach delivers a key predictive value test that could be applied to enhance transplant patient outcomes. This work provides an important step toward bringing rapid diagnostic mRNA profiling to clinical application in lung transplantation.
Collapse
Affiliation(s)
- Andrew T. Sage
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Justin D. Besant
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Laili Mahmoudian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Mahla Poudineh
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Xiaohui Bai
- Division of Thoracic Surgery, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Ricardo Zamel
- Division of Thoracic Surgery, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Michael Hsin
- Division of Thoracic Surgery, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Edward H. Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Marcelo Cypel
- Division of Thoracic Surgery, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Mingyao Liu
- Division of Thoracic Surgery, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Shaf Keshavjee
- Division of Thoracic Surgery, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Shana O. Kelley
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
25
|
An electrochemical clamp assay for direct, rapid analysis of circulating nucleic acids in serum. Nat Chem 2015; 7:569-75. [PMID: 26100805 DOI: 10.1038/nchem.2270] [Citation(s) in RCA: 193] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 04/21/2015] [Indexed: 02/07/2023]
Abstract
The analysis of cell-free nucleic acids (cfNAs), which are present at significant levels in the blood of cancer patients, can reveal the mutational spectrum of a tumour without the need for invasive sampling of the tissue. However, this requires differentiation between the nucleic acids that originate from healthy cells and the mutated sequences shed by tumour cells. Here we report an electrochemical clamp assay that directly detects mutated sequences in patient serum. This is the first successful detection of cfNAs without the need for enzymatic amplification, a step that normally requires extensive sample processing and is prone to interference. The new chip-based assay reads out the presence of mutations within 15 minutes using a collection of oligonucleotides that sequester closely related sequences in solution, and thus allow only the mutated sequence to bind to a chip-based sensor. We demonstrate excellent levels of sensitivity and specificity and show that the clamp assay accurately detects mutated sequences in a collection of samples taken from lung cancer and melanoma patients.
Collapse
|
26
|
Besant JD, Das J, Burgess IB, Liu W, Sargent EH, Kelley SO. Ultrasensitive visual read-out of nucleic acids using electrocatalytic fluid displacement. Nat Commun 2015; 6:6978. [PMID: 25901450 PMCID: PMC4421844 DOI: 10.1038/ncomms7978] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/17/2015] [Indexed: 12/12/2022] Open
Abstract
Diagnosis of disease outside of sophisticated laboratories urgently requires low-cost, user-friendly devices. Disposable, instrument-free testing devices are used for home and physician office testing, but are limited in applicability to a small class of highly abundant analytes. Direct, unambiguous visual read-out is an ideal way to deliver a result on a disposable device; however, existing strategies that deliver appropriate sensitivity produce only subtle colour changes. Here we report a new approach, which we term electrocatalytic fluid displacement, where a molecular binding event is transduced into an electrochemical current, which drives the electrodeposition of a metal catalyst. The catalyst promotes bubble formation that displaces a fluid to reveal a high contrast change. We couple the read-out system to a nanostructured microelectrode and demonstrate direct visual detection of 100 fM DNA in 10 min. This represents the lowest limit of detection of nucleic acids reported using high contrast visual read-out.
Collapse
Affiliation(s)
- Justin D Besant
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada M5S 3G9
| | - Jagotamoy Das
- Department of Pharmaceutical Science, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada M5S 3M2
| | - Ian B Burgess
- Department of Pharmaceutical Science, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada M5S 3M2
| | - Wenhan Liu
- Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada M5S 3G9
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, Faculty of Engineering, University of Toronto, Toronto, Canada M5S 3G4
| | - Shana O Kelley
- 1] Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada M5S 3G9 [2] Department of Pharmaceutical Science, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada M5S 3M2 [3] Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Canada M5S 1A8
| |
Collapse
|
27
|
Sage AT, Bai X, Cypel M, Liu M, Keshavjee S, Kelley SO. Using the inherent chemistry of the endothelin-1 peptide to develop a rapid assay for pre-transplant donor lung assessment. Analyst 2015; 140:8092-6. [DOI: 10.1039/c5an01536g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
An assay for the lung transplant biomarker ET-1 is reported that allows levels of this molecule to be reported with record-breaking speed and sensitivity.
Collapse
Affiliation(s)
- Andrew T. Sage
- Department of Pharmaceutical Sciences
- Faculty of Pharmacy
- University of Toronto
- Toronto
- Canada
| | - Xiaohui Bai
- Division of Thoracic Surgery
- University of Toronto
- Toronto
- Canada
- Latner Thoracic Surgery Research Laboratories
| | - Marcelo Cypel
- Division of Thoracic Surgery
- University of Toronto
- Toronto
- Canada
- Latner Thoracic Surgery Research Laboratories
| | - Mingyao Liu
- Division of Thoracic Surgery
- University of Toronto
- Toronto
- Canada
- Latner Thoracic Surgery Research Laboratories
| | - Shaf Keshavjee
- Division of Thoracic Surgery
- University of Toronto
- Toronto
- Canada
- Latner Thoracic Surgery Research Laboratories
| | - Shana O. Kelley
- Department of Pharmaceutical Sciences
- Faculty of Pharmacy
- University of Toronto
- Toronto
- Canada
| |
Collapse
|
28
|
|
29
|
Honarmand A, Mayall R, George I, Oberding L, Dastidar H, Fegan J, Chaudhuri S, Dole J, Feng S, Hoang D, Moges R, Osgood J, Remondini T, van der Meulen WK, Wang S, Wintersinger C, Zaparoli Zucoloto A, Chatfield-Reed K, Arcellana-Panlilio M, Nygren A. A multiplexed transcription activator-like effector system for detecting specific DNA sequences. ACS Synth Biol 2014; 3:953-5. [PMID: 25524096 DOI: 10.1021/sb500045w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transcription activator-like effectors (TALEs), originating from the Xanthomonas genus of bacteria, bind to specific DNA sequences based on amino acid sequence in the repeat-variable diresidue (RVD) positions of the protein. By altering these RVDs, it has been shown that a TALE protein can be engineered to bind virtually any DNA sequence of interest. The possibility of multiplexing TALEs for the purposes of identifying specific DNA sequences has yet to be explored. Here, we demonstrate a system in which a TALE protein bound to a nitrocellulose strip has been utilized to capture purified DNA, which is then detected using the binding of a second distinct TALE protein conjugated to a protein tag that is then detected by a dot blot. This system provides a signal only when both TALEs bind to their respective sequences, further demonstrating the specificity of the TALE binding.
Collapse
Affiliation(s)
- Ali Honarmand
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Robert Mayall
- Department of Chemistry, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Iain George
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Lisa Oberding
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Himika Dastidar
- Department of Microbiology,
Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Jamie Fegan
- Department of Microbiology,
Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Somshukla Chaudhuri
- O’Brien Centre for the Bachelor of Health Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Justin Dole
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Sharon Feng
- O’Brien Centre for the Bachelor of Health Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Denny Hoang
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Ruth Moges
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Julie Osgood
- O’Brien Centre for the Bachelor of Health Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Taylor Remondini
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Wm. Keith van der Meulen
- Department of Electrical
and Computer Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Su Wang
- Department of Chemical Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Chris Wintersinger
- O’Brien Centre for the Bachelor of Health Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | - Kate Chatfield-Reed
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Mayi Arcellana-Panlilio
- Department of Biochemistry and Molecular
Biology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Anders Nygren
- Department of Electrical
and Computer Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
30
|
Zhou YG, Wan Y, Sage AT, Poudineh M, Kelley SO. Effect of microelectrode structure on electrocatalysis at nucleic acid-modified sensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:14322-14328. [PMID: 25377873 DOI: 10.1021/la502990s] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The electrochemical detection of nucleic acids using an electrocatalytic reporter system and nanostructured microelectrodes is a powerful approach to ultrasensitive biosensing. In this report we systematically study for the first time the behavior of an electrocatalytic reporter system at nucleic acid-modified electrodes with varying structures and sizes. [Ru(NH3)6](3+) is used as a primary electron acceptor that is electrostatically attracted to nucleic acid-modified electrodes, and [Fe(CN)6](3-) is introduced into the redox system as a secondary electron acceptor to regenerate Ru(3+) after electrochemical reduction. We found that the electrode structure has strong impact on mass transport and electron-transfer kinetics, with structures of specific dimensions yielding much higher electrochemical signals and catalytic efficiencies. The electrocatalytic signals obtained when gold sensors were electrodeposited in both circular and linear apertures were studied, and the smallest structures plated in linear apertures were found to exhibit the best performance with high current densities and turnover rates. This study provides important information for optimal assay performance and insights for the future design and fabrication of high performance biomolecular assays.
Collapse
Affiliation(s)
- Yi-Ge Zhou
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, ‡Department of Biochemistry, Faculty of Medicine, and §Department of Electrical and Computer Engineering, University of Toronto , Toronto, ON M5S 3M2, Canada
| | | | | | | | | |
Collapse
|
31
|
Kelley SO, Mirkin CA, Walt DR, Ismagilov RF, Toner M, Sargent EH. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering. NATURE NANOTECHNOLOGY 2014; 9:969-80. [PMID: 25466541 PMCID: PMC4472305 DOI: 10.1038/nnano.2014.261] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 10/13/2014] [Indexed: 05/05/2023]
Abstract
Rapid progress in identifying disease biomarkers has increased the importance of creating high-performance detection technologies. Over the last decade, the design of many detection platforms has focused on either the nano or micro length scale. Here, we review recent strategies that combine nano- and microscale materials and devices to produce large improvements in detection sensitivity, speed and accuracy, allowing previously undetectable biomarkers to be identified in clinical samples. Microsensors that incorporate nanoscale features can now rapidly detect disease-related nucleic acids expressed in patient samples. New microdevices that separate large clinical samples into nanocompartments allow precise quantitation of analytes, and microfluidic systems that utilize nanoscale binding events can detect rare cancer cells in the bloodstream more accurately than before. These advances will lead to faster and more reliable clinical diagnostic devices.
Collapse
Affiliation(s)
- Shana O. Kelley
- Department of Pharmaceutical Sciences and Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Correspondence should be addressed to S.O.K.,
| | - Chad A. Mirkin
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - David R. Walt
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, USA
| | - Rustem F. Ismagilov
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Mehmet Toner
- Center for Bioengineering in Medicine, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Edward H. Sargent
- Department of Computer and Electrical Engineering, University of Toronto, Toronto, Ontario M5S 1A4, Canada
| |
Collapse
|
32
|
Sage AT, Besant JD, Lam B, Sargent EH, Kelley SO. Ultrasensitive electrochemical biomolecular detection using nanostructured microelectrodes. Acc Chem Res 2014; 47:2417-25. [PMID: 24961296 DOI: 10.1021/ar500130m] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Electrochemical sensors have the potential to achieve sensitive, specific, and low-cost detection of biomolecules--a capability that is ever more relevant to the diagnosis and monitored treatment of disease. The development of devices for clinical diagnostics based on electrochemical detection could provide a powerful solution for the routine use of biomarkers in patient treatment and monitoring and may overcome the many issues created by current methods, including the long sample-to-answer times, high cost, and limited prospects for lab-free use of traditional polymerase chain reaction, microarrays, and gene-sequencing technologies. In this Account, we summarize the advances in electrochemical biomolecular detection, focusing on a new and integrated platform that exploits the bottom-up fabrication of multiplexed electrochemical sensors composed of electrodeposited noble metals. We trace the evolution of these sensors from gold nanoelectrode ensembles to nanostructured microelectrodes (NMEs) and discuss the effects of surface morphology and size on assay performance. The development of a novel electrocatalytic assay based on Ru(3+) adsorption and Fe(3+) amplification at the electrode surface as a means to enable ultrasensitive analyte detection is discussed. Electrochemical measurements of changes in hybridization events at the electrode surface are performed using a simple potentiostat, which enables integration into a portable, cost-effective device. We summarize the strategies for proximal sample processing and detection in addition to those that enable high degrees of sensor multiplexing capable of measuring 100 different analytes on a single chip. By evaluating the cost and performance of various sensor substrates, we explore the development of practical lab-on-a-chip prototype devices. By functionalizing the NMEs with capture probes specific to nucleic acid, small molecule, and protein targets, we can successfully detect a wide variety of analytes at clinically relevant concentrations and speeds. Using this platform, we have achieved attomolar detection levels of nucleic acids with overall assay times as short as 2 min. We also describe the adaptation of the sensing platform to allow for the measurement of uncharged analytes--a challenge for reporter systems that rely on the charge of an analyte. Furthermore, the capabilities of this system have been applied to address the many current and important clinical challenges involving the detection of pathogenic species, including both bacterial and viral infections and cancer biomarkers. This novel electrochemical platform, which achieves large molecular-to-electrical amplification by means of its unique redox-cycling readout strategy combined with rapid and efficient analyte capture that is aided by nanostructured microelectrodes, achieves excellent specificity and sensitivity in clinical samples in which analytes are present at low concentrations in complex matrices.
Collapse
Affiliation(s)
- Andrew T. Sage
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Justin D. Besant
- Institute
for Biomedical and Biomaterials Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Brian Lam
- Institute
for Biomedical and Biomaterials Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
| | - Edward H. Sargent
- Department of Electrical & Computer Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G4
| | - Shana O. Kelley
- Department
of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3M2
- Institute
for Biomedical and Biomaterials Engineering, University of Toronto, Toronto, Ontario, Canada M5S 3G9
- Department
of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
33
|
Tran HV, Piro B, Reisberg S, Huy Nguyen L, Dung Nguyen T, Duc HT, Pham MC. An electrochemical ELISA-like immunosensor for miRNAs detection based on screen-printed gold electrodes modified with reduced graphene oxide and carbon nanotubes. Biosens Bioelectron 2014; 62:25-30. [PMID: 24973539 DOI: 10.1016/j.bios.2014.06.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 11/17/2022]
Abstract
We design an electrochemical immunosensor for miRNA detection, based on screen-printed gold electrodes modified with reduced graphene oxide and carbon nanotubes. An original immunological approach is followed, using antibodies directed to DNA.RNA hybrids. An electrochemical ELISA-like amplification strategy was set up using a secondary antibody conjugated to horseradish peroxidase (HRP). Hydroquinone is oxidized into benzoquinone by the HRP/H2O2 catalytic system. In turn, benzoquinone is electroreduced into hydroquinone at the electrode. The catalytic reduction current is related to HRP amount immobilized on the surface, which itself is related to miRNA.DNA surface density on the electrode. This architecture, compared to classical optical detection, lowers the detection limit down to 10 fM. Two miRNAs were studied: miR-141 (a prostate biomarker) and miR-29b-1 (a lung cancer biomarker).
Collapse
Affiliation(s)
- H V Tran
- Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France; USTH, University of Science and Technology of Hanoi, 18 Hoang Quoc Viet, Hanoi, Vietnam; School of Chemical Engineering, Hanoi University of Science and Technology, 1st Dai Co Viet Road, Hanoi, Vietnam
| | - B Piro
- Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France
| | - S Reisberg
- Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France
| | - L Huy Nguyen
- Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France
| | - T Dung Nguyen
- Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France
| | - H T Duc
- Université Paris 11, INSERM U-1014, Hôpital Paul Brousse 94800 Villejuif, France
| | - M C Pham
- Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de Baïf, 75205 Paris Cedex 13, France.
| |
Collapse
|
34
|
Zhang P, Wang S. Designing Fractal Nanostructured Biointerfaces for Biomedical Applications. Chemphyschem 2014; 15:1550-61. [DOI: 10.1002/cphc.201301230] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Indexed: 01/23/2023]
|
35
|
Hartman MR, Ruiz RCH, Hamada S, Xu C, Yancey KG, Yu Y, Han W, Luo D. Point-of-care nucleic acid detection using nanotechnology. NANOSCALE 2013; 5:10141-54. [PMID: 24057263 DOI: 10.1039/c3nr04015a] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Recent developments in nanotechnology have led to significant advancements in point-of-care (POC) nucleic acid detection. The ability to sense DNA and RNA in a portable format leads to important applications for a range of settings, from on-site detection in the field to bedside diagnostics, in both developing and developed countries. We review recent innovations in three key process components for nucleic acid detection: sample preparation, target amplification, and read-out modalities. We discuss how the advancements realized by nanotechnology are making POC nucleic acid detection increasingly applicable for decentralized and accessible testing, in particular for the developing world.
Collapse
Affiliation(s)
- Mark R Hartman
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Wohlgamuth CH, McWilliams MA, Slinker JD. DNA as a molecular wire: distance and sequence dependence. Anal Chem 2013; 85:8634-40. [PMID: 23964773 DOI: 10.1021/ac401229q] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Functional nanowires and nanoelectronics are sought for their use in next generation integrated circuits, but several challenges limit the use of most nanoscale devices on large scales. DNA has great potential for use as a molecular wire due to high yield synthesis, near-unity purification, and nanoscale self-organization. Nonetheless, a thorough understanding of ground state DNA charge transport (CT) in electronic configurations under biologically relevant conditions, where the fully base-paired, double-helical structure is preserved, is lacking. Here, we explore the fundamentals of CT through double-stranded DNA monolayers on gold by assessing 17 base pair bridges at discrete points with a redox active probe conjugated to a modified thymine. This assessment is performed under temperature-controlled and biologically relevant conditions with cyclic and square wave voltammetry, and redox peaks are analyzed to assess transfer rate and yield. We demonstrate that the yield of transport is strongly tied to the stability of the duplex, linearly correlating with the melting temperature. Transfer rate is found to be temperature-activated and to follow an inverse distance dependence, consistent with a hopping mechanism of transport. These results establish the governing factors of charge transfer speed and throughput in DNA molecular wires for device configurations, guiding subsequent application for nanoscale electronics.
Collapse
Affiliation(s)
- Chris H Wohlgamuth
- Department of Physics, The University of Texas at Dallas , 800 W. Campbell Rd., EC 36, Richardson, Texas 75080, United States
| | | | | |
Collapse
|
37
|
Tran HV, Piro B, Reisberg S, Duc HT, Pham M. Antibodies Directed to RNA/DNA Hybrids: An Electrochemical Immunosensor for MicroRNAs Detection using Graphene-Composite Electrodes. Anal Chem 2013; 85:8469-74. [DOI: 10.1021/ac402154z] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- H. V. Tran
- Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de
Baïf, 75205 Paris Cedex 13, France
| | - B. Piro
- Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de
Baïf, 75205 Paris Cedex 13, France
| | - S. Reisberg
- Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de
Baïf, 75205 Paris Cedex 13, France
| | - H. T. Duc
- Université Paris XI, INSERM U-1014, Groupe Hospitalier Paul Brousse-94800
Villejuif, France
| | - M.C. Pham
- Univ. Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR 7086 CNRS, 15 rue J-A de
Baïf, 75205 Paris Cedex 13, France
| |
Collapse
|
38
|
Pheeney CG, Arnold AR, Grodick MA, Barton JK. Multiplexed electrochemistry of DNA-bound metalloproteins. J Am Chem Soc 2013; 135:11869-78. [PMID: 23899026 DOI: 10.1021/ja4041779] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we describe a multiplexed electrochemical characterization of DNA-bound proteins containing [4Fe-4S] clusters. DNA-modified electrodes have become an essential tool for the characterization of the redox chemistry of DNA repair proteins containing redox cofactors, and multiplexing offers a means to probe different complex samples and substrates in parallel to elucidate this chemistry. Multiplexed analysis of endonuclease III (EndoIII), a DNA repair protein containing a [4Fe-4S] cluster known to be accessible via DNA-mediated charge transport, shows subtle differences in the electrochemical behavior as a function of DNA morphology. The peak splitting, signal broadness, sensitivity to π-stack perturbations, and kinetics were all characterized for the DNA-bound reduction of EndoIII on both closely and loosely packed DNA films. DNA-bound EndoIII is seen to have two different electron transfer pathways for reduction, either through the DNA base stack or through direct surface reduction; closely packed DNA films, where the protein has limited surface accessibility, produce electrochemical signals reflecting electron transfer that is DNA-mediated. Multiplexing furthermore permits the comparison of the electrochemistry of EndoIII mutants, including a new family of mutations altering the electrostatics surrounding the [4Fe-4S] cluster. While little change in the midpoint potential was found for this family of mutants, significant variations in the efficiency of DNA-mediated electron transfer were apparent. On the basis of the stability of these proteins, examined by circular dichroism, we propose that the electron transfer pathway can be perturbed not only by the removal of aromatic residues but also through changes in solvation near the cluster.
Collapse
Affiliation(s)
- Catrina G Pheeney
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | |
Collapse
|
39
|
Das J, Kelley SO. Tuning the Bacterial Detection Sensitivity of Nanostructured Microelectrodes. Anal Chem 2013; 85:7333-8. [DOI: 10.1021/ac401221f] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jagotamoy Das
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy and ‡Department of
Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Shana O. Kelley
- Department
of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy and ‡Department of
Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
40
|
Jiang Y, Meng F, Qi D, Cai P, Yin Z, Shao F, Zhang H, Boey F, Chen X. Gold nanotip array for ultrasensitive electrochemical sensing and spectroscopic monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:2260-2265. [PMID: 23362212 DOI: 10.1002/smll.201202620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 11/16/2012] [Indexed: 06/01/2023]
Abstract
A gold nanotip array platform with a combination of ultrasensitive electrochemical sensing and spectroscopic monitoring capability is reported. Adenosine triphosphate is detected down to 1 pM according to the impedance changes in response to aptamer-specific binding. Furthermore, the local molecular information can be monitored at the individual plasmonic nanotips, and hence provide the capability for a better understanding of complex biological processes.
Collapse
Affiliation(s)
- Yueyue Jiang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Gao F, Yang N, Obloh H, Nebel CE. Shape-controlled platinum nanocrystals on boron-doped diamond. Electrochem commun 2013. [DOI: 10.1016/j.elecom.2013.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
42
|
Moscovici M, Bhimji A, Kelley SO. Rapid and specific electrochemical detection of prostate cancer cells using an aperture sensor array. LAB ON A CHIP 2013; 13:940-946. [PMID: 23334685 DOI: 10.1039/c2lc41049d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A rapid, simple and specific cancer cell counting sensor would allow for early detection and better disease management. We have developed a novel cell counting device that can specifically count 125 prostate cancer cells in both complex media with serum and a mixed cell population containing non-target cells within 15 min. The microfabricated glass chip with exposed gold apertures utilizes the anti-EpCAM antibody to selectively count prostate cancer cells via differential pulse voltammetry. The newly developed sensor exhibits excellent sensitivity and selectivity. The cells remain viable throughout the counting process and can be used for further analysis. This device could have utility for future applications in early stage cancer diagnosis.
Collapse
Affiliation(s)
- Mario Moscovici
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
43
|
Ivanov I, Stojcic J, Stanimirovic A, Sargent E, Nam RK, Kelley SO. Chip-based nanostructured sensors enable accurate identification and classification of circulating tumor cells in prostate cancer patient blood samples. Anal Chem 2012; 85:398-403. [PMID: 23167816 DOI: 10.1021/ac3029739] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The identification and analysis of circulating tumor cells (CTCs) is an important goal for the development of noninvasive cancer diagnosis. Here we describe a chip-based method using nanostructured microelectrodes and electrochemical readout that confirms the identity of isolated CTCs and successfully interrogates them for specific biomarkers. We successfully analyze and classify prostate tumor cells, first in cultured cells, and ultimately in a pilot study involving blood samples from 16 prostate cancer patients as well as additional healthy controls. In all cases, and for all biomarkers investigated, the novel chip-based assay produced results that agreed with polymerase chain reaction (PCR). The approach developed has a simple workflow and scalable multiplexing, which makes it ideal for further studies of CTC biomarkers.
Collapse
Affiliation(s)
- Ivaylo Ivanov
- Department of Pharmaceutical Science, Leslie Dan Faculty of Pharmacy, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
44
|
Fan Z, Senapati D, Singh AK, Ray PC. Theranostic magnetic core-plasmonic shell star shape nanoparticle for the isolation of targeted rare tumor cells from whole blood, fluorescence imaging, and photothermal destruction of cancer. Mol Pharm 2012; 10:857-66. [PMID: 23110457 DOI: 10.1021/mp300468q] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cancer is one of the most life-threatening diseases, which causes 7.6 million deaths and around 1 trillion dollars economic loss every year. Theranostic materials are expected to improve early detection and safe treatment through personalized medicine. Driven by the needs, we report the development of a theranostic plasmonic shell-magnetic core star shape nanomaterial based approach for the targeted isolation of rare tumor cells from the whole blood sample, followed by diagnosis and photothermal destruction. Experimental data with whole blood sample spiked with SK-BR-3 cancer cell shows that Cy3 attached S6 aptamer conjugated theranostic plasmonic/magnetic nanoparticles can be used for fluorescence imaging and magnetic separation even in 0.001% mixtures. A targeted photothermal experiment using 1064 nm near-IR light at 2-3 W/cm(2) for 10 min resulted in selective irreparable cellular damage to most of the SK-BR-3 cancer cells. We discuss the possible mechanism and operating principle for the targeted imaging, separation, and photothermal destruction using theranostic magnetic/plasmonic nanotechnology. After the optimization of different parameters, this theranostic nanotechnology-driven assay could have enormous potential for applications as contrast agent and therapeutic actuators for cancer.
Collapse
Affiliation(s)
- Zhen Fan
- Department of Chemistry, Jackson State University, Jackson, Mississippi 39217, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Electrocatalysis offers a means of electrochemical signal amplification, yet in DNA-based sensors, electrocatalysis has required high-density DNA films and strict assembly and passivation conditions. Here, we describe the use of hemoglobin as a robust and effective electron sink for electrocatalysis in DNA sensing on low-density DNA films. Protein shielding of the heme redox center minimizes direct reduction at the electrode surface and permits assays on low-density DNA films. Electrocatalysis with methylene blue that is covalently tethered to the DNA by a flexible alkyl chain linkage allows for efficient interactions with both the base stack and hemoglobin. Consistent suppression of the redox signal upon incorporation of a single cytosine-adenine (CA) mismatch in the DNA oligomer demonstrates that both the unamplified and the electrocatalytically amplified redox signals are generated through DNA-mediated charge transport. Electrocatalysis with hemoglobin is robust: It is stable to pH and temperature variations. The utility and applicability of electrocatalysis with hemoglobin is demonstrated through restriction enzyme detection, and an enhancement in sensitivity permits femtomole DNA sampling.
Collapse
|
46
|
An ultrasensitive universal detector based on neutralizer displacement. Nat Chem 2012; 4:642-8. [PMID: 22824896 DOI: 10.1038/nchem.1367] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/24/2012] [Indexed: 12/23/2022]
Abstract
Diagnostic technologies that can provide the simultaneous detection of nucleic acids for gene expression, proteins for host response and small molecules for profiling the human metabolome will have a significant advantage in providing comprehensive patient monitoring. Molecular sensors that report changes in the electrostatics of a sensor's surface on analyte binding have shown unprecedented sensitivity in the detection of charged biomolecules, but do not lend themselves to the detection of small molecules, which do not carry significant charge. Here, we introduce the neutralizer displacement assay that allows charge-based sensing to be applied to any class of molecule irrespective of the analyte charge. The neutralizer displacement assay starts with an aptamer probe bound to a neutralizer. When analyte binding occurs the neutralizer is displaced, which results in a dramatic change in the surface charge for all types of analytes. We have tested the sensitivity, speed and specificity of this system in the detection of a panel of molecules: (deoxy)ribonucleic acid, ribonucleic acid, cocaine, adenosine triphosphate and thrombin.
Collapse
|
47
|
Alubaidy M, Soleymani L, Venkatakrishnan K, Tan B. Femtosecond laser nanostructuring for femtosensitive DNA detection. Biosens Bioelectron 2012; 33:82-7. [DOI: 10.1016/j.bios.2011.12.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 11/30/2011] [Accepted: 12/14/2011] [Indexed: 10/14/2022]
|
48
|
Fan Z, Shelton M, Singh AK, Senapati D, Khan SA, Ray PC. Multifunctional plasmonic shell-magnetic core nanoparticles for targeted diagnostics, isolation, and photothermal destruction of tumor cells. ACS NANO 2012; 6:1065-73. [PMID: 22276857 PMCID: PMC3289758 DOI: 10.1021/nn2045246] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cancer is the greatest challenge in human healthcare today. Cancer causes 7.6 million deaths and economic losses of around 1 trillion dollars every year. Early diagnosis and effective treatment of cancer are crucial for saving lives. Driven by these needs, we report the development of a multifunctional plasmonic shell-magnetic core nanotechnology-driven approach for the targeted diagnosis, isolation, and photothermal destruction of cancer cells. Experimental data show that aptamer-conjugated plasmonic/magnetic nanoparticles can be used for targeted imaging and magnetic separation of a particular kind of cell from a mixture of different cancer cells. A targeted photothermal experiment using 670 nm light at 2.5 W/cm(2) for 10 min resulted selective irreparable cellular damage to most of the cancer cells. We also showed that the aptamer-conjugated magnetic/plasmonic nanoparticle-based photothermal destruction of cancer cells is highly selective. We discuss the possible mechanism and operating principle for the targeted imaging, separation, and photothermal destruction using magnetic/plasmonic nanotechnology.
Collapse
|
49
|
Feng L, Wu L, Wang J, Ren J, Miyoshi D, Sugimoto N, Qu X. Detection of a prognostic indicator in early-stage cancer using functionalized graphene-based peptide sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:125-131. [PMID: 22139890 DOI: 10.1002/adma.201103205] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 10/19/2011] [Indexed: 05/29/2023]
Affiliation(s)
- Lingyan Feng
- Graduate School of the Chinese Academy of Sciences, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | | | | | | | | | | | | |
Collapse
|
50
|
Lam B, Fang Z, Sargent EH, Kelley SO. Polymerase chain reaction-free, sample-to-answer bacterial detection in 30 minutes with integrated cell lysis. Anal Chem 2011; 84:21-5. [PMID: 22142422 DOI: 10.1021/ac202599b] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An important goal for improved diagnosis and management of infectious disease is the development of rapid and accurate technologies for the decentralized detection of bacterial pathogens. Most current clinical methods that identify bacterial strains require time-consuming culture of the sample or procedures involving the polymerase chain reaction. Neither of these approaches has enabled testing at the point-of-need because of the requirement for skilled technicians and laboratory facilities. Here, we demonstrate the performance of an effective, integrated platform for the rapid detection of bacteria that combines a universal bacterial lysis approach and a sensitive nanostructured electrochemical biosensor. The lysis is rapid, is effective at releasing intercellular RNA from bacterial samples, and can be performed in a simple, cost-effective device integrated with an analysis chip. The platform was directly challenged with these unpurified lysates in buffer and urine. We successfully detected the presence of bacteria with high sensitivity and specificity and achieved a sample-to-answer turnaround time of 30 min. We have met the clinically relevant detection limit of 1 cfu/μL, indicating that uncultured samples can be analyzed. This advance will greatly reduce time to successful detection from days to minutes.
Collapse
Affiliation(s)
- Brian Lam
- Department of Chemistry, Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|