1
|
do Amaral SC, Xavier LP, Vasconcelos V, Santos AV. Cyanobacteria: A Promising Source of Antifungal Metabolites. Mar Drugs 2023; 21:359. [PMID: 37367684 PMCID: PMC10300848 DOI: 10.3390/md21060359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Cyanobacteria are a rich source of secondary metabolites, and they have received a great deal of attention due to their applicability in different industrial sectors. Some of these substances are known for their notorious ability to inhibit fungal growth. Such metabolites are very chemically and biologically diverse. They can belong to different chemical classes, including peptides, fatty acids, alkaloids, polyketides, and macrolides. Moreover, they can also target different cell components. Filamentous cyanobacteria have been the main source of these compounds. This review aims to identify the key features of these antifungal agents, as well as the sources from which they are obtained, their major targets, and the environmental factors involved when they are being produced. For the preparation of this work, a total of 642 documents dating from 1980 to 2022 were consulted, including patents, original research, review articles, and theses.
Collapse
Affiliation(s)
- Samuel Cavalcante do Amaral
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| | - Luciana Pereira Xavier
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| | - Vítor Vasconcelos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, Terminal de Cruzeiros do Porto de Leixões, University of Porto, 4450-208 Matosinhos, Portugal;
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| | - Agenor Valadares Santos
- Laboratory of Biotechnology of Enzymes and Biotransformation, Biological Sciences Institute, Federal University of Pará, Belém 66075-110, Brazil;
| |
Collapse
|
2
|
Curren E, Leaw CP, Lim PT, Leong SCY. The toxic cosmopolitan cyanobacteria Moorena producens: insights into distribution, ecophysiology and toxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78178-78206. [PMID: 36190622 DOI: 10.1007/s11356-022-23096-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Moorena producens is a benthic filamentous cyanobacteria that has been widely documented for its toxicity. This cyanobacterium colonizes both temperate (37%) and tropical (63%) regions, making it a cosmopolitan cyanobacterium with a global distribution. M. producens grows across coral reefs in multiple locations but recurringly blooms in Queensland, Australia. Today, nuisance blooms of M. producens have resulted in major disruptions to recreational activities along coastal areas and are known to cause adverse effects on organism and human health upon contact or ingestion. Specifically, marine organisms such as the green turtle Chelonia mydas and hawksbill turtle Eretmochelys imbricata were fatally poisoned by M. producens after consumption of this cyanobacterium. Reports record a range of effects on human health, from pain and blistering or even death upon ingestion of contaminated seafood. Blooms of M. producens are triggered by influxes of nitrogen, phosphate and iron, from surrounding coastal runoffs or sewage effluents. Additions of these nutrients can result in an increase in growth rate by 4-16 times. Iron bioavailability also plays a crucial role in bloom formation. A total of 231 natural products from 66 groups were identified from M. producens, with the three dominant groups: malyngamides, microcolins and dolastatins. These bioactive secondary metabolites have displayed toxicities against a range of carcinoma cell lines and organisms such as brine shrimp Artemia salina and goldfish Carassius auratus. This review provides a thorough insight to the distribution, ecophysiology and toxicity of M. producens, with reports on bloom events and implications on organism and human health.
Collapse
Affiliation(s)
- Emily Curren
- St. John's Island National Marine Laboratory, Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore, 119227, Singapore.
| | - Chui Pin Leaw
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Malaysia
| | - Po Teen Lim
- Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok, Malaysia
| | - Sandric Chee Yew Leong
- St. John's Island National Marine Laboratory, Tropical Marine Science Institute, National University of Singapore, 18 Kent Ridge Road, Singapore, 119227, Singapore
| |
Collapse
|
3
|
Taguchi R, Iwasaki A, Ebihara A, Jeelani G, Nozaki T, Suenaga K. Isolation and Total Synthesis of Beru'amide, an Antitrypanosomal Polyketide from a Marine Cyanobacterium Okeania sp. Org Lett 2022; 24:4710-4714. [PMID: 35713470 DOI: 10.1021/acs.orglett.2c02013] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A 68 μg amount of an acyclic polyketide, named beru'amide, was isolated from a marine cyanobacterium Okeania sp. Beru'amide contains six unique moieties in its relatively small skeleton. By applying several cutting-edge techniques, including DFT-based chemical shift calculations, we achieved the structure determination and the total synthesis of this highly functionalized scarce natural product. Furthermore, beru'amide was shown to have strong antitrypanosomal activity.
Collapse
Affiliation(s)
- Raimu Taguchi
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Arihiro Iwasaki
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Akira Ebihara
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Ghulam Jeelani
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
4
|
Hofbauer WK. Toxic or Otherwise Harmful Algae and the Built Environment. Toxins (Basel) 2021; 13:465. [PMID: 34209446 PMCID: PMC8310063 DOI: 10.3390/toxins13070465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/30/2022] Open
Abstract
This article gives a comprehensive overview on potentially harmful algae occurring in the built environment. Man-made structures provide diverse habitats where algae can grow, mainly aerophytic in nature. Literature reveals that algae that is potentially harmful to humans do occur in the anthropogenic environment in the air, on surfaces or in water bodies. Algae may negatively affect humans in different ways: they may be toxic, allergenic and pathogenic to humans or attack human structures. Toxin-producing alga are represented in the built environment mainly by blue green algae (Cyanoprokaryota). In special occasions, other toxic algae may also be involved. Green algae (Chlorophyta) found airborne or growing on manmade surfaces may be allergenic whereas Cyanoprokaryota and other forms may not only be toxic but also allergenic. Pathogenicity is found only in a special group of algae, especially in the genus Prototheca. In addition, rare cases with infections due to algae with green chloroplasts are reported. Algal action may be involved in the biodeterioration of buildings and works of art, which is still discussed controversially. Whereas in many cases the disfigurement of surfaces and even the corrosion of materials is encountered, in other cases a protective effect on the materials is reported. A comprehensive list of 79 taxa of potentially harmful, airborne algae supplemented with their counterparts occurring in the built environment, is given. Due to global climate change, it is not unlikely that the built environment will suffer from more and higher amounts of harmful algal species in the future. Therefore, intensified research in composition, ecophysiology and development of algal growth in the built environment is indicated.
Collapse
Affiliation(s)
- Wolfgang Karl Hofbauer
- Umwelt, Hygiene und Sensorik, Fraunhofer-Institut für Bauphysik, 83626 Valley, Bavaria, Germany
| |
Collapse
|
5
|
Okoth DA, Hug JJ, Mándi A, Kurtán T, Garcia R, Müller R. Structure and biosynthesis of sorangipyranone - a new γ-dihydropyrone from the myxobacterial strain MSr12020. J Ind Microbiol Biotechnol 2021; 48:kuab029. [PMID: 34003283 PMCID: PMC9113121 DOI: 10.1093/jimb/kuab029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/13/2021] [Indexed: 08/28/2024]
Abstract
Sorangipyranone was isolated as a novel natural product featuring a unique 2,3-dihydro-γ-4H-pyrone scaffold from cultures of the myxobacterial strain MSr12020. We report here the full structure elucidation of sorangipyranone by spectroscopic techniques including 2D NMR and high-resolution mass spectrometry together with the analysis of the biosynthetic pathway. Determination of the absolute configuration was performed by time-dependent density functional theory-electronic circular dichroism calculations and determination of the applicability of the Snatzke's helicity rule, to correlate the high-wavelength n→π* electronic circular dichroism (ECD) transition and the absolute configuration of the 2,3-dihydro-4H-γ-pyrone, was done by the analysis of low-energy conformers and the Kohn-Sham orbitals. Sorangipyranone outlines a new class of a γ-dihydropyrone-containing natural product comprised of malonyl-CoA-derived building blocks and features a unique polyketide scaffold. In silico analysis of the genome sequence of the myxobacterial strain MSr12020 complemented with feeding experiments employing stable isotope-labeled precursors allowed the identification and annotation of a candidate biosynthetic gene cluster that encodes a modular polyketide synthase assembly line. A model for the biosynthetic pathway leading to the formation of the γ-dihydropyrone scaffold is presented in this study.
Collapse
Affiliation(s)
- Dorothy A Okoth
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Joachim J Hug
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Attila Mándi
- Department of Organic Chemistry, University of Debrecen, P. O. Box 400, 4002 Debrecen, Hungary
| | - Tibor Kurtán
- Department of Organic Chemistry, University of Debrecen, P. O. Box 400, 4002 Debrecen, Hungary
| | - Ronald Garcia
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Rolf Müller
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, 66123 Saarbrücken, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig Inhoffenstraße 7, 38124 Braunschweig, Germany
| |
Collapse
|
6
|
Uemura D, Kawazoe Y, Inuzuka T, Itakura Y, Kawamata C, Abe T. Drug Leads Derived from Japanese Marine Organisms. Curr Med Chem 2021; 28:196-210. [PMID: 31642409 DOI: 10.2174/0929867326666191022125851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 11/22/2022]
Abstract
Many natural products with extraordinary chemical structures and brilliant biological activities have been obtained from marine organisms. We have investigated such fascinating bioactive molecules, exemplified by the potent marine toxin palytoxin and the antitumor molecule halichondrin B, which has been developed as the anticancer drug Halaven®, to explore novel frontiers in organic chemistry and bioscience. Working within the traditional discipline, we have sought to acquire a deeper understanding of biological phenomena. We introduce here our major work along with up-todate topics. We isolated yoshinone A from marine cyanobacteria and completed a gram-scale synthesis. Yoshinone A is a novel polyketide that inhibited the differentiation of 3T3-L1 cells into adipocytes without significant cytotoxicity. The detailed mechanisms of action will be elucidated via further experiments in vitro and in vivo. In this study, we explore the true producers of okadaic acid and halichondrin B by immunostaining of Halichondria okadai with an antibody that was prepared using these natural products as an antigen. We will analyze isolated symbionts and reveal biosynthetic pathways.
Collapse
Affiliation(s)
- Daisuke Uemura
- Institute for Advanced Research (Emeritus), Nagoya University, Nagoya, Japan
| | - Yoshinori Kawazoe
- Center for Education and Research in Agricultural Innovation, Faculty of Agriculture, Saga University, Karatsu, Japan
| | | | - Yuki Itakura
- Department of Chemistry, Faculty of Science, Kanagawa University, Hiratsuka, Japan
| | - Chiari Kawamata
- Department of Chemistry, Faculty of Science, Kanagawa University, Hiratsuka, Japan
| | - Takahiro Abe
- Department of Chemistry, Faculty of Science, Kanagawa University, Hiratsuka, Japan
| |
Collapse
|
7
|
Li Y, Naman CB, Alexander KL, Guan H, Gerwick WH. The Chemistry, Biochemistry and Pharmacology of Marine Natural Products from Leptolyngbya, a Chemically Endowed Genus of Cyanobacteria. Mar Drugs 2020; 18:E508. [PMID: 33036172 PMCID: PMC7600079 DOI: 10.3390/md18100508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/21/2020] [Accepted: 10/02/2020] [Indexed: 12/23/2022] Open
Abstract
Leptolyngbya, a well-known genus of cyanobacteria, is found in various ecological habitats including marine, fresh water, swamps, and rice fields. Species of this genus are associated with many ecological phenomena such as nitrogen fixation, primary productivity through photosynthesis and algal blooms. As a result, there have been a number of investigations of the ecology, natural product chemistry, and biological characteristics of members of this genus. In general, the secondary metabolites of cyanobacteria are considered to be rich sources for drug discovery and development. In this review, the secondary metabolites reported in marine Leptolyngbya with their associated biological activities or interesting biosynthetic pathways are reviewed, and new insights and perspectives on their metabolic capacities are gained.
Collapse
Affiliation(s)
- Yueying Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China;
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA; (C.B.N.); (K.L.A.)
| | - C. Benjamin Naman
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA; (C.B.N.); (K.L.A.)
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Department of Marine Pharmacy, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Kelsey L. Alexander
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA; (C.B.N.); (K.L.A.)
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Huashi Guan
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China;
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, CA 92093, USA; (C.B.N.); (K.L.A.)
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92093, USA
| |
Collapse
|
8
|
Abstract
Marine natural products (MNPs) containing pyrone rings have been isolated
from numerous marine organisms, and also produced by marine fungi and bacteria, particularly,
actinomycetes. They constitute a versatile structure unit of bioactive natural
products that exhibit various biological activities such as antibiotic, antifungal, cytotoxic,
neurotoxic, phytotoxic and anti-tyrosinase. The two structure isomers of pyrone ring are γ-
pyrone and α-pyrone. In terms of chemical motif, γ-pyrone is the vinologous form of α-
pyrone which possesses a lactone ring. Actinomycete bacteria are responsible for the production
of several α-pyrone compounds such as elijopyrones A-D, salinipyrones and violapyrones
etc. to name a few. A class of pyrone metabolites, polypropionates which have
fascinating carbon skeleton, is primarily produced by marine molluscs. Interestingly, some
of the pyrone polytketides which are found in cone snails are actually synthesized by actinomycete bacteria.
Several pyrone derivatives have been obtained from marine fungi such as Aspergillums flavus, Altenaria sp.,
etc. The γ-pyrone derivative namely, kojic acid obtained from Aspergillus fungus has high commercial demand
and finds various applications. Kojic acid and its derivative displayed inhibition of tyrosinase activity and, it is
also extensively used as a ligand in coordination chemistry. Owing to their commercial and biological significance,
the synthesis of pyrone containing compounds has been given attention over the past years. Few reviews
on the total synthesis of pyrone containing natural products namely, polypropionate metabolites have been reported.
However, these reviews skipped other marine pyrone metabolites and also omitted discussion on isolation
and detailed biological activities. This review presents a brief account of the isolation of marine metabolites
containing a pyrone ring and their reported bio-activities. Further, the review covers the synthesis of marine
pyrone metabolites such as cyercene-A, placidenes, onchitriol-I, onchitriol-II, crispatene, photodeoxytrichidione,
(-) membrenone-C, lihualide-B, macrocyclic enol ethers and auripyrones-A & B.
Collapse
Affiliation(s)
- Keisham S. Singh
- Bio-organic Chemistry Laboratory, CSIR-National Institute of Oceanography, Dona Paula-403004, Goa, India
| |
Collapse
|
9
|
Thuan NH, An TT, Shrestha A, Canh NX, Sohng JK, Dhakal D. Recent Advances in Exploration and Biotechnological Production of Bioactive Compounds in Three Cyanobacterial Genera: Nostoc, Lyngbya, and Microcystis. Front Chem 2019; 7:604. [PMID: 31552222 PMCID: PMC6734169 DOI: 10.3389/fchem.2019.00604] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022] Open
Abstract
Cyanobacteria, are only Gram-negative bacteria with the capacity of oxygenic photosynthesis, so termed as “Cyanophyta” or “blue-green algae.” Their habitat is ubiquitous, which includes the diverse environments, such as soil, water, rock and other organisms (symbiosis, commensalism, or parasitism, etc.,). They are characterized as prominent producers of numerous types of important compounds with anti-microbial, anti-viral, anti-inflammatory and anti-tumor properties. Among the various cyanobacterial genera, members belonging to genera Nostoc, Lyngbya, and Microcystis possess greater attention. The major reason for that is the strains belonging to these genera produce the compounds with diverse activities/structures, including compounds in preclinical and/or clinical trials (cryptophycin and curacin), or the compounds retaining unique activities such as protease inhibitor (micropeptins and aeruginosins). Most of these compounds were tested for their efficacy and mechanism of action(MOA) through in vitro and/or in vivo studies. Recently, the advances in culture techniques of these cyanobacteria, and isolation, purification, and chromatographic analysis of their compounds have revealed insurmountable novel bioactive compounds from these cyanobacteria. This review provides comprehensive update on the origin, isolation and purification methods, chemical structures and biological activities of the major compounds from Nostoc, Lyngbya, and Microcystis. In addition, multi-omics approaches and biotechnological production of compounds from selected cyanobacterial genera have been discussed.
Collapse
Affiliation(s)
- Nguyen Huy Thuan
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Danang, Vietnam
| | - Tran Tuan An
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Danang, Vietnam
| | - Anil Shrestha
- Department of Life Science and Biochemical Engineering, Sun Moon University, Chungnam, South Korea
| | - Nguyen Xuan Canh
- Faculty of Biotechnology, Vietnam National University of Agriculture, Gialam, Hanoi, Vietnam
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, Chungnam, South Korea.,Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Chungnam, South Korea
| | - Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, Sun Moon University, Chungnam, South Korea
| |
Collapse
|
10
|
Demay J, Bernard C, Reinhardt A, Marie B. Natural Products from Cyanobacteria: Focus on Beneficial Activities. Mar Drugs 2019; 17:E320. [PMID: 31151260 PMCID: PMC6627551 DOI: 10.3390/md17060320] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/28/2022] Open
Abstract
Cyanobacteria are photosynthetic microorganisms that colonize diverse environments worldwide, ranging from ocean to freshwaters, soils, and extreme environments. Their adaptation capacities and the diversity of natural products that they synthesize, support cyanobacterial success in colonization of their respective ecological niches. Although cyanobacteria are well-known for their toxin production and their relative deleterious consequences, they also produce a large variety of molecules that exhibit beneficial properties with high potential in various fields (e.g., a synthetic analog of dolastatin 10 is used against Hodgkin's lymphoma). The present review focuses on the beneficial activities of cyanobacterial molecules described so far. Based on an analysis of 670 papers, it appears that more than 90 genera of cyanobacteria have been observed to produce compounds with potentially beneficial activities in which most of them belong to the orders Oscillatoriales, Nostocales, Chroococcales, and Synechococcales. The rest of the cyanobacterial orders (i.e., Pleurocapsales, Chroococcidiopsales, and Gloeobacterales) remain poorly explored in terms of their molecular diversity and relative bioactivity. The diverse cyanobacterial metabolites possessing beneficial bioactivities belong to 10 different chemical classes (alkaloids, depsipeptides, lipopeptides, macrolides/lactones, peptides, terpenes, polysaccharides, lipids, polyketides, and others) that exhibit 14 major kinds of bioactivity. However, no direct relationship between the chemical class and the respective bioactivity of these molecules has been demonstrated. We further selected and specifically described 47 molecule families according to their respective bioactivities and their potential uses in pharmacology, cosmetology, agriculture, or other specific fields of interest. With this up-to-date review, we attempt to present new perspectives for the rational discovery of novel cyanobacterial metabolites with beneficial bioactivity.
Collapse
Affiliation(s)
- Justine Demay
- UMR 7245 MCAM, Muséum National d'Histoire Naturelle-CNRS, Paris, 12 rue Buffon, CP 39, 75231 Paris CEDEX 05, France.
- Thermes de Balaruc-les-Bains, 1 rue du Mont Saint-Clair BP 45, 34540 Balaruc-Les-Bains, France.
| | - Cécile Bernard
- UMR 7245 MCAM, Muséum National d'Histoire Naturelle-CNRS, Paris, 12 rue Buffon, CP 39, 75231 Paris CEDEX 05, France.
| | - Anita Reinhardt
- Thermes de Balaruc-les-Bains, 1 rue du Mont Saint-Clair BP 45, 34540 Balaruc-Les-Bains, France.
| | - Benjamin Marie
- UMR 7245 MCAM, Muséum National d'Histoire Naturelle-CNRS, Paris, 12 rue Buffon, CP 39, 75231 Paris CEDEX 05, France.
| |
Collapse
|
11
|
Peng XP, Li G, Ji LX, Li YX, Lou HX. Acrepyrone A, a new γ-pyrone derivative from an endophytic fungus, Acremonium citrinum SS-g13. Nat Prod Res 2019; 34:1091-1096. [PMID: 30663360 DOI: 10.1080/14786419.2018.1548462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A new γ-pyrone derivative, acrepyrone A (1), and three known sorbicillinoids, trichodimerol (2), dihydrotrichodimerol (3) and tetrahydrotrichodimerol (4) were isolated from an endophytic fungus, Acremonium citrinum SS-g13, harboured in the roots of the Chinese medicinal plant Fructus mori. Their structures were determined by analysing MS, NMR, and ECD data. Compound 1 was evaluated for its cytotoxic effect, antibacterial activity and quorum sensing inhibitory potential.
Collapse
Affiliation(s)
- Xiao-Ping Peng
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Gang Li
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Li-Xia Ji
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Ying-Xia Li
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China
| | - Hong-Xiang Lou
- Department of Natural Medicinal Chemistry and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, People's Republic of China.,Department of Natural Product Chemistry, Key Laboratory of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, People's Republic of China
| |
Collapse
|
12
|
Trost BM, Gholami H. Propene as an Atom-Economical Linchpin for Concise Total Synthesis of Polyenes: Piericidin A. J Am Chem Soc 2018; 140:11623-11626. [DOI: 10.1021/jacs.8b08974] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Barry M. Trost
- Department of Chemistry, Stanford University, Stanford, California 94305-5580, United States
| | - Hadi Gholami
- Department of Chemistry, Stanford University, Stanford, California 94305-5580, United States
| |
Collapse
|
13
|
Shinomiya S, Iwasaki A, Ohno O, Suenaga K. Total synthesis and stereochemical determination of yoshinone A. PHYTOCHEMISTRY 2016; 132:109-114. [PMID: 27765324 DOI: 10.1016/j.phytochem.2016.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 10/03/2016] [Accepted: 10/11/2016] [Indexed: 06/06/2023]
Abstract
In 2014, the γ-pyrone-containing polyketide, yoshinone A, was isolated from the marine cyanobacterium Leptolyngbya sp. and its structure was determined. Yoshinone A inhibited differentiation of 3T3-L1 cells into adipocytes, with an EC50 value of 420 nM without any cytotoxicity, and therefore is expected to be a lead compound for obesity drugs. To establish its absolute configuration, and to provide sufficient amounts for further research, the total synthesis of yoshinone A was achieved through synthesis of its two possible diastereomers.
Collapse
Affiliation(s)
- Seiichi Shinomiya
- Department of Chemistry, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Arihiro Iwasaki
- Department of Chemistry, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Osamu Ohno
- Department of Chemistry and Life Science, Kogakuin University, 2665-1, Nakano-Machi, Hachioji, Tokyo 192-0015, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan.
| |
Collapse
|
14
|
Structure revision of trichotoxin, a chlorinated polyketide isolated from a Trichodesmium thiebautii bloom. Tetrahedron Lett 2016; 57:5864-5867. [PMID: 32153305 DOI: 10.1016/j.tetlet.2016.11.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
NMR-guided fractionation of the lipophilic extract of Trichodesmium thiebautii filaments led to the isolation of a phenyl-containing chlorinated polyketide (1) and an alkyne-containing analogue (2). Comparison of spectroscopic and spectrometric data of 1 with the data of the previously reported trichotoxin, strongly suggested that these metabolites were identical and supports a structural revision of trichotoxin and its designation as trichotoxin A. In addition, we report the isolation and characterization of the alkyne-containing analogue trichotoxin B (2). Absolute configuration of 1 and 2 is proposed based on spectroscopic comparison to a close structural analog.
Collapse
|
15
|
Cummings ME, Barbé D, Leao TF, Korobeynikov A, Engene N, Glukhov E, Gerwick WH, Gerwick L. A novel uncultured heterotrophic bacterial associate of the cyanobacterium Moorea producens JHB. BMC Microbiol 2016; 16:198. [PMID: 27577966 PMCID: PMC5006271 DOI: 10.1186/s12866-016-0817-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/19/2016] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Filamentous tropical marine cyanobacteria such as Moorea producens strain JHB possess a rich community of heterotrophic bacteria on their polysaccharide sheaths; however, these bacterial communities have not yet been adequately studied or characterized. RESULTS AND DISCUSSION Through efforts to sequence the genome of this cyanobacterial strain, the 5.99 MB genome of an unknown bacterium emerged from the metagenomic information, named here as Mor1. Analysis of its genome revealed that the bacterium is heterotrophic and belongs to the phylum Acidobacteria, subgroup 22; however, it is only 85 % identical to the nearest cultured representative. Comparative genomics further revealed that Mor1 has a large number of genes involved in transcriptional regulation, is completely devoid of transposases, is not able to synthesize the full complement of proteogenic amino acids and appears to lack genes for nitrate uptake. Mor1 was found to be present in lab cultures of M. producens collected from various locations, but not other cyanobacterial species. Diverse efforts failed to culture the bacterium separately from filaments of M. producens JHB. Additionally, a co-culturing experiment between M. producens JHB possessing Mor1 and cultures of other genera of cyanobacteria indicated that the bacterium was not transferable. CONCLUSION The data presented support a specific relationship between this novel uncultured bacterium and M. producens, however, verification of this proposed relationship cannot be done until the "uncultured" bacterium can be cultured.
Collapse
Affiliation(s)
- Milo E Cummings
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, 92093, USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
| | - Debby Barbé
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tiago Ferreira Leao
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
| | - Anton Korobeynikov
- Department of Statistical Modelling, St. Petersburg State University, Saint Petersburg, Russia
- Center for Algorithmic Biotechnology, St. Petersburg State University, Saint Petersburg, Russia
| | - Niclas Engene
- Department of Biological Sciences, Florida International University, Miami, FL, 33199, USA
| | - Evgenia Glukhov
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Lena Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
16
|
Koyama T, Kawazoe Y, Iwasaki A, Ohno O, Suenaga K, Uemura D. Anti-obesity activities of the yoshinone A and the related marine γ-pyrone compounds. J Antibiot (Tokyo) 2016; 69:348-51. [PMID: 26932409 PMCID: PMC4892692 DOI: 10.1038/ja.2016.19] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/20/2016] [Accepted: 01/27/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Tomoyuki Koyama
- Department of Food Science and Technology, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Yoshinori Kawazoe
- Research Institute of Natural-Drug Leads, Kanagawa University, Kanagawa, Japan
| | - Arihiro Iwasaki
- Department of Chemistry, Keio University, Yokohama, Kanagawa, Japan
| | - Osamu Ohno
- Department of Chemistry, Keio University, Yokohama, Kanagawa, Japan
| | - Kiyotake Suenaga
- Department of Chemistry, Keio University, Yokohama, Kanagawa, Japan
| | - Daisuke Uemura
- Research Institute of Natural-Drug Leads, Kanagawa University, Kanagawa, Japan.,Department of Chemistry, Faculty of Science, Kanagawa University, Kanagawa, Japan
| |
Collapse
|
17
|
Bertin MJ, Demirkiran O, Navarro G, Moss NA, Lee J, Goldgof GM, Vigil E, Winzeler EA, Valeriote FA, Gerwick WH. Kalkipyrone B, a marine cyanobacterial γ-pyrone possessing cytotoxic and anti-fungal activities. PHYTOCHEMISTRY 2016; 122:113-118. [PMID: 26632528 PMCID: PMC4724546 DOI: 10.1016/j.phytochem.2015.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/12/2015] [Accepted: 11/19/2015] [Indexed: 05/11/2023]
Abstract
Bioassay-guided fractionation of two marine cyanobacterial extracts using the H-460 human lung cancer cell line and the OVC-5 human ovarian cancer cell line led to the isolation of three related α-methoxy-β, β'-dimethyl-γ-pyrones each containing a modified alkyl chain, one of which was identified as the previously reported kalkipyrone and designated kalkipyrone A. The second compound was an analog designated kalkipyrone B. The third was identified as the recently reported yoshinone A, also isolated from a marine cyanobacterium. Kalkipyrone A and B were obtained from a field-collection of the cyanobacterium Leptolyngbya sp. from Fagasa Bay, American Samoa, while yoshinone A was isolated from a field-collection of cyanobacteria (cf. Schizothrix sp.) from Panama. One-dimensional and two-dimensional NMR experiments were used to determine the overall structures and relative configurations of the kalkipyrones, and the absolute configuration of kalkipyrone B was determined by (1)H NMR analysis of diastereomeric Mosher's esters. Kalkipyrone A showed good cytotoxicity to H-460 human lung cancer cells (EC50=0.9μM), while kalkipyrone B and yoshinone A were less active (EC50=9.0μM and >10μM, respectively). Both kalkipyrone A and B showed moderate toxicity to Saccharomyces cerevisiae ABC16-Monster strain (IC50=14.6 and 13.4μM, respectively), whereas yoshinone A was of low toxicity to this yeast strain (IC50=63.8μM).
Collapse
Affiliation(s)
- Matthew J Bertin
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, 8615 Kennel Way, La Jolla, CA 92037, United States
| | - Ozlem Demirkiran
- Department of Pharmacognosy, Faculty of Pharmacy, Trakya University, Edirne 22030, Turkey
| | - Gabriel Navarro
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, 8615 Kennel Way, La Jolla, CA 92037, United States
| | - Nathan A Moss
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, 8615 Kennel Way, La Jolla, CA 92037, United States
| | - John Lee
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, 8615 Kennel Way, La Jolla, CA 92037, United States; Chemistry & Biochemistry Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Gregory M Goldgof
- Department of Pediatrics, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Edgar Vigil
- Department of Pediatrics, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Elizabeth A Winzeler
- Department of Pediatrics, University of California, San Diego, School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, United States
| | - Fred A Valeriote
- Henry Ford Health System, Department of Internal Medicine, Josephine Ford Cancer Center, 440 Burroughs, Room 415, Detroit, MI 48202, United States
| | - William H Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, 8615 Kennel Way, La Jolla, CA 92037, United States; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, United States.
| |
Collapse
|
18
|
Inuzuka T, Yamamoto K, Iwasaki A, Ohno O, Suenaga K, Kawazoe Y, Uemura D. An inhibitor of the adipogenic differentiation of 3T3-L1 cells, yoshinone A, and its analogs, isolated from the marine cyanobacterium Leptolyngbya sp. Tetrahedron Lett 2014. [DOI: 10.1016/j.tetlet.2014.10.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Tran TD, Pham NB, Fechner GA, Hooper JNA, Quinn RJ. Potent cytotoxic peptides from the Australian marine sponge Pipestela candelabra. Mar Drugs 2014; 12:3399-415. [PMID: 24901701 PMCID: PMC4071583 DOI: 10.3390/md12063399] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 01/12/2023] Open
Abstract
Two consecutive prefractionated fractions of the Australian marine sponge extract, Pipestela candelabra, were identified to be selectively active on the human prostate cancer cells (PC3) compared to the human neonatal foreskin fibroblast non-cancer cells (NFF). Twelve secondary metabolites were isolated in which four compounds are new small peptides. Their structures were characterized by spectroscopic and chemical analysis. These compounds inhibited selectively the growth of prostate cancer cells with IC50 values in the picomolar to sub-micromolar range. Structure-activity relationship of these compounds is discussed.
Collapse
Affiliation(s)
- Trong D Tran
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia.
| | - Ngoc B Pham
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia.
| | - Gregory A Fechner
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia.
| | - John N A Hooper
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia.
| | - Ronald J Quinn
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland 4111, Australia.
| |
Collapse
|
20
|
Jeso V, Yang C, Cameron MD, Cleveland JL, Micalizio GC. Synthesis and SAR of Lehualide B: a marine-derived natural product with potent anti-multiple myeloma activity. ACS Chem Biol 2013; 8:1241-52. [PMID: 23547759 PMCID: PMC3758376 DOI: 10.1021/cb300582s] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report a concise and convergent laboratory synthesis of the rare marine natural product lehualide B that has led to the discovery that (1) this compound has low nanomolar activity against human multiple myeloma cells and (2) the anticancer effects of lehualide B and its analogues are selective (i.e., they are approximately 2-3 orders of magnitude less toxic to human breast cancer cells). Synthetic lehualide B is shown to be an effective inhibitor of complex I of the mitochondrial electron transport chain, with potency similar to that observed for the terrestrial natural products piericidin A1 and rotenone, an observation that led to the discovery that piericidin A1 is also selectively cytotoxic toward human multiple myeloma cells. Interestingly, synthetic derivatives of lehualide B that resemble verticipyrone (an established complex I inhibitor composed of a γ-pyrone and a simple monounsaturated hydrophobic chain) lack the potent antimyeloma activity of the natural product. Finally, the synthesis and evaluation of a collection of lehualide-inspired analogues led to the elucidation of structure-activity relationships for this rare natural product that established important roles for the substituted γ-pyrone headgroup and the skipped polyene side chain.
Collapse
Affiliation(s)
- Valer Jeso
- Departments of Chemistry, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458
| | - Chunying Yang
- Cancer Biology, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458
| | - Michael D. Cameron
- Molecular Therapeutics, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458
| | - John L. Cleveland
- Cancer Biology, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458
| | - Glenn C. Micalizio
- Departments of Chemistry, The Scripps Research Institute, Scripps Florida, Jupiter, Florida 33458
| |
Collapse
|
21
|
Lugemwa FN. Extraction of betulin, trimyristin, eugenol and carnosic acid using water-organic solvent mixtures. Molecules 2012; 17:9274-82. [PMID: 22864237 PMCID: PMC6268899 DOI: 10.3390/molecules17089274] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 07/26/2012] [Accepted: 07/27/2012] [Indexed: 11/16/2022] Open
Abstract
A solvent system consisting of ethyl acetate, ethyl alcohol and water, in the volume ratio of 4.5:4.5:1, was developed and used to extract, at room temperature, betulin from white birch bark and antioxidants from spices (rosemary, thyme, sage, and oregano) and white oak chips. In addition, under reflux conditions, trimyristin was extracted from nutmeg using the same solvent system, and eugenol from olives was extracted using a mixture of salt water and ethyl acetate. The protocol demonstrates the use of water in organic solvents to extract natural products from plants. Measurement of the free-radical scavenging activity using by 2,2-diphenyl-1-picrylhydrazyl (DPPH) indicated that the extraction of plant material using ethyl acetate, ethyl alcohol and water (4.5:4.5:1, v/v/v) was exhaustive when carried out at room temperature for 96 h.
Collapse
Affiliation(s)
- Fulgentius N Lugemwa
- Department of Chemistry, Pennsylvania State University-York, 1031 Edgecomb Avenue, York, PA 17403, USA.
| |
Collapse
|
22
|
Nagarajan M, Maruthanayagam V, Sundararaman M. A review of pharmacological and toxicological potentials of marine cyanobacterial metabolites. J Appl Toxicol 2011; 32:153-85. [PMID: 21910132 DOI: 10.1002/jat.1717] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/22/2011] [Accepted: 06/22/2011] [Indexed: 11/07/2022]
Abstract
Novel toxic metabolites from marine cyanobacteria have been thoroughly explored. Biologically active and chemically diverse compounds that could be hepatotoxic, neurotoxic or cytotoxic, such as cyclic peptides, lipopeptides, fatty acid amides, alkaloids and saccharides, have been produced from marine cyanobacteria. Many reports have revealed that biosynthesis of active metabolites is predominant during cyanobacterial bloom formation. Marine cyanobacterial toxic metabolites exhibit important biological properties, such as interfering in signal transduction either by activation or blockage of sodium channels or by targeting signaling proteins; inducing apoptosis by disrupting cytoskeletal proteins; and inhibiting membrane transporters, receptors, serine proteases and topoisomerases. The pharmacological importance of these metabolites resides in their proliferation and growth-controlling abilities towards cancer cell lines and disease-causing potent microbial agents (bacteria, virus, fungi and protozoa). Besides their toxic and pharmacological potentials, the present review discusses structural and functional resemblance of marine cyanobacterial metabolites to marine algae, sponges and mollusks.
Collapse
Affiliation(s)
- M Nagarajan
- Department of Marine Biotechnology, School of Marine Sciences, Bharathidasan University, Tiruchirappalli-620 024, Tamil Nadu, India
| | | | | |
Collapse
|
23
|
Engene N, Choi H, Esquenazi E, Rottacker EC, Ellisman MH, Dorrestein PC, Gerwick WH. Underestimated biodiversity as a major explanation for the perceived rich secondary metabolite capacity of the cyanobacterial genus Lyngbya. Environ Microbiol 2011; 13:1601-10. [PMID: 21477107 PMCID: PMC3131211 DOI: 10.1111/j.1462-2920.2011.02472.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Marine cyanobacteria are prolific producers of bioactive secondary metabolites responsible for harmful algal blooms as well as rich sources of promising biomedical lead compounds. The current study focused on obtaining a clearer understanding of the remarkable chemical richness of the cyanobacterial genus Lyngbya. Specimens of Lyngbya from various environmental habitats around Curaçao were analysed for their capacity to produce secondary metabolites by genetic screening of their biosynthetic pathways. The presence of biosynthetic pathways was compared with the production of corresponding metabolites by LC-ESI-MS² and MALDI-TOF-MS. The comparison of biosynthetic capacity and actual metabolite production revealed no evidence of genetic silencing in response to environmental conditions. On a cellular level, the metabolic origin of the detected metabolites was pinpointed to the cyanobacteria, rather than the sheath-associated heterotrophic bacteria, by MALDI-TOF-MS and multiple displacement amplification of single cells. Finally, the traditional morphology-based taxonomic identifications of these Lyngbya populations were combined with their phylogenetic relationships. As a result, polyphyly of morphologically similar cyanobacteria was identified as the major explanation for the perceived chemical richness of the genus Lyngbya, a result which further underscores the need to revise the taxonomy of this group of biomedically important cyanobacteria.
Collapse
Affiliation(s)
- Niclas Engene
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Hyukjae Choi
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Eduardo Esquenazi
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Erin C. Rottacker
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - Mark H. Ellisman
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA, USA
| | - Pieter C. Dorrestein
- Departments of Pharmacology, Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - William H. Gerwick
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
24
|
Busch B, Hertweck C. Evolution of metabolic diversity in polyketide-derived pyrones: using the non-colinear aureothin assembly line as a model system. PHYTOCHEMISTRY 2009; 70:1833-1840. [PMID: 19651421 DOI: 10.1016/j.phytochem.2009.05.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 05/26/2009] [Accepted: 05/27/2009] [Indexed: 05/28/2023]
Abstract
Polyketide-derived pyrones are structurally diverse secondary metabolites that are represented in all three kingdoms of life and are endowed with various biological functions. The aureothin family of Streptomyces metabolites was chosen as a model to study the factors governing structural diversity and the evolutionary processes involved. This review highlights recent insights into the non-colinear aureothin and neoaureothin modular type I polyketide synthase (PKS), aromatic starter unit biosynthesis, polyketide tailoring reactions, and a non-enzymatic polyene splicing cascade. Pyrone biosynthesis in bacteria, fungi, and plants is compared. Finally, various strategies to increase metabolic diversity of aureothin derivatives through mutasynthesis, pathway engineering, and biotransformation are presented. The unusual aureothin and neoaureothin assembly lines thus not only represent a model for PKS evolution, but provided important insights into non-canonical enzymatic processes that could be employed for the production of antitumor and antifungal agents.
Collapse
Affiliation(s)
- Benjamin Busch
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Department of Biomolecular Chemistry, Jena, Germany
| | | |
Collapse
|
25
|
Wilk W, Waldmann H, Kaiser M. γ-Pyrone natural products—A privileged compound class provided by nature. Bioorg Med Chem 2009; 17:2304-9. [DOI: 10.1016/j.bmc.2008.11.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 11/01/2008] [Accepted: 11/04/2008] [Indexed: 12/31/2022]
|
26
|
Martins R, Fernandez N, Beiras R, Vasconcelos V. Toxicity assessment of crude and partially purified extracts of marine Synechocystis and Synechococcus cyanobacterial strains in marine invertebrates. Toxicon 2007; 50:791-9. [PMID: 17686503 DOI: 10.1016/j.toxicon.2007.06.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Revised: 06/13/2007] [Accepted: 06/13/2007] [Indexed: 11/26/2022]
Abstract
Among the Cyanoprokaryota, the genera Synechocystis and Synechococcus have rarely been studied with respect to potential toxicity. This is particularly true with marine environments where studies about the toxicity of cyanobacteria are restricted to filamentous forms at the warmer temperate and tropical regions and also to filamentous forms at cold seas such as the Baltic Sea. In this study, we describe the effects of cyanobacterial strains of the Synechocystis and Synechococcus genera isolated from the marine coast of Portugal, on marine invertebrates. Crude and partially purified extracts at a concentration of 100 mg/ml of freeze-dried material of the marine strains were tested for acute toxicity in nauplii of the brine shrimp Artemia salina, in the rotifer Brachionus plicatillis and in embryos of the sea urchin Paracentrotus lividus and the mussel Mytilus galloprovincialis. The cyanobacterial extracts, especially the crude extract, had an impact on A. salina nauplii. No significant toxic effects were registered against the rotifer. A negative impact of all strains was recorded on the embryonic development of the sea urchin, with toxic effects resulting in an inhibition of embryogenesis or development of smaller larvae. To the mussel embryos, the effects of cyanobacterial extracts resulted in a complete inhibition of embryogenesis. The results of all assays indicate that Synechocystis and Synechococcus marine strains contained toxic compounds to marine invertebrates.
Collapse
Affiliation(s)
- Rosário Martins
- Departamento de Zoologia e Antropologia, Faculdade de Ciências da Universidade do Porto Praça Gomes Teixeira, 4009-002 Porto, Portugal.
| | | | | | | |
Collapse
|
27
|
Shojaei H, Li-Böhmer Z, von Zezschwitz P. Iromycins: A New Family of Pyridone Metabolites from Streptomyces sp. II. Convergent Total Synthesis. J Org Chem 2007; 72:5091-7. [PMID: 17564460 DOI: 10.1021/jo070327j] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The total synthesis of iromycin A (1a), a microbial metabolite combining a novel structure with an interesting biological activity as a NO synthase inhibitor, was accomplished using a flexible and highly convergent approach. Thus, the ring fragment was prepared as 6-bromomethylpyrone 27 by acylation of the respective beta-ketoester 13 and subsequent lactonization of the thus-obtained beta,delta-diketoester 11, followed by bromination of the 6-methyl group. In addition, the unsaturated side chain was efficiently prepared as terminal alkyne 34 which was then carboaluminated to furnish the alkenyldimethylalane 35. The assembly of these two fragments was thoroughly studied using nickel, palladium, and copper catalysts yet only succeeded in the absence of any transition metal after formation of the respective lithium alkenyltrialkylalanate. Treatment of the coupled product 41 with liquid ammonia then completed the total synthesis which furnished an 18% overall yield over the nine steps of the longest linear sequence.
Collapse
Affiliation(s)
- Heydar Shojaei
- Institut für Organische und Biomolekulare Chemie der Georg-August-Universität Göttingen, Tammannstrasse 2, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
28
|
Surup F, Wagner O, von Frieling J, Schleicher M, Oess S, Müller P, Grond S. The iromycins, a new family of pyridone metabolites from Streptomyces sp. I. Structure, NOS inhibitory activity, and biosynthesis. J Org Chem 2007; 72:5085-90. [PMID: 17564461 DOI: 10.1021/jo0703303] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The iromycins A-D are members of a new family of rare alpha-pyridone metabolites. The isolation and structure elucidation of these microbial secondary metabolites from Streptomyces sp. Dra 17 revealed a N-heterocyclic core structure with two unusual side chains. Iromycins act as inhibitors of nitric oxide synthases (NOS), a protein family, which produces the crucial second messenger nitric oxide (NO). Importantly, these compounds inhibit selectively endothelial NOS rather than neuronal NOS and thus set prospects for both medical therapy and basic research. Feeding experiments with 13C- and 15N -labeled precursors indicated an uncommon type of polyketide biosynthesis and clearly ruled out an isoprenoid origin. A detoxification pathway of a particular secondary metabolite in the host strain is a rare observation and here we demonstrate it with the iromycin family.
Collapse
Affiliation(s)
- Frank Surup
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstrasse 2, D-37077 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Van Wagoner RM, Drummond AK, Wright JLC. Biogenetic Diversity of Cyanobacterial Metabolites. ADVANCES IN APPLIED MICROBIOLOGY 2007; 61:89-217. [PMID: 17448789 DOI: 10.1016/s0065-2164(06)61004-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ryan M Van Wagoner
- Center for Marine Science, University of North Carolina at Wilmington, Wilmington, NC 28409, USA
| | | | | |
Collapse
|
30
|
Ui H, Shiomi K, Suzuki H, Hatano H, Morimoto H, Yamaguchi Y, Masuma R, Sunazuka T, Shimamura H, Sakamoto K, Kita K, Miyoshi H, Tomoda H, Omura S. Verticipyrone, a New NADH-fumarate Reductase Inhibitor, Produced by Verticillium sp. FKI-1083. J Antibiot (Tokyo) 2006; 59:785-90. [PMID: 17323645 DOI: 10.1038/ja.2006.103] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A new NADH-fumarate reductase inhibitor, verticipyrone, was isolated from the cultured broth of a fungus, Verticillium sp. FKI-1083. The structure was established as (E)-2-methoxy-3,5-dimethyl-6-(3-methyl-2-undecenyl)-4H-pyran-4-one. Verticipyrone exhibited an IC50 value of 0.88 nM against NADH-fumarate reductase of Ascaris suum. Verticipyrone inhibited both Ascaris and bovine heart complex I, and its synthetic analogue, 8,9-dihydro-8-hydroxyverticipyrone, showed good selectivity against Ascaris complex I.
Collapse
Affiliation(s)
- Hideaki Ui
- Kitasato Institute for Life Sciences and Graduate School of Infectious Control Sciences, Kitasato University, Minato-ku, Tokyo 108-8641, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Socha AM, Garcia D, Sheffer R, Rowley DC. Antibiotic bisanthraquinones produced by a streptomycete isolated from a cyanobacterium associated with Ecteinascidia turbinata. JOURNAL OF NATURAL PRODUCTS 2006; 69:1070-3. [PMID: 16872146 DOI: 10.1021/np050449b] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Chemical studies of a streptomycete isolated from a cyanobacterium associated with the tropical tunicate Ecteinascidia turbinata led to the bioassay-guided purification of two antibacterial bisanthraquinone metabolites and a cytotoxic artifact. The structures, including relative configurations of these octacyclic compounds, were established by spectroscopic analyses. Their potent antibacterial properties (IC(50) = 0.15-130 microM) versus methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecalis and cytotoxic effects against HCT-116 cells are presented.
Collapse
Affiliation(s)
- Aaron M Socha
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island 02881-1966, USA
| | | | | | | |
Collapse
|
32
|
Sata N, Abinsay H, Yoshida WY, Horgen FD, Sitachitta N, Kelly M, Scheuer PJ. Lehualides A-D, metabolites from a Hawaiian sponge of the genus Plakortis. JOURNAL OF NATURAL PRODUCTS 2005; 68:1400-3. [PMID: 16180823 DOI: 10.1021/np0500528] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A collection of an undescribed marine sponge of the genus Plakortis yielded four new "polyketide-derived" metabolites, lehualides A-D (1-4). The structures of compounds 1-4 were elucidated by interpretation of spectral data. Compound 2 demonstrated cytotoxicity against an ovarian cancer cell line, while compound 4 was active against both ovarian cancer and leukemia cell lines.
Collapse
Affiliation(s)
- Noriko Sata
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii 96822, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Nogle LM, Gerwick WH. Diverse secondary metabolites from a Puerto Rican collection of Lyngbyamajuscula. JOURNAL OF NATURAL PRODUCTS 2003; 66:217-220. [PMID: 12608852 DOI: 10.1021/np020332c] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Extensive fractionation of the crude organic extract from a Puerto Rican collection of Lyngbya majuscula led to the discovery of three new secondary metabolites: a quinoline alkaloid (1), malyngamide T (2), and a tryptophan derivative (3). In addition, several previously reported compounds, including the potent neurotoxins antillatoxin, antillatoxin B, and kalkitoxin, were identified. The structures of 1, 2, and 3 were deduced by NMR and mass spectral data interpretation and suggest the existence of a convergent biosynthetic pathway for these new and unusual metabolites.
Collapse
Affiliation(s)
- Lisa M Nogle
- College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, USA
| | | |
Collapse
|
34
|
Burja AM, Abou-Mansour E, Banaigs B, Payri C, Burgess JG, Wright PC. Culture of the marine cyanobacterium, Lyngbya majuscula (Oscillatoriaceae), for bioprocess intensified production of cyclic and linear lipopeptides. J Microbiol Methods 2002; 48:207-19. [PMID: 11777570 DOI: 10.1016/s0167-7012(01)00324-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cyanobacteria are an ancient and diverse group of photosynthetic microorganisms, which inhabit many different and extreme environments. This indicates a high degree of biological adaptation, which has enabled these organisms to thrive and compete effectively in nature. The filamentous cyanobacterium, Lyngbya majuscula, produces several promising antifungal and cytotoxic agents, including laxaphycin A and B and curacin A. Samples of L. majuscula collected from Moorea Island, Tahiti (French Polynesia) and from the Culture Collection of Algae and Protozoa (CCAP 1446/4) were studied and adapted to large scale laboratory culture (5 l). This constitutes a 100-fold scale-up for the culture of this particular strain of L. majuscula. The effect of culture vessel configurations, growth conditions and media compositions on growth of L. majuscula was examined. Using optimised culture conditions, two strains of L. majuscula are currently being evaluated for their production of secondary metabolites. Results will be compared with those obtained from four environmental extracts. Comparisons were made by thin layer chromatography (TLC), high performance liquid chromatography (HPLC) and fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). It was shown that varying the culture conditions under which L. majuscula was grown had the greatest effect on secondary metabolite production, thus providing potential for future bioprocess intensified production.
Collapse
Affiliation(s)
- A M Burja
- Department of Mechanical and Chemical Engineering, Heriot-Watt University, Riccarton, Edinburgh, EH14 4AS, Scotland, UK
| | | | | | | | | | | |
Collapse
|
35
|
Osborne NJ, Webb PM, Shaw GR. The toxins of Lyngbya majuscula and their human and ecological health effects. ENVIRONMENT INTERNATIONAL 2001; 27:381-392. [PMID: 11757852 DOI: 10.1016/s0160-4120(01)00098-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Lyngbya majuscula is a benthic filamentous marine cyanobacterium, which in recent years appears to have been increasing in frequency and size of blooms in Moreton Bay, Queensland. It has a worldwide distribution throughout the tropics and subtropics in water to 30m. It has been found to contain a variety of chemicals that exert a range of biological effects, including skin, eye and respiratory irritation. The toxins lyngbyatoxin A and debromoaplysiatoxin appear to give the most widely witnessed biological effects in relation to humans, and experiments involving these two toxins show the formation of acute dermal lesions. Studies into the epidemiology of the dermatitic, respiratory and eye effects of the toxins of this organism are reviewed and show that Lyngbya induced dermatitis has occurred in a number of locations. The effects of aerosolised Lyngbya in relation to health outcomes were also reported. Differential effects of bathing behaviour after Lyngbya exposure were examined in relation to the severity of health outcomes. The potential for Lyngbya to exhibit differential toxicologies due to the presence of varying proportions of a range of toxins is also examined. This paper reviews the present state of knowledge on the effects of Lyngbya majuscula on human health, ecosystems and human populations during a toxic cyanobacterial bloom. The potential exists for toxins from Lyngbya majuscula affecting ecological health and in particular marine reptiles.
Collapse
Affiliation(s)
- N J Osborne
- National Research Centre for Environmental Toxicology, Brisbane, Queensland, Australia.
| | | | | |
Collapse
|
36
|
|