1
|
Maleckis M, Wibowo M, Gren T, Jarmusch SA, Sterndorff EB, Booth T, Henriksen NNSE, Whitford CM, Jiang X, Jørgensen TS, Ding L, Weber T. Biosynthesis of the Azoxy Compound Azodyrecin from Streptomyces mirabilis P8-A2. ACS Chem Biol 2024; 19:641-653. [PMID: 38340355 DOI: 10.1021/acschembio.3c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Azoxy compounds are a distinctive group of bioactive secondary metabolites characterized by a unique RN═N+(O-)R moiety. The azoxy moiety is present in various classes of metabolites that exhibit various biological activities. The enzymatic mechanisms underlying azoxy bond formation remain enigmatic. Azodyrecins are cytotoxic azoxy metabolites produced by Streptomyces mirabilis P8-A2. Here, we cloned and confirmed the putative azd biosynthetic gene cluster through CATCH cloning followed by expression and production of azodyrecins in two heterologous hosts, S. albidoflavus J1074 and S. coelicolor M1146, respectively. We explored the function of 14 enzymes in azodyrecin biosynthesis through gene knockout using CRISPR-Cas9 base editing in the native producer, S. mirabilis P8-A2. The key intermediates were analyzed in the mutants through MS/MS fragmentation studies, revealing azoxy bond formation via the conversion of hydrazine to an azo compound followed by further oxygenation. Enzymes involved in modifications of the precursor could be postulated based on their predicted function and the intermediates identified in the knockout strains. Moreover, the distribution of the azoxy biosynthetic gene clusters across Streptomyces spp. genomes is explored, highlighting the presence of these clusters in over 20% of the Streptomyces spp. genomes and revealing that azoxymycin and valanimycin are scarce, while azodyrecin and KA57A-like clusters are widely distributed across the phylogenetic tree.
Collapse
Affiliation(s)
- Matiss Maleckis
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Mario Wibowo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Tetiana Gren
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Scott A Jarmusch
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Eva B Sterndorff
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Thomas Booth
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Nathalie N S E Henriksen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Christopher M Whitford
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Xinglin Jiang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Tue S Jørgensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Ling Ding
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Søltofts Plads, Building 220, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
2
|
Tanaka Y, Nagano H, Okano M, Kishimoto T, Tatsukawa A, Kunitake H, Fukumoto A, Anzai Y, Arakawa K. Isolation of Hydrazide-alkenes with Different Amino Acid Origins from an Azoxy-alkene-Producing Mutant of Streptomyces rochei 7434AN4. JOURNAL OF NATURAL PRODUCTS 2023; 86:2185-2192. [PMID: 37624992 DOI: 10.1021/acs.jnatprod.3c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
A triple mutant (strain KA57) of Streptomyces rochei 7434AN4 produces an azoxy-alkene compound, KA57A, which was not detected in a parent strain or other single and double mutants. This strain accumulated several additional minor components, whose structures were elucidated. HPLC analysis of strain KA57 indicated the presence of two UV active components (KA57D1 and KA57D2) as minor components. They exhibited a maximum UV absorbance at 218 nm, whereas a UV absorbance of azoxy-alkene KA57A was detected at 236 nm, suggesting that both KA57D1 and KA57D2 contain a different chromophore from KA57A. KA57D1 has a molecular formula of C12H22N2O2, and NMR analysis revealed KA57D1 is a novel hydrazide-alkene compound, (Z)-N-acetyl-N'-(hex-1-en-1-yl)isobutylhydrazide. Labeling studies indicated that nitrogen Nβ of KA57D1 is derived from l-glutamic acid, and the isobutylamide unit (C-1 to C-3, 2-Me, and Nα) originates from valine. KA57D2 has a molecular formula of C13H24N2O2, and its structure was determined to be (Z)-N-acetyl-N'-(hex-1-en-1-yl)-2-methylbutanehydrazide, in which a 2-methylbutanamide unit was shown to originate from isoleucine. Different biogenesis of the Nα atom (l-serine for KA57A, l-valine for KA57D1, and l-isoleucine for KA57D2) indicates the relaxed substrate recognition for nitrogen-nitrogen bond formation in the biosyntheses of KA57A, KA57D1, and KA57D2.
Collapse
Affiliation(s)
- Yu Tanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Haruka Nagano
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Mei Okano
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Takuya Kishimoto
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Ayaka Tatsukawa
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Hirofumi Kunitake
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| | - Atsushi Fukumoto
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan
| | - Yojiro Anzai
- Department of Microbiology, Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan
| | - Kenji Arakawa
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8530, Japan
| |
Collapse
|
3
|
Han ZP, Wang S, Sun Q, Xu XP, Ji SJ. Synthesis of Azoxy Compounds: from Copper Compounds to Mesoporous Silica-Encaged Ultrasmall Copper Catalysts. CHEMSUSCHEM 2023; 16:e202300477. [PMID: 37148179 DOI: 10.1002/cssc.202300477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 05/08/2023]
Abstract
Azoxy compounds have aroused extensive attention due to their unique biological activities, but the chemical synthesis of these compounds often suffers from limitations due to their requirement for stoichiometric oxidants, high costs, and restricted substrate range. Herein, a series of azoxy compounds were constructed via facile coupling reactions by using cost-effective N-methoxyformamide and nitroso compounds over Cu-based catalysts, affording high product yields with excellent tolerance of functional groups. Significantly, the mesoporous silica nanosphere-encapsulated ultrasmall Cu (Cu@MSN) catalyst was developed via a one-pot synthetic method and first used for the synthesis of azoxy compounds. As compared with copper salt catalysts, the Cu@MSN catalyst exhibited remarkably enhanced catalytic activity and superior recycling stability. Such a Cu@MSN catalyst overcame the inherent drawbacks of low activity, fast deactivation, and difficult recycling of traditional metal salt catalysts in organic reactions. This work provides a green and efficient method for the construction of azoxy compounds and also creates new prospects for the application of nanoporous materials confined metal catalysts in organic synthesis.
Collapse
Affiliation(s)
- Zhi-Peng Han
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, Jiangsu, P. R. China
| | - Shiqi Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, Jiangsu, P. R. China
- Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, 215123, Suzhou, Jiangsu, P. R. China
| | - Qiming Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, Jiangsu, P. R. China
- Innovation Center of Chemical Science, Soochow University, 215123, Suzhou, Jiangsu, P. R. China
| | - Xiao-Ping Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, Jiangsu, P. R. China
- Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, 215123, Suzhou, Jiangsu, P. R. China
- Innovation Center of Chemical Science, Soochow University, 215123, Suzhou, Jiangsu, P. R. China
| | - Shun-Jun Ji
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, Jiangsu, P. R. China
- Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, 215123, Suzhou, Jiangsu, P. R. China
| |
Collapse
|
4
|
He X, Peng G, Luo J, Huang JP, Yang J, Yan Y, Gu YC, Wang L, Huang SX. O-Alkylazoxymycins A-F, Naturally Occurring Azoxy-Aromatic Compounds from Streptomyces sp. Py50. JOURNAL OF NATURAL PRODUCTS 2023; 86:176-181. [PMID: 36634313 DOI: 10.1021/acs.jnatprod.2c00892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Six new azoxy-aromatic compounds (o-alkylazoxymycins A-F, 1-6) and two new nitrogen-bearing phenylvaleric/phenylheptanoic acid derivatives (o-alkylphemycins A and B, 7 and 8) were isolated from Streptomyces sp. Py50. Their structures were elucidated based on HRESIMS, NMR, UV spectroscopic analyses, and X-ray crystallographic data. O-Alkylazoxymycins A-F (1-6) are the first natural examples of azoxy compounds with the azoxy bond attached to the ortho-position of the phenylheptanoic acid or phenylvaleric acid moiety. Compounds 1, 5, and 6 were active against Epidermophyton floccosum with MIC50 values ranging from 10.1 to 51.2 μM. A plausible biosynthetic pathway of 2 and 3 was proposed.
Collapse
Affiliation(s)
- Xin He
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Guoqing Peng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Jianying Luo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jian-Ping Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Jing Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Yijun Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, Berkshire RG42 6EY, U.K
| | - Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, and CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| |
Collapse
|
5
|
Saito S, Funayama K, Kato W, Okuda M, Kawamoto M, Matsubara T, Sato T, Sato A, Otsuguro S, Sasaki M, Orba Y, Sawa H, Maenaka K, Shindo K, Imoto M, Arai MA. Dihydromaniwamycin E, a Heat-Shock Metabolite from Thermotolerant Streptomyces sp. JA74, Exhibiting Antiviral Activity against Influenza and SARS-CoV-2 Viruses. JOURNAL OF NATURAL PRODUCTS 2022; 85:2583-2591. [PMID: 36223390 PMCID: PMC9578650 DOI: 10.1021/acs.jnatprod.2c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 06/16/2023]
Abstract
Dihydromaniwamycin E (1), a new maniwamycin derivative featuring an azoxy moiety, has been isolated from the culture extract of thermotolerant Streptomyces sp. JA74 along with the known analogue maniwamycin E (2). Compound 1 is produced only by cultivation of strain JA74 at 45 °C, and this type of compound has been previously designated a "heat shock metabolite (HSM)" by our research group. Compound 2 is detected as a production-enhanced metabolite at high temperature. Structures of 1 and 2 are elucidated by NMR and MS spectroscopic analyses. The absolute structure of 1 is determined after the total synthesis of four stereoisomers. Though the absolute structure of 2 has been proposed to be the same as the structure of maniwamycin D, the NMR and the optical rotation value of 2 are in agreement with those of maniwamycin E. Therefore, this study proposes a structural revision of maniwamycins D and E. Compounds 1 and 2 show inhibitory activity against the influenza (H1N1) virus infection of MDCK cells, demonstrating IC50 values of 25.7 and 63.2 μM, respectively. Notably, 1 and 2 display antiviral activity against SARS-CoV-2, the causative agent of COVID-19, when used to infect 293TA and VeroE6T cells, with 1 and 2 showing IC50 values (for infection of 293TA cells) of 19.7 and 9.7 μM, respectively. The two compounds do not exhibit cytotoxicity in these cell lines at those IC50 concentrations.
Collapse
Affiliation(s)
- Shun Saito
- Department of Biosciences and Informatics, Faculty of
Science and Technology, Keio University, Yokohama223-8522,
Japan
| | - Kayo Funayama
- Department of Biosciences and Informatics, Faculty of
Science and Technology, Keio University, Yokohama223-8522,
Japan
| | - Wataru Kato
- Department of Biosciences and Informatics, Faculty of
Science and Technology, Keio University, Yokohama223-8522,
Japan
| | - Mayu Okuda
- Department of Biosciences and Informatics, Faculty of
Science and Technology, Keio University, Yokohama223-8522,
Japan
| | - Meiko Kawamoto
- Department of Biosciences and Informatics, Faculty of
Science and Technology, Keio University, Yokohama223-8522,
Japan
| | - Teruhiko Matsubara
- Department of Biosciences and Informatics, Faculty of
Science and Technology, Keio University, Yokohama223-8522,
Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Faculty of
Science and Technology, Keio University, Yokohama223-8522,
Japan
| | - Akihiko Sato
- Drug Discovery and Disease Research Laboratory,
Shionogi & Co., Ltd., Osaka541-0045,
Japan
- Division of Molecular Pathobiology, International
Institute for Zoonosis Control, Hokkaido University,
Sapporo001-0020, Japan
| | - Satoko Otsuguro
- Laboratory of Biomolecular Science, Faculty of
Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812,
Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International
Institute for Zoonosis Control, Hokkaido University,
Sapporo001-0020, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International
Institute for Zoonosis Control, Hokkaido University,
Sapporo001-0020, Japan
- International Collaboration Unit, International Institute for
Zoonosis Control, Hokkaido University, Sapporo001-0020,
Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International
Institute for Zoonosis Control, Hokkaido University,
Sapporo001-0020, Japan
- International Collaboration Unit, International Institute for
Zoonosis Control, Hokkaido University, Sapporo001-0020,
Japan
- One Health Research Center, Hokkaido
University, Sapporo060-0818, Japan
- Global Virus Network,
Baltimore, Maryland21201, United States
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, Faculty of
Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812,
Japan
| | - Kazutoshi Shindo
- Department of Food and Nutrition, Japan
Women’s University, Tokyo112-8681, Japan
| | - Masaya Imoto
- Department of Neurology, Juntendo
University School of Medicine, Tokyo113-8431,
Japan
| | - Midori A. Arai
- Department of Biosciences and Informatics, Faculty of
Science and Technology, Keio University, Yokohama223-8522,
Japan
| |
Collapse
|
6
|
Zhang J, Li X, Klümper U, Lei H, Berendonk TU, Guo F, Yu K, Yang C, Li B. Deciphering chloramphenicol biotransformation mechanisms and microbial interactions via integrated multi-omics and cultivation-dependent approaches. MICROBIOME 2022; 10:180. [PMID: 36280854 PMCID: PMC9590159 DOI: 10.1186/s40168-022-01361-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND As a widely used broad-spectrum antibiotic, chloramphenicol is prone to be released into environments, thus resulting in the disturbance of ecosystem stability as well as the emergence of antibiotic resistance genes. Microbes play a vital role in the decomposition of chloramphenicol in the environment, and the biotransformation processes are especially dependent on synergistic interactions and metabolite exchanges among microbes. Herein, the comprehensive chloramphenicol biotransformation pathway, key metabolic enzymes, and interspecies interactions in an activated sludge-enriched consortium were elucidated using integrated multi-omics and cultivation-based approaches. RESULTS The initial biotransformation steps were the oxidization at the C1-OH and C3-OH groups, the isomerization at C2, and the acetylation at C3-OH of chloramphenicol. Among them, the isomerization is an entirely new biotransformation pathway of chloramphenicol discovered for the first time. Furthermore, we identified a novel glucose-methanol-choline oxidoreductase responsible for the oxidization of the C3-OH group in Sphingomonas sp. and Caballeronia sp. Moreover, the subsequent biotransformation steps, corresponding catalyzing enzymes, and the microbial players responsible for each step were deciphered. Synergistic interactions between Sphingomonas sp. and Caballeronia sp. or Cupriavidus sp. significantly promoted chloramphenicol mineralization, and the substrate exchange interaction network occurred actively among key microbes. CONCLUSION This study provides desirable strain and enzyme resources for enhanced bioremediation of chloramphenicol-contaminated hotspot sites such as pharmaceutical wastewater and livestock and poultry wastewater. The in-depth understanding of the chloramphenicol biotransformation mechanisms and microbial interactions will not only guide the bioremediation of organic pollutants but also provide valuable knowledge for environmental microbiology and biotechnological exploitation. Video Abstract.
Collapse
Affiliation(s)
- Jiayu Zhang
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- School of Environment, Tsinghua University, Beijing, China
| | - Xiaoyan Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Uli Klümper
- Institute of Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | - Huaxin Lei
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- School of Environment, Tsinghua University, Beijing, China
| | - Thomas U Berendonk
- Institute of Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | - Fangliang Guo
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- School of Environment, Tsinghua University, Beijing, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Bing Li
- State Environmental Protection Key Laboratory of Microorganism Application and Risk Control, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| |
Collapse
|
7
|
Choirunnisa AR, Arima K, Abe Y, Kagaya N, Kudo K, Suenaga H, Hashimoto J, Fujie M, Satoh N, Shin-ya K, Matsuda K, Wakimoto T. New azodyrecins identified by a genome mining-directed reactivity-based screening. Beilstein J Org Chem 2022; 18:1017-1025. [PMID: 36051562 PMCID: PMC9379638 DOI: 10.3762/bjoc.18.102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Only a few azoxy natural products have been identified despite their intriguing biological activities. Azodyrecins D–G, four new analogs of aliphatic azoxides, were identified from two Streptomyces species by a reactivity-based screening that targets azoxy bonds. A biological activity evaluation demonstrated that the double bond in the alkyl side chain is important for the cytotoxicity of azodyrecins. An in vitro assay elucidated the tailoring step of azodyrecin biosynthesis, which is mediated by the S-adenosylmethionine (SAM)-dependent methyltransferase Ady1. This study paves the way for the targeted isolation of aliphatic azoxy natural products through a genome-mining approach and further investigations of their biosynthetic mechanisms.
Collapse
Affiliation(s)
| | - Kuga Arima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yo Abe
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Noritaka Kagaya
- Technology Research Association for Next Generation Natural Products Chemistry, Tokyo 135-0064, Japan
| | - Kei Kudo
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Hikaru Suenaga
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Junko Hashimoto
- Japan Biological Informatics Consortium (JBIC), Tokyo 135-0064, Japan
| | - Manabu Fujie
- Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Noriyuki Satoh
- Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Kazuo Shin-ya
- National Institute of Advanced Industrial Science and Technology (AIST), Tokyo 135-0064, Japan
| | - Kenichi Matsuda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 060-0812, Japan
| | - Toshiyuki Wakimoto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
- Global Station for Biosurfaces and Drug Discovery, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo 060-0812, Japan
| |
Collapse
|
8
|
Tatsukawa A, Tanaka Y, Nagano H, Fukumoto A, Anzai Y, Arakawa K. Isolation, Biosynthetic Investigation, and Biological Evaluation of Maniwamycin G, an Azoxyalkene Compound from Streptomyces sp. TOHO-M025. JOURNAL OF NATURAL PRODUCTS 2022; 85:1867-1871. [PMID: 35694852 DOI: 10.1021/acs.jnatprod.2c00131] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A new maniwamycin analogue, maniwamycin G, was isolated from Streptomyces sp. TOHO-M025 as a major product. Maniwamycin G has a molecular formula of C12H22N2O4, and its extensive NMR analysis revealed that maniwamycin G contains a methoxycarbonyl group instead of an amide as found in maniwamycin F. Its C-2 and C-3 configurations were determined to be (2R, 3R) by circular dichroism spectrum and a modified Mosher method, respectively. The biosynthetic origin of maniwamycin G was investigated using isotope-labeled compounds. The carbon source of maniwamycin G is four acetate units (C-1', C-2'; C-3', C-4'; C-5', C-6'; and C-4, C-5) and l-serine (C-1 to C-3). The nitrogen atom attached at C-2 (Nα) originates from serine, whereas the nitrogen atom of a hexen-1-yl amine unit (Nβ) is derived from glutamic acid. The quorum-sensing inhibitory activity of maniwamycin G was 2-fold lower than that of maniwamycin F.
Collapse
Affiliation(s)
- Ayaka Tatsukawa
- Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Yu Tanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Haruka Nagano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Atsushi Fukumoto
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan
| | - Yojiro Anzai
- Faculty of Pharmaceutical Sciences, Toho University, Chiba 274-8510, Japan
| | - Kenji Arakawa
- Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| |
Collapse
|
9
|
Bahrami Y, Bouk S, Kakaei E, Taheri M. Natural Products from Actinobacteria as a Potential Source of New Therapies Against Colorectal Cancer: A Review. Front Pharmacol 2022; 13:929161. [PMID: 35899111 PMCID: PMC9310018 DOI: 10.3389/fphar.2022.929161] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/07/2022] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is a common, and deadly disease. Despite the improved knowledge on CRC heterogeneity and advances in the medical sciences, there is still an urgent need to cope with the challenges and side effects of common treatments for the disease. Natural products (NPs) have always been of interest for the development of new medicines. Actinobacteria are known to be prolific producers of a wide range of bioactive NPs, and scientific evidence highlights their important protective role against CRC. This review is a holistic picture on actinobacter-derived cytotoxic compounds against CRC that provides a good perspective for drug development and design in near future. This review also describes the chemical structure of 232 NPs presenting anti-CRC activity with the being majority of quinones, lactones, alkaloids, peptides, and glycosides. The study reveals that most of these NPs are derived from marine actinobacteria followed by terrestrial and endophytic actinobacteria, respectively. They are predominantly produced by Streptomyces, Micromonospors, Saliniospors and Actinomadura, respectively, in which Streptomyces, as the predominant contributor generating over 76% of compounds exclusively. Besides it provides a valuable snapshot of the chemical structure-activity relationship of compounds, highlighting the presence or absence of some specific atoms and chemical units in the structure of compounds can greatly influence their biological activities. To the best of our knowledge, this is the first comprehensive review on natural actinobacterial compounds affecting different types of CRC. Our study reveals that the high diversity of actinobacterial strains and their NPs derivatives, described here provides a new perspective and direction for the production of new anti-CRC drugs and paves the way to innovation for drugs discovery in the future. The knowledge obtain from this review can help us to understand the pivotal application of actinobacteria in future drugs development.
Collapse
Affiliation(s)
- Yadollah Bahrami
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Medical Biotechnology, School of Medicine, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
- *Correspondence: Yadollah Bahrami, ; Mohammad Taheri,
| | - Sasan Bouk
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Kakaei
- Department of Medical Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, University Hospital Jena, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Yadollah Bahrami, ; Mohammad Taheri,
| |
Collapse
|
10
|
He HY, Niikura H, Du YL, Ryan KS. Synthetic and biosynthetic routes to nitrogen-nitrogen bonds. Chem Soc Rev 2022; 51:2991-3046. [PMID: 35311838 DOI: 10.1039/c7cs00458c] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The nitrogen-nitrogen bond is a core feature of diverse functional groups like hydrazines, nitrosamines, diazos, and pyrazoles. Such functional groups are found in >300 known natural products. Such N-N bond-containing functional groups are also found in significant percentage of clinical drugs. Therefore, there is wide interest in synthetic and enzymatic methods to form nitrogen-nitrogen bonds. In this review, we summarize synthetic and biosynthetic approaches to diverse nitrogen-nitrogen-bond-containing functional groups, with a focus on biosynthetic pathways and enzymes.
Collapse
Affiliation(s)
- Hai-Yan He
- Department of Chemistry, University of British Columbia, Vancouver, Canada. .,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Haruka Niikura
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| | - Yi-Ling Du
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
11
|
Osama N, Bakeer W, Raslan M, Soliman HA, Abdelmohsen UR, Sebak M. Anti-cancer and antimicrobial potential of five soil Streptomycetes: a metabolomics-based study. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211509. [PMID: 35154794 PMCID: PMC8825997 DOI: 10.1098/rsos.211509] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/14/2022] [Indexed: 05/03/2023]
Abstract
Lack of new anti-cancer and anti-infective agents directed the pharmaceutical research to natural products' discovery especially from actinomycetes as one of the major sources of bioactive compounds. Metabolomics- and dereplication-guided approach has been used successfully in chemical profiling of bioactive actinomycetes. We aimed to study the metabolomic profile of five bioactive actinomycetes to investigate the interesting metabolites responsible for their antimicrobial and anti-cancer activities. Three actinomycetes, namely, Streptomyces sp. SH8, SH10 and SH13, were found to exhibit broad spectrum of antimicrobial activities, whereas isolate SH4 showed the broadest antimicrobial activity against all tested strains. In addition, isolates SH8, SH10 and SH12 displayed potent cytotoxicity against the breast cancer cell line Michigan Cancer Foundation-7 (MCF-7), whereas isolates SH4 and SH12 exhibited potent anti-cancer activity against the hepatoma cell line hepatoma G2 (HepG2) compared with their weak inhibitory properties on the normal breast cells MCF-10A and normal liver cells transformed human liver epithelial-2 (THLE2), respectively. All bioactive isolates were molecularly identified as Streptomyces sp. via 16S rRNA gene sequencing. Our actinobacterial dereplication analysis revealed putative identification of several bioactive metabolites including tetracycline, oxytetracycline and a macrolide antibiotic, novamethymycin. Together, chemical profiling of bioactive Streptomycetes via dereplication and metabolomics helped in assigning their unique metabolites and predicting the bioactive compounds instigating their diverse bioactivities.
Collapse
Affiliation(s)
- Nada Osama
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Walid Bakeer
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Mai Raslan
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Hanan A. Soliman
- Biochemistry Division, Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Deraya University, New Minia 61111, Egypt
| | - Mohamed Sebak
- Microbiology and Immunology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
12
|
Matador E, Iglesias-Sigüenza J, Monge D, Merino P, Fernández R, Lassaletta JM. Enantio- and Diastereoselective Nucleophilic Addition of N-tert-Butylhydrazones to Isoquinolinium Ions through Anion-Binding Catalysis. Angew Chem Int Ed Engl 2021; 60:5096-5101. [PMID: 33045143 DOI: 10.1002/anie.202012861] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Indexed: 12/13/2022]
Abstract
A highly enantio- and diastereoselective thiourea-catalyzed dearomatization of isoquinolines employing N-tert-butylhydrazones as neutral α-azo carbanions and masked acyl anion equivalents has been developed. Experimental and computational data supports the generation of highly ordered complexes wherein the chloride behaves as a template for the catalyst, the hydrazone reagent, and the isoquinolinium cation, providing excellent stereocontrol in the formation of two contiguous stereogenic centers. The ensuing selective and high-yielding transformations provide appealing dihydroisoquinoline derivatives.
Collapse
Affiliation(s)
- Esteban Matador
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González 1, 41012, Sevilla, Spain
| | - Javier Iglesias-Sigüenza
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González 1, 41012, Sevilla, Spain
| | - David Monge
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González 1, 41012, Sevilla, Spain
| | - Pedro Merino
- Instituto de BiocomputaciónyFísica de Sistemas Complejos (BIFI), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain
| | - Rosario Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González 1, 41012, Sevilla, Spain
| | - José M Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
13
|
Wibowo M, Gotfredsen CH, Sassetti E, Melchiorsen J, Clausen MH, Gram L, Ding L. Azodyrecins A-C: Azoxides from a Soil-Derived Streptomyces Species. JOURNAL OF NATURAL PRODUCTS 2020; 83:3519-3525. [PMID: 33216557 DOI: 10.1021/acs.jnatprod.0c00339] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Azoxy compounds belong to a small group of natural products sharing a common functional group with the general structure RN = N+(O-)R. Three new azoxides, azodyrecins A-C (1-3), were isolated from a soil-derived Streptomyces sp. strain P8-A2. The cis-alkenyl unit in 1-3 was found to readily isomerize to the trans-congeners (4-6). The structures of the new compounds were determined by detailed spectroscopic (1D/2D NMR) and HRMS data analysis. Azodyrecins belong to a new class of natural azoxy compounds and are proposed to derive from l-alanine and alkylamines. The absolute configurations of 1-6 were defined by comparison of ECD spectra. While no antimicrobial effects were observed for 1 against Staphylococcus aureus, Vibrio anguillarum, or Candida albicans, azodyrecin B (2) exhibited cytotoxicity against the human leukemia cell line HL-60 with an IC50 value of 2.2 μM.
Collapse
Affiliation(s)
- Mario Wibowo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kongens Lyngby, Denmark
| | - Charlotte H Gotfredsen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| | - Elisa Sassetti
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| | - Jette Melchiorsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kongens Lyngby, Denmark
| | - Mads Hartvig Clausen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kongens Lyngby, Denmark
| | - Ling Ding
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
14
|
Wibowo M, Ding L. Chemistry and Biology of Natural Azoxy Compounds. JOURNAL OF NATURAL PRODUCTS 2020; 83:3482-3491. [PMID: 33197183 DOI: 10.1021/acs.jnatprod.0c00725] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Azoxy compounds belong to a small yet intriguing group of natural products sharing a common functional group with the general structure RN═N+(O-)R. Their intriguing chemical structures, diverse biological activities, and important industrial applications have received attention from researchers in natural product chemistry, total synthesis, and biosynthesis. This review presents current updates about the structural diversity of natural azoxy compounds isolated from different organisms and highlights the enzymes and biological logic involved in their construction. We assume that the identification of key enzymes will provide efficient tools in biocatalysis to generate new azoxy compounds, while genome mining may result in novel natural azoxy compounds of medical and industrial interest.
Collapse
Affiliation(s)
- Mario Wibowo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Ling Ding
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
15
|
Matador E, Iglesias‐Sigüenza J, Monge D, Merino P, Fernández R, Lassaletta JM. Enantio‐ and Diastereoselective Nucleophilic Addition of
N
‐
tert
‐Butylhydrazones to Isoquinolinium Ions through Anion‐Binding Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Esteban Matador
- Departamento de Química Orgánica Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/ Prof. García González 1 41012 Sevilla Spain
| | - Javier Iglesias‐Sigüenza
- Departamento de Química Orgánica Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/ Prof. García González 1 41012 Sevilla Spain
| | - David Monge
- Departamento de Química Orgánica Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/ Prof. García González 1 41012 Sevilla Spain
| | - Pedro Merino
- Instituto de BiocomputaciónyFísica de Sistemas Complejos (BIFI) Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
| | - Rosario Fernández
- Departamento de Química Orgánica Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/ Prof. García González 1 41012 Sevilla Spain
| | - José M. Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/ Américo Vespucio 49 41092 Sevilla Spain
| |
Collapse
|
16
|
Matador E, de Gracia Retamosa M, Monge D, Fernández R, Lassaletta JM. Formaldehyde tert-butyl hydrazone as a formyl anion equivalent: asymmetric addition to carbonyl compounds. Chem Commun (Camb) 2020; 56:9256-9267. [PMID: 32626864 DOI: 10.1039/d0cc02660c] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The asymmetric 1,2-addition of formyl anion equivalents to carbonyl compounds is a powerful synthetic tool that ideally provide access to highly functionalizable α-hydroxy aldehydes in an enantioselective fashion. In this context, the nucleophilic character of formaldehyde hydrazones, together with their remarkable stability as monomeric species, has been exploited for the functionalization of diverse carbonyl compounds, using initially auxiliary-based methodologies and, more recently, catalytic enantioselective versions. This feature article highlights our research progress employing formaldehyde tert-butyl hydrazone as a versatile formyl anion equivalent, in combination with bifunctional H-bonding organocatalysis. The design and optimization of different catalytic systems, focusing on a dual activation of both reagents, is reviewed, as well as the racemization free unmasking of the formyl group and representative product transformations for the construction of valuable, densely functionalyzed chiral building blocks.
Collapse
Affiliation(s)
- Esteban Matador
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación Avanzada (ORFEO-CINQA), C/Prof. García González, 1, 41012 Sevilla, Spain.
| | | | | | | | | |
Collapse
|
17
|
Guo YY, Li ZH, Xia TY, Du YL, Mao XM, Li YQ. Molecular mechanism of azoxy bond formation for azoxymycins biosynthesis. Nat Commun 2019; 10:4420. [PMID: 31594923 PMCID: PMC6783550 DOI: 10.1038/s41467-019-12250-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 08/27/2019] [Indexed: 01/07/2023] Open
Abstract
Azoxy bond is an important chemical bond and plays a crucial role in high energy density materials. However, the biosynthetic mechanism of azoxy bond remains enigmatic. Here we report that the azoxy bond biosynthesis of azoxymycins is an enzymatic and non-enzymatic coupling cascade reaction. In the first step, nonheme diiron N-oxygenase AzoC catalyzes the oxidization of amine to its nitroso analogue. Redox coenzyme pairs then facilitate the mutual conversion between nitroso group and hydroxylamine via the radical transient intermediates, which efficiently dimerize to azoxy bond. The deficiency of nucleophilic reactivity in AzoC is proposed to account for the enzyme's non-canonical oxidization of amine to nitroso product. Free nitrogen radicals induced by coenzyme pairs are proposed to be responsible for the efficient non-enzymatic azoxy bond formation. This mechanism study will provide molecular basis for the biosynthesis of azoxy high energy density materials and other valuable azoxy chemicals.
Collapse
Affiliation(s)
- Yuan-Yang Guo
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China
| | - Zhen-Hua Li
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Tian-Yu Xia
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yi-Ling Du
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Xu-Ming Mao
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| | - Yong-Quan Li
- Institute of Pharmaceutical Biotechnology & First Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.
| |
Collapse
|
18
|
Matador E, de Gracia Retamosa M, Jiménez-Sánchez A, Monge D, Fernández R, Lassaletta JM. Asymmetric Organocatalytic Synthesis of Fluorinated β-Hydroxy Diazenes. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801477] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Esteban Matador
- Departamento de Química Orgánica; Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA); C/ Prof. García González, 1 41012 Sevilla Spain
| | - María de Gracia Retamosa
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA); Avda. Américo Vespucio, 49 41092 Sevilla Spain
| | - Antonio Jiménez-Sánchez
- Departamento de Química Orgánica; Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA); C/ Prof. García González, 1 41012 Sevilla Spain
| | - David Monge
- Departamento de Química Orgánica; Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA); C/ Prof. García González, 1 41012 Sevilla Spain
| | - Rosario Fernández
- Departamento de Química Orgánica; Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA); C/ Prof. García González, 1 41012 Sevilla Spain
| | - José M. Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA); Avda. Américo Vespucio, 49 41092 Sevilla Spain
| |
Collapse
|
19
|
Matador E, de Gracia Retamosa M, Monge D, Iglesias-Sigüenza J, Fernández R, Lassaletta JM. Bifunctional Squaramide Organocatalysts for the Asymmetric Addition of Formaldehyde tert-Butylhydrazone to Simple Aldehydes. Chemistry 2018; 24:6854-6860. [PMID: 29570872 DOI: 10.1002/chem.201801052] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Indexed: 01/08/2023]
Abstract
The nucleophilic addition of formaldehyde tert-butylhydrazone to simple aldehydes (a formal hetero-carbonyl-ene reaction) can be performed with good reactivity and excellent enantioselectivity by virtue of the dual hydrogen-bonding activation exerted by amide-squaramide organocatalysts. The resulting hydroxydiazenes (azo alcohols) were isolated in high yields as enantiomerically enriched azoxy compounds after a regioselective azo-to-azoxy transformation. Subsequent derivatization provides an entry to relevant amino alcohols, oxazolidinones, and derivatives thereof.
Collapse
Affiliation(s)
- Esteban Matador
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación Avanzada (ORFEO-CINQA), C/ Prof. García González, 1, 41012, Seville, Spain
| | - María de Gracia Retamosa
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092, Seville, Spain)
| | - David Monge
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación Avanzada (ORFEO-CINQA), C/ Prof. García González, 1, 41012, Seville, Spain
| | - Javier Iglesias-Sigüenza
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación Avanzada (ORFEO-CINQA), C/ Prof. García González, 1, 41012, Seville, Spain
| | - Rosario Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación Avanzada (ORFEO-CINQA), C/ Prof. García González, 1, 41012, Seville, Spain
| | - José M Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092, Seville, Spain)
| |
Collapse
|
20
|
Carmona JA, Gonzalo GD, Serrano I, Crespo-Peña AM, Šimek M, Monge D, Fernández R, Lassaletta JM. Asymmetric organocatalytic synthesis of tertiary azomethyl alcohols: key intermediates towards azoxy compounds and α-hydroxy-β-amino esters. Org Biomol Chem 2018; 15:2993-3005. [PMID: 28294261 DOI: 10.1039/c7ob00308k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of peracylated glycosamine-derived thioureas have been synthesized and their behavior as bifunctional organocatalysts has been tested in the enantioselective nucleophilic addition of formaldehyde tert-butyl hydrazone to aliphatic α-keto esters for the synthesis of tertiary azomethyl alcohols. Using the 1,3,4,6-tetra-O-acetyl-2-amino-2-deoxy-β-d-glucosamine derived 3,5-bis-(trifluoromethyl)phenyl thiourea the reaction could be accomplished with high yields (75-98%) and moderate enantioselectivities (50-64% ee). Subsequent high-yielding and racemization-free tranformations of both aromatic- and aliphatic-substituted diazene products in a one pot fashion provide a direct entry to valuable azoxy compounds and α-hydroxy-β-amino esters.
Collapse
Affiliation(s)
- José A Carmona
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Gonzalo de Gonzalo
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González, 1, 41012 Sevilla, Spain.
| | - Inmaculada Serrano
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González, 1, 41012 Sevilla, Spain.
| | - Ana M Crespo-Peña
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - Michal Šimek
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain.
| | - David Monge
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González, 1, 41012 Sevilla, Spain.
| | - Rosario Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González, 1, 41012 Sevilla, Spain.
| | - José M Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda. Américo Vespucio, 49, 41092 Sevilla, Spain.
| |
Collapse
|
21
|
Waldman AJ, Ng TL, Wang P, Balskus EP. Heteroatom-Heteroatom Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5784-5863. [PMID: 28375000 PMCID: PMC5534343 DOI: 10.1021/acs.chemrev.6b00621] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Natural products that contain functional groups with heteroatom-heteroatom linkages (X-X, where X = N, O, S, and P) are a small yet intriguing group of metabolites. The reactivity and diversity of these structural motifs has captured the interest of synthetic and biological chemists alike. Functional groups containing X-X bonds are found in all major classes of natural products and often impart significant biological activity. This review presents our current understanding of the biosynthetic logic and enzymatic chemistry involved in the construction of X-X bond containing functional groups within natural products. Elucidating and characterizing biosynthetic pathways that generate X-X bonds could both provide tools for biocatalysis and synthetic biology, as well as guide efforts to uncover new natural products containing these structural features.
Collapse
Affiliation(s)
- Abraham J. Waldman
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Tai L. Ng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Peng Wang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, United States
| |
Collapse
|
22
|
Dembitsky VM, Gloriozova TA, Poroikov VV. Pharmacological and Predicted Activities of Natural Azo Compounds. NATURAL PRODUCTS AND BIOPROSPECTING 2017; 7:151-169. [PMID: 28054247 PMCID: PMC5315673 DOI: 10.1007/s13659-016-0117-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/26/2016] [Indexed: 05/16/2023]
Abstract
This paper describes research on natural azo compounds isolated from fungi, plant, bacteria, and invertebrates. More than 120 biologically active diazene containing alkaloids demonstrate confirmed pharmacological activity, including antitumor, antimicrobial, and antibacterial effects. The structures, origin, and biological activities of azo compounds are reviewed. Utilizing the computer program PASS, some structure-activity relationship new activities are also predicted, pointing toward possible new applications of these compounds. This article emphasizes the role of natural azo compounds as an important source of drug prototypes and leads for drug discovery.
Collapse
Affiliation(s)
- Valery M Dembitsky
- National Scientific Center of Marine Biology, 17 Palchevsky Str., Vladivostok, Russia, 690041.
| | | | | |
Collapse
|
23
|
Ontogenetic Changes in Azoxyglycoside Levels in the Leaves of Dioon edule Lindl. J Chem Ecol 2016; 42:1142-1150. [DOI: 10.1007/s10886-016-0774-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 12/25/2022]
|
24
|
Supong K, Sripreechasak P, Tanasupawat S, Danwisetkanjana K, Rachtawee P, Pittayakhajonwut P. Investigation on antimicrobial agents of the terrestrial Streptomyces sp. BCC71188. Appl Microbiol Biotechnol 2016; 101:533-543. [DOI: 10.1007/s00253-016-7804-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 07/25/2016] [Accepted: 08/09/2016] [Indexed: 10/24/2022]
|
25
|
Guo YY, Li H, Zhou ZX, Mao XM, Tang Y, Chen X, Jiang XH, Liu Y, Jiang H, Li YQ. Identification and Biosynthetic Characterization of Natural Aromatic Azoxy Products from Streptomyces chattanoogensis L10. Org Lett 2015; 17:6114-7. [DOI: 10.1021/acs.orglett.5b03137] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuan-Yang Guo
- Institute
of Biochemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Han Li
- Institute
of Biochemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhen-Xing Zhou
- Institute
of Biochemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xu-Ming Mao
- Institute
of Biochemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yi Tang
- Department
of Chemical and Biomolecular Engineering, University of California Los Angeles, 402 Westwood Plaza, Los
Angeles, California 90095, United States
| | - Xin Chen
- Institute
of Biochemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xin-Hang Jiang
- Institute
of Biochemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yu Liu
- Institute
of Biochemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Hui Jiang
- Institute
of Biochemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yong-Quan Li
- Institute
of Biochemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
26
|
Kunitake H, Hiramatsu T, Kinashi H, Arakawa K. Isolation and Biosynthesis of an Azoxyalkene Compound Produced by a Multiple Gene Disruptant ofStreptomyces rochei. Chembiochem 2015; 16:2237-43. [DOI: 10.1002/cbic.201500393] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Hirofumi Kunitake
- Department of Molecular Biotechnology; Graduate School of Advanced Sciences of Matter; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8530 Japan
| | - Takahiro Hiramatsu
- Department of Molecular Biotechnology; Graduate School of Advanced Sciences of Matter; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8530 Japan
| | - Haruyasu Kinashi
- Department of Molecular Biotechnology; Graduate School of Advanced Sciences of Matter; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8530 Japan
| | - Kenji Arakawa
- Department of Molecular Biotechnology; Graduate School of Advanced Sciences of Matter; Hiroshima University; 1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8530 Japan
| |
Collapse
|
27
|
Serrano I, Monge D, Álvarez E, Fernández R, Lassaletta JM. Asymmetric organocatalytic synthesis of quaternary α-hydroxy phosphonates: en route to α-aryl phosphaisoserines. Chem Commun (Camb) 2015; 51:4077-80. [PMID: 25661271 DOI: 10.1039/c4cc10390d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dual activation of acyl phosphonates and formaldehyde tert-butyl hydrazone by a BINAM-derived bis-urea catalyst is the key to achieve high reactivities and enantioselectivities in the synthesis of densely functionalized quaternary α-hydroxy phosphonates. Subsequent high-yielding transformations in a 'one-pot' fashion provide direct access to valuable azoxy compounds and quaternary α-aryl-phosphaisoserines.
Collapse
Affiliation(s)
- Inmaculada Serrano
- Departamento de Química Orgánica, Universidad de Sevilla, C/ Prof. García González, 1, 41012 Sevilla, Spain.
| | | | | | | | | |
Collapse
|
28
|
Su R, Lü L, Zheng S, Jin Y, An S. Synthesis and characterization of novel azo-containing or azoxy-containing Schiff bases and their antiproliferative and cytotoxic activities. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-4355-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
29
|
Meyer F, Ueberschaar N, Dahse HM, Hertweck C. Synthesis and biological evaluation of hydrazidomycin analogues. Bioorg Med Chem Lett 2013; 23:6043-5. [DOI: 10.1016/j.bmcl.2013.09.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 10/26/2022]
|
30
|
Meyer F, Ueberschaar N, Hertweck C. Concise Total Synthesis of Hydrazidomycin A, a Rare Hydrazide Metabolite ofStreptomyces atratus. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300532] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
31
|
Monge D, Crespo-Peña AM, Martín-Zamora E, Álvarez E, Fernández R, Lassaletta JM. Dual organocatalytic activation of isatins and formaldehyde tert-butyl hydrazone: asymmetric synthesis of functionalized 3-hydroxy-2-oxindoles. Chemistry 2013; 19:8421-5. [PMID: 23670976 DOI: 10.1002/chem.201301351] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 11/07/2022]
Abstract
Two is better than one! Dual activation of isatins and formaldehyde tert-butyl hydrazone by 2,2'-diamino-1,1'-binaphthalene (BINAM)-derived bis(ureas) is the key to achieve high reactivity and excellent enantioselectivities in the synthesis of azo- and azoxy-functionalized 3-hydroxy-2-oxindoles (see scheme).
Collapse
Affiliation(s)
- David Monge
- Departamento de Química Orgánica, Universidad de Sevilla, C/Prof. García González, 1, 41012 Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
32
|
Blair LM, Sperry J. Natural products containing a nitrogen-nitrogen bond. JOURNAL OF NATURAL PRODUCTS 2013; 76:794-812. [PMID: 23577871 DOI: 10.1021/np400124n] [Citation(s) in RCA: 253] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
As of early 2013, over 200 natural products are known to contain a nitrogen-nitrogen (N-N) bond. This report categorizes these compounds by structural class and details their isolation and biological activity.
Collapse
Affiliation(s)
- Lachlan M Blair
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland, New Zealand
| | | |
Collapse
|
33
|
Elaiomycins K and L, new azoxy antibiotics from Streptomyces sp. Tü 6399*. J Antibiot (Tokyo) 2012; 66:85-8. [DOI: 10.1038/ja.2012.99] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|