1
|
Yang L, Jin X, Hu S, Yu P, Wang X. Evaluating the Efficacy of the Diluted Schirmer Method for Tear Collection in Dry Eye Syndrome Patients. Curr Eye Res 2024:1-8. [PMID: 39039702 DOI: 10.1080/02713683.2024.2380446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE This study assesses the diluted Schirmer method's effectiveness in collecting tears from dry eye syndrome patients, aiming to identify the most suitable tear collection technique for them. METHODS A prospective study. Tear samples were collected from patients with dry eye syndrome and healthy individuals using two methods: (1) Direct Schirmer Method: Schirmer strips were directly inserted into the eye to collect tears. (2) Diluted Schirmer Method: After instilling physiological saline into the eye and waiting for 30 s to ensure thorough mixing with tears, Schirmer strips were used for collection. Tear samples from both groups were analyzed and compared for total protein and cytokine levels (IL-1β, IL-6, IL-8, TNF-α). RESULTS (1) The study included 32 participants: 16 with dry eye syndrome (4 males, 12 females, average age 34.92 ± 10.13 years) and 16 healthy controls (5 males, 11 females, average age 32.25 ± 9.87 years). (2) The diluted Schirmer method produced a significantly larger tear volume compared to the direct method (p < 0.05), with lower Visual Analogue Scale (VAS) scores indicating less discomfort (p < 0.05). (3) The average total protein content of the two groups was 51.70 ± 3.166 ng measured by Direct Schirmer method, and the average total protein content of the Diluted Schirmer method was 50.05 ± 3.263 ng. There was no statistical difference between the two groups. (t = 1.051, p = 0.3098) (4) The concentrations of total tear protein and various cytokines measured by both methods were higher in the dry eye group compared to the normal group, with statistically significant differences (p < 0.05). Both methods reflected consistent changes in tear protein profiles. CONCLUSION The diluted Schirmer method can comfortably collect an adequate volume of tear samples in a short time and consistently reflect changes in tear proteins, making it an effective method for tear collection in patients with dry eye syndrome.
Collapse
Affiliation(s)
- Li Yang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiuming Jin
- Eye Center, Affiliated Second Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shengjia Hu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Pingping Yu
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinchang Wang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Antonietti M, Taylor Gonzalez DJ, Djulbegovic MB, Gameiro GR, Uversky VN, Sridhar J, Karp CL. Intrinsic disorder in the human vitreous proteome. Int J Biol Macromol 2024; 267:131274. [PMID: 38569991 PMCID: PMC11182622 DOI: 10.1016/j.ijbiomac.2024.131274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
The vitreous is a vital component of the eye, occupying a substantial portion of its volume and maintaining its structure. This study delves into the presence and significance of intrinsically disordered proteins (IDPs) within the vitreous, utilizing a dataset of 1240 vitreous proteins previously discovered in the vitreous proteome by Murthy et al.in five healthy subjects. The results indicate that 26.9 % of vitreous proteins are highly disordered, 68.8 % possess moderate disorder, and only 4.3 % are highly ordered. A complex interaction network among these proteins suggests their biological importance, and approximately 25 % may undergo liquid-liquid phase separation (LLPS). These findings offer new perspectives on the vitreous' molecular composition and behavior, potentially impacting our understanding of eye-related diseases, physiological changes such as vitreous syneresis. Further research is needed to translate these insights into clinical applications, although the intrinsic protein disorder and its association with LLPS appears to play a role in vitreous proteome function.
Collapse
Affiliation(s)
- Michael Antonietti
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States of America
| | | | - Mak B Djulbegovic
- Wills Eye Hospital, Thomas Jefferson University Hospital, Philadelphia, PA, United States of America
| | - Gustavo R Gameiro
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States of America; Escola Paulista de Medicina, Federal University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| | - Jayanth Sridhar
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States of America
| | - Carol L Karp
- Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States of America.
| |
Collapse
|
3
|
Ponzini E. Tear biomarkers. Adv Clin Chem 2024; 120:69-115. [PMID: 38762243 DOI: 10.1016/bs.acc.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
An extensive exploration of lacrimal fluid molecular biomarkers in understanding and diagnosing a spectrum of ocular and systemic diseases is presented. The chapter provides an overview of lacrimal fluid composition, elucidating the roles of proteins, lipids, metabolites, and nucleic acids within the tear film. Pooled versus single-tear analysis is discussed to underline the benefits and challenges associated with both approaches, offering insights into optimal strategies for tear sample analysis. Subsequently, an in-depth analysis of tear collection methods is presented, with a focus on Schirmer's test strips and microcapillary tubes methods. Alternative tear collection techniques are also explored, shedding light on their applicability and advantages. Variability factors, including age, sex, and diurnal fluctuations, are examined in the context of their impact on tear biomarker analysis. The main body of the chapter is dedicated to discussing specific biomarkers associated with ocular discomfort and a wide array of ocular diseases. From dry eye disease and thyroid-associated ophthalmopathy to keratoconus, age-related macular degeneration, diabetic retinopathy, and glaucoma, the intricate relationship between molecular biomarkers and these conditions is thoroughly dissected. Expanding beyond ocular pathologies, the chapter explores the applicability of tear biomarkers in diagnosing systemic diseases such as multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and cancer. This broader perspective underscores the potential of lacrimal fluid analysis in offering non-invasive diagnostic tools for conditions with far-reaching implications.
Collapse
Affiliation(s)
- Erika Ponzini
- Department of Materials Science, University of Milano Bicocca, Milan, Italy; COMiB Research Center, University of Milano Bicocca, Milan, Italy.
| |
Collapse
|
4
|
Kontoh-Twumasi R, Budkin S, Edupuganti N, Vashishtha A, Sharma S. Role of Serine Protease Inhibitors A1 and A3 in Ocular Pathologies. Invest Ophthalmol Vis Sci 2024; 65:16. [PMID: 38324301 PMCID: PMC10854419 DOI: 10.1167/iovs.65.2.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
Serine protease inhibitors A1 (SerpinA1) and A3 (SerpinA3) are important members of the serpin family, playing crucial roles in the regulation of serine proteases and influencing various physiological processes. SerpinA1, also known as α-1-antitrypsin, is a versatile glycoprotein predominantly synthesized in the liver, with additional production in inflammatory and epithelial cell types. It exhibits multifaceted functions, including immune modulation, complement activation regulation, and inhibition of endothelial cell apoptosis. SerpinA3, also known as α-1-antichymotrypsin, is expressed both extracellularly and intracellularly in various tissues, particularly in the retina, kidney, liver, and pancreas. It exerts anti-inflammatory, anti-angiogenic, antioxidant, and antifibrotic activities. Both SerpinA1 and SerpinA3 have been implicated in conditions such as keratitis, diabetic retinopathy, age-related macular degeneration, glaucoma, cataracts, dry eye disease, keratoconus, uveitis, and pterygium. Their role in influencing metalloproteinases and cytokines, as well as endothelial permeability, and their protective effects on Müller cells against oxidative stress further highlight their diverse and critical roles in ocular pathologies. This review provides a comprehensive overview of the etiology and functions of SerpinA1 and SerpinA3 in ocular diseases, emphasizing their multifaceted roles and the complexity of their interactions within the ocular microenvironment.
Collapse
Affiliation(s)
- Richard Kontoh-Twumasi
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Stepan Budkin
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Neel Edupuganti
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
| | - Ayushi Vashishtha
- Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, Georgia, United States
- Department of Ophthalmology, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
5
|
Bruszel B, Tóth-Molnár E, Janáky T, Szabó Z. Sources of Variance in Human Tear Proteomic Samples: Statistical Evaluation, Quality Control, Normalization, and Biological Insight. Int J Mol Sci 2024; 25:1559. [PMID: 38338841 PMCID: PMC10855525 DOI: 10.3390/ijms25031559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Human tear fluid contains numerous compounds, which are present in highly variable amounts owing to the dynamic and multipurpose functions of tears. A better understanding of the level and sources of variance is essential for determining the functions of the different tear components and the limitations of tear samples as a potential biomarker source. In this study, a quantitative proteomic method was used to analyze variations in the tear protein profiles of healthy volunteers. High day-to-day and inter-eye personal variances were observed in the tear volumes, protein content, and composition of the tear samples. Several normalization and outlier exclusion approaches were evaluated to decrease variances. Despite the intrapersonal variances, statistically significant differences and cluster analysis revealed that proteome profile and immunoglobulin composition of tear fluid present personal characteristics. Using correlation analysis, we could identify several correlating protein clusters, mainly related to the source of the proteins. Our study is the first attempt to achieve more insight into the biochemical background of human tears by statistical evaluation of the experimentally observed dynamic behavior of the tear proteome. As a pilot study for determination of personal protein profiles of the tear fluids of individual patients, it contributes to the application of this noninvasively collectible body fluid in personal medicine.
Collapse
Affiliation(s)
- Bella Bruszel
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (B.B.); (T.J.)
| | - Edit Tóth-Molnár
- Department of Ophtalmology, Albert Szent-Györgyi Health Centre, University of Szeged, Korányi Fasor 10-11, H-6720 Szeged, Hungary;
| | - Tamás Janáky
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (B.B.); (T.J.)
| | - Zoltán Szabó
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dóm tér 8, H-6720 Szeged, Hungary; (B.B.); (T.J.)
| |
Collapse
|
6
|
Taylor Gonzalez DJ, Djulbegovic M, Antonietti M, Cordova M, Dayhoff GW, Mattes R, Galor A, Uversky VN, Karp CL. Intrinsic Disorder in the Human Tear Proteome. Invest Ophthalmol Vis Sci 2023; 64:14. [PMID: 37561450 PMCID: PMC10424804 DOI: 10.1167/iovs.64.11.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/30/2023] [Indexed: 08/11/2023] Open
Abstract
Purpose We aimed to characterize the proteome of human tears and assess for the presence of intrinsically disordered proteins (IDPs). IDPs, despite lacking a rigid three-dimensional structure, maintain biological functionality and could shed light on the molecular interactions within tears. Methods We analyzed a dataset of 1475 proteins identified in the tear film of three healthy subjects. We employed several computational tools, including the Compositional Profiler, Rapid Intrinsic Disorder Analysis Online, Search Tool for the Retrieval of Interacting Genes, and Database of Disordered Protein Predictors to evaluate the intrinsic disorder, protein interactions, and functional characterization of the disordered regions within this proteome. Results Our analysis showed a notable inclination toward intrinsic disorder. Two out of 10 order-promoting residues and five out of 10 disorder-promoting residues were found enriched. Using the Predictor of Natural Disordered Regions (PONDR) VSL2 output, 95% of these proteins were classified as highly or moderately disordered. We revealed an extensive protein-protein interaction network with significant interaction enrichment. The most disordered proteins exhibited higher disorder binding sites and diverse posttranslational modifications compared to the most ordered ones. Conclusions To the best of our knowledge, our study is the first comprehensive analysis of intrinsic disorder in the human tear film proteome, and it revealed an abundance of IDPs and their role in protein function and interaction networks. These findings suggest that variations in the intrinsic disorder of a tear film could be impacted by systemic and ocular conditions, offering promising avenues for disease biomarker identification and drug target development. Further research is needed to understand the implications of these findings in human health and disease.
Collapse
Affiliation(s)
| | - Mak Djulbegovic
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Michael Antonietti
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Matthew Cordova
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Guy W. Dayhoff
- Department of Chemistry, University of South Florida, Tampa, Florida, United States
| | - Robby Mattes
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
- Ophthalmology, Miami Veterans Affairs Medical Center, Miami, Florida, United States
- Research Services, Miami Veterans Affairs Medical Center, Miami, Florida, United States
| | - Vladimir N. Uversky
- Molecular Medicine and USF Health Byrd Alzheimer's Center and Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, United States
| | - Carol L. Karp
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, United States
| |
Collapse
|
7
|
Muttuvelu DV, Cehofski LJ, Muhammad MGF, Chen X, Utheim TP, Khan AM, Abduljabar AB, Kristensen K, Rasmussen MLR, Vorum H, Heegaard S, Honoré B. Anterior blepharitis is associated with elevated plectin levels consistent with a pronounced intracellular response. Ocul Surf 2023; 29:444-455. [PMID: 37348651 DOI: 10.1016/j.jtos.2023.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023]
Abstract
PURPOSE Anterior blepharitis is a frequent ocular condition which may result in severe ocular surface disease. In this study, advanced proteome analysis was performed to elucidate biological mechanisms underlying anterior blepharitis. METHODS All patients underwent full ophthalmological examination including Ocular Surface Disease Index score (OSDI). Measurement of non-invasive break-up time (NBUT), Oxford score, and meibography were performed. Tear film samples from treatment naïve patients with anterior blepharitis (n = 15) and age-matched controls (n = 11) were collected with Schirmer filtration paper. The samples were analyzed with label-free quantification nano liquid chromatography - tandem mass spectrometry (LFQ nLC-MS/MS). Significantly regulated proteins were identified with a permutation-based calculation with a false discovery rate at 0.05. RESULTS Among the 927 proteins detected, a total of 162 proteins were significantly changed. Regulated proteins were involved in cytoplasmic translation, positive regulation of B cell activation, complement activation and phagocytosis. High levels of plakin proteins, a group of proteins involved in cytoskeleton organization, were observed in anterior blepharitis, including plectin, desmoplakin, envoplakin, epiplakin, periplakin, and vimentin. The upregulation of plectin was confirmed with single reaction monitoring. Patients with anterior blepharitis had lower levels of immunoglobulin chains, VEGF coregulated chemokine 1 (CXCL17), and platelet-derived growth factor C. CONCLUSIONS Anterior blepharitis was associated with a high level of plectin indicating a pronounced intracellular response with cytoskeletal reorganization. Our data suggest a lack of immunoglobulin chains and CXCL17 in anterior blepharitis with potential alterations in the ocular surface immune response.
Collapse
Affiliation(s)
| | - Lasse Jørgensen Cehofski
- Department of Ophthalmology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | | | - Xiangjun Chen
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Tor Paaske Utheim
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | | | | | - Kasper Kristensen
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Steffen Heegaard
- Department of Ophthalmology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Bent Honoré
- Department of Biomedicine, Aarhus University, Aarhus, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
8
|
Boto de los Bueis A, de la Fuente M, Montejano-Milner R, del Hierro Zarzuelo A, Vecino E, Acera A. A Pilot Study of a Panel of Ocular Inflammation Biomarkers in Patients with Primary Sjögren’s Syndrome. Curr Issues Mol Biol 2023; 45:2881-2894. [PMID: 37185712 PMCID: PMC10136698 DOI: 10.3390/cimb45040188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Ocular diseases have a strong impact on individuals, the effects of which extend from milder visual impairment to blindness. Due to this and to their prevalence, these conditions constitute important health, social and economic challenges. Thus, improvements in their early detection and diagnosis will help dampen the impact of these conditions, both on patients and on healthcare systems alike. In this sense, identifying tear biomarkers could establish better non-invasive approaches to diagnose these diseases and to monitor responses to therapy. With this in mind, we developed a solid phase capture assay, based on antibody microarrays, to quantify S100A6, MMP-9 and CST4 in human tear samples, and we used these arrays to study tear samples from healthy controls and patients with Sjögren’s Syndrome, at times concomitant with rheumatoid arthritis. Our results point out that the detection of S100A6 in tear samples seems to be positively correlated to rheumatoid arthritis, consistent with the systemic nature of this autoinflammatory pathology. Thus, we provide evidence that antibody microarrays may potentially help diagnose certain pathologies, possibly paving the way for significant improvements in the future care of these patients.
Collapse
Affiliation(s)
| | - Miguel de la Fuente
- Experimental Ophthalmo-Biology Group (GOBE), Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Rafael Montejano-Milner
- Ophthalmology Service, Hospital Universitario Príncipe de Asturias, 28805 Alcala de Henares, Spain
| | | | - Elena Vecino
- Experimental Ophthalmo-Biology Group (GOBE), Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
| | - Arantxa Acera
- Experimental Ophthalmo-Biology Group (GOBE), Department of Cell Biology and Histology, University of the Basque Country UPV/EHU, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48001 Bilbao, Spain
| |
Collapse
|
9
|
Ozdalgic B, Gul M, Uygun ZO, Atçeken N, Tasoglu S. Emerging Applications of Electrochemical Impedance Spectroscopy in Tear Film Analysis. BIOSENSORS 2022; 12:827. [PMID: 36290964 PMCID: PMC9599721 DOI: 10.3390/bios12100827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Human tear film, with a flow rate of 1-3 µL/min, is a rich bodily fluid that transmits a variety of metabolites and hormones containing proteins, lipids and electrolytes that provide clues about ocular and systemic diseases. Analysis of disease biomarkers such as proteins, mRNA, enzymes and cytokines in the tear film, collected by noninvasive methods, can provide significant results for sustaining a predictive, preventive and personalized medicine regarding various diseases such as glaucoma, diabetic retinopathy, keratoconus, dry eye, cancer, Alzheimer's disease, Parkinson's disease and COVID-19. Electrochemical impedance spectroscopy (EIS) offers a powerful technique for analyzing these biomarkers. EIS detects electrical equivalent circuit parameters related to biorecognition of receptor-analyte interactions on the electrode surface. This method is advantageous as it performs a label-free detection and allows the detection of non-electroactive compounds that cannot be detected by direct electron transfer, such as hormones and some proteins. Here, we review the opportunities regarding the integration of EIS into tear fluid sampling approaches.
Collapse
Affiliation(s)
- Berin Ozdalgic
- Department of Mechanical Engineering, Engineering Faculty, Koç University, Istanbul 34450, Türkiye
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
- Division of Optometry, School of Med Services & Techniques, Dogus University, Istanbul 34775, Türkiye
| | - Munire Gul
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
| | - Zihni Onur Uygun
- Department of Mechanical Engineering, Engineering Faculty, Koç University, Istanbul 34450, Türkiye
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
- Department of Biochemistry, Faculty of Medicine, Kafkas University, Kars 36100, Türkiye
| | - Nazente Atçeken
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
| | - Savas Tasoglu
- Department of Mechanical Engineering, Engineering Faculty, Koç University, Istanbul 34450, Türkiye
- Koç University Translational Medicine Research Center (KUTTAM), Koç University, Istanbul 34450, Türkiye
- Boğaziçi Institute of Biomedical Engineering, Boğaziçi University, Istanbul 34684, Türkiye
- Koç University Arçelik Research Center for Creative Industries (KUAR), Koç University, Istanbul 34450, Türkiye
| |
Collapse
|
10
|
Suárez-Cortés T, Merino-Inda N, Benitez-Del-Castillo JM. Tear and ocular surface disease biomarkers: A diagnostic and clinical perspective for ocular allergies and dry eye disease. Exp Eye Res 2022; 221:109121. [PMID: 35605673 DOI: 10.1016/j.exer.2022.109121] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/30/2022] [Accepted: 05/16/2022] [Indexed: 11/04/2022]
Abstract
Validated biomarkers to be used as biological tools for managing ocular surface diseases (OSDs) are still an unmet need in daily clinical practice. Many studies have contributed to the already extensive list of candidate biomarkers for these disorders. Dry eye (DE) and ocular allergy (OA) are complex and multifactorial diseases, often coexisting and with overlapping symptoms. The purpose of this review is to present a comprehensive updated revision of the most relevant biomarkers of DE and OA, with an emphasis on quantitative analyses and correlations with clinical parameter data. Analysis of biomarkers common for these pathologies has highlighted an important physiological process. Namely, the interleukin proteins (IL-1α, IL-1β and IL-17), tumour necrotic factor (TNFα) and interferon gamma (IFNγ; Th1-Th7 pathway) and IL-4, IL-5 and IL-13 (Th2 pathway) seem to represent similar inflammatory mechanisms. Moreover, changes in the levels of mucins (MUC1, MUC2, MUC4, MUC5 and MUC16) are common alterations in the tear film mucous layer. We also examine the current state of medical devices and the main limitations to their use in clinical practice. Translational research in biomarkers for clinical practice depends on a feasible transition from the laboratory to the point-of-care. This requires large-scale, coordinated clinical validation campaigns to select the biomarkers with the highest specificity and sensitivity and significant correlation with clinical parameters. Moreover, technical limitations of multiplexed quantitation systems must be overcome to detect and measure the levels of several biomarkers in very small samples. To ensure the future of biomarker research, significant progress is necessary in a number of fields. There is an urgent need for global unification of clinical classification and diagnostics criteria. Widespread integration of proteomic and transcriptomic data is paramount for performing meaningful analyses using appropriate bioinformatics tools and artificial intelligence systems.
Collapse
|
11
|
Zhan X, Li J, Guo Y, Golubnitschaja O. Mass spectrometry analysis of human tear fluid biomarkers specific for ocular and systemic diseases in the context of 3P medicine. EPMA J 2021; 12:449-475. [PMID: 34876936 PMCID: PMC8639411 DOI: 10.1007/s13167-021-00265-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 12/23/2022]
Abstract
Over the last two decades, a large number of non-communicable/chronic disorders reached an epidemic level on a global scale such as diabetes mellitus type 2, cardio-vascular disease, several types of malignancies, neurological and eye pathologies-all exerted system's enormous socio-economic burden to primary, secondary, and tertiary healthcare. The paradigm change from reactive to predictive, preventive, and personalized medicine (3PM/PPPM) has been declared as an essential transformation of the overall healthcare approach to benefit the patient and society at large. To this end, specific biomarker panels are instrumental for a cost-effective predictive approach of individualized prevention and treatments tailored to the person. The source of biomarkers is crucial for specificity and reliability of diagnostic tests and treatment targets. Furthermore, any diagnostic approach preferentially should be noninvasive to increase availability of the biomaterial, and to decrease risks of potential complications as well as concomitant costs. These requirements are clearly fulfilled by tear fluid, which represents a precious source of biomarker panels. The well-justified principle of a "sick eye in a sick body" makes comprehensive tear fluid biomarker profiling highly relevant not only for diagnostics of eye pathologies but also for prediction, prognosis, and treatment monitoring of systemic diseases. One prominent example is the Sicca syndrome linked to a cascade of severe complications that include dry eye, neurologic, and oncologic diseases. In this review, protein profiles in tear fluid are highlighted and corresponding biomarkers are exemplified for several relevant pathologies, including dry eye disease, diabetic retinopathy, cancers, and neurological disorders. Corresponding analytical approaches such as sample pre-processing, differential proteomics, electrophoretic techniques, high-performance liquid chromatography (HPLC), enzyme-linked immuno-sorbent assay (ELISA), microarrays, and mass spectrometry (MS) methodology are detailed. Consequently, we proposed the overall strategies based on the tear fluid biomarkers application for 3P medicine practice. In the context of 3P medicine, tear fluid analytical pathways are considered to predict disease development, to target preventive measures, and to create treatment algorithms tailored to individual patient profiles.
Collapse
Affiliation(s)
- Xianquan Zhan
- Shandong Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, 440 Jiyan Road, Jinan, 250117 Shandong China
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, 250117 Shandong China
- Gastroenterology Research Institute and Clinical Center, Shandong First Medical University, 38 Wuying Shan Road, Jinan, Shandong 250031 People’s Republic of China
| | - Jiajia Li
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, 250117 Shandong China
- Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008 Hunan China
| | - Yuna Guo
- Medical Science and Technology Innovation Center, Shandong First Medical University, 6699 Qingdao Road, Jinan, 250117 Shandong China
| | - Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-University of Bonn, Sigmund-Freud-Str 25, 53105 Bonn, Germany
| |
Collapse
|
12
|
Nättinen J, Aapola U, Nukareddy P, Uusitalo H. Looking deeper into ocular surface health: an introduction to clinical tear proteomics analysis. Acta Ophthalmol 2021; 100:486-498. [PMID: 34750985 DOI: 10.1111/aos.15059] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/13/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022]
Abstract
Ocular surface diseases are becoming more prevalent worldwide. Reasons for this include the ongoing population ageing and increasing use of digital displays, although ophthalmologists have a wide selection of tools, which can be implemented in the evaluation of the ocular surface health, methods, which enable the in-depth study of biological functions are gaining more interest. These new approaches are needed, since the individual responses to ocular surface diseases and treatments can vary from person to person, and the correlations between clinical signs and symptoms are often low. Modern mass spectrometry (MS) methods can produce information on hundreds of tear proteins, which in turn can provide valuable information on the biological effects occurring on the ocular surface. In this review article, we will provide an overview of the different aspects, which are part of a successful tear proteomics study design and equip readers with a better understanding of the methods most suited for their MS-based tear proteomics study in the field of ophthalmology and ocular surface.
Collapse
Affiliation(s)
- Janika Nättinen
- SILK Department of Ophthalmology Faculty of Medicine and Health Technology Tampere University Tampere Finland
| | - Ulla Aapola
- SILK Department of Ophthalmology Faculty of Medicine and Health Technology Tampere University Tampere Finland
| | - Praveena Nukareddy
- SILK Department of Ophthalmology Faculty of Medicine and Health Technology Tampere University Tampere Finland
| | - Hannu Uusitalo
- SILK Department of Ophthalmology Faculty of Medicine and Health Technology Tampere University Tampere Finland
- Tays Eye Centre Tampere University Hospital Tampere Finland
| |
Collapse
|
13
|
Tse JSH, Cheung JKW, Wong GTK, Lam TC, Choi KY, So KHY, Lam CDM, Sze AYH, Wong ACK, Yee GMC, Chan HHL. Integrating Clinical Data and Tear Proteomics to Assess Efficacy, Ocular Surface Status, and Biomarker Response After Orthokeratology Lens Wear. Transl Vis Sci Technol 2021; 10:18. [PMID: 34559185 PMCID: PMC8475286 DOI: 10.1167/tvst.10.11.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/17/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose This study evaluated the efficacy and ocular surface status of Breath-O Correct, novel orthokeratology (OK) lenses, worn overnight for 3 months. Lens-induced changes in the tear proteome were evaluated. Methods Thirty-one subjects, aged 19 to 26 years with refractive error from -1.00 to -5.00 D, were randomly assigned 1:1 to the treatment or control group. Refraction, visual acuity, corneal integrity, biomechanics and endothelial health, ocular surface changes, and subjective symptoms were assessed at the baseline, one-month, and three-month visits. The tear proteome was characterized over time using sequential window acquisition of all theoretical ion spectra mass spectrometry. Results Lenses improved uncorrected visual acuity and reduced spherical powers with similar efficacy to other OK lenses. Significant reductions (P < 0.05) in corneal hysteresis (11.12 ± 1.12 to 10.38 ± 1.36 mm Hg) and corneal resistance factor (11.06 ± 1.32 to 9.90 ± 1.45 mm Hg) were observed in the treatment group after one month of lens wear, whereas other assessed factors remained unchanged. Thirteen and eight differentially expressed proteins were found after one month and three months of lens wear, respectively. Two proteins (proline-rich protein 27 and immunoglobulin V regions) were differentially expressed at both visits. Conclusions Over a three-month period, Breath-O Correct lenses were overall safe, well tolerated, efficacious in refractive power reduction, and comparable with other OK lenses. Furthermore, their use caused only minor noninflammatory protein expression changes in the tear proteome. Translational Relevance This study investigated the safety of orthokeratology contact lenses on the ocular surface in molecular aspects and standard clinical parameters.
Collapse
Affiliation(s)
- Jimmy S. H. Tse
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| | - Jimmy K. W. Cheung
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong
- Centre for Eye and Vision Research (CEVR), Hong Kong
| | - Gigi T. K. Wong
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| | - Thomas C. Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
- Centre for Eye and Vision Research (CEVR), Hong Kong
| | - Kai Yip Choi
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| | - Katherine H. Y. So
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| | - Christie D. M. Lam
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| | - Andes Y. H. Sze
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| | - Angel C. K. Wong
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| | - Gigi M. C. Yee
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong
| | - Henry H. L. Chan
- Centre for Myopia Research, School of Optometry, The Hong Kong Polytechnic University, Hong Kong
- Centre for Eye and Vision Research (CEVR), Hong Kong
- University Research Facilities in Behavioral and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong
| |
Collapse
|
14
|
Zysset-Burri DC, Schlegel I, Lincke JB, Jaggi D, Keller I, Heller M, Lagache SB, Wolf S, Zinkernagel MS. Understanding the Interactions Between the Ocular Surface Microbiome and the Tear Proteome. Invest Ophthalmol Vis Sci 2021; 62:8. [PMID: 34369983 PMCID: PMC8354087 DOI: 10.1167/iovs.62.10.8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Purpose The purpose of this study was to explore the interplay between the ocular surface microbiome and the tear proteome in humans in order to better understand the pathogenesis of ocular surface-associated diseases. Methods Twenty eyes from 20 participants were included in the study. The ocular surface microbiome was sequenced by whole-metagenome shotgun sequencing using lid and conjunctival swabs. Furthermore, the tear proteome was identified using chromatography tandem mass spectrometry. After compositional and functional profiling of the metagenome and functional characterization of the proteome by gene ontology, association studies between the ocular microbiome and tear proteome were assessed. Results Two hundred twenty-nine taxa were identified with Actinobacteria and Proteobacteria being the most abundant phyla with significantly more Propionibacterium acnes and Staphylococcus epidermidis in lid compared to conjunctival swabs. The lid metagenomes were enriched in genes of the glycolysis lll and adenosine nucleotides de novo and L-isoleucine biosynthesis. Correlations between the phylum Firmicutes and fatty acid metabolism, between the genus Agrobacterium as well as vitamin B1 synthesis and antimicrobial activity, and between biosynthesis of heme, L-arginine, as well as L-citrulline and human vision were detected. Conclusions The ocular surface microbiome was found to be associated with the tear proteome with a role in human immune defense. This study has a potential impact on the development of treatment strategies for ocular surface-associated diseases.
Collapse
Affiliation(s)
- Denise C Zysset-Burri
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Irina Schlegel
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Joel-Benjamin Lincke
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Damian Jaggi
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Irene Keller
- Department for BioMedical Research, University of Bern, Bern, Switzerland.,Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sophie Braga Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Bern, Switzerland
| | - Sebastian Wolf
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin S Zinkernagel
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.,Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Pieczyński J, Szulc U, Harazna J, Szulc A, Kiewisz J. Tear fluid collection methods: Review of current techniques. Eur J Ophthalmol 2021; 31:2245-2251. [PMID: 33631970 DOI: 10.1177/1120672121998922] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tear fluid, composed of lipid, aqueous, and mucin layers, contains electrolytes, water, proteins, peptides, and glycoproteins. Its components may serve as diagnostic indicators of local and systemic diseases. The aim of the study was to conduct literature review in order to identify the current methods of tear collection. The most commonly used method which was relatively easy to perform and allowed to obtain sufficient tear volume for further chemical and physical analysis was selected through PubMed database search for the following keywords: tear sampling, human tears, chemical analysis of tears, physical tear analysis, animal tear sampling. Final criteria of articles selection were: human tears, tear sample collection, chemical and physical analysis of tears. Time of publication of the articles not older than 1995. The analysis of 70 articles revealed that the most common tear fluid collection methods are Schirmer tear strips and capillary tubes. Thus, we recommend the use of Schirmer strips and microcapillary tubes as the cheapest and easiest methods for sampling of tear fluid for further chemical analysis.
Collapse
Affiliation(s)
- Janusz Pieczyński
- Department of Ophthalmology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
- Regional Specialist Hospital of Olsztyn, Olsztyn, Poland
| | - Urszula Szulc
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury, Olsztyn, Poland
| | - Joanna Harazna
- Department of Human Physiology and Pathophysiology, University of Warmia and Mazury, Olsztyn, Poland
- Clinical Research Center, Department of Nephrology and Hypertensiology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Aleksandra Szulc
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| | - Jolanta Kiewisz
- Department of Human Histology and Embryology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
16
|
Biosynthesized Multivalent Lacritin Peptides Stimulate Exosome Production in Human Corneal Epithelium. Int J Mol Sci 2020; 21:ijms21176157. [PMID: 32859014 PMCID: PMC7504496 DOI: 10.3390/ijms21176157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 11/17/2022] Open
Abstract
Lacripep is a therapeutic peptide derived from the human tear protein, Lacritin. Lacripep interacts with syndecan-1 and induces mitogenesis upon the removal of heparan sulfates (HS) that are attached at the extracellular domain of syndecan-1. The presence of HS is a prerequisite for the syndecan-1 clustering that stimulates exosome biogenesis and release. Therefore, syndecan-1-mediated mitogenesis versus HS-mediated exosome biogenesis are assumed to be mutually exclusive. This study introduces a biosynthesized fusion between Lacripep and an elastin-like polypeptide named LP-A96, and evaluates its activity on cell motility enhancement versus exosome biogenesis. LP-A96 activates both downstream pathways in a dose-dependent manner. HCE-T cells at high confluence treated with 1 μM LP-A96 enhanced cell motility equipotent to Lacripep. However, cells at low density treated with 1 μM LP-A96 generated a 210-fold higher number of exosomes compared to those treated at low density with Lacripep. As monovalent Lacripep is capable of enhancing cell motility but not exosome biogenesis, activation of exosome biogenesis by LP-A96 not only suggests its utility as a novel molecular tool to study the Lacritin biology in the corneal epithelium but also implies activity as a potential therapeutic peptide that can further improve ocular surface health through the induction of exosomes.
Collapse
|
17
|
Aghamollaei H, Parvin S, Shahriary A. Review of proteomics approach to eye diseases affecting the anterior segment. J Proteomics 2020; 225:103881. [PMID: 32565161 DOI: 10.1016/j.jprot.2020.103881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 01/12/2023]
Abstract
Visual impairment and blindness is a major health burden worldwide, and major ocular diseases causing visual impairment pertain to the anterior segment of the eye. Anterior segment ocular diseases are common, yet complex entities. Although many treatment options and surgical techniques are available for these ailments, the underlying cause and pathogenesis is still unclear. Finding ways to fundamentally treat these patients and rectify the underlying dysregulations leading to the disease may help cure patients completely without major complications. Proteomics approaches are a novel way to distinguish dysregulated proteins in a variety of biological tissues in a hypothesis-free manner, thus helping to find the responsible pathways leading to a certain disease. The aim of the current study is to review the available knowledge in scientific literature regarding the proteomics studies done on anterior segment eye diseases and suggest potential clinical implications to exploit the results of these studies. SIGNIFICANCE: Anterior segment ocular diseases are responsible for a major proportion of visual impairment and blindness worldwide. Although ophthalmologists have several treatment options that can alleviate or control the progression of these diseases, no definite cure is available for most of them. Moreover, because these diseases are progressive, prompt diagnosis is of utmost important. Proteomics studies enable us to identify and quantify the dysregulated proteins in a biological specimen in a hypothesis-free manner. Understanding the dysregulated protein pathways shines a light on the pathogenesis of the disease. Moreover, these dysregulated proteins may act as biomarkers to help in diagnosis and treatment follow-up. Hence, in this article we sought out to review the available scientific literature regarding the proteomics studies of anterior segment ocular diseases and to identify potential applications of proteomic studies in clinic.
Collapse
Affiliation(s)
- Hossein Aghamollaei
- Chemical Injuries Research Center, Systems biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shahram Parvin
- Chemical Injuries Research Center, Systems biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Graham KL, Diefenbach E, McCowan CI, White AJR. A technique for shotgun proteomic analysis of the precorneal tear film in dogs with naturally occurring primary glaucoma. Vet Ophthalmol 2020; 24 Suppl 1:131-145. [PMID: 32364655 DOI: 10.1111/vop.12765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To introduce a protocol for the characterization of protein patterns in tears of dogs with primary angle closure glaucoma (PACG) and primary open-angle glaucoma (POAG). ANIMALS Nineteen dogs (25 eyes). METHODS Tear samples were collected using a Schirmer tear strip, from dogs with PACG (PACG-affected eyes, n = 8; unaffected eyes predisposed to PACG, n = 7), POAG (n = 4), and healthy controls (n = 6). Protein precipitation and trypsin digestion were performed for analyses via liquid chromatography-tandem mass spectrometry. Proteins were identified using the SwissProt protein sequence database. Relative protein expression in 17 eyes (15 dogs) was evaluated using Proteome Discoverer 2.0. Pathway analyses were performed to investigate molecular mechanisms associated with primary glaucoma. RESULTS Unique peptides were identified in 505 proteins, with Major allergen Can f 1 and albumin identified with high confidence. Proteins unique to tears from diseased eyes (PACG: n = 7; POAG: n = 14) were identified. Nucleoside diphosphate was unique to tears in PACG eyes naïve to therapy, while retinal binding protein and NSFL1 cofactor p47 were unique to medicated PACG eyes. Relative expression of 34 proteins differed between disease states. Pathway analyses identified that the 'inflammatory response' was among the top disease/disorders in dogs with primary glaucoma (PACG and POAG) but not in healthy controls. CONCLUSION Tear samples suitable for mass spectrometry were readily obtained from pet dogs without needing specialized equipment. Further studies to validate the findings and explore potential candidate biomarkers for early disease detection and potential therapeutic targets are indicated.
Collapse
Affiliation(s)
- Kathleen L Graham
- Clinical Ophthalmology and Eye Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Eve Diefenbach
- Westmead Proteomics Facility, Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Christina I McCowan
- University of Melbourne Veterinary Hospital, University of Melbourne, Melbourne, Vic, Australia.,Department of Jobs, Precincts and Regions, Victoria State Government, Melbourne, Vic, Australia
| | - Andrew J R White
- Clinical Ophthalmology and Eye Health, Sydney Medical School, University of Sydney, Sydney, NSW, Australia.,Centre of Vision Research, Westmead Institute for Medical Research, Westmead, NSW, Australia
| |
Collapse
|
19
|
Loukovitis E, Kozeis N, Gatzioufas Z, Kozei A, Tsotridou E, Stoila M, Koronis S, Sfakianakis K, Tranos P, Balidis M, Zachariadis Z, Mikropoulos DG, Anogeianakis G, Katsanos A, Konstas AG. The Proteins of Keratoconus: a Literature Review Exploring Their Contribution to the Pathophysiology of the Disease. Adv Ther 2019; 36:2205-2222. [PMID: 31363996 PMCID: PMC6822850 DOI: 10.1007/s12325-019-01026-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Keratoconus (KC) is a complex, genetically heterogeneous multifactorial degenerative disorder characterized by corneal ectasia and thinning. Its incidence is approximately 1/2000-1/50,000 in the general population. KC is associated with moderate to high myopia and irregular astigmatism, resulting in severe visual impairment. KC structural abnormalities primarily relate to the weakening of the corneal collagen. Their understanding is crucial and could contribute to effective management of the disease, such as with the aid of corneal cross-linking (CXL). The present article critically reviews the proteins involved in the pathophysiology of KC, with particular emphasis on the characteristics of collagen that pertain to CXL. METHODS PubMed, MEDLINE, Google Scholar and GeneCards databases were screened for relevant articles published in English between January 2006 and June 2018. Keyword combinations of the words "keratoconus," "risk factor(s)," "genetics," "genes," "genetic association(s)," "proteins", "collagen" and "cornea'' were used. In total, 272 articles were retrieved, reviewed and selected, with greater weight placed on more recently published evidence. Based on the reviewed literature, an attempt was made to tabulate the up- and down-regulation of genes involved in KC and their protein products and to delineate the mechanisms involved in CXL. RESULTS A total of 117 proteins and protein classes have been implicated in the pathogenesis and pathophysiology of KC. These have been tabulated in seven distinct tables according to their gene coding, their biochemistry and their metabolic control. CONCLUSION The pathogenesis and pathophysiology of KC remain enigmatic. Emerging evidence has improved our understanding of the molecular characteristics of KC and could further improve the success rate of CXL therapies.
Collapse
|
20
|
Parthiban N, Sampath NL, JeyaMaheshwari J, Prajna NV, Lalitha P, Dharmalingam K. Quantitative profiling of tear proteome reveals down regulation of zinc alpha-2 glycoprotein in Aspergillus flavus keratitis patients. Exp Eye Res 2019; 186:107700. [PMID: 31233730 DOI: 10.1016/j.exer.2019.107700] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/20/2019] [Accepted: 06/12/2019] [Indexed: 12/16/2022]
Abstract
Corneal mycotic ulceration is predominantly due to Aspergillus and Fusarium solani infection in tropical countries. In this study, we examined the proteome profile of tear samples from A. flavus keratitis patients at various stages of infection. The proteome was profiled using 2D PAGE and the protein levels were quantified using 2D DIGE. Alpha-1-antitrypsin, apolipoprotein, haptoglobin, lactoferrin and albumin were up regulated while cystatin SA III precursor, lacrimal lipocalin precursor, lacritin precursor and Zinc alpha-2 glycoprotein (ZAG) were down regulated in tear fluid. In the case of ZAG all proteoforms were down regulated as the disease progressed from early to late stage of infection. Western blot analysis confirmed the results observed using DIGE. Further, there were no gender specific differences in the levels of ZAG expression in keratitis patient tear film. Published results show up regulation of ZAG in Fusarium keratitis patient tear indicating subtle changes in the early events of host response to these two fungal pathogens. We conclude that ZAG level could be used as an indicator of A. flavus or F. solani infection, even during the early stage of the disease.
Collapse
Affiliation(s)
- Niranjana Parthiban
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System,Madurai, TamilNadu, India
| | - Nithya Lakshmi Sampath
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System,Madurai, TamilNadu, India
| | - Jayapal JeyaMaheshwari
- Proteomics Department, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System,Madurai, TamilNadu, India
| | | | - Prajna Lalitha
- Department of Ocular Microbiology, Aravind Eye Hospital,Aravind Eye Care System, Madurai, TamilNadu, India
| | - Kuppamuthu Dharmalingam
- Aravind Medical Research Foundation, Aravind Eye Care System, 1. Anna Nagar, Madurai, 625020, Tamil Nadu, India.
| |
Collapse
|
21
|
Ahmad MT, Zhang P, Dufresne C, Ferrucci L, Semba RD. The Human Eye Proteome Project: Updates on an Emerging Proteome. Proteomics 2019; 18:e1700394. [PMID: 29356342 DOI: 10.1002/pmic.201700394] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/08/2018] [Indexed: 01/05/2023]
Abstract
The human eye is a complex organ consisting of multiple compartments with unique and specialized properties that reflect their varied functions. Although there have been advancements in ocular imaging and therapeutics over the past decade, the pathogenesis of many common eye diseases remains poorly understood. Proteomics is an invaluable tool to gain insight into pathogenesis, diagnosis, and treatment of eye diseases. By 2013, when the Human Eye Proteome Project (also known as the EyeOme) was founded, there were 4842 nonredundant proteins identified in the human eye. Twenty-three recent papers on the human eye proteome were identified in PubMed searches. These papers were used to compile an updated resource of 9782 nonredundant proteins in the human eye. This updated catalogue sheds light on the molecular makeup of previously undescribed proteomes within the human eye, including optic nerve, sclera, iris, and ciliary body, while adding additional proteins to previously characterized proteomes such as aqueous humor, lens, vitreous, retina, and retinal pigment epithelium/choroid. Although considerable advances have been made to characterize the complete proteome of the human eye, additional high-quality data are needed to confirm and quantify previously discovered eye proteins in both health and disease.
Collapse
Affiliation(s)
- Meleha T Ahmad
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pingbo Zhang
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Ekizoglu S, Ulutin T, Guliyev J, Buyru N. PRR4: A novel downregulated gene in laryngeal cancer. Oncol Lett 2018. [PMID: 29541239 DOI: 10.3892/ol.2018.7888] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are a diverse group of tumor types, including neoplasia of the paranasal sinuses, oral cavity, trachea, pharynx and larynx. Laryngeal cancer is the most common type of HNSCC. The proline-rich 4 (PRR4) protein is synthesized in the acinar cells of human lacrimal glands. Previous studies have demonstrated that PRR4 may function as an antimicrobial protein protecting the ocular surface and the oral cavity. In order to determine differentially expressed genes (DEGs) in laryngeal tumors, a GeneFishing Assay was performed; 27 DEGs were identified. The PRR4 gene expression level in laryngeal tissue samples obtained from 90 patients, and the saliva of 25 healthy smokers and 25 non-smokers, was investigated using reverse transcription-quantitative polymerase chain reaction. It was revealed that PRR4 gene expression was decreased in 65/90 tumor tissues (72.2%) compared with normal tissues. No significant difference was identified between the healthy smoker and the non-smoker groups in terms of PRR4 gene expression. The results of the present study indicated that the PRR4 gene may serve an important role in laryngeal carcinogenesis.
Collapse
Affiliation(s)
- Seda Ekizoglu
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul 34098, Turkey
| | - Turgut Ulutin
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul 34098, Turkey
| | - Jalal Guliyev
- Department of Otorhinolaryngology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul 34098, Turkey
| | - Nur Buyru
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul 34098, Turkey
| |
Collapse
|
23
|
Soria J, Acera A, Merayo-LLoves J, Durán JA, González N, Rodriguez S, Bistolas N, Schumacher S, Bier FF, Peter H, Stöcklein W, Suárez T. Tear proteome analysis in ocular surface diseases using label-free LC-MS/MS and multiplexed-microarray biomarker validation. Sci Rep 2017. [PMID: 29234088 PMCID: PMC5727318 DOI: 10.1038/s41598-017-17536-2 10.1038/s41598-017-17536-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We analyzed the tear film proteome of patients with dry eye (DE), meibomian gland dysfunction (MGD), and normal volunteers (CT). Tear samples were collected from 70 individuals. Of these, 37 samples were analyzed using spectral-counting-based LC-MS/MS label-free quantitation, and 33 samples were evaluated in the validation of candidate biomarkers employing customized antibody microarray assays. Comparative analysis of tear protein profiles revealed differences in the expression levels of 26 proteins, including protein S100A6, annexin A1, cystatin-S, thioredoxin, phospholipase A2, antileukoproteinase, and lactoperoxidase. Antibody microarray validation of CST4, S100A6, and MMP9 confirmed the accuracy of previously reported ELISA assays, with an area under ROC curve (AUC) of 87.5%. Clinical endpoint analysis showed a good correlation between biomarker concentrations and clinical parameters. In conclusion, different sets of proteins differentiate between the groups. Apolipoprotein D, S100A6, S100A8, and ceruloplasmin discriminate best between the DE and CT groups. The differences between antileukoproteinase, phospholipase A2, and lactoperoxidase levels allow the distinction between MGD and DE, and the changes in the levels of annexin A1, clusterin, and alpha-1-acid glycoprotein 1, between MGD and CT groups. The functional network analysis revealed the main biological processes that should be examined to identify new candidate biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Javier Soria
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Arantxa Acera
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Jesús Merayo-LLoves
- Instituto Universitario Fernández-Vega, Avda Dres Fernández-Vega num 34, Oviedo, E-33012, Principado de Asturias, Spain
| | - Juan A Durán
- Instituto Clínico Quirúrgico de Oftalmología (ICQO), Virgen de Begoña N° 34, E-48006, Bilbao, Bizkaia, Spain.,Department of Ophthalmology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Nerea González
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Sandra Rodriguez
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Nikitas Bistolas
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Soeren Schumacher
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Frank F Bier
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Harald Peter
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Walter Stöcklein
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Tatiana Suárez
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain.
| |
Collapse
|
24
|
García B, García-Suárez O, Merayo-Lloves J, Ferrara G, Alcalde I, González J, Lisa C, Alfonso JF, Vazquez F, Quirós LM. Heparanase Overexpresses in Keratoconic Cornea and Tears Depending on the Pathologic Grade. DISEASE MARKERS 2017; 2017:3502386. [PMID: 29379222 PMCID: PMC5742882 DOI: 10.1155/2017/3502386] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/23/2017] [Accepted: 11/16/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND Keratoconus has classically been defined as a noninflammatory disorder, although recent studies show elevated levels of inflammatory markers suggesting that keratoconus could be, at least in part, an inflammatory condition. Heparanase upregulation has been described in multiple inflammatory disorders. In this article, we study the differential expression of heparanase in cornea and tears from keratoconus patients and healthy controls. METHODS A transcriptomic approach was used employing quantitative polymerase chain reaction to analyze the expression of heparanase and heparanase 2 in stromal and epithelial corneal cells. The protein expression was analyzed by immunohistochemistry in corneal sections. Enzymatic activity in tears was measured using [3H]-labeled heparan sulfate as substrate. RESULTS Heparanase transcription was detected in stromal and epithelial cells and appeared upregulated in keratoconus. Overexpression of the enzyme was also detected by immunohistochemistry. Corneal expression of heparanase 2 was detected in some cases. Heparanase catalytic activity was found in tears and displayed a positive correlation with the degree of keratoconus. CONCLUSIONS Heparanase overexpresses in keratoconic corneas, possibly reinforcing the inflammatory condition of the pathology. The presence of heparanase activity in tears allows us to propose its use as a biomarker for the diagnosis of the disorder.
Collapse
Affiliation(s)
- Beatriz García
- Instituto Universitario Fernández Vega, Universidad de Oviedo & Fundación de Investigación Oftalmológica, Oviedo, Spain
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain
| | - Olivia García-Suárez
- Instituto Universitario Fernández Vega, Universidad de Oviedo & Fundación de Investigación Oftalmológica, Oviedo, Spain
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain
| | - Jesús Merayo-Lloves
- Instituto Universitario Fernández Vega, Universidad de Oviedo & Fundación de Investigación Oftalmológica, Oviedo, Spain
| | - Guilherme Ferrara
- Instituto Universitario Fernández Vega, Universidad de Oviedo & Fundación de Investigación Oftalmológica, Oviedo, Spain
| | - Ignacio Alcalde
- Instituto Universitario Fernández Vega, Universidad de Oviedo & Fundación de Investigación Oftalmológica, Oviedo, Spain
| | - Javier González
- Department of Organic and Inorganic Chemistry, University of Oviedo, 33006 Oviedo, Spain
| | - Carlos Lisa
- Instituto Universitario Fernández Vega, Universidad de Oviedo & Fundación de Investigación Oftalmológica, Oviedo, Spain
| | - Jose F. Alfonso
- Instituto Universitario Fernández Vega, Universidad de Oviedo & Fundación de Investigación Oftalmológica, Oviedo, Spain
| | - Fernando Vazquez
- Instituto Universitario Fernández Vega, Universidad de Oviedo & Fundación de Investigación Oftalmológica, Oviedo, Spain
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain
- Department of Microbiology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Luis M. Quirós
- Instituto Universitario Fernández Vega, Universidad de Oviedo & Fundación de Investigación Oftalmológica, Oviedo, Spain
- Department of Functional Biology, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
25
|
Soria J, Acera A, Merayo-LLoves J, Durán JA, González N, Rodriguez S, Bistolas N, Schumacher S, Bier FF, Peter H, Stöcklein W, Suárez T. Tear proteome analysis in ocular surface diseases using label-free LC-MS/MS and multiplexed-microarray biomarker validation. Sci Rep 2017; 7:17478. [PMID: 29234088 PMCID: PMC5727318 DOI: 10.1038/s41598-017-17536-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 11/20/2017] [Indexed: 12/02/2022] Open
Abstract
We analyzed the tear film proteome of patients with dry eye (DE), meibomian gland dysfunction (MGD), and normal volunteers (CT). Tear samples were collected from 70 individuals. Of these, 37 samples were analyzed using spectral-counting-based LC-MS/MS label-free quantitation, and 33 samples were evaluated in the validation of candidate biomarkers employing customized antibody microarray assays. Comparative analysis of tear protein profiles revealed differences in the expression levels of 26 proteins, including protein S100A6, annexin A1, cystatin-S, thioredoxin, phospholipase A2, antileukoproteinase, and lactoperoxidase. Antibody microarray validation of CST4, S100A6, and MMP9 confirmed the accuracy of previously reported ELISA assays, with an area under ROC curve (AUC) of 87.5%. Clinical endpoint analysis showed a good correlation between biomarker concentrations and clinical parameters. In conclusion, different sets of proteins differentiate between the groups. Apolipoprotein D, S100A6, S100A8, and ceruloplasmin discriminate best between the DE and CT groups. The differences between antileukoproteinase, phospholipase A2, and lactoperoxidase levels allow the distinction between MGD and DE, and the changes in the levels of annexin A1, clusterin, and alpha-1-acid glycoprotein 1, between MGD and CT groups. The functional network analysis revealed the main biological processes that should be examined to identify new candidate biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Javier Soria
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Arantxa Acera
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Jesús Merayo-LLoves
- Instituto Universitario Fernández-Vega, Avda Dres Fernández-Vega num 34, Oviedo, E-33012, Principado de Asturias, Spain
| | - Juan A Durán
- Instituto Clínico Quirúrgico de Oftalmología (ICQO), Virgen de Begoña N° 34, E-48006, Bilbao, Bizkaia, Spain.,Department of Ophthalmology, School of Medicine, University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - Nerea González
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Sandra Rodriguez
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain
| | - Nikitas Bistolas
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Soeren Schumacher
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Frank F Bier
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Harald Peter
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Walter Stöcklein
- Department of automatization, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Muehlenberg 13, 14476, Potsdam-Golm, Germany
| | - Tatiana Suárez
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, Building 612, E-48160, Derio, Bizkaia, Spain.
| |
Collapse
|
26
|
Jeyalatha MV, Qu Y, Liu Z, Ou S, He X, Bu J, Li S, Reinach PS, Liu Z, Li W. Function of meibomian gland: Contribution of proteins. Exp Eye Res 2017; 163:29-36. [DOI: 10.1016/j.exer.2017.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 05/04/2017] [Accepted: 06/12/2017] [Indexed: 10/18/2022]
|
27
|
Abstract
The members of the Tear Film Subcommittee reviewed the role of the tear film in dry eye disease (DED). The Subcommittee reviewed biophysical and biochemical aspects of tears and how these change in DED. Clinically, DED is characterized by loss of tear volume, more rapid breakup of the tear film and increased evaporation of tears from the ocular surface. The tear film is composed of many substances including lipids, proteins, mucins and electrolytes. All of these contribute to the integrity of the tear film but exactly how they interact is still an area of active research. Tear film osmolarity increases in DED. Changes to other components such as proteins and mucins can be used as biomarkers for DED. The Subcommittee recommended areas for future research to advance our understanding of the tear film and how this changes with DED. The final report was written after review by all Subcommittee members and the entire TFOS DEWS II membership.
Collapse
|
28
|
Stachon T, Stachon A, Hartmann U, Seitz B, Langenbucher A, Szentmáry N. Urea, Uric Acid, Prolactin and fT4 Concentrations in Aqueous Humor of Keratoconus Patients. Curr Eye Res 2017; 42:842-846. [DOI: 10.1080/02713683.2016.1256413] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Tanja Stachon
- Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Axel Stachon
- Westpfalz-Klinikum GmbH, Institute for Laboratory Medicine, Kaiserslautern, Germany
| | - Ulrike Hartmann
- Westpfalz-Klinikum GmbH, Institute for Laboratory Medicine, Kaiserslautern, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany
| | | | - Nóra Szentmáry
- Department of Ophthalmology, Saarland University Medical Center, Homburg/Saar, Germany
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
29
|
Kandhavelu J, Demonte NL, Namperumalsamy VP, Prajna L, Thangavel C, Jayapal JM, Kuppamuthu D. Aspergillus flavus induced alterations in tear protein profile reveal pathogen-induced host response to fungal infection. J Proteomics 2016; 152:13-21. [PMID: 27789337 DOI: 10.1016/j.jprot.2016.10.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/12/2016] [Accepted: 10/19/2016] [Indexed: 12/31/2022]
Abstract
Aspergillus flavus and Fusarium sp. are primary causative agents of keratitis that results in corneal tissue damage leading to vision loss particularly in individuals from the tropical parts of the world. Proteins in the tear film collected from control and keratitis patients was profiled and compared. A total of 1873 proteins from control and 1400 proteins from patient tear were identified by mass spectrometry. While 847 proteins were found to be glycosylated in the patient tear, only 726 were glycosylated in control tear. And, some of the tear proteins showed alterations in their glycosylation pattern after infection. Complement system proteins, proteins specific for neutrophil extracellular traps and proteins involved in would healing were found only in the patient tear. The presence of these innate immune system proteins in the tear film of patients supports the previous data indicating the involvement of neutrophil and complement pathways in antifungal defense. High levels of wound healing proteins in keratitis patient tear implied activation of tissue repair during infection. The early appearance of the host defense proteins and wound healing response indicates that tear proteins could be used as an early marker system for monitoring the progression of pathogenesis. Identification of negative regulators of the above defense pathways in keratitis tear indicates an intricate balance of pro and anti-defense mechanisms operating in fungal infection of the eye. SIGNIFICANCE Tear proteins from control and mycotic keratitis patients were separated into glycoproteins and non-glycosylated proteins and then identified by mass spectrometry. Tear proteins from keratitis patients showed alteration in the glycosylation pattern indicating the alteration of glycosylation machinery due to infection. Neutrophil extracellular traps specific proteins, complement pathway proteins, as well as wound healing proteins, were found only in patient tear showing the activation of antifungal defense in the patient tear. Negative regulators of these defense pathways were also found in patient tear indicating a fine balance between pathogen clearance and host tissue destruction during fungal infection depending upon the individual specific host - pathogen interaction. This understanding could be used to predict the progression and outcome of infection.
Collapse
Affiliation(s)
- Jeyalakshmi Kandhavelu
- Department of Proteomics, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Naveen Luke Demonte
- Department of Proteomics, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | | | - Lalitha Prajna
- Department of Ocular Microbiology, Aravind Eye Hospital, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Chitra Thangavel
- Department of Proteomics, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Jeya Maheshwari Jayapal
- Department of Proteomics, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India
| | - Dharmalingam Kuppamuthu
- Department of Proteomics, Aravind Medical Research Foundation, Dr. G. Venkataswamy Eye Research Institute, Aravind Eye Care System, Madurai, Tamil Nadu, India.
| |
Collapse
|
30
|
Csősz É, Kalló G, Márkus B, Deák E, Csutak A, Tőzsér J. Quantitative body fluid proteomics in medicine - A focus on minimal invasiveness. J Proteomics 2016; 153:30-43. [PMID: 27542507 DOI: 10.1016/j.jprot.2016.08.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/27/2016] [Accepted: 08/08/2016] [Indexed: 01/07/2023]
Abstract
Identification of new biomarkers specific for various pathological conditions is an important field in medical sciences. Body fluids have emerging potential in biomarker studies especially those which are continuously available and can be collected by non-invasive means. Changes in the protein composition of body fluids such as tears, saliva, sweat, etc. may provide information on both local and systemic conditions of medical relevance. In this review, our aim is to discuss the quantitative proteomics techniques used in biomarker studies, and to present advances in quantitative body fluid proteomics of non-invasively collectable body fluids with relevance to biomarker identification. The advantages and limitations of the widely used quantitative proteomics techniques are also presented. Based on the reviewed literature, we suggest an ideal pipeline for body fluid analyses aiming at biomarkers discoveries: starting from identification of biomarker candidates by shotgun quantitative proteomics or protein arrays, through verification of potential biomarkers by targeted mass spectrometry, to the antibody-based validation of biomarkers. The importance of body fluids as a rich source of biomarkers is discussed. SIGNIFICANCE Quantitative proteomics is a challenging part of proteomics applications. The body fluids collected by non-invasive means have high relevance in medicine; they are good sources for biomarkers used in establishing the diagnosis, follow up of disease progression and predicting high risk groups. The review presents the most widely used quantitative proteomics techniques in body fluid analysis and lists the potential biomarkers identified in tears, saliva, sweat, nasal mucus and urine for local and systemic diseases.
Collapse
Affiliation(s)
- Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
| | - Gergő Kalló
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
| | - Bernadett Márkus
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
| | - Eszter Deák
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary; Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
| | - Adrienne Csutak
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary
| | - József Tőzsér
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1, 4032 Debrecen, Hungary.
| |
Collapse
|
31
|
Azkargorta M, Soria J, Acera A, Iloro I, Elortza F. Human tear proteomics and peptidomics in ophthalmology: Toward the translation of proteomic biomarkers into clinical practice. J Proteomics 2016; 150:359-367. [PMID: 27184738 DOI: 10.1016/j.jprot.2016.05.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 05/02/2016] [Indexed: 12/14/2022]
Abstract
Tears are a complex biological mixture containing electrolytes, metabolites, lipids, mucins, some small organic molecules, and proteins. The tear film has various roles in the lubrication, protection from the external environment, and nutrition of the cornea; it is also involved in the modulation of the optical properties of the eye. Tear composition reflects the physiological condition of the underlying tissues. Therefore, the tear fluid is useful in the evaluation of health and disease states and it is a valuable source of biomarkers for objective analysis of ocular and systemic diseases. The relatively high protein concentration of this fluid and the ease of noninvasive sample collection make it suitable for diagnostic and prognostic purposes. Efforts in proteomics research have positively affected to the field of ophthalmology, and the knowledge on the tear proteome has expanded considerably in the last few years. Nevertheless, despite a large amount of available data and the many biomarkers proposed for several eye and systemic diseases, the extent of translation to well-characterized and clinically useful tools has been largely insufficient. As for most of other biofluids, the road from discovery to clinical application is still long and full of pitfalls. In this review, we discuss the proteomic approaches used in the characterization of tear protein and peptide content, recapitulating the main studies and the progress done. We also present a brief summary of the path from discovery to clinical application of tear protein markers, with some representative examples of translation from the bench to the bedside. SIGNIFICANCE In this review we cover the most relevant proteomic approaches used in the characterization of the tear proteome, and for the first time we also focus in advances performed in the nowadays emerging peptide content characterization. In this context, we recapitulate on the main studies and the progresses done in this field. We also present a concise overview of the course that may be happen from discovery to clinical application for tear protein markers. Finally we include some representative examples of translation from the bench to the bedside.
Collapse
Affiliation(s)
- Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Javier Soria
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Arantxa Acera
- Bioftalmik Applied Research, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Ibon Iloro
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Bizkaia Science and Technology Park, Derio, Spain.
| |
Collapse
|
32
|
Absolute quantification of human tear lactoferrin using multiple reaction monitoring technique with stable-isotopic labeling. Anal Biochem 2015; 496:30-4. [PMID: 26717899 DOI: 10.1016/j.ab.2015.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/10/2015] [Indexed: 11/22/2022]
Abstract
The mass spectrometry technique of multiple reaction monitoring (MRM) was used to quantify and compare the expression level of lactoferrin in tear films among control, prostate cancer (CaP), and benign prostate hyperplasia (BPH) groups. Tear samples from 14 men with CaP, 15 men with BPH, and 14 controls were analyzed in the study. Collected tears (2 μl) of each sample were digested with trypsin overnight at 37 °C without any pretreatment, and tear lactoferrin was quantified using a lactoferrin-specific peptide, VPSHAVVAR, both using natural/light and isotopic-labeled/heavy peptides with MRM. The average tear lactoferrin concentration was 1.01 ± 0.07 μg/μl in control samples, 0.96 ± 0.07 μg/μl in the BPH group, and 0.98 ± 0.07 μg/μl in the CaP group. Our study is the first to quantify tear proteins using a total of 43 individual (non-pooled) tear samples and showed that direct digestion of tear samples is suitable for MRM studies. The calculated average lactoferrin concentration in the control group matched that in the published range of human tear lactoferrin concentration measured by enzyme-linked immunosorbent assay (ELISA). Moreover, the lactoferrin was stably expressed across all of the samples, with no significant differences being observed among the control, BPH, and CaP groups.
Collapse
|
33
|
Lacritin Salvages Human Corneal Epithelial Cells from Lipopolysaccharide Induced Cell Death. Sci Rep 2015; 5:18362. [PMID: 26670139 PMCID: PMC4680935 DOI: 10.1038/srep18362] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/12/2015] [Indexed: 02/07/2023] Open
Abstract
Innate immunity of the corneal epithelium is conferred by proteinaceous secretions from the epithelium and associated lacrimal and meibomian glands. Lacritin, an eye-specific protein with anti-microbial, cytoprotective and wound-healing properties, predominantly secreted by lacrimal glands, is absent in conditions such as Dry eye and Keratitis. In view of the biological significance of lacritin in human eye, we investigated its role in human corneal epithelial (HCE) cells during lipopolysaccharide (LPS)-induced infection. LPS-challenged HCE cells demonstrated apoptosis-mediated cell death and elevated lacritin levels. The LPS-induced cell death is alleviated with exogenous supplementation of recombinant lacritin. This cytoprotective effect of lacritin is mediated through Cyclooxygenase-2 (COX-2). This study is the first to highlight the protective role of lacritin and mechanism of its action during bacterial infection of cornea in vitro.
Collapse
|
34
|
Kalló G, Chatterjee A, Tóth M, Rajnavölgyi É, Csutak A, Tőzsér J, Csősz É. Relative quantification of human β-defensins by a proteomics approach based on selected reaction monitoring. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:1623-1631. [PMID: 26467114 DOI: 10.1002/rcm.7259] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/16/2015] [Accepted: 06/21/2015] [Indexed: 06/05/2023]
Abstract
RATIONALE A targeted proteomics method based on selected reaction monitoring (SRM) is a relevant approach for the analysis of multiple analytes in biological samples. Defensins are phylogenetically conserved small antimicrobial peptides contributing to innate host defense and exhibiting low immunogenicity, resistance to proteolysis and a broad range of antimicrobial activities. The goal of the present study was to develop and optimize SRM-based targeted proteomics methods for the detection of human β-defensins 1-4 in various biological fluids. METHODS An SRM-based targeted proteomics method was developed and validated for the detection of human β-defensins 1-4. The supernatants of resting and IL-1β-stimulated Caco2, HT-29 and SW-1116 colonic epithelial cells (CEC), cell lysates of CECs and tear samples of human healthy individuals were analyzed and the feasibility of the developed method was validated by ELISA and dot-blot analysis complemented by RT-qPCR. RESULTS Our results demonstrate that the developed SRM method offers an alternative approach for the cost-effective and rapid analysis of human β-defensins in samples with biological relevance. CONCLUSIONS A semi-quantitative targeted mass spectrometry method was developed and validated for the relative quantification of β-defensins 1-4 in cell culture supernatants and body fluid analyses.
Collapse
Affiliation(s)
- Gergő Kalló
- Department of Biochemistry and Molecular Biology, Proteomics Core Facility, Faculty of Medicine, University of Debrecen, Egyetem ter. 1, 4010, Debrecen, Hungary
| | - Arunima Chatterjee
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem ter. 1, 4010, Debrecen, Hungary
| | - Márta Tóth
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem ter. 1, 4010, Debrecen, Hungary
| | - Éva Rajnavölgyi
- Department of Immunology, Faculty of Medicine, University of Debrecen, Egyetem ter. 1, 4010, Debrecen, Hungary
| | - Adrienne Csutak
- Department of Ophthalmology, Faculty of Medicine, University of Debrecen, Egyetem ter. 1, 4010, Debrecen, Hungary
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Proteomics Core Facility, Faculty of Medicine, University of Debrecen, Egyetem ter. 1, 4010, Debrecen, Hungary
| | - Éva Csősz
- Department of Biochemistry and Molecular Biology, Proteomics Core Facility, Faculty of Medicine, University of Debrecen, Egyetem ter. 1, 4010, Debrecen, Hungary
| |
Collapse
|
35
|
Perumal N, Funke S, Wolters D, Pfeiffer N, Grus FH. Characterization of human reflex tear proteome reveals high expression of lacrimal proline-rich protein 4 (PRR4). Proteomics 2015; 15:3370-81. [DOI: 10.1002/pmic.201400239] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 01/07/2015] [Accepted: 07/02/2015] [Indexed: 01/18/2023]
Affiliation(s)
- Natarajan Perumal
- Department of Ophthalmology; University Medical Center of the Johannes Gutenberg University Mainz; Mainz Germany
| | - Sebastian Funke
- Department of Ophthalmology; University Medical Center of the Johannes Gutenberg University Mainz; Mainz Germany
| | - Dominik Wolters
- Department of Ophthalmology; University Medical Center of the Johannes Gutenberg University Mainz; Mainz Germany
| | - Norbert Pfeiffer
- Department of Ophthalmology; University Medical Center of the Johannes Gutenberg University Mainz; Mainz Germany
| | - Franz H. Grus
- Department of Ophthalmology; University Medical Center of the Johannes Gutenberg University Mainz; Mainz Germany
| |
Collapse
|
36
|
Lacritin and other autophagy associated proteins in ocular surface health. Exp Eye Res 2015; 144:4-13. [PMID: 26318608 DOI: 10.1016/j.exer.2015.08.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 07/20/2015] [Accepted: 08/18/2015] [Indexed: 12/19/2022]
Abstract
Advantage may be taken of macroautophagy ('autophagy') to promote ocular health. Autophagy continually captures aged or damaged cellular material for lysosomal degradation and recyling. When autophagic flux is chronically elevated, or alternatively deficient, health suffers. Chronic elevation of flux and stress are the consequence of inflammatory cytokines or of dry eye tears but not normal tears invitro. Exogenous tear protein lacritin transiently accelerates flux to restore homeostasis invitro and corneal health invivo, and yet the monomeric active form of lacritin appears to be selectively deficient in dry eye. Tissue transglutaminase-dependent cross-linking of monomer decreases monomer quantity and monomer affinity for coreceptor syndecan-1 thereby abrogating activity. Tissue transglutaminase is elevated in dry eye. Mutation of arylsulfatase A, arylsulfatase B, ceroid-lipofuscinosis neuronal 3, mucolipin, or Niemann-Pick disease type C1 respectively underlie several diseases of apparently insufficient autophagic flux that affect the eye, including: metachromatic leukodystrophy, mucopolysaccharidosis type VI, juvenile-onset Batten disease, mucolipidosis IV, and Niemann-Pick type C associated with myelin sheath destruction of corneal sensory and ciliary nerves and of the optic nerve; corneal clouding, ocular hypertension, glaucoma and optic nerve atrophy; accumulation of 'ceroid-lipofuscin' in surface conjunctival cells, and in ganglion and neuronal cells; decreased visual acuity and retinal dystrophy; and neurodegeneration. For some, enzyme or gene replacement, or substrate reduction, therapy is proving to be successful. Here we discuss examples of restoring ocular surface homeostasis through alteration of autophagy, with particular attention to lacritin.
Collapse
|
37
|
Farandos NM, Yetisen AK, Monteiro MJ, Lowe CR, Yun SH. Contact lens sensors in ocular diagnostics. Adv Healthc Mater 2015; 4:792-810. [PMID: 25400274 DOI: 10.1002/adhm.201400504] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 09/23/2014] [Indexed: 01/15/2023]
Abstract
Contact lenses as a minimally invasive platform for diagnostics and drug delivery have emerged in recent years. Contact lens sensors have been developed for analyzing the glucose composition of tears as a surrogate for blood glucose monitoring and for the diagnosis of glaucoma by measuring intraocular pressure. However, the eye offers a wider diagnostic potential as a sensing site and therefore contact lens sensors have the potential to improve the diagnosis and treatment of many diseases and conditions. With advances in polymer synthesis, electronics and micro/nanofabrication, contact lens sensors can be produced to quantify the concentrations of many biomolecules in ocular fluids. Non- or minimally invasive contact lens sensors can be used directly in a clinical or point-of-care setting to monitor a disease state continuously. This article reviews the state-of-the-art in contact lens sensor fabrication, their detection, wireless powering, and readout mechanisms, and integration with mobile devices and smartphones. High-volume manufacturing considerations of contact lenses are also covered and a case study of an intraocular pressure contact lens sensor is provided as an example of a successful product. This Review further analyzes the contact lens market and the FDA regulatory requirements for commercialization of contact lens sensors.
Collapse
Affiliation(s)
- Nicholas M. Farandos
- Department of Chemical Engineering; Imperial College London; South Kensington Campus London SW7 2AZ UK
| | - Ali K. Yetisen
- Department of Chemical Engineering and Biotechnology; University of Cambridge; Tennis Court Road Cambridge CB2 1QT UK
| | - Michael J. Monteiro
- Australian Institute for Bioengineering and Nanotechnology; University of Queensland; Brisbane QLD 4072 Australia
| | - Christopher R. Lowe
- Department of Chemical Engineering and Biotechnology; University of Cambridge; Tennis Court Road Cambridge CB2 1QT UK
| | - Seok Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine; Massachusetts General Hospital; 50 Blossom Street Boston MA 02114 USA
| |
Collapse
|
38
|
Quantitation of 47 human tear proteins using high resolution multiple reaction monitoring (HR-MRM) based-mass spectrometry. J Proteomics 2015; 115:36-48. [DOI: 10.1016/j.jprot.2014.12.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 11/16/2014] [Accepted: 12/08/2014] [Indexed: 12/14/2022]
|
39
|
Gross cystic disease fluid protein-15/prolactin-inducible protein as a biomarker for keratoconus disease. PLoS One 2014; 9:e113310. [PMID: 25405607 PMCID: PMC4236164 DOI: 10.1371/journal.pone.0113310] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/21/2014] [Indexed: 12/14/2022] Open
Abstract
Keratoconus (KC) is a bilateral degenerative disease of the cornea characterized by corneal bulging, stromal thinning, and scarring. The etiology of the disease is unknown. In this study, we identified a new biomarker for KC that is present in vivo and in vitro. In vivo, tear samples were collected from age-matched controls with no eye disease (n = 36) and KC diagnosed subjects (n = 17). Samples were processed for proteomics using LC-MS/MS. In vitro, cells were isolated from controls (Human Corneal Fibroblasts-HCF) and KC subjects (Human Keratoconus Cells-HKC) and stimulated with a Vitamin C (VitC) derivative for 4 weeks, and with one of the three transforming growth factor-beta (TGF-β) isoforms. Samples were analyzed using real-time PCR and Western Blots. By using proteomics analysis, the Gross cystic disease fluid protein-15 (GCDFP-15) or prolactin-inducible protein (PIP) was found to be the best independent biomarker able to discriminate between KC and controls. The intensity of GCDFP-15/PIP was significantly higher in healthy subjects compared to KC-diagnosed. Similar findings were seen in vitro, using a 3D culture model. All three TGF-β isoforms significantly down-regulated the expression of GCDFP-15/PIP. Zinc-alpha-2-glycoprotein (AZGP1), a protein that binds to PIP, was identified by proteomics and cell culture to be highly regulated. In this study by different complementary techniques we confirmed the potential role of GCDFP-15/PIP as a novel biomarker for KC disease. It is likely that exploring the GCDFP-15/PIP-AZGP1 interactions will help better understand the mechanism of KC disease.
Collapse
|
40
|
Tear proteomic analysis of Sjögren syndrome patients with dry eye syndrome by two-dimensional-nano-liquid chromatography coupled with tandem mass spectrometry. Sci Rep 2014; 4:5772. [PMID: 25159733 PMCID: PMC4145314 DOI: 10.1038/srep05772] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 06/02/2014] [Indexed: 12/02/2022] Open
Abstract
We examined the tear film proteome of patients with Sjögren's syndrome (SS) and dry eye syndrome (group A), patients with dry eye symptoms (group B) and normal volunteers (group C). Tear samples were pooled from 8 subjects from each group and were subjected to two-dimensional-nano-liquid chromatography coupled with tandem mass spectrometry (2D-nano-LC-MS/MS). The tear breakup time for group A was significantly reduced compared with group B and C (P < 0.001). Group A (Schirmer I test, 2.13 ± 2.38 mm/5 min) had markedly lower tear volume than group B (5.94 ± 4.75 mm/5 min) and C (14.44 ± 6.57 mm/5 min) (P < 0.001). Group A had significantly higher normalized tear protein content (1.8291 ± 0.2241 μg/mm) than group B (1.0839 ± 0.1120 μg/mm) (P = 0.001) and C (0.2028 ± 0.0177 μg/mm) (P = 0.001). The 2D-nano-LC-MS/MS analysis identified a total of 435 proteins, including 182 (54.8%), 247 (74.4%) and 278 (83.7%) in group A, B, and C, respectively, with 56 (16.7%) proteins including defensin α1, clusterin and lactotransferrin unique to group A. In conclusion, dry eye syndrome in SS patients is associated with an altered proteomic profile with dysregulated expression of proteins involved in a variety of important cellular process including inflammation, immunity, and oxidative stress.
Collapse
|
41
|
Vijmasi T, Chen FYT, Balasubbu S, Gallup M, McKown RL, Laurie GW, McNamara NA. Topical administration of lacritin is a novel therapy for aqueous-deficient dry eye disease. Invest Ophthalmol Vis Sci 2014; 55:5401-9. [PMID: 25034600 DOI: 10.1167/iovs.14-13924] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
PURPOSE Lacritin is a tear glycoprotein with prosecretory, prosurvival, and mitogenic properties. We examined lacritin levels in the tears of Sjögren's syndrome (SS) patients and explored the therapeutic potential of topical lacritin for the treatment of keratoconjunctivitis sicca. METHODS Tears from healthy controls (n = 14) and SS patients (n = 15) were assayed for lacritin using a C-terminal antibody. In a paired-eye study, autoimmune regulator (Aire) knockout (KO) mice (n = 7) were treated three times daily for 21 days with 10 μL of 4 μM lacritin (left eye) or vehicle (PBS) control (right eye). Tear secretion and ocular surface integrity were assessed at baseline and after treatment. Immunohistochemical staining of CD4+ T cells, cytokeratin-10 (K10), and cytokeratin-12 (K12) expression in the cornea and CD4+ T cell infiltration in the lacrimal glands were assessed. RESULTS Lacritin monomer (421.8 ± 65.3 ng [SS] vs. 655.8 ± 118.9 ng [controls]; P = 0.05) and C-terminal fragment protein (125 ± 34.1 ng [SS] vs. 399.5 ± 84.3 ng [controls]; P = 0.008) per 100 μL of tear eluate were significantly lower in SS patients. In Aire KO mice treated with lacritin, tear secretion increased by 46% (13.0 ± 3.5 mm vs. 8.9 ± 2.9 mm; P = 0.01) and lissamine green staining score significantly decreased relative to baseline (-0.417 ± 0.06 vs. 0.125 ± 0.07; P = 0.02). Expression of K10 but not K12 in the cornea was significantly decreased in lacritin-treated eyes. Focal CD4+ T cell infiltration of the lacrimal glands was significantly reduced on the lacritin-treated side versus the untreated side. CONCLUSIONS Lacritin is significantly reduced in the tears of SS patients. Topically administered lacritin has therapeutic potential for the treatment of aqueous-deficient dry eye disease.
Collapse
Affiliation(s)
- Trinka Vijmasi
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, California, United States
| | - Feeling Y T Chen
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, California, United States
| | - Suganthalakshmi Balasubbu
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, California, United States
| | - Marianne Gallup
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, California, United States
| | - Robert L McKown
- Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia, United States
| | - Gordon W Laurie
- Departments of Cell Biology and Ophthalmology, University of Virginia, Charlottesville, Virginia, United States
| | - Nancy A McNamara
- Francis I. Proctor Foundation, University of California San Francisco, San Francisco, California, United States Departments of Anatomy and Ophthalmology, University of California San Francisco, San Francisco, California, United States School of Optometry and Vision Science Program, University of California, Berkeley, Berkeley, California, United States
| |
Collapse
|
42
|
Perumal N, Funke S, Pfeiffer N, Grus FH. Characterization of lacrimal proline-rich protein 4 (PRR4) in human tear proteome. Proteomics 2014; 14:1698-709. [PMID: 24782455 DOI: 10.1002/pmic.201300039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 02/11/2014] [Accepted: 04/25/2014] [Indexed: 01/06/2023]
Abstract
This study was initiated considering the lack of comprehensive characteristics profile of PRR4 in tears of healthy subjects. Therefore, detailed characterizations of PRR4 from basal tears employing in-gel and in-solution digestions for MS systems are presented herein. First, pooled tear samples (n = 10) were utilized to identify PRR4-rich region/spots in 1DE/2DE gels employing LC-MALDI-MS and 1DE-LC-ESI-LTQ-Orbitrap-MS systems. PRR4-rich region and ten spots with vast polymorphisms (Mr : 17-30 kDa, pI: 3.0-6.6) were identified in 1DE and 2DE gels, respectively. In addition, combinations of four types of PTMs, which are methylation, acetylation, oxidation, and pyroglutamate formation, were identified in these ten PRR4 spots. Furthermore, a targeted data-acquisition approach was utilized to identify PRR4 isoforms in individual tear samples (n = 61) by in-solution digestion combined with a LC-ESI-LTQ-Orbitrap-MS system. Importantly, a new PRR4 isoform designated as PRR4-N3 in addition to PRR4 (gi154448886) and pHL E1F1 (gi1050983) was identified. Moreover, different combinations of these three PRR4 isoforms identified in the individual tear samples could be categorized into six distinguished groups. Conclusively, these findings provide fundamental insight into the complex characteristics profile of PRR4 isoforms and their PTMs in tears of healthy individuals.
Collapse
Affiliation(s)
- Natarajan Perumal
- Department of Ophthalmology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | |
Collapse
|
43
|
McKown RL, Coleman Frazier EV, Zadrozny KK, Deleault AM, Raab RW, Ryan DS, Sia RK, Lee JK, Laurie GW. A cleavage-potentiated fragment of tear lacritin is bactericidal. J Biol Chem 2014; 289:22172-82. [PMID: 24942736 DOI: 10.1074/jbc.m114.570143] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Antimicrobial peptides are important as the first line of innate defense, through their tendency to disrupt bacterial membranes or intracellular pathways and potentially as the next generation of antibiotics. How they protect wet epithelia is not entirely clear, with most individually inactive under physiological conditions and many preferentially targeting Gram-positive bacteria. Tears covering the surface of the eye are bactericidal for Gram-positive and -negative bacteria. Here we narrow much of the bactericidal activity to a latent C-terminal fragment in the prosecretory mitogen lacritin and report that the mechanism combines membrane permeabilization with rapid metabolic changes, including reduced levels of dephosphocoenzyme A, spermidine, putrescine, and phosphatidylethanolamines and elevated alanine, leucine, phenylalanine, tryptophan, proline, glycine, lysine, serine, glutamate, cadaverine, and pyrophosphate. Thus, death by metabolic stress parallels cellular attempts to survive. Cleavage-dependent appearance of the C-terminal cationic amphipathic α-helix is inducible within hours by Staphylococcus epidermidis and slowly by another mechanism, in a chymotrypsin- or leupeptin protease-inhibitable manner. Although bactericidal at low micromolar levels, within a biphasic 1-10 nM dose optimum, the same domain is mitogenic and cytoprotective for epithelia via a syndecan-1 targeting mechanism dependent on heparanase. Thus, the C terminus of lacritin is multifunctional by dose and proteolytic processing and appears to play a key role in the innate protection of the eye, with wider potential benefit elsewhere as lacritin flows from exocrine secretory cells.
Collapse
Affiliation(s)
- Robert L McKown
- From the Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia 22807
| | - Erin V Coleman Frazier
- From the Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia 22807
| | - Kaneil K Zadrozny
- From the Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia 22807
| | - Andrea M Deleault
- From the Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia 22807
| | - Ronald W Raab
- From the Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia 22807
| | - Denise S Ryan
- the Warfighter Refractive Eye Surgery Program and Research Center at Fort Belvoir, Fort Belvoir, Virginia 22060, and
| | - Rose K Sia
- the Warfighter Refractive Eye Surgery Program and Research Center at Fort Belvoir, Fort Belvoir, Virginia 22060, and
| | - Jae K Lee
- the Departments of Public Health Sciences, Systems and Information Engineering
| | - Gordon W Laurie
- Cell Biology, Ophthalmology, and Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
44
|
González N, Iloro I, Soria J, Duran JA, Santamaría A, Elortza F, Suárez T. Human tear peptide/protein profiling study of ocular surface diseases by SPE-MALDI-TOF mass spectrometry analyses. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.02.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
45
|
Abstract
Purpose The primary healthcare setting is well placed for health screening. Tear fluid composition gives valuable information about the eye and systemic health, and there is now significant interest in the potential application of tears as a tool for health screening; however, the acceptability of tear collection in the primary healthcare setting as compared with other methods of human sample collection has not been previously addressed. The objective of this study was to evaluate the patient acceptability of tear collection in a primary healthcare setting. Methods This was a cross-sectional study on 383 adult patients seeking primary healthcare, who were not diabetic and were not attending for an eye-related complaint. Tear collection was done using Schirmer strips, and an interviewer-administered questionnaire was conducted to collate information on the pain score (0–10) of the Schirmer tear collection, as well as to score the pain associated with their previous experience of antecubital venous puncture and finger prick test. Results The pain score for Schirmer tear collection was significantly lower (p < 0.001) than antecubital venous puncture but higher (p < 0.001) than finger prick. The pain scores for all three procedures were significantly higher in participants of younger age, female gender, and higher education level. Among the participants, 70% did not mind their tears being collected to screen for eye problems, whereas only 38% did not mind this procedure being performed for general health screening. Nevertheless, 69% of the participants preferred tear to urine collection, and 74% of participants preferred tear to blood collection. Conclusions Tear collection using Schirmer strips is a highly acceptable form of investigation that has the potential for use in health screening in the primary healthcare setting. This study has implications on using tear collection as a method of ocular and systemic health screening in the primary healthcare setting.
Collapse
|
46
|
You J, Willcox MD, Madigan MC, Wasinger V, Schiller B, Walsh BJ, Graham PH, Kearsley JH, Li Y. Tear fluid protein biomarkers. Adv Clin Chem 2014; 62:151-96. [PMID: 24772667 DOI: 10.1016/b978-0-12-800096-0.00004-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The tear film covers and protects the ocular surface. It contains various molecules including a large variety of proteins. The protein composition of the tear fluid can change with respect to various local and systemic diseases. Prior to the advent of the proteomic era, tear protein analysis was limited to a few analytical techniques, the most common of which was immunoelectrophoresis, an approach dependent on antibody availability. Using proteomics, hundreds of tear proteins could potentially be identified and subsequently studied. Although detection of low-abundance proteins in the complex tear proteome remains a challenge, advances in sample fractionation and mass spectrometry have greatly enhanced our ability to detect these proteins. With increasing proteomic applications, tears show great potential as biomarkers in the development of clinical assays for various human diseases. In this chapter, we discuss the structure and functions of the tear film and methods for its collection. We also summarize potential tear protein biomarkers identified using proteomic techniques for both ocular and systemic diseases. Finally, modern proteomic techniques for tear biomarker research and future challenges are explored.
Collapse
|
47
|
Zhou L, Wei R, Zhao P, Koh SK, Beuerman RW, Ding C. Proteomic analysis revealed the altered tear protein profile in a rabbit model of Sjögren's syndrome-associated dry eye. Proteomics 2014; 13:2469-81. [PMID: 23733261 DOI: 10.1002/pmic.201200230] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 04/02/2013] [Accepted: 05/11/2013] [Indexed: 12/17/2022]
Abstract
Sjögren's syndrome (SS) is an autoimmune disease that results in pathological dryness of mouth and eye. The diagnosis of SS depends on both clinical evaluation and specific antibodies. The goal of this study was to use quantitative proteomics to investigate changes in tear proteins in a rabbit model of SS-associated dry eye, induced autoimmune dacryoadenitis (IAD). Proteomic analysis was performed by iTRAQ and nano LC-MS/MS on tears collected from the ocular surface, and specific proteins were verified by high resolution MRM. It was found that in the tears of IAD rabbits at 2 and 4 weeks after induction, S100 A6, S100 A9, and serum albumin were upregulated, whereas serotransferrin (TF), prolactin-inducible protein (PIP), polymeric immunoglobulin receptor (pIgR), and Ig gamma chain C region were downregulated. High resolution MRM with mTRAQ labeling verified the changes in S100 A6, TF, PIP, and pIgR. Our results indicated significant changes of tear proteins in IAD rabbits, suggesting these proteins could potentially be used as biomarkers for the diagnosis and prognosis of dry eye. Several of these proteins were also found in the tears of non-SS dry eye patients indicating a common basis of ocular surface pathology, however, pIgR appears to be unique to SS.
Collapse
Affiliation(s)
- Lei Zhou
- Singapore Eye Research Institute, Singapore.
| | | | | | | | | | | |
Collapse
|
48
|
Feng MM, Baryla J, Liu H, Laurie GW, McKown RL, Ashki N, Bhayana D, Hutnik CML. Cytoprotective effect of lacritin on human corneal epithelial cells exposed to benzalkonium chloride in vitro. Curr Eye Res 2014; 39:604-10. [PMID: 24401093 DOI: 10.3109/02713683.2013.859275] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE Benzalkonium chloride (BAK) is the most commonly found preservative in eye drops, and has been shown to cause ocular surface inflammation and toxicity. Lacritin is a human tear glycoprotein secreted from the lacrimal glands that has been found to be cytoprotective. This study was designed to determine if the presence of lacritin confers protection to a cultured human corneal epithelial (HCE) cell line, CRL-11515, and primary HCE cells after exposure to the ocular preservative agent BAK. MATERIALS AND METHODS Recombinant human lacritin was cloned into intein fusion vectors, expressed in E. coli, and purified on chitin beads and DEAE Sepharose. Metabolic curves were established using the MTT assay after exposure of sub-confluent CRL-11515 cells to BAK or lacritin. Western blot analysis of lipidated LC3 (LC3-II) provided a measure of autophagy in CRL-11515 cells exposed to lacritin and/or BAK. RESULTS BAK reduced CRL-11515 cellular metabolic activity in a time- and dose-dependent manner. BAK-induced cellular stress was evident by elevated autophagy that increased with rising concentrations of BAK compared to control (p < 0.05). Lacritin increased HCE cell proliferation at an optimal dose of 1 nM. Preconditioning HCE cells with 1 nM lacritin for 24 h prior to BAK exposure significantly dampened levels of LC3-II (p < 0.05) and promoted a significant increase in cellular metabolic activity (p < 0.01) compared to BAK alone. CONCLUSIONS These results suggest lacritin protects cultured HCE cells stressed with BAK. Lacritin may have the potential to be used as a topical adjunctive therapy in eyes chronically exposed to BAK.
Collapse
Affiliation(s)
- Mary M Feng
- Department of Ophthalmology, Western University , London, Ontario , Canada
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Tears as a source of biomarkers for ocular and systemic diseases. Exp Eye Res 2013; 117:126-37. [DOI: 10.1016/j.exer.2013.07.015] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 07/05/2013] [Accepted: 07/12/2013] [Indexed: 12/23/2022]
|
50
|
Jalbert I. Diet, nutraceuticals and the tear film. Exp Eye Res 2013; 117:138-46. [DOI: 10.1016/j.exer.2013.08.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 08/21/2013] [Accepted: 08/23/2013] [Indexed: 01/26/2023]
|