1
|
Fallah-Mehrjardi M, Zare M. Preparation and Characterization of Bifunctional PEG/en Nanomagnetic Phase-Transfer Catalyst: Green Synthesis of 2-Amino-3-Cyano-4H-Pyrans. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2136219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Mehdi Fallah-Mehrjardi
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
- Research Center of Environmental Chemistry, Payame Noor University (PNU), Ardakan, Iran
| | - Maryam Zare
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| |
Collapse
|
2
|
Nallapati S, Tseng MF, Chen PL, Chuang SC. Phosphine-Mediated [4 + 3] Annulation of Diynoates and 2-Arylidene Indane-1,3-diones: Access of Indeno[1,2- b]oxepin-4-ylidenes and Beyond. Org Lett 2022; 24:2993-2997. [PMID: 35442699 DOI: 10.1021/acs.orglett.2c00893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel unprecedented triphenylphosphine-mediated [4 + 3] annulation reaction of 2-benzylidene indane-1,3-diones and -diynoates through initial phosphine α-addition was discovered and found to result in biologically interesting indeno[1,2-b]oxepin-4-ylidenes in up to 75% yield. The seven-membered separable Z and E isomeric oxepins were confirmed using single-crystal X-ray diffraction.
Collapse
Affiliation(s)
- Sureshbabu Nallapati
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C.,Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C
| | - Min-Feng Tseng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C.,Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C
| | - Pei-Ling Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu 30050 Taiwan, R.O.C
| | - Shih-Ching Chuang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C.,Department of Applied Chemistry, National Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C
| |
Collapse
|
3
|
Rafiee F, Hasani S. Exciting progress in the transition metal‐catalyzed synthesis of oxepines, benzoxepines, dibenzoxepines, and other derivatives. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fatemeh Rafiee
- Department of Chemistry, Faculty of Physics and Chemistry Alzahra University Tehran Iran
| | - Samira Hasani
- Department of Chemistry, Faculty of Physics and Chemistry Alzahra University Tehran Iran
| |
Collapse
|
4
|
Sokol KR, Magauer T. Total Synthesis of Oxepin and Dihydrooxepin Containing Natural Products. SYNTHESIS-STUTTGART 2021; 53:4187-4202. [PMID: 35001983 PMCID: PMC7612190 DOI: 10.1055/s-0037-1610776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The construction of oxepin and dihydrooxepin containing natural products represents a challenging task in total synthesis. In the last decades, a variety of synthetic methods have been reported for the installation of these structural motifs. Herein, we provide an overview of synthetic methods and strategies to construct these motifs in the context of natural product synthesis and highlight the key steps of each example.
Collapse
Affiliation(s)
- Kevin Rafael Sokol
- Institute of Organic Chemistry and Center for Molecular Biosciences, Leopold-Franzens-University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Thomas Magauer
- Institute of Organic Chemistry and Center for Molecular Biosciences, Leopold-Franzens-University Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| |
Collapse
|
5
|
Yang D, Shi J, Chen J, Jia X, Shi C, Ma L, Li Z. Visible-light enabled room-temperature dealkylative imidation of secondary and tertiary amines promoted by aerobic ruthenium catalysis. RSC Adv 2021; 11:18966-18973. [PMID: 35478631 PMCID: PMC9033495 DOI: 10.1039/d0ra10517a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Employing sulfonyl azide as a nitrogen donor, a visible-light-enabled aerobic dealkylative imidation of tertiary and secondary amines involving C(sp3)–C(sp3) bond cleavage with moderate to excellent yields at room temperature is described. It has been demonstrated that this imidation could take place spontaneously upon visible-light irradiation, and could be facilitated considerably by a ruthenium photocatalyst and oxygen. An alternative mechanism to the previous aerobic photoredox pathway has also been proposed. A photoredox dealkylative imidation of tertiary and secondary amines with sulfonyl azide facilitated by aerobic ruthenium-catalysis to afford sulfonyl amidine at room temperature is reported.![]()
Collapse
Affiliation(s)
- Dong Yang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Jingqi Shi
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Jiaming Chen
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Xiaoqi Jia
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Cuiying Shi
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Lifang Ma
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| | - Ziyuan Li
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University Chengdu 610065 China
| |
Collapse
|
6
|
Perspective: Reflections on a career in synthetic organic chemistry, 1970 to 2020. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Gou Q, Tan Q, Chen Q, Tan J, Wang K, Xie J. Copper-Catalyzed Regioselective C(sp 3)—H Sulfonimidization of Aliphatic Cyclic Tertiary Amines. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
Gu ZY, Han H, Li ZY, Ji SJ, Xia JB. Catalytic synthesis of functionalized amidines via cobalt-carbene radical coupling with isocyanides and amines. Org Chem Front 2021. [DOI: 10.1039/d1qo00063b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An atom- and step-economic multi-component cobalt-catalyzed synthesis of amidines has been reported by using amines, isocyanides, and diazo compounds as carbene sources.
Collapse
Affiliation(s)
- Zheng-Yang Gu
- College of Textiles and Clothing & Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province
- Yancheng Institute of Technology
- Yancheng
- China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
| | - Hui Han
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Center for Excellence in Molecular Synthesis
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP)
- University of Chinese Academy of Sciences
| | - Zi-Yin Li
- College of Textiles and Clothing & Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province
- Yancheng Institute of Technology
- Yancheng
- China
| | - Shun-Jun Ji
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
- China
| | - Ji-Bao Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Center for Excellence in Molecular Synthesis
- Suzhou Research Institute of LICP
- Lanzhou Institute of Chemical Physics (LICP)
- University of Chinese Academy of Sciences
| |
Collapse
|
9
|
Review of Oxepine-Pyrimidinone-Ketopiperazine Type Nonribosomal Peptides. Metabolites 2020; 10:metabo10060246. [PMID: 32549308 PMCID: PMC7344746 DOI: 10.3390/metabo10060246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/31/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Recently, a rare class of nonribosomal peptides (NRPs) bearing a unique Oxepine-Pyrimidinone-Ketopiperazine (OPK) scaffold has been exclusively isolated from fungal sources. Based on the number of rings and conjugation systems on the backbone, it can be further categorized into three types A, B, and C. These compounds have been applied to various bioassays, and some have exhibited promising bioactivities like antifungal activity against phytopathogenic fungi and transcriptional activation on liver X receptor α. This review summarizes all the research related to natural OPK NRPs, including their biological sources, chemical structures, bioassays, as well as proposed biosynthetic mechanisms from 1988 to March 2020. The taxonomy of the fungal sources and chirality-related issues of these products are also discussed.
Collapse
|
10
|
Gou Q, Liu Z, Cao T, Tan X, Shi W, Ran M, Cheng F, Qin J. Copper-Catalyzed Coupling of Sulfonamides with Alkylamines: Synthesis of ( E)- N-Sulfonylformamidines. J Org Chem 2020; 85:2092-2102. [PMID: 31876415 DOI: 10.1021/acs.joc.9b02860] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Herein, we describe an efficient copper-catalyzed coupling of sulfonamides with alkylamines to synthesize (E)-N-sulfonylformamidines. The reaction is accomplished under mild conditions without the use of a corrosive acid or base as an additive. It tolerates a broad scope of substrates and generates the products with exclusive (E)-stereoselectivity.
Collapse
Affiliation(s)
- Quan Gou
- School of Chemistry and Chemical Engineering , Yangtze Normal University , Chongqing 408100 , China
| | - Zining Liu
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control , Qujing Normal University , Qujing 655011 , China
| | - Tuanwu Cao
- School of Chemistry and Chemical Engineering , Yangtze Normal University , Chongqing 408100 , China
| | - Xiaoping Tan
- School of Chemistry and Chemical Engineering , Yangtze Normal University , Chongqing 408100 , China
| | - Wenbing Shi
- School of Chemistry and Chemical Engineering , Yangtze Normal University , Chongqing 408100 , China
| | - Man Ran
- School of Chemistry and Chemical Engineering , Yangtze Normal University , Chongqing 408100 , China
| | - Feixiang Cheng
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control , Qujing Normal University , Qujing 655011 , China
| | - Jun Qin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology , Yunnan University , Kunming 650091 , China
| |
Collapse
|
11
|
Xie D, He W, Xiao J, Wu Y, Guo Y, Liu Q, Guo C. Direct synthesis of 2-oxo-acetamidines from methyl ketones, aromatic amines and DMF via copper-catalyzed C(sp 3)-H amidination. RSC Adv 2019; 9:7203-7209. [PMID: 35519951 PMCID: PMC9061129 DOI: 10.1039/c9ra00616h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/25/2019] [Indexed: 12/18/2022] Open
Abstract
A convenient method for the synthesis of 2-oxo-acetamidines from methyl ketones using aromatic amines and DMF as nitrogen sources is reported via copper-catalyzed C(sp3)-H amidination. Various methyl ketones react readily with aromatic amines and DMF, producing 2-oxo-acetamidines in yields of 47 to 92%. This protocol features the simultaneous formation of C-N and C[double bond, length as m-dash]N bonds using DMF and aromatic amines as two different nitrogen sources. It thus provides an efficient approach to construct acyclic amidines via three C(sp3)-H bond amidination. Based on the preliminary experiments, a plausible mechanism of this transformation is disclosed.
Collapse
Affiliation(s)
- Dianke Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Wei He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Jiang Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Yao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Yongjia Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Qiang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Cancheng Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| |
Collapse
|
12
|
Zhang W, Liu S, Maiga RI, Pelletier J, Brown LE, Wang TT, Porco JA. Chemical Synthesis Enables Structural Reengineering of Aglaroxin C Leading to Inhibition Bias for Hepatitis C Viral Infection. J Am Chem Soc 2019; 141:1312-1323. [PMID: 30590924 PMCID: PMC6583776 DOI: 10.1021/jacs.8b11477] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As a unique rocaglate (flavagline) natural product, aglaroxin C displays intriguing biological activity by inhibiting hepatitis C viral entry. To further elucidate structure-activity relationships and diversify the pyrimidinone scaffold, we report a concise synthesis of aglaroxin C utilizing a highly regioselective pyrimidinone condensation. We have prepared more than 40 aglaroxin C analogues utilizing various amidine condensation partners. Through biological evaluation of analogues, we have discovered two lead compounds, CMLD012043 and CMLD012044, which show preferential bias for the inhibition of hepatitis C viral entry vs translation inhibition. Overall, the study demonstrates the power of chemical synthesis to produce natural product variants with both target inhibition bias and improved therapeutic indexes.
Collapse
Affiliation(s)
- Wenhan Zhang
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA 02215, USA
| | - Shufeng Liu
- Laboratory of Vector-borne Viral Diseases, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20903, USA
| | - Rayelle I. Maiga
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G1Y6, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Quebec, H3G1Y6, Canada
- Department of Oncology, McGill University, Montreal, Quebec, H3G1Y6, Canada
- Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, Quebec, H3G1Y6, Canada
| | - Lauren E. Brown
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA 02215, USA
| | - Tony T. Wang
- Laboratory of Vector-borne Viral Diseases, Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20903, USA
| | - John A. Porco
- Department of Chemistry, Center for Molecular Discovery (BU-CMD), Boston University, Boston, MA 02215, USA
| |
Collapse
|
13
|
Three component reaction of aryl diazonium salt with sulfonamide & actonitrile to synthesize N-sulfonyl amidine. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.10.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Akita H, Hayashi J, Sakuraba H, Ohshima T. Artificial Thermostable D-Amino Acid Dehydrogenase: Creation and Application. Front Microbiol 2018; 9:1760. [PMID: 30123202 PMCID: PMC6085447 DOI: 10.3389/fmicb.2018.01760] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/13/2018] [Indexed: 01/06/2023] Open
Abstract
Many kinds of NAD(P)+-dependent L-amino acid dehydrogenases have been so far found and effectively used for synthesis of L-amino acids and their analogs, and for their sensing. By contrast, similar biotechnological use of D-amino acid dehydrogenase (D-AADH) has not been achieved because useful D-AADH has not been found from natural resources. Recently, using protein engineering methods, an NADP+-dependent D-AADH was created from meso-diaminopimelate dehydrogenase (meso-DAPDH). The artificially created D-AADH catalyzed the reversible NADP+-dependent oxidative deamination of D-amino acids to 2-oxo acids. The enzyme, especially thermostable one from thermophiles, was efficiently applicable to synthesis of D-branched-chain amino acids (D-BCAAs), with high yields and optical purity, and was useful for the practical synthesis of 13C- and/or 15N-labeled D-BCAAs. The enzyme also made it possible to assay D-isoleucine selectively in a mixture of isoleucine isomers. Analyses of the three-dimensional structures of meso-DAPDH and D-AADH, and designed mutations based on the information obtained made it possible to markedly enhance enzyme activity and to create D-AADH homologs with desired reactivity profiles. The methods described here may be an effective approach to artificial creation of biotechnologically useful enzymes.
Collapse
Affiliation(s)
- Hironaga Akita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Hiroshima, Japan
| | - Junji Hayashi
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University Biwako-Kusatsu Campus, Shiga, Japan
| | - Haruhiko Sakuraba
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Toshihisa Ohshima
- Department of Biomedical Engineering, Faculty of Engineering, Osaka Institute of Technology, Osaka, Japan
| |
Collapse
|
15
|
Barbero H, Díez-Poza C, Barbero A. The Oxepane Motif in Marine Drugs. Mar Drugs 2017; 15:E361. [PMID: 29140270 PMCID: PMC5706050 DOI: 10.3390/md15110361] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/03/2017] [Accepted: 11/08/2017] [Indexed: 12/12/2022] Open
Abstract
Oceans have shown to be a remarkable source of natural products. The biological properties of many of these compounds have helped to produce great advances in medicinal chemistry. Within them, marine natural products containing an oxepanyl ring are present in a great variety of algae, sponges, fungus and corals and show very important biological activities, many of them possessing remarkable cytotoxic properties against a wide range of cancer cell lines. Their rich chemical structures have attracted the attention of many researchers who have reported interesting synthetic approaches to these targets. This review covers the most prominent examples of these types of compounds, focusing the discussion on the isolation, structure determination, medicinal properties and total synthesis of these products.
Collapse
Affiliation(s)
- Héctor Barbero
- GIR MIOMeT, IU CINQUIMA/Inorganic Chemistry, University of Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain.
| | - Carlos Díez-Poza
- Department of Organic Chemistry, University of Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain.
| | - Asunción Barbero
- Department of Organic Chemistry, University of Valladolid, Campus Miguel Delibes, 47011 Valladolid, Spain.
| |
Collapse
|
16
|
Chen Z, Cao Y, Tian Z, Zhou X, Xu W, Yang J, Teng H. An efficient reduction of N -substituted carbonylimidazolides into formamides by NaBH 4. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.04.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
N-Sulfonyl amidine synthesis via three-component coupling reaction using heterogeneous copper catalyst derived from metal-organic frameworks. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.07.085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Kumar A, Battini N, Kumar RR, Athimoolam S, Ahmed QN. Air-Assisted 2-Oxo-Driven Dehydrogenative α,α-Diamination of 2-Oxo Aldehydes to 2-Oxo Acetamidines. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Atul Kumar
- Medicinal Chemistry Division; Indian Institute of Integrative Medicine (IIIM); Canal Road 180001 Jammu Jammu & Kashmir India
- Academy of Scientific and Innovative Research (AcSIR); Indian Institute of Integrative Medicine (IIIM); Canal Road 180001 Jammu Jammu & Kashmir India
| | - Narsaiah Battini
- Medicinal Chemistry Division; Indian Institute of Integrative Medicine (IIIM); Canal Road 180001 Jammu Jammu & Kashmir India
- Academy of Scientific and Innovative Research (AcSIR); Indian Institute of Integrative Medicine (IIIM); Canal Road 180001 Jammu Jammu & Kashmir India
| | - Raju Ranjith Kumar
- Department of Organic Chemistry; School of Chemistry; Madurai Kamaraj University; 625021 Madurai India
| | - S. Athimoolam
- Department of Physics; University College of Engineering Nagercoil; Anna University; 629004 Nagercoil India
| | - Qazi Naveed Ahmed
- Medicinal Chemistry Division; Indian Institute of Integrative Medicine (IIIM); Canal Road 180001 Jammu Jammu & Kashmir India
- Academy of Scientific and Innovative Research (AcSIR); Indian Institute of Integrative Medicine (IIIM); Canal Road 180001 Jammu Jammu & Kashmir India
| |
Collapse
|
19
|
Kubota T, Kobayashi T, Nunoura T, Maruyama F, Deguchi S. Enantioselective Utilization of D-Amino Acids by Deep-Sea Microorganisms. Front Microbiol 2016; 7:511. [PMID: 27148200 PMCID: PMC4836201 DOI: 10.3389/fmicb.2016.00511] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/29/2016] [Indexed: 12/27/2022] Open
Abstract
Microorganisms that utilize various D-amino acids (DAAs) were successfully isolated from deep-sea sediments. The isolates were phylogenetically assigned to Alphaproteobacteria, Gammmaproteobacteria, and Bacilli. Some of the isolates exhibited high enantioselective degradation activities to various DAAs. In particular, the Alphaproteobacteria Nautella sp. strain A04V exhibited robust growth in minimal medium supplemented with D-Val as a sole carbon and nitrogen source, whereas its growth was poor on minimal medium supplemented with L-Val instead of D-Val. Its growth was facilitated most when racemic mixtures of valine were used. In contrast, the Nautella strains isolated from shallow-sea grew only with L-Val. No significant differences were found among the strains in the genome sequences including genes possibly related to DAA metabolisms.
Collapse
Affiliation(s)
- Takaaki Kubota
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology Yokosuka, Japan
| | - Tohru Kobayashi
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology Yokosuka, Japan
| | - Takuro Nunoura
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology Yokosuka, Japan
| | - Fumito Maruyama
- Department of Microbiology, Graduate School of Medicine, Kyoto University Kyoto, Japan
| | - Shigeru Deguchi
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology Yokosuka, Japan
| |
Collapse
|
20
|
Avelar LAA, Camilo CD, de Albuquerque S, Fernandes WB, Gonçalez C, Kenny PW, Leitão A, McKerrow JH, Montanari CA, Orozco EVM, Ribeiro JFR, Rocha JR, Rosini F, Saidel ME. Molecular Design, Synthesis and Trypanocidal Activity of Dipeptidyl Nitriles as Cruzain Inhibitors. PLoS Negl Trop Dis 2015; 9:e0003916. [PMID: 26173110 PMCID: PMC4501791 DOI: 10.1371/journal.pntd.0003916] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 06/16/2015] [Indexed: 12/01/2022] Open
Abstract
A series of compounds based on the dipeptidyl nitrile scaffold were synthesized and assayed for their inhibitory activity against the T. cruzi cysteine protease cruzain. Structure activity relationships (SARs) were established using three, eleven and twelve variations respectively at the P1, P2 and P3 positions. A Ki value of 16 nM was observed for the most potent of these inhibitors which reflects a degree of non-additivity in the SAR. An X-ray crystal structure was determined for the ligand-protein complex for the structural prototype for the series. Twenty three inhibitors were also evaluated for their anti-trypanosomal effects and an EC50 value of 28 μM was observed for the most potent of these. Although there remains scope for further optimization, the knowledge gained from this study is also transferable to the design of cruzain inhibitors based on warheads other than nitrile as well as alternative scaffolds. Chagas disease is a parasitic infection with high morbidity and mortality that is endemic in much of Latin America where it remains a serious public health problem. With increased migration, Chagas disease represents an emerging worldwide challenge and there is an urgent, unmet need for safe and effective medication. The available drugs to treat Chagas disease may be effective in the acute phase of the disease, but efficacy in the chronic phase remains controversial. They can cause serious side effects that lead sufferers to abandon treatment. Using a hypothesis-driven approach to molecular design and drawing on cysteine protease cruzain structural information, we have mapped structure-activity relationships for a dipeptidyl nitrile scaffold and demonstrated that compounds are competitive inhibitors, bind reversibly and bear trypanocidal activity. The binding mode revealed by the crystal structure of the protein-ligand complex for one of the inhibitors shows that binding involves the formation of a covalent bond between the catalytic cysteine and the nitrile carbon. As such, we believe that our study represents a valuable step in the search for new drugs for the treatment of a neglected disease that continues to affect the lives of millions of people.
Collapse
Affiliation(s)
- Leandro A. A. Avelar
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Cristian D. Camilo
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Sérgio de Albuquerque
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - William B. Fernandes
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
- University of California San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, California, United States of America
| | - Cristiana Gonçalez
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Peter W. Kenny
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
- * E-mail: (PWK); (CAM)
| | - Andrei Leitão
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - James H. McKerrow
- University of California San Diego Skaggs School of Pharmacy and Pharmaceutical Sciences, San Diego, California, United States of America
| | - Carlos A. Montanari
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
- * E-mail: (PWK); (CAM)
| | - Erika V. Meñaca Orozco
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Jean F. R. Ribeiro
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Josmar R. Rocha
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Fabiana Rosini
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Marta E. Saidel
- Grupo de Química Medicinal do IQSC/USP, Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| |
Collapse
|
21
|
Kim J, Stahl SS. Cu-catalyzed aerobic oxidative three-component coupling route to N-sulfonyl amidines via an ynamine intermediate. J Org Chem 2015; 80:2448-54. [PMID: 25594112 DOI: 10.1021/jo5029198] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cu-catalyzed aerobic oxidative three-component coupling of a terminal alkyne, secondary amine, and sulfonamide enables efficient synthesis of amidines. The use of Cu(OTf)2 (5 mol %) produces amidines selectively without Glaser-Hay alkyne homocoupling products. Preliminary studies suggest that the reaction pathway involves initial oxidative coupling of the terminal alkyne with the secondary amine, followed by hydroamidation of the ynamine intermediate with the sulfonamide.
Collapse
Affiliation(s)
- Jinho Kim
- Department of Chemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States
| | | |
Collapse
|
22
|
Kotha S, Ali R. Diversity Oriented Approach to Oxepine Derivatives: Further Expansion via Diels‒Alder Reaction. HETEROCYCLES 2015. [DOI: 10.3987/com-14-s(k)21] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
23
|
Zhang P, Mándi A, Li XM, Du FY, Wang JN, Li X, Kurtán T, Wang BG. Varioxepine A, a 3H-Oxepine-Containing Alkaloid with a New Oxa-Cage from the Marine Algal-Derived Endophytic Fungus Paecilomyces variotii. Org Lett 2014; 16:4834-7. [DOI: 10.1021/ol502329k] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Peng Zhang
- Key
Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People’s Republic of China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, People’s Republic of China
| | - Attila Mándi
- Department
of Organic Chemistry, University of Debrecen, P.O. Box 20, 4010 Debrecen, Hungary
| | - Xiao-Ming Li
- Key
Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People’s Republic of China
| | - Feng-Yu Du
- Key
Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People’s Republic of China
| | - Jia-Ning Wang
- Key
Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People’s Republic of China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, People’s Republic of China
| | - Xin Li
- Key
Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People’s Republic of China
- University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing 100049, People’s Republic of China
| | - Tibor Kurtán
- Department
of Organic Chemistry, University of Debrecen, P.O. Box 20, 4010 Debrecen, Hungary
| | - Bin-Gui Wang
- Key
Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao 266071, People’s Republic of China
| |
Collapse
|
24
|
Herndon JW. The chemistry of the carbon-transition metal double and triple bond: Annual survey covering the year 2012. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.02.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Mo DL, Pecak WH, Zhao M, Wink DJ, Anderson LL. Synthesis of N-Styrenyl Amidines from α,β-Unsaturated Nitrones and Isocyanates through CO2 Elimination and Styrenyl Migration. Org Lett 2014; 16:3696-9. [DOI: 10.1021/ol501503a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dong-Liang Mo
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Wiktoria H. Pecak
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Meng Zhao
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Donald J. Wink
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Laura L. Anderson
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|
26
|
Synthesis of some benzofurooxepines’ derivatives via [3+2] cycloaddition of epoxide with tethered alkyne: A photochemical approach. J Photochem Photobiol A Chem 2014. [DOI: 10.1016/j.jphotochem.2013.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Fleury LM, Wilson EE, Vogt M, Fan TJ, Oliver AG, Ashfeld BL. Amine-free approach toward N-toluenesulfonyl amidine construction: a phosphite-mediated Beckmann-like coupling of oximes and p-toluenesulfonyl azide. Angew Chem Int Ed Engl 2013; 52:11589-93. [PMID: 24038711 DOI: 10.1002/anie.201305141] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Indexed: 11/06/2022]
Abstract
Atom hopping: A chlorophosphite-mediated Beckmann ligation of oximes and p-toluenesulfonyl azide gives access to N-sulfonyl phosphoramidines in good to excellent yields. The reaction proceeds under exceptionally mild conditions and constitutes a bioorthogonal approach toward amidines by avoiding the use of amines and transition-metal catalysts. dmp-ol=3,3-dimethylpropanediol.
Collapse
Affiliation(s)
- Lauren M Fleury
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556 (USA)
| | | | | | | | | | | |
Collapse
|
28
|
Fleury LM, Wilson EE, Vogt M, Fan TJ, Oliver AG, Ashfeld BL. Amine-Free Approach towardN-Toluenesulfonyl Amidine Construction: A Phosphite-Mediated Beckmann-Like Coupling of Oximes andp-Toluenesulfonyl Azide. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201305141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Akita H, Suzuki H, Doi K, Ohshima T. Efficient synthesis of D-branched-chain amino acids and their labeled compounds with stable isotopes using D-amino acid dehydrogenase. Appl Microbiol Biotechnol 2013; 98:1135-43. [PMID: 23661083 DOI: 10.1007/s00253-013-4902-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/31/2013] [Accepted: 04/03/2013] [Indexed: 02/07/2023]
Abstract
D-Branched-chain amino acids (D-BCAAs) such as D-leucine, D-isoleucine, and D-valine are known to be peptide antibiotic intermediates and to exhibit a variety of bioactivities. Consequently, much effort is going into achieving simple stereospecific synthesis of D-BCAAs, especially analogs labeled with stable isotopes. Up to now, however, no effective method has been reported. Here, we report the establishment of an efficient system for enantioselective synthesis of D-BCAAs and production of D-BCAAs labeled with stable isotopes. This system is based on two thermostable enzymes: D-amino acid dehydrogenase, catalyzing NADPH-dependent enantioselective amination of 2-oxo acids to produce the corresponding D-amino acids, and glucose dehydrogenase, catalyzing NADPH regeneration from NADP(+) and D-glucose. After incubation with the enzymes for 2 h at 65°C and pH 10.5, 2-oxo-4-methylvaleric acid was converted to D-leucine with an excellent yield (>99 %) and optical purity (>99 %). Using this system, we produced five different D-BCAAs labeled with stable isotopes: D-[1-(13)C,(15)N]leucine, D-[1-(13)C]leucine, D-[(15)N]leucine, D-[(15)N]isoleucine, and D-[(15)N]valine. The structure of each labeled D-amino acid was confirmed using time-of-flight mass spectrometry and nuclear magnetic resonance analysis. These analyses confirmed that the developed system was highly useful for production of D-BCAAs labeled with stable isotopes, making this the first reported enzymatic production of D-BCAAs labeled with stable isotopes. Our findings facilitate tracer studies investigating D-BCAAs and their derivatives.
Collapse
Affiliation(s)
- Hironaga Akita
- Applied Molecular Microbiology and Biomass Chemistry, Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan
| | | | | | | |
Collapse
|
30
|
Nicolaou KC, Hale CRH, Nilewski C, Ioannidou HA. Constructing molecular complexity and diversity: total synthesis of natural products of biological and medicinal importance. Chem Soc Rev 2012; 41:5185-238. [PMID: 22743704 PMCID: PMC3426871 DOI: 10.1039/c2cs35116a] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The advent of organic synthesis and the understanding of the molecule as they occurred in the nineteenth century and were refined in the twentieth century constitute two of the most profound scientific developments of all time. These discoveries set in motion a revolution that shaped the landscape of the molecular sciences and changed the world. Organic synthesis played a major role in this revolution through its ability to construct the molecules of the living world and others like them whose primary element is carbon. Although the early beginnings of organic synthesis came about serendipitously, organic chemists quickly recognized its potential and moved decisively to advance and exploit it in myriad ways for the benefit of mankind. Indeed, from the early days of the synthesis of urea and the construction of the first carbon-carbon bond, the art of organic synthesis improved to impressively high levels of sophistication. Through its practice, today chemists can synthesize organic molecules--natural and designed--of all types of structural motifs and for all intents and purposes. The endeavor of constructing natural products--the organic molecules of nature--is justly called both a creative art and an exact science. Often called simply total synthesis, the replication of nature's molecules in the laboratory reflects and symbolizes the state of the art of synthesis in general. In the last few decades a surge in total synthesis endeavors around the world led to a remarkable collection of achievements that covers a wide ranging landscape of molecular complexity and diversity. In this article, we present highlights of some of our contributions in the field of total synthesis of natural products of biological and medicinal importance. For perspective, we also provide a listing of selected examples of additional natural products synthesized in other laboratories around the world over the last few years.
Collapse
Affiliation(s)
- K C Nicolaou
- Department of Chemistry and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
31
|
Doveston RG, Taylor RJ. An expedient synthesis of the proposed biosynthetic precursor of the oxepine natural product, janoxepin. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.03.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
32
|
Kotha S, Srinivas V, G. Krishna N. DIVERSITY ORIENTED APPROACH TO 9-ARYL-SUBSTITUTED NAPHTHOXEPINE DERIVATIVES VIA CLAISEN REARRANGEMENT, RING-CLOSING METATHESIS AND SUZUKI–MIYAURA CROSS-COUPLING AS KEY STEPS. HETEROCYCLES 2012. [DOI: 10.3987/com-12-s(n)89] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|