1
|
Bai Y, Aodeng G, Ga L, Hai W, Ai J. Research Progress of Metal Anticancer Drugs. Pharmaceutics 2023; 15:2750. [PMID: 38140091 PMCID: PMC10747151 DOI: 10.3390/pharmaceutics15122750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer treatments, including traditional chemotherapy, have failed to cure human malignancies. The main reasons for the failure of these treatments are the inevitable drug resistance and serious side effects. In clinical treatment, only 5 percent of the 50 percent of cancer patients who are able to receive conventional chemotherapy survive. Because of these factors, being able to develop a drug and treatment that can target only cancer cells without affecting normal cells remains a big challenge. Since the special properties of cisplatin in the treatment of malignant tumors were accidentally discovered in the last century, metal anticancer drugs have become a research hotspot. Metal anticancer drugs have unique pharmaceutical properties, such as ruthenium metal drugs with their high selectivity, low toxicity, easy absorption by tumor tissue, excretion, and so on. In recent years, efficient and low-toxicity metal antitumor complexes have been synthesized. In this paper, the scientific literature on platinum (Pt), ruthenium (Ru), iridium (Ir), gold (Au), and other anticancer complexes was reviewed by referring to a large amount of relevant literature at home and abroad.
Collapse
Affiliation(s)
- Yun Bai
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Enviromental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China; (Y.B.); (G.A.)
| | - Gerile Aodeng
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Enviromental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China; (Y.B.); (G.A.)
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot 010110, China;
| | - Wenfeng Hai
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jun Ai
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Enviromental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China; (Y.B.); (G.A.)
| |
Collapse
|
2
|
Huang L, Leung PKK, Lee LCC, Xu GX, Lam YW, Lo KKW. Photofunctional cyclometallated iridium(III) polypyridine methylsulfone complexes as sulfhydryl-specific reagents for bioconjugation, bioimaging and photocytotoxic applications. Chem Commun (Camb) 2022; 58:10162-10165. [PMID: 35997227 DOI: 10.1039/d2cc02405e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report herein near-infrared (NIR)-emitting cyclometallated iridium(III) complexes bearing a heteroaromatic methylsulfone moiety as sulfhydryl-specific reagents; one of the complexes was conjugated to cysteine and cysteine-containing peptides and proteins for bioimaging and photocytotoxic applications.
Collapse
Affiliation(s)
- Lili Huang
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China.
| | - Peter Kam-Keung Leung
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China. .,State Key Laboratory of Terahertz and Millimetre Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China. .,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503 - 1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Guang-Xi Xu
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China.
| | - Yun-Wah Lam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China.
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Hong Kong, P. R. China. .,State Key Laboratory of Terahertz and Millimetre Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
3
|
Rashid A, Mondal S, Mondal S, Ghosh P. A bis‐heteroleptic imidazolium‐bipyridine functionalized iridium(III) complex for fluorescence lifetime‐based recognition and sensing of phosphates. Chem Asian J 2022; 17:e202200393. [DOI: 10.1002/asia.202200393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/01/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Ambreen Rashid
- Indian Association for the Cultivation of Science School of Chemical Sciences INDIA
| | - Sahidul Mondal
- Indian Association for the Cultivation of Science School of Chemical Sciences INDIA
| | - Subal Mondal
- Indian Association for the Cultivation of Science School of Chemical Sciences INDIA
| | - Pradyut - Ghosh
- Indian Association for the Cultivation of Science School of Chemical Sciences 2A & 2B Raja S. C. Mullick RoadJadavpur 700032 Kolkata INDIA
| |
Collapse
|
4
|
Design and synthesis of cyclometalated Ir(III) complex with thioether groups for highly selective recognition of mercury ions. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Yang X, Dou S, Zhang Q, Yang R, Liu Z, Li G, Niu Z. N,
N
‐heterocyclic Ancillary Ligands for Enhanced Photoluminescence Quantum Yields of Orange/Red‐Emitting 1‐(4‐(Trifluoromethyl)phenyl)isoquinoline‐Based Iridium (III) Complexes. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiao‐Han Yang
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province College of Chemistry and Chemical Engineering Hainan Normal University Haikou 571158 China
| | - Shao‐Bin Dou
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province College of Chemistry and Chemical Engineering Hainan Normal University Haikou 571158 China
| | - Qian Zhang
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province College of Chemistry and Chemical Engineering Hainan Normal University Haikou 571158 China
| | - Rui‐Lian Yang
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province College of Chemistry and Chemical Engineering Hainan Normal University Haikou 571158 China
| | - Zhuo Liu
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province College of Chemistry and Chemical Engineering Hainan Normal University Haikou 571158 China
| | - Gao‐Nan Li
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province College of Chemistry and Chemical Engineering Hainan Normal University Haikou 571158 China
| | - Zhi‐Gang Niu
- Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province College of Chemistry and Chemical Engineering Hainan Normal University Haikou 571158 China
| |
Collapse
|
6
|
Elgar CE, Otaif HY, Zhang X, Zhao J, Horton PN, Coles SJ, Beames JM, Pope SJA. Iridium(III) Sensitisers and Energy Upconversion: The Influence of Ligand Structure upon TTA-UC Performance. Chemistry 2021; 27:3427-3439. [PMID: 33242225 DOI: 10.1002/chem.202004146] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/20/2020] [Indexed: 12/21/2022]
Abstract
Six substituted ligands based upon 2-(naphthalen-1-yl)quinoline-4-carboxylate and 2-(naphthalen-2-yl)quinoline-4-carboxylate have been synthesised in two steps from a range of commercially available isatin derivatives. These species are shown to be effective cyclometallating ligands for IrIII , yielding complexes of the form [Ir(C^N)2 (bipy)]PF6 (where C^N=cyclometallating ligand; bipy=2,2'-bipyridine). X-ray crystallographic studies on three examples demonstrate that the complexes adopt a distorted octahedral geometry wherein a cis-C,C and trans-N,N coordination mode is observed. Intraligand torsional distortions are evident in all cases. The IrIII complexes display photoluminescence in the red part of the visible region (668-693 nm), which is modestly tuneable through the ligand structure. The triplet lifetimes of the complexes are clearly influenced by the precise structure of the ligand in each case. Supporting computational (DFT) studies suggest that the differences in observed triplet lifetime are likely due to differing admixtures of ligand-centred versus MLCT character instilled by the facets of the ligand structure. Triplet-triplet annihilation upconversion (TTA-UC) measurements demonstrate that the complexes based upon the 1-naphthyl derived ligands are viable photosensitisers with upconversion quantum efficiencies of 1.6-6.7 %.
Collapse
Affiliation(s)
- Christopher E Elgar
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, Cymru/Wales, UK
| | - Haleema Y Otaif
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, Cymru/Wales, UK
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Peter N Horton
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Simon J Coles
- UK National Crystallographic Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
| | - Joseph M Beames
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, Cymru/Wales, UK
| | - Simon J A Pope
- School of Chemistry, Cardiff University, Main Building, Cardiff, CF10 3AT, Cymru/Wales, UK
| |
Collapse
|
7
|
Akhtar M, Arif AM, Ullah Khan S, Shan GG, Xu HL, Su ZM. Tuning the NLO response of bis-cyclometalated iridium( iii) complexes by modifying ligands: experimental and structural DFT analysis. NEW J CHEM 2021. [DOI: 10.1039/d1nj00114k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DFT calculations have been carried out to investigate two synthesized iridium(iii) complexes with substituted Phbd (1-phenyl-2-(pyridin-2-yl)-1H-benzo[d]imidazole) and Crbd (9-(4-(2-(pyridin-2-yl)-1H-benzo[d]imidazol-1-yl)phenyl)-9H-carbazole) as ancillary ligands.
Collapse
Affiliation(s)
- Mansoor Akhtar
- Institute of Functional Material Chemistry
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- People's Republic of China
| | - Ali Muhammad Arif
- Institute of Functional Material Chemistry
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- People's Republic of China
| | - Shifa Ullah Khan
- Institute of Functional Material Chemistry
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- People's Republic of China
| | - Guo-Gang Shan
- Institute of Functional Material Chemistry
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- People's Republic of China
| | - Hong-liang Xu
- Institute of Functional Material Chemistry
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- People's Republic of China
| | - Zhong-Min Su
- Institute of Functional Material Chemistry
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- People's Republic of China
| |
Collapse
|
8
|
An Ir(III) complex capable of discriminating homocysteine from cysteine and glutathione with luminescent signal and imaging studies. Talanta 2021; 221:121428. [DOI: 10.1016/j.talanta.2020.121428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 01/08/2023]
|
9
|
Stonelake T, Phillips KA, Otaif HY, Edwardson ZC, Horton PN, Coles SJ, Beames JM, Pope SJA. Spectroscopic and Theoretical Investigation of Color Tuning in Deep-Red Luminescent Iridium(III) Complexes. Inorg Chem 2020; 59:2266-2277. [PMID: 32013422 PMCID: PMC7145353 DOI: 10.1021/acs.inorgchem.9b02991] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Indexed: 12/03/2022]
Abstract
A series of heteroleptic, neutral iridium(III) complexes of the form [Ir(L)2(N^O)] (where L = cyclometalated 2,3-disubstituted quinoxaline and N^O = ancillary picolinate or pyrazinoate) are described in terms of their synthesis and spectroscopic properties, with supporting computational analyses providing additional insight into the electronic properties. The 10 [Ir(L)2(N^O)] complexes were characterized using a range of analytical techniques (including 1H, 13C, and 19F NMR and IR spectroscopies and mass spectrometry). One of the examples was structurally characterized using X-ray diffraction. The redox properties were determined using cyclic voltammetry, and the electronic properties were investigated using UV-vis, time-resolved luminescence, and transient absorption spectroscopies. The complexes are phosphorescent in the red region of the visible spectrum (λem = 633-680 nm), with lifetimes typically of hundreds of nanoseconds and quantum yields ca. 5% in aerated chloroform. A combination of spectroscopic and computational analyses suggests that the long-wavelength absorption and emission properties of these complexes are strongly characterized by a combination of spin-forbidden metal-to-ligand charge-transfer and quinoxaline-centered transitions. The emission wavelength in these complexes can thus be controlled in two ways: first, substitution of the cyclometalating quinoxaline ligand can perturb both the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital levels (LUMO, Cl atoms on the ligand induce the largest bathochromic shift), and second, the choice of the ancillary ligand can influence the HOMO energy (pyrazinoate stabilizes the HOMO, inducing hypsochromic shifts).
Collapse
Affiliation(s)
- Thomas
M. Stonelake
- School
of Chemistry, Cardiff University, Main Building, Cardiff CF10 3AT, Wales
| | - Kaitlin A. Phillips
- School
of Chemistry, Cardiff University, Main Building, Cardiff CF10 3AT, Wales
| | - Haleema Y. Otaif
- School
of Chemistry, Cardiff University, Main Building, Cardiff CF10 3AT, Wales
| | | | - Peter N. Horton
- U.K.
National Crystallographic Service, Chemistry, Faculty of Natural and
Environmental Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Simon J. Coles
- U.K.
National Crystallographic Service, Chemistry, Faculty of Natural and
Environmental Sciences, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Joseph M. Beames
- School
of Chemistry, Cardiff University, Main Building, Cardiff CF10 3AT, Wales
| | - Simon J. A. Pope
- School
of Chemistry, Cardiff University, Main Building, Cardiff CF10 3AT, Wales
| |
Collapse
|
10
|
Iridium(III) coordination of N(6) modified adenine derivatives with aminoacid chains. J Inorg Biochem 2020; 205:111000. [PMID: 31982811 DOI: 10.1016/j.jinorgbio.2020.111000] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 12/30/2022]
Abstract
In this manuscript we report the preparation of three N6-aminoacid-adenine-derivatives: N-(7H-purin-6-yl)glycine·0.5H2O (N6-GlyAde), N-(7H-purin-6-yl)-β-alanine·1.5H2O (N6-β-AlaAde) and N-(7H-purin-6-yl)-γ-aminobutyric·2H2O (N6-GabaAde) and the synthesis and X-ray characterization of three Ir(III) NAMI-A derivatives (NAMI-A is [imidazoleH][trans-RuIIICl4(DMSO-κS)(imidazole)]) [trans-IrIIICl4(DMSO-κS)(N3-H)-(7H-purin-6-yl)glycine-κN9] (1), [trans-IrIIICl4(DMSO-κS)(N3-H)-(7H-purin-6-yl)-β-alanine-κN9] hydrate (2) and [trans-IrIIICl4(DMSO-κS)(N3-H)-(7H-purin-6-yl)-γ-aminobutyryl-κN9] (3). In all complexes the metal center shows octahedral geometry with coordination to four chlorido ligands and one S coordinated dimethylsulfoxide (DMSO-κS). The coordination sphere of the metal is completed by the modified adenine molecule which is bound via N(9) and protonated at N(3). In two complexes the importance of lone pair (lp)-π interactions involving the adenine ring have been studied using density functional theory (DFT) calculations and the Bader's theory of atoms in molecules. Furthermore, the ability of complexes (1-3) to affect the cell viability was evaluated against three different cancer cell lines: human lung carcinoma cells (A549), human cervical carcinoma cells (HeLa) and human breast cancer cells (MCF7). We have also analyzed their ability to cleave the DNA experimentally and their affinity for two models of DNA has been studied using molecular docking simulations.
Collapse
|
11
|
Liu J, Chan AKW, Ng M, Hong EYH, Wu NMW, Wu L, Yam VWW. Synthesis, Characterization, and Photochromic Studies of Cyclometalated Iridium(III) Complexes Containing a Spironaphthoxazine Moiety. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Jie Liu
- State Key Laboratory of Supramolecular Structure and Materials and College of Chemistry, Jilin University, Changchun 130012, PR China
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Alan Kwun-Wa Chan
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Maggie Ng
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Eugene Yau-Hin Hong
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Nathan Man-Wai Wu
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials and College of Chemistry, Jilin University, Changchun 130012, PR China
| | - Vivian Wing-Wah Yam
- State Key Laboratory of Supramolecular Structure and Materials and College of Chemistry, Jilin University, Changchun 130012, PR China
- Institute of Molecular Functional Materials (Areas of Excellence Scheme, University Grants Committee (Hong Kong) and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| |
Collapse
|
12
|
Kabir E, Mu G, Momtaz DA, Bryce NA, Teets TS. Formazanate Complexes of Bis-Cyclometalated Iridium. Inorg Chem 2019; 58:11672-11683. [DOI: 10.1021/acs.inorgchem.9b01657] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Evanta Kabir
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Ge Mu
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - David A. Momtaz
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Noah A. Bryce
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| | - Thomas S. Teets
- Department of Chemistry, University of Houston, 3585 Cullen Blvd. Room 112, Houston, Texas 77204-5003, United States
| |
Collapse
|
13
|
Theoretical study on reaction mechanism of synthesis of iridium complexes having cyclometalated acyclic diaminocarbene ancillary ligands. J Mol Model 2019; 25:261. [PMID: 31422481 DOI: 10.1007/s00894-019-4145-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 08/08/2019] [Indexed: 02/02/2023]
Abstract
DFT calculations at the M06-2X level were performed to explore the reaction mechanism for the synthesis of the new cyclometalated iridium(III) complexes with acyclic diaminocarbene ancillary ligands. The solvent effects of the reaction systems have been considered by a single-point energy calculation using the SMD model in the experimental conditions of CH2Cl2 solvent. The calculated results show that the reaction consists of two main steps: the first step is the hydrogen transfer between the two N atoms, and the next step is the closed-loop process of the Ir atom and the aromatic ring ortho to release the HCl molecule. The reaction has a relatively low activation free energy of 17.1-23.2 kcal mol-1, indicating that it is easy to occur under the experimental conditions of Na et al. At the same time, it was found that the aryl para-CF3 substituent has higher reactivity than the corresponding reactant of the NO2 substituent.
Collapse
|
14
|
McGoorty M, Singh A, Deaton TA, Peterson B, Taliaferro CM, Yingling YG, Castellano FN. Bathophenanthroline Disulfonate Ligand-Induced Self-Assembly of Ir(III) Complexes in Water: An Intriguing Class of Photoluminescent Soft Materials. ACS OMEGA 2018; 3:14027-14038. [PMID: 31458098 PMCID: PMC6645117 DOI: 10.1021/acsomega.8b02034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/11/2018] [Indexed: 06/10/2023]
Abstract
Strong evidence of concentration-induced and dissolved electrolyte-induced chromophore aggregation has been universally observed in numerous water soluble bis-cyclometalated Ir(III) photosensitizers bearing the sulfonated diimine ligands bathophenanthroline disulfonate and bathocuproine disulfonate. This new class of aqueous-based soft materials was highly photoluminescent in their aggregated state where detailed spectroscopic investigations of this phenomenon revealed significant blue shifts of their respective photoluminescence emission spectra with concomitant increases in excited-state lifetimes and quantum yields initiating even at micromolar chromophore concentrations in water or upon the addition of a strong electrolyte. A combination of nanoscale particle characterization techniques, static and dynamic photoluminescence spectroscopic studies, along with atomistic molecular dynamics (MD) simulations of these soft materials suggests the formation of small, heterogeneous nanoaggregate structures, wherein the sulfonated diimine ancillary ligand serves as a pro-aggregating subunit in all instances. Importantly, the experimental and MD findings suggest the likelihood of discovering similar aqueous aggregation phenomena occurring in all transition-metal complexes bearing these water-solubilizing diimine ligands.
Collapse
Affiliation(s)
- Michelle
M. McGoorty
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Abhishek Singh
- Department
of Materials Science and Engineering, North
Carolina State University, Raleigh, North Carolina 27695-7907, United States
| | - Thomas A. Deaton
- Department
of Materials Science and Engineering, North
Carolina State University, Raleigh, North Carolina 27695-7907, United States
| | - Benjamin Peterson
- Department
of Materials Science and Engineering, North
Carolina State University, Raleigh, North Carolina 27695-7907, United States
| | - Chelsea M. Taliaferro
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Yaroslava G. Yingling
- Department
of Materials Science and Engineering, North
Carolina State University, Raleigh, North Carolina 27695-7907, United States
| | - Felix N. Castellano
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| |
Collapse
|
15
|
King SM, Claire S, Teixeira RI, Dosumu AN, Carrod AJ, Dehghani H, Hannon MJ, Ward AD, Bicknell R, Botchway SW, Hodges NJ, Pikramenou Z. Iridium Nanoparticles for Multichannel Luminescence Lifetime Imaging, Mapping Localization in Live Cancer Cells. J Am Chem Soc 2018; 140:10242-10249. [PMID: 30032598 DOI: 10.1021/jacs.8b05105] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of long-lived luminescent nanoparticles for lifetime imaging is of wide interest as luminescence lifetime is environmentally sensitive detection independent of probe concentration. We report novel iridium-coated gold nanoparticles as probes for multiphoton lifetime imaging with characteristic long luminescent lifetimes based on iridium luminescence in the range of hundreds of nanoseconds and a short signal on the scale of picoseconds based on gold allowing multichannel detection. The tailor-made IrC6 complex forms stable, water-soluble gold nanoparticles (AuNPs) of 13, 25, and 100 nm, bearing 1400, 3200, and 22 000 IrC6 complexes per AuNP, respectively. The sensitivity of the iridium signal on the environment of the cell is evidenced with an observed variation of lifetimes. Clusters of iridium nanoparticles show lifetimes from 450 to 590 ns while lifetimes of 660 and 740 ns are an average of different points in the cytoplasm and nucleus. Independent luminescence lifetime studies of the nanoparticles in different media and under aggregation conditions postulate that the unusual long lifetimes observed can be attributed to interaction with proteins rather than nanoparticle aggregation. Total internal reflection fluorescence microscopy (TIRF), confocal microscopy studies and 3D luminescence lifetime stacks confirm the presence of bright, nonaggregated nanoparticles inside the cell. Inductively coupled plasma mass spectrometry (ICPMS) analysis further supports the presence of the nanoparticles in cells. The iridium-coated nanoparticles provide new nanoprobes for lifetime detection with dual channel monitoring. The combination of the sensitivity of the iridium signal to the cell environment together with the nanoscaffold to guide delivery offer opportunities for iridium nanoparticles for targeting and tracking in in vivo models.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Andrew D Ward
- Central Laser Facility, Rutherford Appleton Laboratory, Research Complex Harwell, STFC, Didcot OX11 0QT , United Kingdom
| | | | - Stanley W Botchway
- Central Laser Facility, Rutherford Appleton Laboratory, Research Complex Harwell, STFC, Didcot OX11 0QT , United Kingdom
| | | | | |
Collapse
|
16
|
Na H, Teets TS. Highly Luminescent Cyclometalated Iridium Complexes Generated by Nucleophilic Addition to Coordinated Isocyanides. J Am Chem Soc 2018; 140:6353-6360. [PMID: 29701468 DOI: 10.1021/jacs.8b02416] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this work, we report a new class of blue-emitting cyclometalated iridium complexes supported by acyclic diaminocarbene (ADC) ancillary ligands. These neutral, tris-chelated complexes are not obtainable via traditional synthesis routes and instead are generated through metal-mediated nucleophilic addition to a metal-bound isocyanide, which is followed by orthometalation of the ADC under mild conditions. Importantly, four of the variants exhibit efficient phosphorescence when immobilized in PMMA matrix, achieving quantum yields of 79% for blue emitters with a 2-(2,4-difluorophenyl)pyridine (F2ppy) C^N ligand and 30-37% for orange emitters with a 2-phenylbenzothiazole (bt) C^N ligand. Electrochemical studies demonstrate significantly higher-lying HOMO levels in the ADC complexes relative to the NHC analogues, a phenomenon that results in enhanced charge-transfer character in the excited states of the ADC complexes. This study demonstrates that ADC ancillary ligands not only give rise to new structures for Ir(III)-based phosphorescent emitters but also are promising targets for use in light-emitting devices and other thin-film optical applications.
Collapse
Affiliation(s)
- Hanah Na
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard, Room 112 , Houston , Texas 77204-5003 , United States
| | - Thomas S Teets
- Department of Chemistry , University of Houston , 3585 Cullen Boulevard, Room 112 , Houston , Texas 77204-5003 , United States
| |
Collapse
|
17
|
Wei W, Lima SA, Djurovich PI, Bossi A, Whited MT, Thompson ME. Synthesis and characterization of phosphorescent isomeric iridium complexes with a rigid cyclometalating ligand. Polyhedron 2018. [DOI: 10.1016/j.poly.2017.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
18
|
Niu ZG, Chen J, Tan P, Sun W, Zheng YX, Li GN, Zuo JL. Efficient yellow electroluminescence of four iridium(iii) complexes with benzo[d]thiazole derivatives as main ligands. Dalton Trans 2018; 47:8032-8040. [DOI: 10.1039/c8dt01479e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four yellow iridium(iii) complexes with benzo[d]thiazole derivatives as the main ligands display good device performances with a maximum current efficiency of up to 69.8 cd A−1 and a maximum external quantum efficiency of up to 24.3%.
Collapse
Affiliation(s)
- Zhi-Gang Niu
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Jun Chen
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Peng Tan
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
- P. R. China
| | - Wei Sun
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
- P. R. China
| | - You-Xuan Zheng
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
| | - Gao-Nan Li
- College of Chemistry and Chemical Engineering
- Hainan Normal University
- Haikou 571158
- P. R. China
| | - Jing-Lin Zuo
- State Key Laboratory of Coordination Chemistry
- Jiangsu Key Laboratory of Advanced Organic Materials
- Collaborative Innovation Center of Advanced Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
| |
Collapse
|
19
|
Bhat SS, Revankar VK, Pinjari RV, Naveen S, Lokanath NK, Kumbar V, Bhat K, Kokare DG. Phosphorescent cyclometalated iridium(iii) complexes: synthesis, photophysics, DNA interaction, cellular internalization, and cytotoxic activity. NEW J CHEM 2018. [DOI: 10.1039/c8nj03390k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Phosphorescent cyclometalated quinoline-appended iridium(iii) complexes undergo rapid cellular internalization and accumulate throughout the cell.
Collapse
Affiliation(s)
- Satish S. Bhat
- Department of Chemistry
- Karnatak University
- Dharwad-580003
- India
| | | | - Rahul V. Pinjari
- School of Chemical Science
- Swami Ramanand Teerth
- Marathwada University
- Nanded
- India
| | - S. Naveen
- Department of Physics
- School of Engineering and Technology
- Jain University
- Bangalore 562112
- India
| | - N. K. Lokanath
- Department of Studies in Physics
- University of Mysore
- Manasagangotri
- India
| | - Vijay Kumbar
- Maratha Mandal's Central Research Laboratory
- Marathamandal Dental College and Research Centre
- Belgaum
- India
| | - Kishore Bhat
- Maratha Mandal's Central Research Laboratory
- Marathamandal Dental College and Research Centre
- Belgaum
- India
| | | |
Collapse
|
20
|
Venkatesh V, Berrocal-Martin R, Wedge CJ, Romero-Canelón I, Sanchez-Cano C, Song JI, Coverdale JPC, Zhang P, Clarkson GJ, Habtemariam A, Magennis SW, Deeth RJ, Sadler PJ. Mitochondria-targeted spin-labelled luminescent iridium anticancer complexes. Chem Sci 2017; 8:8271-8278. [PMID: 29568475 PMCID: PMC5857930 DOI: 10.1039/c7sc03216a] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 10/11/2017] [Indexed: 11/30/2022] Open
Abstract
Mitochondria generate energy but malfunction in many cancer cells, hence targeting mitochondrial metabolism is a promising approach for cancer therapy. Here we have designed cyclometallated iridium(iii) complexes, containing one TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) spin label [C43H43N6O2Ir1·PF6]˙ (Ir-TEMPO1) and two TEMPO spin labels [C52H58N8O4Ir1·PF6]˙ (Ir-TEMPO2). Electron paramagnetic resonance (EPR) spectroscopy revealed spin-spin interactions between the TEMPO units in Ir-TEMPO2. Both Ir-TEMPO1 and Ir-TEMPO2 showed bright luminescence with long lifetimes (ca. 35-160 ns); while Ir-TEMPO1 displayed monoexponential decay kinetics, the biexponential decays measured for Ir-TEMPO2 indicated the presence of more than one energetically-accessible conformation. This observation was further supported by density functional theory (DFT) calculations. The antiproliferative activity of Ir-TEMPO2 towards a range of cancer cells was much greater than that of Ir-TEMPO1, and also the antioxidant activity of Ir-TEMPO2 is much higher against A2780 ovarian cancer cells when compared with Ir-TEMPO1. Most notably Ir-TEMPO2 was particularly potent towards PC3 human prostate cancer cells (IC50 = 0.53 μM), being ca. 8× more active than the clinical drug cisplatin, and ca. 15× more selective towards cancer cells versus normal cells. Confocal microscopy showed that both Ir-TEMPO1 and Ir-TEMPO2 localise in the mitochondria of cancer cells.
Collapse
Affiliation(s)
- V Venkatesh
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
- Department of Inorganic and Physical Chemistry , Indian Institute of Science , Bangalore-560012 , India
| | | | - Christopher J Wedge
- Department of Chemical Sciences , University of Huddersfield , Huddersfield HD1 3DH , UK .
| | - Isolda Romero-Canelón
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
- School of Pharmacy , University of Birmingham , Edgbaston B15 2TT , UK
| | | | - Ji-Inn Song
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | | | - Pingyu Zhang
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Guy J Clarkson
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Abraha Habtemariam
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Steven W Magennis
- School of Chemistry , WestCHEM , University of Glasgow , Glasgow G12 8QQ , UK .
| | - Robert J Deeth
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Peter J Sadler
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| |
Collapse
|
21
|
Fiorini V, Zanoni I, Zacchini S, Costa AL, Hochkoeppler A, Zanotti V, Ranieri AM, Massi M, Stefan A, Stagni S. Methylation of Ir(iii)-tetrazolato complexes: an effective route to modulate the emission outputs and to switch to antimicrobial properties. Dalton Trans 2017; 46:12328-12338. [PMID: 28891573 DOI: 10.1039/c7dt02352a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Two neutral cyclometalated Ir(iii)-tetrazolato complexes that differ by variations of the substituents on either the phenylpyridine or the tetrazolate ligand have been converted into the corresponding methylated and cationic analogues. NMR (1H and 13C) characterization of the Ir(iii) complexes provided the results in agreement with the chemo- and regioselective character of methylation at the N-3 position of the Ir(iii)-coordinated tetrazolato ring. This evidence was further corroborated by the analysis of the molecular structures of the cationic complexes obtained by X-ray diffraction. In view of the photophysical properties, the addition of a methyl moiety to neutral Ir(iii) tetrazolates, which behave as sky-blue or orange phosphors, caused a systematic red shift of their phosphorescence output. The transformation of neutral Ir(iii) tetrazolates into cationic Ir(iii)-tetrazole complexes was screened for any eventual antimicrobial activity in vitro against Gram negative (E. coli) and Gram positive (D. radiodurans) microorganisms. While both kinds of complexes were not active against E. coli, the conversion of the neutral Ir(iii) tetrazolates into the corresponding methylated and cationic Ir(iii)tetrazole derivatives determined the turn-on of a good to excellent antimicrobial activity toward Gram positive Deinococcus radiodurans, a non-pathogenic bacterium that is listed as one of the toughest microorganisms in light of its outstanding resistance to radiation and oxidative stress.
Collapse
Affiliation(s)
- Valentina Fiorini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.
| | - Ilaria Zanoni
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy. and CNR-ISTEC-National Research Council of Italy, Institute of Science and Technology for Ceramics, Via Granarolo 64 I-48018, Faenza, RA, Italy
| | - Stefano Zacchini
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.
| | - Anna Luisa Costa
- CNR-ISTEC-National Research Council of Italy, Institute of Science and Technology for Ceramics, Via Granarolo 64 I-48018, Faenza, RA, Italy
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy. and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Valerio Zanotti
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.
| | - Anna Maria Ranieri
- Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U 1987, Perth, Australia 6845.
| | - Massimiliano Massi
- Nanochemistry Research Institute, Department of Chemistry, Curtin University, GPO Box U 1987, Perth, Australia 6845.
| | - Alessandra Stefan
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy. and CSGI, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, FI, Italy
| | - Stefano Stagni
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, I-40136 Bologna, Italy.
| |
Collapse
|
22
|
Caporale C, Bader CA, Sorvina A, MaGee KDM, Skelton BW, Gillam TA, Wright PJ, Raiteri P, Stagni S, Morrison JL, Plush SE, Brooks DA, Massi M. Investigating Intracellular Localisation and Cytotoxicity Trends for Neutral and Cationic Iridium Tetrazolato Complexes in Live Cells. Chemistry 2017; 23:15666-15679. [PMID: 28782852 DOI: 10.1002/chem.201701352] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Indexed: 12/20/2022]
Abstract
A family of five neutral cyclometalated iridium(III) tetrazolato complexes and their methylated cationic analogues have been synthesised and characterised. The complexes are distinguished by variations of the substituents or degree of π conjugation on either the phenylpyridine or tetrazolato ligands. The photophysical properties of these species have been evaluated in organic and aqueous media, revealing predominantly a solvatochromic emission originating from mixed metal-to-ligand and ligand-to-ligand charge transfer excited states of triplet multiplicity. These emissions are characterised by typically long excited-state lifetimes (∼hundreds of ns), and quantum yields around 5-10 % in aqueous media. Methylation of the complexes caused a systematic red-shift of the emission profiles. The behaviour and the effects of the different complexes were then examined in cells. The neutral species localised mostly in the endoplasmic reticulum and lipid droplets, whereas the majority of the cationic complexes localised in the mitochondria. The amount of complexes found within cells does not depend on lipophilicity, which potentially suggests diverse uptake mechanisms. Methylated analogues were found to be more cytotoxic compared to the neutral species, a behaviour that might to be linked to a combination of uptake and intracellular localisation.
Collapse
Affiliation(s)
- Chiara Caporale
- Curtin Institute of Functional Molecules and Interfaces and Department of Chemistry, Curtin University, Kent Street, Bentley, 6102 WA, Australia
| | - Christie A Bader
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Alexandra Sorvina
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Karen D M MaGee
- Curtin Institute of Functional Molecules and Interfaces and Department of Chemistry, Curtin University, Kent Street, Bentley, 6102 WA, Australia
| | - Brian W Skelton
- School of Molecular Sciences, University of Western Australia, 35 Stirling Highway, Crawley, Perth, WA, 6009, Australia
| | - Todd A Gillam
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Phillip J Wright
- Curtin Institute of Functional Molecules and Interfaces and Department of Chemistry, Curtin University, Kent Street, Bentley, 6102 WA, Australia
| | - Paolo Raiteri
- Curtin Institute for Computation and Department of Chemistry, Curtin University, Kent Street, Bentley, 6102 WA, Australia
| | - Stefano Stagni
- Department of Industrial Chemistry "Toso Montanari"-, University of Bologna, viale del Risorgimento 4, Bologna, 40136, Italy
| | - Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, South Australia, 5000, Australia
| | - Sally E Plush
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia.,Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Douglas A Brooks
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy and Medical Sciences, Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Massimiliano Massi
- Curtin Institute of Functional Molecules and Interfaces and Department of Chemistry, Curtin University, Kent Street, Bentley, 6102 WA, Australia
| |
Collapse
|
23
|
Orwat B, Witkowska E, Kownacki I, Oh MJ, Hoffmann M, Kubicki M, Grzelak I, Marciniec B, Glowacki I, Luszczynska B, Wiosna-Salyga G, Ulanski J, Ledwon P, Lapkowski M. Microwave-assisted one-pot synthesis of new ionic iridium complexes of [Ir(bzq) 2(N^N)] +A - type and their selected electroluminescent properties. Dalton Trans 2017; 46:9210-9226. [PMID: 28678255 DOI: 10.1039/c7dt01372h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Iridium C,N-cyclometalated complexes with an ionic structure are considered to be promising candidates for application in host/guest solid-state phosphorescent single-layer devices because the employment of such dopants offers the possibility of reducing their concentration in organic matrices as well as allows obtaining organic light emitting devices (OLEDs) with interesting emission parameters. We report herein a methodology enabling the synthesis of cyclometalated ionic iridium(iii) complexes of the type [Ir(C^N)2(N^N)]+A- according to a three-component one-pot strategy involving the acceleration of the reaction via microwave irradiation. The developed protocol allowed efficient synthesis of a series of new cationic iridium(iii) coordination derivatives, which were isolated and spectroscopically characterized, while the structures of two of them were determined by the X-ray method. Moreover, the iridium(iii) derivatives were subjected to the cyclic voltammetry studies in order to determine the energies of the HOMO and LUMO levels as well as to estimate their electrochemical properties and to predict some electronic properties. Additionally, the ONIOM calculation scheme that was used to predict HOMO-LUMO gaps for the studied Ir(iii) complexes showed a good correlation between the experimental and calculated values. In order to determine the influence of the structure and nature of the ancillary ligand on the location of the maximum emission band, the photophysical properties of the synthesized iridium complexes were characterized. Finally, the selected compounds were used as emitters for the construction of polymer light emitting diodes (PLEDs) based on a poly(N-vinylcarbazole)/2-(4-tert-butylphenyl)-5-(4-biphenyl)-1,3,4-oxadiazole (PVK/PBD) matrix. The highest luminance, above 10 000 cd m-2, was recorded for the device containing only 1.0 wt% of [Ir(bzq)2(1,10-phenanthroline)]+PF6- in the PVK/PBD. The fabricated PLEDs exhibit current efficiency in the range of 1.0 to 2.2 cd A-1.
Collapse
Affiliation(s)
- B Orwat
- Faculty of Chemistry, Adam Mickiewicz University in Poznan, St. Umultowska 89b, 61-614 Poznan, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Chen X, Li J, Hu W, Li MJ. Colorimetric and luminescent bifunctional iridium(III) complexes for the sensitive recognition of cyanide ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 173:904-909. [PMID: 27821373 DOI: 10.1016/j.saa.2016.10.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/05/2016] [Accepted: 10/16/2016] [Indexed: 06/06/2023]
Abstract
Two new cyclometalated iridium(III) complexes [(ppy)2Irppz]Cl (1) and [(ppy)2Irbppz]Cl (2) (where ppy=2-phenylpyridine, ppz=4,7-phenanthrolino-5,6:5,6-pyrazine, bppz=2.3-di-2-pyridylpyrazine), were designed and synthesized. The structure of [(ppy)2Irppz]Cl was determined by single crystal X-ray diffraction. Their photophysical properties were also studied. This kind of complexes could coordinate with Cu2+, the photoluminescence (PL) of the complex was quenched, and the color changed from orange-red to green. The forming M-Cu (M: complexes 1 and 2) ensemble could be further utilized as a colorimetric and emission "turn-on" bifunctional detection for CN-, especially for complex 1-Cu2+ showed a high sensitivity toward CN- with a limit of diction is 97nM. Importantly, this kind of iridium(III) complexes shows a unique recognition of cyanide ions over other anions which makes it an eligible sensing probe for cyanide ions.
Collapse
Affiliation(s)
- Xiudan Chen
- Key Laboratory of Analysis and Detection Technology for Food Safety (Ministry of Education and Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, PR China
| | - Jing Li
- Key Laboratory of Analysis and Detection Technology for Food Safety (Ministry of Education and Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, PR China
| | - Wenqin Hu
- Key Laboratory of Analysis and Detection Technology for Food Safety (Ministry of Education and Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, PR China
| | - Mei-Jin Li
- Key Laboratory of Analysis and Detection Technology for Food Safety (Ministry of Education and Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, PR China.
| |
Collapse
|
25
|
Na H, Maity A, Teets TS. Bis-cyclometalated iridium complexes with electronically modified aryl isocyanide ancillary ligands. Dalton Trans 2017; 46:5008-5016. [DOI: 10.1039/c7dt00694b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Bis-cyclometalated iridium complexes with electronically modified aryl isocyanide ligands are described, and the effects on the photophysical properties are noted.
Collapse
Affiliation(s)
- Hanah Na
- Department of Chemistry
- University of Houston
- Houston
- USA
| | - Ayan Maity
- Department of Chemistry
- University of Houston
- Houston
- USA
| | | |
Collapse
|
26
|
Maity A, Le LQ, Zhu Z, Bao J, Teets TS. Steric and Electronic Influence of Aryl Isocyanides on the Properties of Iridium(III) Cyclometalates. Inorg Chem 2016; 55:2299-308. [DOI: 10.1021/acs.inorgchem.5b02691] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ayan Maity
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, University of Houston, 112 Fleming Building, Houston, Texas 77204, United States
| | - Linh Q. Le
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, University of Houston, 112 Fleming Building, Houston, Texas 77204, United States
| | - Zhuan Zhu
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, University of Houston, 112 Fleming Building, Houston, Texas 77204, United States
| | - Jiming Bao
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, University of Houston, 112 Fleming Building, Houston, Texas 77204, United States
| | - Thomas S. Teets
- Department of Chemistry and ‡Department of Electrical and Computer Engineering, University of Houston, 112 Fleming Building, Houston, Texas 77204, United States
| |
Collapse
|
27
|
McGoorty MM, Khnayzer RS, Castellano FN. Enhanced photophysics from self-assembled cyclometalated Ir(iii) complexes in water. Chem Commun (Camb) 2016; 52:7846-9. [DOI: 10.1039/c6cc03932d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two water-soluble anionic cyclometalated Ir(iii) complexes, Ir(ppy)2BPS [1] and Ir(F-mppy)2BPS [2] have been synthesized and display clear evidence of self-assembly in water.
Collapse
Affiliation(s)
| | - Rony S. Khnayzer
- Department of Natural Sciences
- Lebanese American University
- Beirut 1102-2801
- Lebanon
| | | |
Collapse
|
28
|
He L, Wang Z, Duan L, Yang C, Tang R, Song X, Pan C. Toward fluorine-free blue-emitting cationic iridium complexes: to generate emission from the cyclometalating ligands with enhanced triplet energy. Dalton Trans 2016; 45:5604-13. [DOI: 10.1039/c5dt04728e] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Generating emission from cyclometalating ligands with enhanced triplet energy is an efficient avenue toward fluorine-free blue-emitting cationic iridium complexes.
Collapse
Affiliation(s)
- Lei He
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Zhen Wang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Chunpeng Yang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Ruiren Tang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Xiangzhi Song
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Chunyue Pan
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| |
Collapse
|
29
|
Lo KKW. Luminescent Iridium(III) and Rhenium(I) Complexes as Biomolecular Probes and Imaging Reagents. ADVANCES IN INORGANIC CHEMISTRY 2016. [DOI: 10.1016/bs.adioch.2015.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Lo KKW. Luminescent Rhenium(I) and Iridium(III) Polypyridine Complexes as Biological Probes, Imaging Reagents, and Photocytotoxic Agents. Acc Chem Res 2015; 48:2985-95. [PMID: 26161527 DOI: 10.1021/acs.accounts.5b00211] [Citation(s) in RCA: 408] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although the interactions of transition metal complexes with biological molecules have been extensively studied, the use of luminescent transition metal complexes as intracellular sensors and bioimaging reagents has not been a focus of research until recently. The main advantages of luminescent transition metal complexes are their high photostability, long-lived phosphorescence that allows time-resolved detection, and large Stokes shifts that can minimize the possible self-quenching effect. Also, by the use of transition metal complexes, the degree of cellular uptake can be readily determined using inductively coupled plasma mass spectrometry. For more than a decade, we have been interested in the development of luminescent transition metal complexes as covalent labels and noncovalent probes for biological molecules. We argue that many transition metal polypyridine complexes display triplet charge transfer ((3)CT) emission that is highly sensitive to the local environment of the complexes. Hence, the biological labeling and binding interactions can be readily reflected by changes in the photophysical properties of the complexes. In this laboratory, we have modified luminescent tricarbonylrhenium(I) and bis-cyclometalated iridium(III) polypyridine complexes of general formula [Re(bpy-R(1))(CO)3(py-R(2))](+) and [Ir(ppy-R(3))2(bpy-R(4))](+), respectively, with reactive functional groups and used them to label the amine and sulfhydryl groups of biomolecules such as oligonucleotides, amino acids, peptides, and proteins. Additionally, using a range of biological substrates such as biotin, estradiol, and indole, we have designed luminescent rhenium(I) and iridium(III) polypyridine complexes as noncovalent probes for biological receptors. The interesting results generated from these studies have prompted us to investigate the possible applications of luminescent transition metal complexes in intracellular systems. Thus, in the past few years, we have developed an interest in the cytotoxic activity, cellular uptake, and bioimaging applications of these complexes. Additionally, we and other research groups have demonstrated that many transition metal complexes have facile cellular uptake and organelle-localization properties and that their cytotoxic activity can be readily controlled. For example, complexes that can target the nucleus, nucleolus, mitochondria, lysosomes, endoplasmic reticulum, and Golgi apparatus have been identified. We anticipate that this selective localization property can be utilized in the development of intracellular sensors and bioimaging reagents. Thus, we have functionalized luminescent rhenium(I) and iridium(III) polypyridine complexes with various pendants, including molecule-binding moieties, sugar molecules, bioorthogonal functional groups, and polymeric chains such as poly(ethylene glycol) and polyethylenimine, and examined their potentials as biological reagents. This Account describes our design of luminescent rhenium(I) and iridium(III) polypyridine complexes and explains how they can serve as a new generation of biological reagents for diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Kenneth Kam-Wing Lo
- Department of Biology and
Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
31
|
Lagos Y, Palou-Mir J, Bauzá A, Fiol JJ, García-Raso Á, Terrón À, Molins E, Barceló-Oliver M, Frontera A. New chloride-dimethylsulfoxide-iridium(III) complex with histaminium. Polyhedron 2015. [DOI: 10.1016/j.poly.2015.10.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Silica nanoparticles doped with an iridium(III) complex for rapid and fluorometric detection of cyanide. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1626-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
33
|
Wu Z, Mu J, Wang Q, Chen X, Jensen L, Yi C, Li MJ. Hydroxyl and amino functionalized cyclometalated Ir(III) complexes: Synthesis, characterization and cytotoxicity studies. J Organomet Chem 2015. [DOI: 10.1016/j.jorganchem.2015.05.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
34
|
Rhenium(I) polypyridine dibenzocyclooctyne complexes as phosphorescent bioorthogonal probes: Synthesis, characterization, emissive behavior, and biolabeling properties. J Inorg Biochem 2015; 148:2-10. [DOI: 10.1016/j.jinorgbio.2015.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 01/20/2023]
|
35
|
Maity S, Kundu S, Saha Roy A, Weyhermüller T, Ghosh P. Orthometalation of Dibenzo[1,2]quinoxaline with Ruthenium(II/III), Osmium(II/III/IV), and Rhodium(III) Ions and Orthometalated [RuNO]6/7 Derivatives. Inorg Chem 2015; 54:1384-94. [DOI: 10.1021/ic502320m] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Suvendu Maity
- Department
of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-103, India
| | - Suman Kundu
- Department
of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-103, India
| | - Amit Saha Roy
- Department
of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-103, India
| | - Thomas Weyhermüller
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Prasanta Ghosh
- Department
of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-103, India
| |
Collapse
|
36
|
Maggioni D, Galli M, D'Alfonso L, Inverso D, Dozzi MV, Sironi L, Iannacone M, Collini M, Ferruti P, Ranucci E, D'Alfonso G. A luminescent poly(amidoamine)-iridium complex as a new singlet-oxygen sensitizer for photodynamic therapy. Inorg Chem 2015; 54:544-53. [PMID: 25554822 DOI: 10.1021/ic502378z] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A polymer complex (1P) was synthesized by binding bis(cyclometalated) Ir(ppy)2(+) fragments (ppy = 2-phenylpyridyl) to phenanthroline (phen) pendants of a poly(amidoamine) copolymer (PhenISA, in which the phen pendants involved ∼6% of the repeating units). The corresponding molecular complex [Ir(ppy)2(bap)](+) (1M, bap = 4-(butyl-4-amino)-1,10-phenanthroline) was also prepared for comparison. In water solution 1P gives nanoaggregates with a hydrodynamic diameter of 30 nm in which the lipophilic metal centers are presumed to be segregated within polymer tasks to reduce their interaction with water. Such confinement, combined with the dilution of triplet emitters along the polymer chains, led to 1P having a photoluminescence quantum yield greater than that of 1M (0.061 vs 0.034, respectively, in an aerated water solution) with a longer lifetime of the (3)MLCT excited states and a blue-shifted emission (595 nm vs 604 nm, respectively). NMR data supported segregation of the metal centers. Photoreaction of O2 with 1,5-dihydroxynaphthalene showed that 1P is able to sensitize (1)O2 generation but with half the quantum yield of 1M. Cellular uptake experiments showed that both 1M and 1P are efficient cell staining agents endowed with two-photon excitation (TPE) imaging capability. TPE microscopy at 840 nm indicated that both complexes penetrate the cellular membrane of HeLa cells, localizing in the perinuclear region. Cellular photodynamic therapy tests showed that both 1M and 1P are able to induce cell apoptosis upon exposure to Xe lamp irradiation. The fraction of apoptotic cells for 1M was higher than that for 1P (74 and 38%, respectively) 6 h after being irradiated for 5 min, but cells incubated with 1P showed much lower levels of necrosis as well as lower toxicity in the absence of irradiation. More generally, the results indicate that cell damage induced by 1M was avoided by binding the iridium sensitizers to the poly(amidoamine).
Collapse
Affiliation(s)
- Daniela Maggioni
- Dipartimento di Chimica, Università degli Studi di Milano , Via Golgi 19, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wang Z, He L, Duan L, Yan J, Tang R, Pan C, Song X. Blue-green emitting cationic iridium complexes with 1,3,4-oxadiazole cyclometallating ligands: synthesis, photophysical and electrochemical properties, theoretical investigation and electroluminescent devices. Dalton Trans 2015; 44:15914-23. [DOI: 10.1039/c5dt02083b] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Oxadiazole-type cyclometallating ligands lead to blue-green-emitting cationic iridium complexes, showing piezochromism and good performances in LECs.
Collapse
Affiliation(s)
- Zhen Wang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Lei He
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Jun Yan
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Ruiren Tang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Chunyue Pan
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| | - Xiangzhi Song
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- P. R. China
| |
Collapse
|
38
|
Dicyanovinyl-unit-induced absorption enhancement of iridium(III) complexes in long-wavelength range and potential application in dye-sensitized solar cells. Sci China Chem 2014. [DOI: 10.1007/s11426-014-5212-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Cánaves MM, Cabra MI, Bauzá A, Cañellas P, Sánchez K, Orvay F, García-Raso A, Fiol JJ, Terrón A, Barceló-Oliver M, Ballester P, Mata I, Molins E, Hussain F, Frontera A. Crystal structures and DFT calculations of new chlorido-dimethylsulfoxide-MIII (M = Ir, Ru, Rh) complexes with the N-pyrazolyl pyrimidine donor ligand: kinetic vs. thermodynamic isomers. Dalton Trans 2014; 43:6353-64. [DOI: 10.1039/c3dt52700j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
40
|
Lo KKW, Hui WK, Chung CK, Tsang KHK, Lee TKM, Ng DCM. Luminescent Transition Metal Polypyridine Biotin Complexes. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.200600007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Woo H, Cho S, Han Y, Chae WS, Ahn DR, You Y, Nam W. Synthetic Control Over Photoinduced Electron Transfer in Phosphorescence Zinc Sensors. J Am Chem Soc 2013; 135:4771-87. [DOI: 10.1021/ja3123202] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hana Woo
- Department of Bioinspired Science, Ewha Womans University, Daehyun-dong, Seodaemun-gu,
Seoul 120-750, Korea
| | - Somin Cho
- Department of Bioinspired Science, Ewha Womans University, Daehyun-dong, Seodaemun-gu,
Seoul 120-750, Korea
| | - Yejee Han
- Department of Bioinspired Science, Ewha Womans University, Daehyun-dong, Seodaemun-gu,
Seoul 120-750, Korea
| | - Weon-Sik Chae
- Korea Basic Science Institute, Gangneung Center, Gangneung, Gangwondo 210-702,
Korea
| | - Dae-Ro Ahn
- Center for Theragnosis,
Biomedical
Research Institute, Korea Institute of Science and Technology, Seoul 130-650, Korea
| | - Youngmin You
- Department of Bioinspired Science, Ewha Womans University, Daehyun-dong, Seodaemun-gu,
Seoul 120-750, Korea
| | - Wonwoo Nam
- Department of Bioinspired Science, Ewha Womans University, Daehyun-dong, Seodaemun-gu,
Seoul 120-750, Korea
| |
Collapse
|
42
|
Bura T, Retailleau P, Indelli MT, Ziessel R. Synthesis and properties of phosphorescent iridium(iii) complexes of delocalized ligands. Dalton Trans 2013; 42:4544-51. [DOI: 10.1039/c2dt32538a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Weng J, Mei Q, Jiang W, Fan Q, Tong B, Ling Q, Huang W. Effect of pH on the photophysical properties of two new carboxylic-substituted iridium(iii) complexes. Analyst 2013; 138:1689-99. [DOI: 10.1039/c2an36298h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
44
|
Choi AWT, Louie MW, Li SPY, Liu HW, Chan BTN, Lam TCY, Lin ACC, Cheng SH, Lo KKW. Emissive Behavior, Cytotoxic Activity, Cellular Uptake, and PEGylation Properties of New Luminescent Rhenium(I) Polypyridine Poly(ethylene glycol) Complexes. Inorg Chem 2012. [DOI: 10.1021/ic301948d] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Alex Wing-Tat Choi
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| | - Man-Wai Louie
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| | - Steve Po-Yam Li
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| | - Hua-Wei Liu
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| | - Bruce Ting-Ngok Chan
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| | - Tonlex Chun-Ying Lam
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| | - Alex Chun-Chi Lin
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| | - Shuk-Han Cheng
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| | - Kenneth Kam-Wing Lo
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R.
China
| |
Collapse
|
45
|
A d-f heteronuclear complex for dual-mode phosphorescence and magnetic resonance imaging. Biomaterials 2012; 33:8591-9. [DOI: 10.1016/j.biomaterials.2012.07.067] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 07/31/2012] [Indexed: 12/11/2022]
|
46
|
Cao HT, Shan GG, Zhang B, Li P, Sun SL, Su ZM. Enhanced quantum efficiency of cationic iridium(III) complexes with carbazole moiety as a steric hindrance unit. J Mol Struct 2012. [DOI: 10.1016/j.molstruc.2012.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Li SPY, Tang TSM, Yiu KSM, Lo KKW. Cyclometalated Iridium(III)-Polyamine Complexes with Intense and Long-Lived Multicolor Phosphorescence: Synthesis, Crystal Structure, Photophysical Behavior, Cellular Uptake, and Transfection Properties. Chemistry 2012; 18:13342-54. [DOI: 10.1002/chem.201200979] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Indexed: 12/17/2022]
|
48
|
Suleymanova AF, Kozhevnikov DN, Prokhorov AM. The use of the 1,2,4-triazine method of pyridine ligand synthesis for the preparation of a luminescent Pt(II) labeling agent. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.07.090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Affiliation(s)
- Yuming Yang
- Department of Chemistry and State Key Laboratory
of Molecular Engineering of Polymers and Institutes of Biomedical
Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Qiang Zhao
- Key Laboratory for Organic Electronics
and Information Displays (KLOEID) and Institute of Advanced Materials
(IAM), Nanjing University of Posts and Telecommunications, Nanjing
210046, P. R. China
| | - Wei Feng
- Department of Chemistry and State Key Laboratory
of Molecular Engineering of Polymers and Institutes of Biomedical
Sciences, Fudan University, Shanghai 200433, P. R. China
| | - Fuyou Li
- Department of Chemistry and State Key Laboratory
of Molecular Engineering of Polymers and Institutes of Biomedical
Sciences, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
50
|
Zhang TT, Qi XX, Jia J, Wu HS. Tuning electronic structure and photophysical properties of [Ir(ppy)2(py)2]+ by substituents binding in pyridyl ligand: a computational study. J Mol Model 2012; 18:4615-24. [DOI: 10.1007/s00894-012-1462-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022]
|