1
|
Powell SM, Jarsberg LG, Zionce ELM, Anderson LN, Gritsenko MA, Nahid P, Jacobs JM. Longitudinal analysis of host protein serum signatures of treatment and recovery in pulmonary tuberculosis. PLoS One 2024; 19:e0294603. [PMID: 38421964 PMCID: PMC10903915 DOI: 10.1371/journal.pone.0294603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/03/2023] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND A better understanding of treatment progression and recovery in pulmonary tuberculosis (TB) infectious disease is crucial. This study analyzed longitudinal serum samples from pulmonary TB patients undergoing interventional treatment to identify surrogate markers for TB-related outcomes. METHODS Serum that was collected at baseline and 8, 17, 26, and 52 weeks from 30 TB patients experiencing durable cure were evaluated and compared using a sensitive LC-MS/MS proteomic platform for the detection and quantification of differential host protein signatures relative to timepoint. The global proteome signature was analyzed for statistical differences across the time course and between disease severity and treatment groups. RESULTS A total of 676 proteins showed differential expression in the serum over these timepoints relative to baseline. Comparisons to understand serum protein dynamics at 8 weeks, treatment endpoints at 17 and 26 weeks, and post-treatment at 52 weeks were performed. The largest protein abundance changes were observed at 8 weeks as the initial effects of antibiotic treatment strongly impacted inflammatory and immune modulated responses. However, the largest number of proteome changes was observed at the end of treatment time points 17 and 26 weeks respectively. Post-treatment 52-week results showed an abatement of differential proteome signatures from end of treatment, though interestingly those proteins uniquely significant at post-treatment were almost exclusively downregulated. Patients were additionally stratified based upon disease severity and compared across all timepoints, identifying 461 discriminating proteome signatures. These proteome signatures collapsed into discrete expression profiles with distinct pathways across immune activation and signaling, hemostasis, and metabolism annotations. Insulin-like growth factor (IGF) and Integrin signaling maintained a severity signature through 52 weeks, implying an intrinsic disease severity signature well into the post-treatment timeframe. CONCLUSION Previous proteome studies have primarily focused on the 8-week timepoint in relation to culture conversion status. While this study confirms previous observations, it also highlights some differences. The inclusion of additional end of treatment and post-treatment time points offers a more comprehensive assessment of treatment progression within the serum proteome. Examining the expression dynamics at these later time periods will help in the investigation of relapse patients and has provided indicative markers of response and recovery.
Collapse
Affiliation(s)
- Samantha M. Powell
- Biologcal Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Leah G. Jarsberg
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Erin L. M. Zionce
- Earth Systems Science Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Lindsey N. Anderson
- Biologcal Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Marina A. Gritsenko
- Biologcal Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Payam Nahid
- Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, San Francisco, California, United States of America
| | - Jon M. Jacobs
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| |
Collapse
|
2
|
Schutzer SE, Liu T, Tsai CF, Petyuk VA, Schepmoes AA, Wang YT, Weitz KK, Bergquist J, Smith RD, Natelson BH. Myalgic encephalomyelitis/chronic fatigue syndrome and fibromyalgia are indistinguishable by their cerebrospinal fluid proteomes. Ann Med 2023; 55:2208372. [PMID: 37722890 PMCID: PMC10512920 DOI: 10.1080/07853890.2023.2208372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 04/24/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and fibromyalgia have overlapping neurologic symptoms particularly disabling fatigue. This has given rise to the question whether they are distinct central nervous system (CNS) entities or is one an extension of the other. MATERIAL AND METHODS To investigate this, we used unbiased quantitative mass spectrometry-based proteomics to examine the most proximal fluid to the brain, cerebrospinal fluid (CSF). This was to ascertain if the proteome profile of one was the same or different from the other. We examined two separate groups of ME/CFS, one with (n = 15) and one without (n = 15) fibromyalgia. RESULTS We quantified a total of 2083 proteins using immunoaffinity depletion, tandem mass tag isobaric labelling and offline two-dimensional liquid chromatography coupled to tandem mass spectrometry, including 1789 that were quantified in all the CSF samples. ANOVA analysis did not yield any proteins with an adjusted p value <.05. CONCLUSION This supports the notion that ME/CFS and fibromyalgia as currently defined are not distinct entities.Key messageME/CFS and fibromyalgia as currently defined are not distinct entities.Unbiased quantitative mass spectrometry-based proteomics can be used to discover cerebrospinal fluid proteins that are biomarkers for a condition such as we are studying.
Collapse
Affiliation(s)
| | - Tao Liu
- Integrative Omics, Biological Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Chia-Feng Tsai
- Integrative Omics, Biological Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Vladislav A. Petyuk
- Integrative Omics, Biological Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Athena A. Schepmoes
- Integrative Omics, Biological Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Yi-Ting Wang
- Analytical Chemistry and Neurochemistry in Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Karl K. Weitz
- Integrative Omics, Biological Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Jonas Bergquist
- Analytical Chemistry and Neurochemistry in Department of Chemistry, Uppsala University, Uppsala, Sweden
| | - Richard D. Smith
- Integrative Omics, Biological Sciences, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Benjamin H. Natelson
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
Cyr MG, Wilson HD, Spierling AL, Chang J, Peng H, Steinberger P, Rader C. Concerted Antibody and Antigen Discovery by Differential Whole-cell Phage Display Selections and Multi-omic Target Deconvolution. J Mol Biol 2023; 435:168085. [PMID: 37019174 PMCID: PMC10148915 DOI: 10.1016/j.jmb.2023.168085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
Monoclonal antibody (mAb)-based biologics are well established treatments of cancer. Antibody discovery campaigns are typically directed at a single target of interest, which inherently limits the possibility of uncovering novel antibody specificities or functionalities. Here, we present a target-unbiased approach for antibody discovery that relies on generating mAbs against native target cell surfaces via phage display. This method combines a previously reported method for improved whole-cell phage display selections with next-generation sequencing analysis to efficiently identify mAbs with the desired target cell reactivity. Applying this method to multiple myeloma cells yielded a panel of >50 mAbs with unique sequences and diverse reactivities. To uncover the identities of the cognate antigens recognized by this panel, representative mAbs from each unique reactivity cluster were used in a multi-omic target deconvolution approach. From this, we identified and validated three cell surface antigens: PTPRG, ICAM1, and CADM1. PTPRG and CADM1 remain largely unstudied in the context of multiple myeloma, which could warrant further investigation into their potential as therapeutic targets. These results highlight the utility of optimized whole-cell phage display selection methods and could motivate further interest in target-unbiased antibody discovery workflows.
Collapse
Affiliation(s)
- Matthew G Cyr
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA; Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA. https://twitter.com/CyrialDilutions
| | - Henry D Wilson
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA
| | - Anna-Lena Spierling
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Jing Chang
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Haiyong Peng
- Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA
| | - Peter Steinberger
- Institute of Immunology, Medical University of Vienna, Vienna, Austria
| | - Christoph Rader
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, FL, USA; Department of Immunology and Microbiology, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL, USA.
| |
Collapse
|
4
|
Frando A, Boradia V, Gritsenko M, Beltejar C, Day L, Sherman DR, Ma S, Jacobs JM, Grundner C. The Mycobacterium tuberculosis protein O-phosphorylation landscape. Nat Microbiol 2023; 8:548-561. [PMID: 36690861 PMCID: PMC11376436 DOI: 10.1038/s41564-022-01313-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 12/16/2022] [Indexed: 01/25/2023]
Abstract
Bacterial phosphosignalling has been synonymous with two-component systems and their histidine kinases, but many bacteria, including Mycobacterium tuberculosis (Mtb), also code for Ser/Thr protein kinases (STPKs). STPKs are the main phosphosignalling enzymes in eukaryotes but the full extent of phosphorylation on protein Ser/Thr and Tyr (O-phosphorylation) in bacteria is untested. Here we explored the global signalling capacity of the STPKs in Mtb using a panel of STPK loss-of-function and overexpression strains combined with mass spectrometry-based phosphoproteomics. A deep phosphoproteome with >14,000 unique phosphosites shows that O-phosphorylation in Mtb is a vastly underexplored protein modification that affects >80% of the proteome and extensively interfaces with the transcriptional machinery. Mtb O-phosphorylation gives rise to an expansive, distributed and cooperative network of a complexity that has not previously been seen in bacteria and that is on par with eukaryotic phosphosignalling networks. A resource of >3,700 high-confidence direct substrate-STPK interactions and their transcriptional effects provides signalling context for >80% of Mtb proteins and allows the prediction and assembly of signalling pathways for mycobacterial physiology.
Collapse
Affiliation(s)
- Andrew Frando
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Vishant Boradia
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | | | - Claude Beltejar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Le Day
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - David R Sherman
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Shuyi Ma
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Jon M Jacobs
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Christoph Grundner
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Global Health, University of Washington, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| |
Collapse
|
5
|
Argemi J, Kedia K, Gritsenko MA, Clemente-Sanchez A, Asghar A, Herranz JM, Liu ZX, Atkinson SR, Smith RD, Norden-Krichmar TM, Day LZ, Stolz A, Tayek JA, Bataller R, Morgan TR, Jacobs JM. Integrated Transcriptomic and Proteomic Analysis Identifies Plasma Biomarkers of Hepatocellular Failure in Alcohol-Associated Hepatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1658-1669. [PMID: 36243044 PMCID: PMC9765311 DOI: 10.1016/j.ajpath.2022.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 08/08/2022] [Accepted: 08/31/2022] [Indexed: 11/07/2022]
Abstract
Alcohol-associated hepatitis (AH) is a form of liver failure with high short-term mortality. Recent studies have shown that defective function of hepatocyte nuclear factor 4 alpha (HNF4a) and systemic inflammation are major disease drivers of AH. Plasma biomarkers of hepatocyte function could be useful for diagnostic and prognostic purposes. Herein, an integrative analysis of hepatic RNA sequencing and liquid chromatography-tandem mass spectrometry was performed to identify plasma protein signatures for patients with mild and severe AH. Alcohol-related liver disease cirrhosis, nonalcoholic fatty liver disease, and healthy subjects were used as comparator groups. Levels of identified proteins primarily involved in hepatocellular function were decreased in patients with AH, which included hepatokines, clotting factors, complement cascade components, and hepatocyte growth activators. A protein signature of AH disease severity was identified, including thrombin, hepatocyte growth factor α, clusterin, human serum factor H-related protein, and kallistatin, which exhibited large abundance shifts between severe and nonsevere AH. The combination of thrombin and hepatocyte growth factor α discriminated between severe and nonsevere AH with high sensitivity and specificity. These findings were correlated with the liver expression of genes encoding secreted proteins in a similar cohort, finding a highly consistent plasma protein signature reflecting HNF4A and HNF1A functions. This unbiased proteomic-transcriptome analysis identified plasma protein signatures and pathways associated with disease severity, reflecting HNF4A/1A activity useful for diagnostic assessment in AH.
Collapse
Affiliation(s)
- Josepmaria Argemi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania; Hepatology Program, Centro de Investigación Médica Aplicada, Liver Unit, Clinica Universidad de Navarra, Instituto de Investigacion de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Komal Kedia
- Department of Pharmacokinetics, Pharmacodynamics and Drug Metabolism, Merck & Co, Inc., West Point, Pennsylvania
| | - Marina A Gritsenko
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Ana Clemente-Sanchez
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania; Biomedical Research Networking Center in Hepatic and Digestive Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Aliya Asghar
- Gasteroenterology Service, VA Long Beach Healthcare System, Long Beach, California
| | - Jose M Herranz
- Hepatology Program, Centro de Investigación Médica Aplicada, Liver Unit, Clinica Universidad de Navarra, Instituto de Investigacion de Navarra, Universidad de Navarra, Pamplona, Spain
| | - Zhang-Xu Liu
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Stephen R Atkinson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Trina M Norden-Krichmar
- Department of Epidemiology, School of Medicine, University of California, Irvine, Irvine, California
| | - Le Z Day
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Andrew Stolz
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - John A Tayek
- Harbor-University of California, Los Angeles Medical Center, Torrance, California
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Timothy R Morgan
- Gasteroenterology Service, VA Long Beach Healthcare System, Long Beach, California.
| | - Jon M Jacobs
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington.
| |
Collapse
|
6
|
Hardesty J, Day L, Warner J, Warner D, Gritsenko M, Asghar A, Stolz A, Morgan T, McClain C, Jacobs J, Kirpich I. Hepatic Protein and Phosphoprotein Signatures of Alcohol-Associated Cirrhosis and Hepatitis. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1066-1082. [PMID: 35490715 PMCID: PMC9253914 DOI: 10.1016/j.ajpath.2022.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/08/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022]
Abstract
Alcohol-associated liver disease is a global health care burden, with alcohol-associated cirrhosis (AC) and alcohol-associated hepatitis (AH) being two clinical manifestations with poor prognosis. The limited efficacy of standard of care for AC and AH highlights a need for therapeutic targets and strategies. The current study aimed to address this need through the identification of hepatic proteome and phosphoproteome signatures of AC and AH. Proteomic and phosphoproteomic analyses were conducted on explant liver tissue (test cohort) and liver biopsies (validation cohort) from patients with AH. Changes in protein expression across AH severity and similarities and differences in AH and AC hepatic proteome were analyzed. Significant alterations in multiple proteins involved in various biological processes were observed in both AC and AH, including elevated expression of transcription factors involved in fibrogenesis (eg, Yes1-associated transcriptional regulator). Another finding was elevated levels of hepatic albumin (ALBU) concomitant with diminished ALBU phosphorylation, which may prevent ALBU release, leading to hypoalbuminemia. Furthermore, altered expression of proteins related to neutrophil function and chemotaxis, including elevated myeloperoxidase, cathelicidin antimicrobial peptide, complement C3, and complement C5 were observed in early AH, which declined at later stages. Finally, a loss in expression of mitochondria proteins, including enzymes responsible for the synthesis of cardiolipin was observed. The current study identified hepatic protein signatures of AC and AH as well as AH severity, which may facilitate the development of therapeutic strategies.
Collapse
Affiliation(s)
- Josiah Hardesty
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky; Department of Pharmacology and Toxicology, University of Louisville Alcohol Center, Louisville, Kentucky
| | - Le Day
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Jeffrey Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky; Department of Pharmacology and Toxicology, University of Louisville Alcohol Center, Louisville, Kentucky
| | - Dennis Warner
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Marina Gritsenko
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Aliya Asghar
- Gastroenterology, VA Long Beach Healthcare, VA Long Beach Healthcare System, Long Beach, California
| | - Andrew Stolz
- Division of Gastrointestinal and Liver Disease, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Timothy Morgan
- Gastroenterology, VA Long Beach Healthcare, VA Long Beach Healthcare System, Long Beach, California
| | - Craig McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky; Department of Pharmacology and Toxicology, University of Louisville Alcohol Center, Louisville, Kentucky; Robley Rex Veterans Medical Center, Louisville, Kentucky; University of Louisville Alcohol Center, University of Louisville School of Medicine, Louisville, Kentucky; University of Louisville Hepatobiology and Toxicology Center, University of Louisville School of Medicine, Louisville, Kentucky
| | - Jon Jacobs
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington
| | - Irina Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Louisville, Louisville, Kentucky; Department of Pharmacology and Toxicology, University of Louisville Alcohol Center, Louisville, Kentucky; University of Louisville Alcohol Center, University of Louisville School of Medicine, Louisville, Kentucky; University of Louisville Hepatobiology and Toxicology Center, University of Louisville School of Medicine, Louisville, Kentucky.
| |
Collapse
|
7
|
Khandelwal NK, Millan CR, Zangari SI, Avila S, Williams D, Thaker TM, Tomasiak TM. The structural basis for regulation of the glutathione transporter Ycf1 by regulatory domain phosphorylation. Nat Commun 2022; 13:1278. [PMID: 35277487 PMCID: PMC8917219 DOI: 10.1038/s41467-022-28811-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 02/07/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractYeast Cadmium Factor 1 (Ycf1) sequesters heavy metals and glutathione into the vacuole to counter cell stress. Ycf1 belongs to the ATP binding cassette C-subfamily (ABCC) of transporters, many of which are regulated by phosphorylation on intrinsically-disordered domains. The regulatory mechanism of phosphorylation is still poorly understood. Here, we report two cryo-EM structures of Ycf1 at 3.4 Å and 4.0 Å resolution in inward-facing open conformations that capture previously unobserved ordered states of the intrinsically disordered regulatory domain (R-domain). R-domain phosphorylation is clearly evident and induces a topology promoting electrostatic and hydrophobic interactions with Nucleotide Binding Domain 1 (NBD1) and the Lasso motif. These interactions stay constant between the structures and are related by rigid body movements of the NBD1/R-domain complex. Biochemical data further show R-domain phosphorylation reorganizes the Ycf1 architecture and is required for maximal ATPase activity. Together, we provide insights into how R-domains control ABCC transporter activity.
Collapse
|
8
|
Time-Dependent Changes in Protein Composition of Medial Prefrontal Cortex in Rats with Neuropathic Pain. Int J Mol Sci 2022; 23:ijms23020955. [PMID: 35055141 PMCID: PMC8781622 DOI: 10.3390/ijms23020955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 01/03/2023] Open
Abstract
Chronic pain is associated with time-dependent structural and functional reorganization of the prefrontal cortex that may reflect adaptive pain compensatory and/or maladaptive pain-promoting mechanisms. However, the molecular underpinnings of these changes and whether there are time-dependent relationships to pain progression are not well characterized. In this study, we analyzed protein composition in the medial prefrontal cortex (mPFC) of rats at two timepoints after spinal nerve ligation (SNL) using two-dimensional gel electrophoresis (2D-ELFO) and liquid chromatography with tandem mass spectrometry (LC–MS/MS). SNL, but not sham-operated, rats developed persistent tactile allodynia and thermal hyperalgesia, confirming the presence of experimental neuropathic pain. Two weeks after SNL (early timepoint), we identified 11 proteins involved in signal transduction, protein transport, cell homeostasis, metabolism, and apoptosis, as well as heat-shock proteins and chaperones that were upregulated by more than 1.5-fold compared to the sham-operated rats. Interestingly, there were only four significantly altered proteins identified at 8 weeks after SNL (late timepoint). These findings demonstrate extensive time-dependent modifications of protein expression in the rat mPFC under a chronic neuropathic pain state that might underlie the evolution of chronic pain characterized by early pain-compensatory and later aberrant mechanisms.
Collapse
|
9
|
Thrun A, Garzia A, Kigoshi-Tansho Y, Patil PR, Umbaugh CS, Dallinger T, Liu J, Kreger S, Patrizi A, Cox GA, Tuschl T, Joazeiro CAP. Convergence of mammalian RQC and C-end rule proteolytic pathways via alanine tailing. Mol Cell 2021; 81:2112-2122.e7. [PMID: 33909987 DOI: 10.1016/j.molcel.2021.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/28/2021] [Accepted: 03/02/2021] [Indexed: 12/22/2022]
Abstract
Incompletely synthesized nascent chains obstructing large ribosomal subunits are targeted for degradation by ribosome-associated quality control (RQC). In bacterial RQC, RqcH marks the nascent chains with C-terminal alanine (Ala) tails that are directly recognized by proteasome-like proteases, whereas in eukaryotes, RqcH orthologs (Rqc2/NEMF [nuclear export mediator factor]) assist the Ltn1/Listerin E3 ligase in nascent chain ubiquitylation. Here, we study RQC-mediated proteolytic targeting of ribosome stalling products in mammalian cells. We show that mammalian NEMF has an additional, Listerin-independent proteolytic role, which, as in bacteria, is mediated by tRNA-Ala binding and Ala tailing. However, in mammalian cells Ala tails signal proteolysis indirectly, through a pathway that recognizes C-terminal degrons; we identify the CRL2KLHDC10 E3 ligase complex and the novel C-end rule E3, Pirh2/Rchy1, as bona fide RQC pathway components that directly bind to Ala-tailed ribosome stalling products and target them for degradation. As Listerin mutation causes neurodegeneration in mice, functionally redundant E3s may likewise be implicated in molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Anna Thrun
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Aitor Garzia
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Yu Kigoshi-Tansho
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Pratik R Patil
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Charles S Umbaugh
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Teresa Dallinger
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Jia Liu
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Sylvia Kreger
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Annarita Patrizi
- Schaller Research Group Leader at the German Cancer Research Center, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | | | - Thomas Tuschl
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Claudio A P Joazeiro
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA.
| |
Collapse
|
10
|
Liu J, Huang J, Liu H, Chen C, Xu J, Zhong L. Elevated serum 4HNE plus decreased serum thioredoxin: Unique feature and implications for acute exacerbation of chronic obstructive pulmonary disease. PLoS One 2021; 16:e0245810. [PMID: 33493155 PMCID: PMC7833214 DOI: 10.1371/journal.pone.0245810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/08/2021] [Indexed: 12/12/2022] Open
Abstract
Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) is a global problem with high mortality. Its pathogenesis is not fully understood. To reveal new serum feature of AECOPD and their potential implications, we have analyzed 180 serum samples, and found that in the serum of AECOPD patients, 4-hydroxy-2-nonenal (4HNE)-protein adducts are dynamically increased as partial pressure of oxygen (PaO2) drops, which is accompanied by progressively decreasing thioredoxin reductase (TrxR1) and thioredoxin (Trx1), as compared with those of healthy people. This phenomenon is unique, because acute hypoxia patients have 1.1-fold or 1.7-fold higher serum TrxR1 or Trx1 activity, respectively, than healthy people, in keeping with low 4HNE level. Moreover, serum 4HNE-protein adducts may form disulfide-linked complexes with high-molecular-weight, the amount of which is significantly increased during AECOPD. Serum 4HNE-protein adducts include 4HNE-Trx1 adduct and 4HNE-TrxR1 adduct, but only the former is significantly increased during AECOPD. Through cell biology, biochemistry and proteomics methods, we have demonstrated that extracellular 4HNE and 4HNE-Trx1 adduct affect human bronchial epithelial cells via different mechanisms. 4HNE-Trx1 adduct may significantly alter the expression of proteins involved mainly in RNA metabolism, but it has no effect on TrxR1/Trx1 expression and cell viability. On the other hand, low levels of 4HNE promote TrxR1/Trx1 expression and cell viability, while high levels of 4HNE inhibit TrxR1/Trx1 expression and cell viability, during which Trx1, at least in part, mediate the 4HNE action. Our data suggest that increasing serum 4HNE and decreasing serum Trx1 in AECOPD patients are closely related to the pathological processes of the disease. This finding also provides a new basis for AECOPD patients to use antioxidant drugs.
Collapse
Affiliation(s)
- Jia Liu
- Medical School, University of Chinese Academy of Sciences, Huai Rou, Beijing, China
| | - Jin Huang
- Medical School, University of Chinese Academy of Sciences, Huai Rou, Beijing, China
| | - Hu Liu
- Respiratory Department, Shanxi Bethune Hospital/Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing, China
| | - Jianying Xu
- Respiratory Department, Shanxi Bethune Hospital/Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Liangwei Zhong
- Medical School, University of Chinese Academy of Sciences, Huai Rou, Beijing, China
| |
Collapse
|
11
|
McLamarrah TA, Speed SK, Ryniawec JM, Buster DW, Fagerstrom CJ, Galletta BJ, Rusan NM, Rogers GC. A molecular mechanism for the procentriole recruitment of Ana2. J Cell Biol 2020; 219:132764. [PMID: 31841145 PMCID: PMC7041687 DOI: 10.1083/jcb.201905172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
McLamarrah et al. characterize an early step in centriole duplication. They show that Plk4 hyperphosphorylates Ana2, which increases the affinity of Ana2 for the G-box domain of Sas4, promoting Ana2’s accumulation at the procentriole and, consequently, daughter centriole formation. During centriole duplication, a preprocentriole forms at a single site on the mother centriole through a process that includes the hierarchical recruitment of a conserved set of proteins, including the Polo-like kinase 4 (Plk4), Ana2/STIL, and the cartwheel protein Sas6. Ana2/STIL is critical for procentriole assembly, and its recruitment is controlled by the kinase activity of Plk4, but how this works remains poorly understood. A structural motif called the G-box in the centriole outer wall protein Sas4 interacts with a short region in the N terminus of Ana2/STIL. Here, we show that binding of Ana2 to the Sas4 G-box enables hyperphosphorylation of the Ana2 N terminus by Plk4. Hyperphosphorylation increases the affinity of the Ana2–G-box interaction, and, consequently, promotes the accumulation of Ana2 at the procentriole to induce daughter centriole formation.
Collapse
Affiliation(s)
- Tiffany A McLamarrah
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Sarah K Speed
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - John M Ryniawec
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Daniel W Buster
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| | - Carey J Fagerstrom
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Brian J Galletta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Nasser M Rusan
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ
| |
Collapse
|
12
|
Wang X, Swensen AC, Zhang T, Piehowski PD, Gaffrey MJ, Monroe ME, Zhu Y, Dong H, Qian WJ. Accurate Identification of Deamidation and Citrullination from Global Shotgun Proteomics Data Using a Dual-Search Delta Score Strategy. J Proteome Res 2020; 19:1863-1872. [PMID: 32175737 DOI: 10.1021/acs.jproteome.9b00766] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Proteins with deamidated/citrullinated amino acids play critical roles in the pathogenesis of many human diseases; however, identifying these modifications in complex biological samples has been an ongoing challenge. Herein we present a method to accurately identify these modifications from shotgun proteomics data generated by a deep proteome profiling study of human pancreatic islets obtained by laser capture microdissection. All MS/MS spectra were searched twice using MSGF+ database matching, with and without a dynamic +0.9840 Da mass shift modification on amino acids asparagine, glutamine, and arginine (NQR). Consequently, each spectrum generates two peptide-to-spectrum matches (PSMs) with MSGF+ scores, which were used for the Delta Score calculation. It was observed that all PSMs with positive Delta Score values were clustered with mass errors around 0 ppm, while PSMs with negative Delta Score values were distributed nearly equally within the defined mass error range (20 ppm) for database searching. To estimate false discovery rate (FDR) of modified peptides, a "target-mock" strategy was applied in which data sets were searched against a concatenated database containing "real-modified" (+0.9840 Da) and "mock-modified" (+1.0227 Da) peptide masses. The FDR was controlled to ∼2% using a Delta Score filter value greater than zero. Manual inspection of spectra showed that PSMs with positive Delta Score values contained deamidated/citrullinated fragments in their MS/MS spectra. Many citrullinated sites identified in this study were biochemically confirmed as autoimmunogenic epitopes of autoimmune diseases in literature. The results demonstrated that in situ deamidated/citrullinated peptides can be accurately identified from shotgun tissue proteomics data using this dual-search Delta Score strategy. Raw MS data is available at ProteomeXchange (PXD010150).
Collapse
Affiliation(s)
- Xi Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.,Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Adam C Swensen
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Tong Zhang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Paul D Piehowski
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Matthew J Gaffrey
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Ying Zhu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Hailiang Dong
- Geomicrobiology Laboratory, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
13
|
Non-enzymatic Lysine Lactoylation of Glycolytic Enzymes. Cell Chem Biol 2020; 27:206-213.e6. [PMID: 31767537 PMCID: PMC7395678 DOI: 10.1016/j.chembiol.2019.11.005] [Citation(s) in RCA: 164] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/14/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022]
Abstract
Post-translational modifications (PTMs) regulate enzyme structure and function to expand the functional proteome. Many of these PTMs are derived from cellular metabolites and serve as feedback and feedforward mechanisms of regulation. We have identified a PTM that is derived from the glycolytic by-product, methylglyoxal. This reactive metabolite is rapidly conjugated to glutathione via glyoxalase 1, generating lactoylglutathione (LGSH). LGSH is hydrolyzed by glyoxalase 2 (GLO2), cycling glutathione and generating D-lactate. We have identified the non-enzymatic acyl transfer of the lactate moiety from LGSH to protein Lys residues, generating a "LactoylLys" modification on proteins. GLO2 knockout cells have elevated LGSH and a consequent marked increase in LactoylLys. Using an alkyne-tagged methylglyoxal analog, we show that these modifications are enriched on glycolytic enzymes and regulate glycolysis. Collectively, these data suggest a previously unexplored feedback mechanism that may serve to regulate glycolytic flux under hyperglycemic or Warburg-like conditions.
Collapse
|
14
|
Basharat AR, Iman K, Khalid MF, Anwar Z, Hussain R, Kabir HG, Tahreem M, Shahid A, Humayun M, Hayat HA, Mustafa M, Shoaib MA, Ullah Z, Zarina S, Ahmed S, Uddin E, Hamera S, Ahmad F, Chaudhary SU. SPECTRUM - A MATLAB Toolbox for Proteoform Identification from Top-Down Proteomics Data. Sci Rep 2019; 9:11267. [PMID: 31375721 PMCID: PMC6677810 DOI: 10.1038/s41598-019-47724-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 06/10/2019] [Indexed: 01/07/2023] Open
Abstract
Top-Down Proteomics (TDP) is an emerging proteomics protocol that involves identification, characterization, and quantitation of intact proteins using high-resolution mass spectrometry. TDP has an edge over other proteomics protocols in that it allows for: (i) accurate measurement of intact protein mass, (ii) high sequence coverage, and (iii) enhanced identification of post-translational modifications (PTMs). However, the complexity of TDP spectra poses a significant impediment to protein search and PTM characterization. Furthermore, limited software support is currently available in the form of search algorithms and pipelines. To address this need, we propose 'SPECTRUM', an open-architecture and open-source toolbox for TDP data analysis. Its salient features include: (i) MS2-based intact protein mass tuning, (ii) de novo peptide sequence tag analysis, (iii) propensity-driven PTM characterization, (iv) blind PTM search, (v) spectral comparison, (vi) identification of truncated proteins, (vii) multifactorial coefficient-weighted scoring, and (viii) intuitive graphical user interfaces to access the aforementioned functionalities and visualization of results. We have validated SPECTRUM using published datasets and benchmarked it against salient TDP tools. SPECTRUM provides significantly enhanced protein identification rates (91% to 177%) over its contemporaries. SPECTRUM has been implemented in MATLAB, and is freely available along with its source code and documentation at https://github.com/BIRL/SPECTRUM/.
Collapse
Affiliation(s)
- Abdul Rehman Basharat
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Kanzal Iman
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Farhan Khalid
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Zohra Anwar
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Rashid Hussain
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Humnah Gohar Kabir
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Maria Tahreem
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Anam Shahid
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Maheen Humayun
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Hira Azmat Hayat
- Department of Computer Science, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Mustafa
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Ali Shoaib
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Zakir Ullah
- King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Lahore University of Management Sciences, Lahore, Pakistan
| | - Shamshad Zarina
- National Center for Proteomics, University of Karachi, Karachi, Pakistan
| | - Sameer Ahmed
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan
| | - Emad Uddin
- Department of Mechanical Engineering, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sadia Hamera
- Institute of Life Sciences, University of Rostock, Rostock, Germany
- Lahore University of Management Sciences, Lahore, Pakistan
| | - Fayyaz Ahmad
- Department of Statistics, University of Gujrat, Gujrat, Pakistan
| | - Safee Ullah Chaudhary
- Biomedical Informatics Research Laboratory, Department of Biology, Lahore University of Management Sciences, Lahore, Pakistan.
| |
Collapse
|
15
|
Csősz É, Tóth F, Mahdi M, Tsaprailis G, Emri M, Tőzsér J. Analysis of networks of host proteins in the early time points following HIV transduction. BMC Bioinformatics 2019; 20:398. [PMID: 31315557 PMCID: PMC6637640 DOI: 10.1186/s12859-019-2990-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Background Utilization of quantitative proteomics data on the network level is still a challenge in proteomics data analysis. Currently existing models use sophisticated, sometimes hard to implement analysis techniques. Our aim was to generate a relatively simple strategy for quantitative proteomics data analysis in order to utilize as much of the data generated in a proteomics experiment as possible. Results In this study, we applied label-free proteomics, and generated a network model utilizing both qualitative, and quantitative data, in order to examine the early host response to Human Immunodeficiency Virus type 1 (HIV-1). A weighted network model was generated based on the amount of proteins measured by mass spectrometry, and analysis of weighted networks and functional sub-networks revealed upregulation of proteins involved in translation, transcription, and DNA condensation in the early phase of the viral life-cycle. Conclusion A relatively simple strategy for network analysis was created and applied to examine the effect of HIV-1 on host cellular proteome. We believe that our model may prove beneficial in creating algorithms, allowing for both quantitative and qualitative studies of proteome change in various biological and pathological processes by quantitative mass spectrometry. Electronic supplementary material The online version of this article (10.1186/s12859-019-2990-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., Debrecen, 4032, Hungary.
| | - Ferenc Tóth
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., Debrecen, 4032, Hungary
| | - Mohamed Mahdi
- Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., Debrecen, 4032, Hungary
| | - George Tsaprailis
- Arizona Research Labs, University of Arizona, PO Box 210066, Administration Building, Room 601, Tucson, AZ, 85721-0066, USA.,The Scripps Research Institute, 132 Scripps Way, Jupiter, FL, 33458, USA
| | - Miklós Emri
- Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98., Debrecen, 4032, Hungary
| | - József Tőzsér
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., Debrecen, 4032, Hungary. .,Laboratory of Retroviral Biochemistry, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Egyetem ter 1., Debrecen, 4032, Hungary.
| |
Collapse
|
16
|
Lytvynenko I, Paternoga H, Thrun A, Balke A, Müller TA, Chiang CH, Nagler K, Tsaprailis G, Anders S, Bischofs I, Maupin-Furlow JA, Spahn CMT, Joazeiro CAP. Alanine Tails Signal Proteolysis in Bacterial Ribosome-Associated Quality Control. Cell 2019; 178:76-90.e22. [PMID: 31155236 DOI: 10.1016/j.cell.2019.05.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/11/2019] [Accepted: 04/30/2019] [Indexed: 11/19/2022]
Abstract
In ribosome-associated quality control (RQC), Rqc2/NEMF closely supports the E3 ligase Ltn1/listerin in promoting ubiquitylation and degradation of aberrant nascent-chains obstructing large (60S) ribosomal subunits-products of ribosome stalling during translation. However, while Ltn1 is eukaryote-specific, Rqc2 homologs are also found in bacteria and archaea; whether prokaryotic Rqc2 has an RQC-related function has remained unknown. Here, we show that, as in eukaryotes, a bacterial Rqc2 homolog (RqcH) recognizes obstructed 50S subunits and promotes nascent-chain proteolysis. Unexpectedly, RqcH marks nascent-chains for degradation in a direct manner, by appending C-terminal poly-alanine tails that act as degrons recognized by the ClpXP protease. Furthermore, RqcH acts redundantly with tmRNA/ssrA and protects cells against translational and environmental stresses. Our results uncover a proteolytic-tagging mechanism with implications toward the function of related modifications in eukaryotes and suggest that RQC was already active in the last universal common ancestor (LUCA) to help cope with incomplete translation.
Collapse
Affiliation(s)
- Iryna Lytvynenko
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Helge Paternoga
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Anna Thrun
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Annika Balke
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Tina A Müller
- Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA
| | - Christina H Chiang
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA
| | - Katja Nagler
- BioQuant Center, University of Heidelberg, 69120 Heidelberg, Germany; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | | | - Simon Anders
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Ilka Bischofs
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; BioQuant Center, University of Heidelberg, 69120 Heidelberg, Germany; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science and Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Christian M T Spahn
- Institut für Medizinische Physik und Biophysik, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Claudio A P Joazeiro
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany; Department of Molecular Medicine, Scripps Research, Jupiter, FL 33458, USA.
| |
Collapse
|
17
|
Weber TJ, Qian WJ, Smith JN, Gritsenko MA, Hu D, Chrisler WB, Timchalk C. Stable Acinar Progenitor Cell Model Identifies Treacle-Dependent Radioresistance. Radiat Res 2019; 192:135-144. [PMID: 31141469 DOI: 10.1667/rr15342.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiotherapy for head and neck cancers can result in extensive damage to the salivary glands, significantly affecting patient quality of life. However, the salivary gland can recover in patients receiving lower doses of radiation. In addition, there is considerable interest in delineating the mechanisms by which stem cells survive radiation exposure and promote tissue regeneration. In this study, we isolated stable radioresistant acinar progenitor cells from the submaxillary gland of the Sprague Dawley rat. Progenitor cells are characterized as c-Kithigh/alpha-amylase+ and are resistant to X rays (≤5 Gy).We further isolated a radiosensitive acinar counterpart, characterized as c-Kitlow/alpha-amylase+, which is effectively killed by exposure to 2 Gy X ray of radiation. Phosphopeptides with homology to the treacle protein (TCOF1) were disproportionately increased in progenitor cells, compared to their radiosensitive counterparts. Silencing of TCOF1 expression (shRNA) radiosensitized progenitor cells, a response conserved in human cells with TCOF1 knockdown. Collectively, these observations indicate that radiation resistance is an intrinsic property of c-Kithigh salivary gland progenitor cells. Since human salivary gland stem cells with c-Kit expression are believed to have enhanced regenerative potencies, our model system provides a stable platform to investigate molecular features associated with c-Kit expression that may contribute to protection or stabilization of the stem cell niche.
Collapse
Affiliation(s)
- Thomas J Weber
- a Health Impacts and Exposure Science Group, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Wei-Jun Qian
- b Integrative Omics Group and Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Jordan N Smith
- a Health Impacts and Exposure Science Group, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Marina A Gritsenko
- b Integrative Omics Group and Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Dehong Hu
- c Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - William B Chrisler
- a Health Impacts and Exposure Science Group, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Charles Timchalk
- a Health Impacts and Exposure Science Group, Pacific Northwest National Laboratory, Richland, Washington 99352
| |
Collapse
|
18
|
Yee MC, Nichols HL, Polley D, Saifeddine M, Pal K, Lee K, Wilson EH, Daines MO, Hollenberg MD, Boitano S, DeFea KA. Protease-activated receptor-2 signaling through β-arrestin-2 mediates Alternaria alkaline serine protease-induced airway inflammation. Am J Physiol Lung Cell Mol Physiol 2018; 315:L1042-L1057. [PMID: 30335499 PMCID: PMC6337008 DOI: 10.1152/ajplung.00196.2018] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/06/2018] [Accepted: 08/22/2018] [Indexed: 01/01/2023] Open
Abstract
Alternaria alternata is a fungal allergen associated with severe asthma and asthma exacerbations. Similarly to other asthma-associated allergens, Alternaria secretes a serine-like trypsin protease(s) that is thought to act through the G protein-coupled receptor protease-activated receptor-2 (PAR2) to induce asthma symptoms. However, specific mechanisms underlying Alternaria-induced PAR2 activation and signaling remain ill-defined. We sought to determine whether Alternaria-induced PAR2 signaling contributed to asthma symptoms via a PAR2/β-arrestin signaling axis, identify the protease activity responsible for PAR2 signaling, and determine whether protease activity was sufficient for Alternaria-induced asthma symptoms in animal models. We initially used in vitro models to demonstrate Alternaria-induced PAR2/β-arrestin-2 signaling. Alternaria filtrates were then used to sensitize and challenge wild-type, PAR2-/- and β-arrestin-2-/- mice in vivo. Intranasal administration of Alternaria filtrate resulted in a protease-dependent increase of airway inflammation and mucin production in wild-type but not PAR2-/- or β-arrestin-2-/- mice. Protease was isolated from Alternaria preparations, and select in vitro and in vivo experiments were repeated to evaluate sufficiency of the isolated Alternaria protease to induce asthma phenotype. Administration of a single isolated serine protease from Alternaria, Alternaria alkaline serine protease (AASP), was sufficient to fully activate PAR2 signaling and induce β-arrestin-2-/--dependent eosinophil and lymphocyte recruitment in vivo. In conclusion, Alternaria filtrates induce airway inflammation and mucus hyperplasia largely via AASP using the PAR2/β-arrestin signaling axis. Thus, β-arrestin-biased PAR2 antagonists represent novel therapeutic targets for treating aeroallergen-induced asthma.
Collapse
Affiliation(s)
- Michael C Yee
- Biomedical Sciences, Graduate Program, University of California Riverside , Riverside, California
| | - Heddie L Nichols
- Biomedical Sciences, Graduate Program, University of California Riverside , Riverside, California
| | - Danny Polley
- Cumming School of Medicine, Department of Physiology and Pharmacology and Department of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Mahmoud Saifeddine
- Cumming School of Medicine, Department of Physiology and Pharmacology and Department of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Kasturi Pal
- Biomedical Sciences, Graduate Program, University of California Riverside , Riverside, California
- Cell Molecular and Developmental Biology and Biochemistry Graduate Program, University of California Riverside , Riverside, California
| | - Kyu Lee
- Biomedical Sciences, Graduate Program, University of California Riverside , Riverside, California
- Molecular Biology Graduate Program, University of California Riverside , Riverside, California
| | - Emma H Wilson
- Biomedical Sciences, Graduate Program, University of California Riverside , Riverside, California
| | - Michael O Daines
- Department of Pediatrics, University of Arizona Health Sciences , Tucson, Arizona
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences , Tucson, Arizona
| | - Morley D Hollenberg
- Cumming School of Medicine, Department of Physiology and Pharmacology and Department of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Scott Boitano
- Asthma and Airway Disease Research Center, University of Arizona Health Sciences , Tucson, Arizona
- Department of Physiology, University of Arizona Health Sciences , Tucson, Arizona
| | - Kathryn A DeFea
- Biomedical Sciences, Graduate Program, University of California Riverside , Riverside, California
- Cell Molecular and Developmental Biology and Biochemistry Graduate Program, University of California Riverside , Riverside, California
- Molecular Biology Graduate Program, University of California Riverside , Riverside, California
| |
Collapse
|
19
|
Heimroth RD, Casadei E, Salinas I. Effects of Experimental Terrestrialization on the Skin Mucus Proteome of African Lungfish ( Protopterus dolloi). Front Immunol 2018; 9:1259. [PMID: 29915597 PMCID: PMC5994560 DOI: 10.3389/fimmu.2018.01259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 05/18/2018] [Indexed: 11/13/2022] Open
Abstract
Animal mucosal barriers constantly interact with the external environment, and this interaction is markedly different in aquatic and terrestrial environments. Transitioning from water to land was a critical step in vertebrate evolution, but the immune adaptations that mucosal barriers such as the skin underwent during that process are essentially unknown. Vertebrate animals such as the African lungfish have a bimodal life, switching from freshwater to terrestrial habitats when environmental conditions are not favorable. African lungfish skin mucus secretions contribute to the terrestrialization process by forming a cocoon that surrounds and protects the lungfish body. The goal of this study was to characterize the skin mucus immunoproteome of African lungfish, Protopterus dolloi, before and during the induction phase of terrestrialization as well as the immunoproteome of the gill mucus during the terrestrialization induction phase. Using LC-MS/MS, we identified a total of 974 proteins using a lungfish Illumina RNA-seq database, 1,256 proteins from previously published lungfish sequence read archive and 880 proteins using a lungfish 454 RNA-seq database for annotation in the three samples analyzed (free-swimming skin mucus, terrestrialized skin mucus, and terrestrialized gill mucus). The terrestrialized skin mucus proteome was enriched in proteins with known antimicrobial functions such as histones and S100 proteins compared to free-swimming skin mucus. In support, gene ontology analyses showed that the terrestrialized skin mucus proteome has predicted functions in processes such as viral process, defense response to Gram-negative bacterium, and tumor necrosis factor-mediated signaling. Importantly, we observed a switch in immunoglobulin heavy chain secretion upon terrestrialization, with IgW1 long form (IgW1L) and IgM1 present in free-swimming skin mucus and IgW1L, IgM1, and IgM2 in terrestrialized skin mucus. Combined, these results indicate an increase in investment in the production of unique immune molecules in P. dolloi skin mucus in response to terrestrialization that likely better protects lungfish against external aggressors found in land.
Collapse
Affiliation(s)
| | | | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology (CETI), Department of Biology, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
20
|
Downs CA, Johnson NM, Tsaprailis G, Helms MN. RAGE-induced changes in the proteome of alveolar epithelial cells. J Proteomics 2018; 177:11-20. [PMID: 29448054 DOI: 10.1016/j.jprot.2018.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/28/2018] [Accepted: 02/05/2018] [Indexed: 12/14/2022]
Abstract
The receptor for advanced glycation end-products (RAGE) is a pattern recognition receptor and member of the immunoglobulin superfamily. RAGE is constitutively expressed in the distal lung where it co-localizes with the alveolar epithelium; RAGE expression is otherwise minimal or absent, except with disease. This suggests RAGE plays a role in lung physiology and pathology. We used proteomics to identify and characterize the effects of RAGE on rat alveolar epithelial (R3/1) cells. LC-MS/MS identified 177 differentially expressed proteins and the PANTHER Classification System further segregated proteins. Proteins involved in gene transcription (RNA and mRNA splicing, mRNA processing) and transport (protein, intracellular protein) were overrepresented; genes involved in a response to stimulus were underrepresented. Immune system processes and response to stimuli were downregulated with RAGE knockdown. Western blot confirmed RAGE-dependent changes in protein expression for NFκB and NLRP3 that was functionally supported by a reduction in IL-1β and phosphorylated p65. We also assessed RAGE's effect on redox regulation and report that RAGE knockdown attenuated oxidant production, decreased protein oxidation, and increased reduced thiol pools. Collectively the data suggest that RAGE is a critical regulator of epithelial cell response and has implications for our understanding of lung disease, specifically acute lung injury. SIGNIFICANCE STATEMENT In the present study, we undertook the first proteomic evaluation of RAGE-dependent processes in alveolar epithelial cells. The alveolar epithelium is a primary target during acute lung injury, and our data support a role for RAGE in gene transcription, protein transport, and response to stimuli. More over our data suggest that RAGE is a critical driver of redox regulation in the alveolar epithelium. The conclusions of the present work assist to unravel the molecular events that underlie the function of RAGE in alveolar epithelial cells and have implications for our understanding of RAGE signaling during lung injury. Our study was the first proteomic comparison showing the effects of RAGE activation from alveolar epithelial cells that constitutively express RAGE and these results can affect a wide field of lung biology, pulmonary therapeutics, and proteomics.
Collapse
Affiliation(s)
- Charles A Downs
- Biobehavioral Health Science Division, College of Nursing & Division of Translational and Regenerative Medicine, College of Medicine, The University of Arizona, Tucson, AZ, United States.
| | - Nicholle M Johnson
- Biobehavioral Health Science Division, College of Nursing & Division of Translational and Regenerative Medicine, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - George Tsaprailis
- Arizona Research Laboratories, The University of Arizona, Tucson, AZ, United States
| | - My N Helms
- Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
21
|
Sigdel TK, Nicora CD, Qian WJ, Sarwal MM. Optimization for Peptide Sample Preparation for Urine Peptidomics. Methods Mol Biol 2018; 1788:63-72. [PMID: 29623538 DOI: 10.1007/7651_2017_90] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Analysis of native or endogenous peptides in biofluids can provide valuable insight into disease mechanisms. Furthermore, the detected peptides may also have utility as potential biomarkers for noninvasive monitoring of human diseases. The noninvasive nature of urine collection and the abundance of peptides in the urine make analysis by high-throughput "peptidomics" methods an attractive approach for investigating the pathogenesis of renal disease. However, urine peptidomics methodologies can be problematic with regard to difficulties associated with sample preparation. The urine matrix can provide significant background interference in making the analytical measurements, in that it hampers both the identification of peptides and the depth of the peptidomics read when utilizing LC-MS-based peptidome analysis. We report on a novel adaptation of the standard solid-phase extraction (SPE) method to a modified SPE (mSPE) approach for improved peptide yield and analysis sensitivity with LC-MS-based peptidomics, in terms of time, cost, clogging of the LC-MS column, peptide yield, peptide quality, and number of peptides identified by each method. The mSPE method provides significantly improved efficiencies for the preparation of samples from urine. The mSPE method is found to be superior to the conventional, standard SPE method for urine peptide sample preparation when applying LC-MS peptidomics analysis, due to optimized sample cleanup that provides improved experimental inference from confidently identified peptides.
Collapse
Affiliation(s)
- Tara K Sigdel
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Minnie M Sarwal
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
22
|
Yoo MW, Park J, Han HS, Yun YM, Kang JW, Choi DY, Lee JW, Jung JH, Lee KY, Kim KP. Discovery of gastric cancer specific biomarkers by the application of serum proteomics. Proteomics 2017; 17. [PMID: 28133907 DOI: 10.1002/pmic.201600332] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 11/22/2016] [Accepted: 01/26/2017] [Indexed: 11/07/2022]
Abstract
Current diagnostic markers for gastric cancer are not sufficiently specific or sensitive for use in clinical practice. The aims of this study are to compare the proteomes of serum samples from patients with gastric cancers and normal controls, and to develop useful tumor markers of gastric cancer by quantitative proteomic analysis. We identified a total of 388 proteins with a ≤1% FDR and with at least two unique peptides from the sera of each group. Among them, 215, 251, and 260 proteins were identified in serum samples of patients in an advanced cancer group, early cancer group, and normal control group, respectively. We selected differentially expressed proteins in cancer patients compared with those of normal controls via semiquantitative analyses comparing the spectral counts of identified proteins. These differentially expressed proteins were successfully verified using an MS-based quantitative assay, multiple reactions monitoring analysis. Four proteins (vitronectin, clusterin isoform 1, thrombospondin 1, and tyrosine-protein kinase SRMS) were shown to have significant changes between the cancer groups and the normal control group. These four serum proteins were able to discriminate gastric cancer patients from normal controls with sufficient specificity and selectivity.
Collapse
Affiliation(s)
- Moon-Won Yoo
- Department of Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Jisook Park
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yong-in City, Republic of Korea
| | - Hye-Seung Han
- Department of Pathology, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Yeo-Min Yun
- Department of Laboratory Medicine, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Jeong Won Kang
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yong-in City, Republic of Korea
| | - Do-Young Choi
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yong-in City, Republic of Korea
| | - Joon Won Lee
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yong-in City, Republic of Korea
| | - Jae Hun Jung
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yong-in City, Republic of Korea
| | - Kyung-Yung Lee
- Department of Surgery, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, College of Applied Sciences, Kyung Hee University, Yong-in City, Republic of Korea
| |
Collapse
|
23
|
Polley DJ, Mihara K, Ramachandran R, Vliagoftis H, Renaux B, Saifeddine M, Daines MO, Boitano S, Hollenberg MD. Cockroach allergen serine proteinases: Isolation, sequencing and signalling via proteinase-activated receptor-2. Clin Exp Allergy 2017; 47:946-960. [PMID: 28317204 DOI: 10.1111/cea.12921] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 02/01/2023]
Abstract
BACKGROUND Allergy to the German cockroach (Blattella germanica) is a significant asthma risk factor for inner-city communities. Cockroach, like other allergens, contains trypsin-like enzyme activity that contributes to allergenicity and airway inflammation by activating proteinase-activated receptors (PARs). To date, the enzymes responsible for the proteolytic activity of German cockroach allergen have not been characterized. OBJECTIVES We aimed to identify, isolate and characterize the trypsin-like proteinases in German cockroach allergen extracts used for clinical skin tests. For each enzyme, we sought to determine (1) its substrate and inhibitor enzyme kinetics (Km and IC50), (2) its amino acid sequence and (3) its ability to activate calcium signalling and/or ERK1/2 phosphorylation via PAR2. METHODS Using a trypsin-specific activity-based probe, we detected three distinct enzymes that were isolated using ion-exchange chromatography. Each enzyme was sequenced by mass spectometery (deconvoluted with an expressed sequence tag library), evaluated kinetically for its substrate/inhibitor profile and assessed for its ability to activate PAR2 signalling. FINDINGS Each of the three serine proteinase activity-based probe-labelled enzymes isolated was biochemically distinct, with different enzyme kinetic profiles and primary amino acid sequences. The three enzymes showed a 57%-71% sequence identity with a proteinase previously cloned from the American cockroach (Per a 10). Each enzyme was found to activate both Ca++ and MAPK signalling via PAR2. CONCLUSIONS AND RELEVANCE We have identified three different serine proteinases from the German cockroach that may, via PAR2 activation, play different roles for allergen sensitization in vivo and may represent attractive therapeutic targets for asthma.
Collapse
Affiliation(s)
- D J Polley
- Department of Physiology & Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Disease, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - K Mihara
- Department of Physiology & Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Disease, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - R Ramachandran
- Department of Physiology & Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Disease, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - H Vliagoftis
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - B Renaux
- Department of Physiology & Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Disease, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - M Saifeddine
- Department of Physiology & Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Disease, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| | - M O Daines
- Asthma & Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - S Boitano
- Asthma & Airway Disease Research Center, University of Arizona, Tucson, AZ, USA
| | - M D Hollenberg
- Department of Physiology & Pharmacology, Inflammation Research Network-Snyder Institute for Chronic Disease, University of Calgary Cumming School of Medicine, Calgary, AB, Canada.,Department of Medicine, University of Calgary Cumming School of Medicine, Calgary, AB, Canada
| |
Collapse
|
24
|
Liberton M, Chrisler WB, Nicora CD, Moore RJ, Smith RD, Koppenaal DW, Pakrasi HB, Jacobs JM. Phycobilisome truncation causes widespread proteome changes in Synechocystis sp. PCC 6803. PLoS One 2017; 12:e0173251. [PMID: 28253354 PMCID: PMC5333879 DOI: 10.1371/journal.pone.0173251] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/17/2017] [Indexed: 11/18/2022] Open
Abstract
In cyanobacteria such as Synechocystis sp. PCC 6803, large antenna complexes called phycobilisomes (PBS) harvest light and transfer the energy to the photosynthetic reaction centers. Modification of the light harvesting machinery in cyanobacteria has widespread consequences, causing changes in cell morphology and physiology. In the current study, we investigated the effects of PBS truncation on the proteomes of three Synechocystis 6803 PBS antenna mutants. These range from the progressive truncation of phycocyanin rods in the CB and CK strains, to full removal of PBS in the PAL mutant. Comparative quantitative protein results revealed surprising changes in protein abundances in the mutant strains. Our results showed that PBS truncation in Synechocystis 6803 broadly impacted core cellular mechanisms beyond light harvesting and photosynthesis. Specifically, we observed dramatic alterations in membrane transport mechanisms, where the most severe PBS truncation in the PAL strain appeared to suppress the cellular utilization and regulation of bicarbonate and iron. These changes point to the role of PBS as a component critical to cell function, and demonstrate the continuing need to assess systems-wide protein based abundances to understand potential indirect phenotypic effects.
Collapse
Affiliation(s)
- Michelle Liberton
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - William B. Chrisler
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Carrie D. Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Ronald J. Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Richard D. Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - David W. Koppenaal
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Himadri B. Pakrasi
- Department of Biology, Washington University, St. Louis, Missouri, United States of America
| | - Jon M. Jacobs
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- * E-mail:
| |
Collapse
|
25
|
Ahmad R, Nicora CD, Shukla AK, Smith RD, Qian WJ, Liu AY. An efficient method for native protein purification in the selected range from prostate cancer tissue digests. Chin Clin Oncol 2017; 5:78. [PMID: 28061542 DOI: 10.21037/cco.2016.12.03] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/02/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND Prostate cancer (CP) cells differ from their normal counterpart in gene expression. Genes encoding secreted or extracellular proteins with increased expression in CP may serve as potential biomarkers. For their detection and quantification, assays based on monoclonal antibodies are best suited for development in the clinical setting. One approach to obtain antibodies is to use recombinant proteins as immunogen. However, the synthesis of recombinant protein for each identified candidate is time-consuming and expensive. It is also not practical to generate high quality antibodies to all identified candidates individually. Furthermore, non-native forms (e.g., recombinant) of proteins may not always lead to useful antibodies. Our approach was to purify a subset of proteins from CP tissue specimens for use as immunogen. METHODS In the present investigation, ten cancer specimens obtained from cases scored Gleason 3+3, 3+4 and 4+3 were digested by collagenase to single cells in serum-free tissue culture media. Cells were pelleted after collagenase digestion, and the cell-free supernatant from each specimen were pooled and used for isolation of proteins in the 10-30 kDa molecular weight range using a combination of sonication, dialysis and Amicon ultrafiltration. Western blotting and mass spectrometry (MS) proteomics were performed to identify the proteins in the selected size fraction. RESULTS The presence of cancer-specific anterior gradient 2 (AGR2) and absence of prostate-specific antigen (PSA)/KLK3 were confirmed by Western blotting. Proteomics also detected AGR2 among many other proteins, some outside the selected molecular weight range, as well. CONCLUSIONS Using this approach, the potentially harmful (to the mouse host) exogenously added collagenase was removed as well as other abundant prostatic proteins like ACPP/PAP and AZGP1 to preclude the generation of antibodies against these species. The paper presents an optimized scheme for convenient and rapid isolation of native proteins in any desired size range with minor modifications.
Collapse
Affiliation(s)
- Rumana Ahmad
- Department of Urology, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA.
| | - Carrie D Nicora
- Biological Science Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Anil K Shukla
- Biological Science Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Richard D Smith
- Biological Science Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Wei-Jun Qian
- Biological Science Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Alvin Y Liu
- Department of Urology, University of Washington, Seattle, WA 98195, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
26
|
Zhu D, Zhang P, Xie C, Zhang W, Sun J, Qian WJ, Yang B. Biodegradation of alkaline lignin by Bacillus ligniniphilus L1. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:44. [PMID: 28239416 PMCID: PMC5320714 DOI: 10.1186/s13068-017-0735-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/14/2017] [Indexed: 05/07/2023]
Abstract
BACKGROUND Lignin is the most abundant aromatic biopolymer in the biosphere and it comprises up to 30% of plant biomass. Although lignin is the most recalcitrant component of the plant cell wall, still there are microorganisms able to decompose it or degrade it. Fungi are recognized as the most widely used microbes for lignin degradation. However, bacteria have also been known to be able to utilize lignin as a carbon or energy source. Bacillus ligniniphilus L1 was selected in this study due to its capability to utilize alkaline lignin as a single carbon or energy source and its excellent ability to survive in extreme environments. RESULTS To investigate the aromatic metabolites of strain L1 decomposing alkaline lignin, GC-MS analysis was performed and fifteen single phenol ring aromatic compounds were identified. The dominant absorption peak included phenylacetic acid, 4-hydroxy-benzoicacid, and vanillic acid with the highest proportion of metabolites resulting in 42%. Comparison proteomic analysis was carried out for further study showed that approximately 1447 kinds of proteins were produced, 141 of which were at least twofold up-regulated with alkaline lignin as the single carbon source. The up-regulated proteins contents different categories in the biological functions of protein including lignin degradation, ABC transport system, environmental response factors, protein synthesis, assembly, etc. CONCLUSIONS GC-MS analysis showed that alkaline lignin degradation of strain L1 produced 15 kinds of aromatic compounds. Comparison proteomic data and metabolic analysis showed that to ensure the degradation of lignin and growth of strain L1, multiple aspects of cells metabolism including transporter, environmental response factors, and protein synthesis were enhanced. Based on genome and proteomic analysis, at least four kinds of lignin degradation pathway might be present in strain L1, including a Gentisate pathway, the benzoic acid pathway and the β-ketoadipate pathway. The study provides an important basis for lignin degradation by bacteria.
Collapse
Affiliation(s)
- Daochen Zhu
- School of Environment and safty Engineering, Jiangsu University, Zhenjiang, Jiangsu China
- State Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, Guangdong China
| | - Peipei Zhang
- School of Environment and safty Engineering, Jiangsu University, Zhenjiang, Jiangsu China
| | - Changxiao Xie
- School of Environment and safty Engineering, Jiangsu University, Zhenjiang, Jiangsu China
| | - Weimin Zhang
- State Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, Guangdong China
| | - Jianzhong Sun
- School of Environment and safty Engineering, Jiangsu University, Zhenjiang, Jiangsu China
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 USA
| | - Bin Yang
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354 USA
| |
Collapse
|
27
|
Poornima G, Shah S, Vignesh V, Parker R, Rajyaguru PI. Arginine methylation promotes translation repression activity of eIF4G-binding protein, Scd6. Nucleic Acids Res 2016; 44:9358-9368. [PMID: 27613419 PMCID: PMC5100564 DOI: 10.1093/nar/gkw762] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 08/20/2016] [Indexed: 12/14/2022] Open
Abstract
Regulation of translation plays a critical role in determining mRNA fate. A new role was recently reported for a subset of RGG-motif proteins in repressing translation initiation by binding eIF4G1. However the signaling mechanism(s) that leads to spatial and temporal regulation of repression activity of RGG-motif proteins remains unknown. Here we report the role of arginine methylation in regulation of repression activity of Scd6, a conserved RGG-motif protein. We demonstrate that Scd6 gets arginine methylated at its RGG-motif and Hmt1 plays an important role in its methylation. We identify specific methylated arginine residues in the Scd6 RGG-motif in vivo We provide evidence that methylation augments Scd6 repression activity. Arginine methylation defective (AMD) mutant of Scd6 rescues the growth defect caused by overexpression of Scd6, a feature of translation repressors in general. Live-cell imaging of the AMD mutant revealed that it is defective in inducing formation of stress granules. Live-cell imaging and pull-down results indicate that it fails to bind eIF4G1 efficiently. Consistent with these results, a strain lacking Hmt1 is also defective in Scd6-eIF4G1 interaction. Our results establish that arginine methylation augments Scd6 repression activity by promoting eIF4G1-binding. We propose that arginine methylation of translation repressors with RGG-motif could be a general modulator of their repression activity.
Collapse
Affiliation(s)
- Gopalakrishna Poornima
- Department of Biochemistry, Indian Institute of Science, C V Raman Road, Bangalore 560012, India
| | - Shanaya Shah
- Department of Biochemistry, Indian Institute of Science, C V Raman Road, Bangalore 560012, India
| | | | - Roy Parker
- Department of Chemistry and Biochemistry, University of Colorado, 596 UCB, Boulder, CO 80309, USA
| | - Purusharth I Rajyaguru
- Department of Biochemistry, Indian Institute of Science, C V Raman Road, Bangalore 560012, India
| |
Collapse
|
28
|
Gu L, Robinson RAS. High-throughput endogenous measurement of S-nitrosylation in Alzheimer's disease using oxidized cysteine-selective cPILOT. Analyst 2016; 141:3904-15. [PMID: 27152368 PMCID: PMC4904844 DOI: 10.1039/c6an00417b] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reversible cysteine modifications play important physiological roles such as modulating enzymatic catalysis, maintaining redox homeostasis and conducting cellular signaling. These roles can be critical in the context of disease. Oxidative modifications such as S-nitrosylation (SNO) are signatures of neurodestruction in conditions of oxidative stress however are also indicators of neuroprotection and normal signaling in cellular environments with low concentrations of reactive oxygen and nitrogen species. SNO is a dynamic and low abundance modification and requires sensitive and selective analytical methods for its detection in biological tissues. Here we present an enhanced multiplexing strategy to study SNO in complex mixtures arising from tissues. This method, termed oxidized cysteine-selective cPILOT (OxcyscPILOT), allows simultaneous analysis of SNO-modified peptides in 12 samples. OxcyscPILOT has three primary steps: (1) blocking of free thiols by a cysteine-reactive reagent, (2) enrichment of peptides containing SNO on a solid phase resin, and (3) isotopic labeling and isobaric tagging of enriched peptides on the solid phase resin. This approach offers the advantage of allowing total protein abundance levels to be measured simultaneously with endogenous SNO levels and measurement of SNO levels across four biological replicates in a single analysis. Furthermore, the relative amount of SNO on a specific cysteine site can also be determined. A well-known model of Alzheimer's disease, the APP/PS-1 transgenic mouse model, was selected for demonstration of the method as several SNO-modified proteins have previously been reported in brain and synaptosomes from AD subjects. OxcyscPILOT analysis resulted in identification of 138 SNO-modified cysteines in brain homogenates that correspond to 135 proteins. Many of these SNO-modified proteins were only present in wild-type or AD mice, whereas 93 proteins had SNO signals in both WT and AD. Pathway analysis links SNO-modified proteins to various biological pathways especially metabolism and signal transduction, consistent with previous reports in the literature. The OxcyscPILOT strategy provides enhanced multiplexing capability to current redox proteomics methods to study oxidative modifications of cysteine.
Collapse
Affiliation(s)
- Liqing Gu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
29
|
Production of bioactive conjugated linoleic acid by the multifunctional enolase from Lactobacillus plantarum. Int J Biol Macromol 2016; 91:524-35. [PMID: 27259647 DOI: 10.1016/j.ijbiomac.2016.05.105] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 04/28/2016] [Accepted: 05/29/2016] [Indexed: 11/22/2022]
Abstract
Lactobacillus plantarum α-enolase, a multifunctional-anchorless-surface protein belonging to the conserved family of enolases with a central role in glycolytic metabolism, was characterized to have a side role in the intricate metabolism of biohydrogenation of linoleic acid, catalyzing the formation of bioactive 9-cis-11-trans-CLA through dehydration and isomerization of 10-hydroxy-12-cis-octadecenoic acid. The identity of the enolase was confirmed through mass spectrometric analysis that showed the characteristic 442 amino acid sequence with a molecular mass of 48.03kDa. The enolase was not capable of using linoleic acid directly as a substrate but instead uses its hydroxyl derivative 10-hydroxi-12-cis-octadecenoic acid to finally form bioactive conjugated linoleic acid. Biochemical optimization studies were carried out to elucidate the conditions for maximum production of 9-cis-11-trans-CLA and maximum stability of α-enolase when catalyzing this reaction. Furthermore, through structural analysis of the protein, we propose the binding sites of substrate and product molecules that were characterized as two hydrophobic superficial pockets located at opposite ends of the enolase connected through a channel where the catalysis of dehydration and isomerization might occur. These results prove that multifunctional α-enolase also plays a role in cell detoxification from polyunsaturated fatty acids such as linoleic acid, along with the linoleate isomerase complex.
Collapse
|
30
|
Liberton M, Saha R, Jacobs JM, Nguyen AY, Gritsenko MA, Smith RD, Koppenaal DW, Pakrasi HB. Global Proteomic Analysis Reveals an Exclusive Role of Thylakoid Membranes in Bioenergetics of a Model Cyanobacterium. Mol Cell Proteomics 2016; 15:2021-32. [PMID: 27056914 DOI: 10.1074/mcp.m115.057240] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Indexed: 01/10/2023] Open
Abstract
Cyanobacteria are photosynthetic microbes with highly differentiated membrane systems. These organisms contain an outer membrane, plasma membrane, and an internal system of thylakoid membranes where the photosynthetic and respiratory machinery are found. This existence of compartmentalization and differentiation of membrane systems poses a number of challenges for cyanobacterial cells in terms of organization and distribution of proteins to the correct membrane system. Proteomics studies have long sought to identify the components of the different membrane systems in cyanobacteria, and to date about 450 different proteins have been attributed to either the plasma membrane or thylakoid membrane. Given the complexity of these membranes, many more proteins remain to be identified, and a comprehensive catalogue of plasma membrane and thylakoid membrane proteins is needed. Here we describe the identification of 635 differentially localized proteins in Synechocystis sp. PCC 6803 by quantitative iTRAQ isobaric labeling; of these, 459 proteins were localized to the plasma membrane and 176 were localized to the thylakoid membrane. Surprisingly, we found over 2.5 times the number of unique proteins identified in the plasma membrane compared with the thylakoid membrane. This suggests that the protein composition of the thylakoid membrane is more homogeneous than the plasma membrane, consistent with the role of the plasma membrane in diverse cellular processes including protein trafficking and nutrient import, compared with a more specialized role for the thylakoid membrane in cellular energetics. Thus, our data clearly define the two membrane systems with distinct functions. Overall, the protein compositions of the Synechocystis 6803 plasma membrane and thylakoid membrane are quite similar to that of the plasma membrane of Escherichia coli and thylakoid membrane of Arabidopsis chloroplasts, respectively. Synechocystis 6803 can therefore be described as a Gram-negative bacterium with an additional internal membrane system that fulfills the energetic requirements of the cell.
Collapse
Affiliation(s)
- Michelle Liberton
- From the ‡Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Rajib Saha
- From the ‡Department of Biology, Washington University, St. Louis, Missouri 63130
| | - Jon M Jacobs
- §Pacific Northwest National Laboratory, Richland, Washington 63130
| | - Amelia Y Nguyen
- From the ‡Department of Biology, Washington University, St. Louis, Missouri 63130
| | | | - Richard D Smith
- §Pacific Northwest National Laboratory, Richland, Washington 63130
| | | | - Himadri B Pakrasi
- From the ‡Department of Biology, Washington University, St. Louis, Missouri 63130;
| |
Collapse
|
31
|
Giese SH, Zickmann F, Renard BY. Detection of Unknown Amino Acid Substitutions Using Error-Tolerant Database Search. Methods Mol Biol 2016; 1362:247-264. [PMID: 26519182 DOI: 10.1007/978-1-4939-3106-4_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent studies have demonstrated that mass spectrometry-based variant detection is feasible. Typically, either genomic variant databases or transcript data are used to construct customized target databases for the identification of single-amino acid variants in mass spectrometry data. However, both approaches require additional data to perform the identification of SAAVs. Here, we discuss the application of an error-tolerant peptide search engine such as BICEPS for identifying variants exclusively based on standard Uniprot databases. Thereby, unnecessary and redundant extensions of the search space are avoided. The workflow provides an unbiased view on the data; the search space is not limited to known variants and simultaneously does not require additional data. In a subsequent step a second identification search is performed to verify the initially identified variant peptides and aggregate information on the protein level.
Collapse
Affiliation(s)
- Sven H Giese
- Research Group Bioinformatics (NG4), Robert Koch-Institute, Nordufer 20, 13353, Berlin, Germany
- Department of Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355, Berlin, Germany
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JR, UK
| | - Franziska Zickmann
- Research Group Bioinformatics (NG4), Robert Koch-Institute, Nordufer 20, 13353, Berlin, Germany
| | - Bernhard Y Renard
- Research Group Bioinformatics (NG4), Robert Koch-Institute, Nordufer 20, 13353, Berlin, Germany.
| |
Collapse
|
32
|
Gritsenko MA, Xu Z, Liu T, Smith RD. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS. Methods Mol Biol 2016; 1410:237-47. [PMID: 26867748 DOI: 10.1007/978-1-4939-3524-6_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Comprehensive, quantitative information on abundances of proteins and their posttranslational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labeling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification and quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.
Collapse
Affiliation(s)
- Marina A Gritsenko
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Zhe Xu
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Tao Liu
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
33
|
Proteomics Analysis to Identify and Characterize the Molecular Signatures of Hepatic Steatosis in Ovariectomized Rats as a Model of Postmenopausal Status. Nutrients 2015; 7:8752-66. [PMID: 26506382 PMCID: PMC4632454 DOI: 10.3390/nu7105434] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/07/2015] [Accepted: 10/15/2015] [Indexed: 01/19/2023] Open
Abstract
Postmenopausal women are particularly at increased risk of developing non-alcoholic fatty liver disease (NAFLD). Here we aimed to determine the impact of postmenopausal-induced NAFLD (PM-NAFLD) in an ovariectomized rat model. Sixteen six-week-old Sprague-Dawley female rats were randomly divided into two groups (eight per group), for sham-operation (Sham) or bilateral ovariectomy (Ovx). Four months after surgery, indices of liver damage and liver histomorphometry were measured. Both serum aspartate aminotransferase (AST) and alanine aminotranferease (ALT) levels were significantly higher in the Ovx than Sham group. We performed quantitative LC-MS/MS-based proteomic profiling of livers from rats with PM-NAFLD to provide baseline knowledge of the PM-NAFLD proteome and to investigate proteins involved in PM-NAFLD by ingenuity pathways analysis (IPA) to provide corroborative evidence for differential regulation of molecular and cellular functions affecting metabolic processes. Of the 586 identified proteins, the levels of 59 (10.0%) and 48 (8.2%) were significantly higher and lower, respectively, in the Ovx group compared to the Sham group. In conclusion, the changes in regulation of proteins implicated in PM-NAFLD may affect other vital biological processes in the body apart from causing postmenopause-mediated liver dysfunction. Our quantitative proteomics analysis may also suggest potential biomarkers and further clinical applications for PM-NAFLD.
Collapse
|
34
|
Kimzey MJ, Kinsky OR, Yassine HN, Tsaprailis G, Stump CS, Monks TJ, Lau SS. Site specific modification of the human plasma proteome by methylglyoxal. Toxicol Appl Pharmacol 2015; 289:155-62. [PMID: 26435215 DOI: 10.1016/j.taap.2015.09.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/15/2015] [Accepted: 09/30/2015] [Indexed: 11/18/2022]
Abstract
Increasing evidence identifies dicarbonyl stress from reactive glucose metabolites, such as methylglyoxal (MG), as a major pathogenic link between hyperglycemia and complications of diabetes. MG covalently modifies arginine residues, yet the site specificity of this modification has not been thoroughly investigated. Sites of MG adduction in the plasma proteome were identified using LC-MS/MS analysis in vitro following incubation of plasma proteins with MG. Treatment of plasma proteins with MG yielded 14 putative MG hotspots from five plasma proteins (albumin [nine hotspots], serotransferrin, haptoglobin [2 hotspots], hemopexin, and Ig lambda-2 chain C regions). The search results revealed two versions of MG-arginine modification, dihydroxyimidazolidine (R+72) and hydroimidazolone (R+54) adducts. One of the sites identified was R257 in human serum albumin, which is a critical residue located in drug binding site I. This site was validated as a target for MG modification by a fluorescent probe displacement assay, which revealed significant drug dissociation at 300 μM MG from a prodan-HSA complex (75 μM). Moreover, twelve human plasma samples (six male, six female, with two type 2 diabetic subjects from both genders) were analyzed using multiple reaction monitoring (MRM) tandem mass spectrometry and revealed the presence of the MG-modified albumin R257 peptide. These data provide insights into the nature of the site-specificity of MG modification of arginine, which may be useful for therapeutic treatments that aim to prevent MG-mediated adverse responses in patients.
Collapse
Affiliation(s)
- Michael J Kimzey
- Southwest Environmental Health Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States
| | - Owen R Kinsky
- Southwest Environmental Health Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States
| | - Hussein N Yassine
- Department of Medicine, The University of Arizona, Tucson, AZ 85721, United States
| | - George Tsaprailis
- Southwest Environmental Health Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States
| | - Craig S Stump
- Department of Medicine, The University of Arizona, Tucson, AZ 85721, United States; Southern Arizona VA Health Care System, Tucson, AZ 85723, United States
| | - Terrence J Monks
- Southwest Environmental Health Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States
| | - Serrine S Lau
- Southwest Environmental Health Sciences Center, Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
35
|
Chaw RC, Correa-Garhwal SM, Clarke TH, Ayoub NA, Hayashi CY. Proteomic Evidence for Components of Spider Silk Synthesis from Black Widow Silk Glands and Fibers. J Proteome Res 2015; 14:4223-31. [PMID: 26302244 PMCID: PMC5075943 DOI: 10.1021/acs.jproteome.5b00353] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Spider
silk research has largely focused on spidroins, proteins
that are the primary components of spider silk fibers. Although a
number of spidroins have been characterized, other types of proteins
associated with silk synthesis are virtually unknown. Previous analyses
of tissue-specific RNA-seq libraries identified 647 predicted genes
that were differentially expressed in silk glands of the Western black
widow, Latrodectus hesperus. Only ∼5%
of these silk-gland specific transcripts (SSTs) encode spidroins;
although the remaining predicted genes presumably encode other proteins
associated with silk production, this is mostly unverified. Here,
we used proteomic analysis of multiple silk glands and dragline silk
fiber to investigate the translation of the differentially expressed
genes. We find 48 proteins encoded by the differentially expressed
transcripts in L. hesperus major ampullate,
minor ampullate, and tubuliform silk glands and detect 17 SST encoded
proteins in major ampullate silk fibers. The observed proteins include
known silk-related proteins, but most are uncharacterized, with no
annotation. These unannotated proteins likely include novel silk-associated
proteins. Major and minor ampullate glands have the highest overlap
of identified proteins, consistent with their shared, distinctive
ampullate shape and the overlapping functions of major and minor ampullate
silks. Our study substantiates and prioritizes predictions from differential
expression analysis of spider silk gland transcriptomes.
Collapse
Affiliation(s)
- Ro Crystal Chaw
- Department of Biology, University of California , Riverside, California 92521, United States
| | - Sandra M Correa-Garhwal
- Department of Biology, University of California , Riverside, California 92521, United States
| | - Thomas H Clarke
- Department of Biology, Washington and Lee University , Lexington, Virginia 24450, United States
| | - Nadia A Ayoub
- Department of Biology, Washington and Lee University , Lexington, Virginia 24450, United States
| | - Cheryl Y Hayashi
- Department of Biology, University of California , Riverside, California 92521, United States
| |
Collapse
|
36
|
Csősz É, Emri G, Kalló G, Tsaprailis G, Tőzsér J. Highly abundant defense proteins in human sweat as revealed by targeted proteomics and label-free quantification mass spectrometry. J Eur Acad Dermatol Venereol 2015; 29:2024-31. [PMID: 26307449 DOI: 10.1111/jdv.13221] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 05/12/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND The healthy human skin with its effective antimicrobial defense system forms an efficient barrier against invading pathogens. There is evidence suggesting that the composition of this chemical barrier varies between diseases, making the easily collected sweat an ideal candidate for biomarker discoveries. OBJECTIVE Our aim was to provide information about the normal composition of the sweat, and to study the chemical barrier found at the surface of skin. METHODS Sweat samples from healthy individuals were collected during sauna bathing, and the global protein panel was analysed by label-free mass spectrometry. SRM-based targeted proteomic methods were designed and stable isotope labelled reference peptides were used for method validation. RESULTS Ninety-five sweat proteins were identified, 20 of them were novel proteins. It was shown that dermcidin is the most abundant sweat protein, and along with apolipoprotein D, clusterin, prolactin-inducible protein and serum albumin, they make up 91% of secreted sweat proteins. The roles of these highly abundant proteins were reviewed; all of which have protective functions, highlighting the importance of sweat glands in composing the first line of innate immune defense system, and maintaining the epidermal barrier integrity. CONCLUSION Our findings with regard to the proteins forming the chemical barrier of the skin as determined by label-free quantification and targeted proteomics methods are in accordance with previous studies, and can be further used as a starting point for non-invasive sweat biomarker research.
Collapse
Affiliation(s)
- É Csősz
- Department of Biochemistry and Molecular Biology, Proteomics Core Facility, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - G Emri
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - G Kalló
- Department of Biochemistry and Molecular Biology, Proteomics Core Facility, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - G Tsaprailis
- Center for Toxicology, University of Arizona, Tucson, AZ, USA
| | - J Tőzsér
- Department of Biochemistry and Molecular Biology, Proteomics Core Facility, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
37
|
Sikdar S, Gill R, Datta S. Improving protein identification from tandem mass spectrometry data by one-step methods and integrating data from other platforms. Brief Bioinform 2015; 17:262-9. [PMID: 26141827 DOI: 10.1093/bib/bbv043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Indexed: 01/28/2023] Open
Abstract
MOTIVATION Many approaches have been proposed for the protein identification problem based on tandem mass spectrometry (MS/MS) data. In these experiments, proteins are digested into peptides and the resulting peptide mixture is subjected to mass spectrometry. Some interesting putative peptide features (peaks) are selected from the mass spectra. Following that, the precursor ions undergo fragmentation and are analyzed by MS/MS. The process of identification of peptides from the mass spectra and the constituent proteins in the sample is called protein identification from MS/MS data. There are many two-step protein identification procedures, reviewed in the literature, which first attempt to identify the peptides in a separate process and then use these results to infer the proteins. However, in recent years, there have been attempts to provide a one-step solution to protein identification, which simultaneously identifies the proteins and the peptides in the sample. RESULTS In this review, we briefly introduce the most popular two-step protein identification procedure, PeptideProphet coupled with ProteinProphet. Following that, we describe the difficulties with two-step procedures and review some recently introduced one-step protein/peptide identification procedures that do not suffer from these issues. The focus of this review is on one-step procedures that are based on statistical likelihood-based models, but some discussion of other one-step procedures is also included. We report comparative performances of one-step and two-step methods, which support the overall superiorities of one-step procedures. We also cover some recent efforts to improve protein identification by incorporating other molecular data along with MS/MS data.
Collapse
|
38
|
Analysis of differentially expressed novel post-translational modifications of plasma apolipoprotein E in Taiwanese females with breast cancer. J Proteomics 2015; 126:252-62. [PMID: 26079612 DOI: 10.1016/j.jprot.2015.05.038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2015] [Revised: 05/07/2015] [Accepted: 05/24/2015] [Indexed: 12/22/2022]
Abstract
APOE ε2 or ε4 alleles being used as indicators of breast cancer risk are controversial in Taiwanese females. We provide a concept for relative comparisons of post-translational modifications (PTMs) of plasma apolipoprotein E (ApoE) between normal controls and breast cancer patients to investigate the association of ApoE with breast cancer risk. APOE polymorphisms (ApoE isoforms) were not assessed in this study. The relative modification ratio (%) of 15 targeted and 21 modified peptides were evaluated by 1D SDS-PAGE, in-gel digestion, and label-free nano-LC/MS to compare normal controls with breast cancer patients. Plasma levels of the ApoE protein did not significantly differ between normal controls and breast cancer patients. Eleven sites with novel PTMs were identified from 7 pairs of differentially expressed targeted and modified peptides according to the relative modification ratio including methylation at the E3 (↑1.45-fold), E7 (↑1.45-fold), E11 (↑1.19-fold), E77 (↑2.02-fold), E87 (↑2.02-fold), and Q98 (↑1.62-fold) residues; dimethylation at the Q187 (↑1.44-fold) residue; dihydroxylation at the R92 (↑1.25-fold), K95 (↑1.25-fold), and R103 (↑1.25-fold) residues; and glycosylation at the S129 (↑1.14-fold) residue. The clustered methylation and dihydroxylation of plasma ApoE proteins may play a role in breast cancer.
Collapse
|
39
|
Gu L, Evans AR, Robinson RAS. Sample multiplexing with cysteine-selective approaches: cysDML and cPILOT. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:615-630. [PMID: 25588721 DOI: 10.1007/s13361-014-1059-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/22/2014] [Accepted: 11/22/2014] [Indexed: 06/04/2023]
Abstract
Cysteine-selective proteomics approaches simplify complex protein mixtures and improve the chance of detecting low abundant proteins. It is possible that cysteinyl-peptide/protein enrichment methods could be coupled to isotopic labeling and isobaric tagging methods for quantitative proteomics analyses in as few as two or up to 10 samples, respectively. Here we present two novel cysteine-selective proteomics approaches: cysteine-selective dimethyl labeling (cysDML) and cysteine-selective combined precursor isotopic labeling and isobaric tagging (cPILOT). CysDML is a duplex precursor quantification technique that couples cysteinyl-peptide enrichment with on-resin stable-isotope dimethyl labeling. Cysteine-selective cPILOT is a novel 12-plex workflow based on cysteinyl-peptide enrichment, on-resin stable-isotope dimethyl labeling, and iodoTMT tagging on cysteine residues. To demonstrate the broad applicability of the approaches, we applied cysDML and cPILOT methods to liver tissues from an Alzheimer's disease (AD) mouse model and wild-type (WT) controls. From the cysDML experiments, an average of 850 proteins were identified and 594 were quantified, whereas from the cPILOT experiment, 330 and 151 proteins were identified and quantified, respectively. Overall, 2259 unique total proteins were detected from both cysDML and cPILOT experiments. There is tremendous overlap in the proteins identified and quantified between both experiments, and many proteins have AD/WT fold-change values that are within ~20% error. A total of 65 statistically significant proteins are differentially expressed in the liver proteome of AD mice relative to WT. The performance of cysDML and cPILOT are demonstrated and advantages and limitations of using multiple duplex experiments versus a single 12-plex experiment are highlighted.
Collapse
Affiliation(s)
- Liqing Gu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | | | | |
Collapse
|
40
|
Yuan CC, Ma W, Schemmel P, Cheng YS, Liu J, Tsaprailis G, Feldman S, Ayme Southgate A, Irving TC. Elastic proteins in the flight muscle of Manduca sexta. Arch Biochem Biophys 2015; 568:16-27. [PMID: 25602701 PMCID: PMC4684177 DOI: 10.1016/j.abb.2014.12.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 12/29/2014] [Accepted: 12/31/2014] [Indexed: 11/20/2022]
Abstract
The flight muscles (DLM1) of the Hawkmoth, Manduca sexta are synchronous, requiring a neural spike for each contraction. Stress/strain curves of skinned DLM1 showed hysteresis indicating the presence of titin-like elastic proteins. Projectin and kettin are titin-like proteins previously identified in Lethocerus and Drosophila flight muscles. Analysis of Manduca muscles with 1% SDS-agarose gels and western blots showed two bands near 1 MDa that cross-reacted with antibodies to Drosophila projectin. Antibodies to Drosophila kettin cross-reacted to bands at ∼500 and ∼700 kDa, but also to bands at ∼1.6 and ∼2.1 MDa, that had not been previously observed in insect flight muscles. Mass spectrometry identified the 2.1 MDa protein as a product of the Sallimus (sls) gene. Analysis of the gene sequence showed that all 4 putative Sallimus and kettin isoforms could be explained as products of alternative splicing of the single sls gene. Both projectin and sallimus isoforms were expressed to higher levels in ventrally located DLM1 subunits, primarily responsible for active work production, as compared to dorsally located subunits, which may act as damped springs. The different expression levels of the 2 projectin isoforms and 4 sallimus/kettin isoforms may be adaptations to the specific requirements of individual muscle subunits.
Collapse
Affiliation(s)
- Chen-Ching Yuan
- Dept. of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA
| | - Weikang Ma
- Dept. of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA
| | - Peter Schemmel
- Dept. of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA
| | - Yu-Shu Cheng
- Dept. of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA
| | - Jiangmin Liu
- Dept. of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA
| | | | - Samuel Feldman
- Dept. of Biology, College of Charleston, Charleston, SC, USA
| | | | - Thomas C Irving
- Dept. of Biological and Chemical Sciences, Illinois Institute of Technology, 3101 S. Dearborn St., Chicago, IL 60616, USA.
| |
Collapse
|
41
|
Yu J, Liberton M, Cliften PF, Head RD, Jacobs JM, Smith RD, Koppenaal DW, Brand JJ, Pakrasi HB. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO₂. Sci Rep 2015; 5:8132. [PMID: 25633131 PMCID: PMC5389031 DOI: 10.1038/srep08132] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/08/2015] [Indexed: 11/20/2022] Open
Abstract
Photosynthetic microbes are of emerging interest as production organisms in biotechnology because they can grow autotrophically using sunlight, an abundant energy source, and CO2, a greenhouse gas. Important traits for such microbes are fast growth and amenability to genetic manipulation. Here we describe Synechococcuselongatus UTEX 2973, a unicellular cyanobacterium capable of rapid autotrophic growth, comparable to heterotrophic industrial hosts such as yeast. Synechococcus UTEX 2973 can be readily transformed for facile generation of desired knockout and knock-in mutations. Genome sequencing coupled with global proteomics studies revealed that Synechococcus UTEX 2973 is a close relative of the widely studied cyanobacterium Synechococcuselongatus PCC 7942, an organism that grows more than two times slower. A small number of nucleotide changes are the only significant differences between the genomes of these two cyanobacterial strains. Thus, our study has unraveled genetic determinants necessary for rapid growth of cyanobacterial strains of significant industrial potential.
Collapse
Affiliation(s)
- Jingjie Yu
- Department of Biology, Washington University, St. Louis, MO 63130
| | | | - Paul F Cliften
- Genome Technology Access Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Richard D Head
- Genome Technology Access Center, Washington University School of Medicine, St. Louis, MO 63110
| | - Jon M Jacobs
- Pacific Northwest National Laboratory, Richland, WA 99352
| | | | | | - Jerry J Brand
- UTEX The Culture Collection of Algae, University of Texas at Austin, TX 78712
| | | |
Collapse
|
42
|
Welkie D, Zhang X, Markillie ML, Taylor R, Orr G, Jacobs J, Bhide K, Thimmapuram J, Gritsenko M, Mitchell H, Smith RD, Sherman LA. Transcriptomic and proteomic dynamics in the metabolism of a diazotrophic cyanobacterium, Cyanothece sp. PCC 7822 during a diurnal light-dark cycle. BMC Genomics 2014; 15:1185. [PMID: 25547186 PMCID: PMC4320622 DOI: 10.1186/1471-2164-15-1185] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/16/2014] [Indexed: 12/26/2022] Open
Abstract
Background Cyanothece sp. PCC 7822 is an excellent cyanobacterial model organism with great potential to be applied as a biocatalyst for the production of high value compounds. Like other unicellular diazotrophic cyanobacterial species, it has a tightly regulated metabolism synchronized to the light–dark cycle. Utilizing transcriptomic and proteomic methods, we quantified the relationships between transcription and translation underlying central and secondary metabolism in response to nitrogen free, 12 hour light and 12 hour dark conditions. Results By combining mass-spectrometry based proteomics and RNA-sequencing transcriptomics, we quantitatively measured a total of 6766 mRNAs and 1322 proteins at four time points across a 24 hour light–dark cycle. Photosynthesis, nitrogen fixation, and carbon storage relevant genes were expressed during the preceding light or dark period, concurrent with measured nitrogenase activity in the late light period. We describe many instances of disparity in peak mRNA and protein abundances, and strong correlation of light dependent expression of both antisense and CRISPR-related gene expression. The proteins for nitrogenase and the pentose phosphate pathway were highest in the dark, whereas those for glycolysis and the TCA cycle were more prominent in the light. Interestingly, one copy of the psbA gene encoding the photosystem II (PSII) reaction center protein D1 (psbA4) was highly upregulated only in the dark. This protein likely cannot catalyze O2 evolution and so may be used by the cell to keep PSII intact during N2 fixation. The CRISPR elements were found exclusively at the ends of the large plasmid and we speculate that their presence is crucial to the maintenance of this plasmid. Conclusions This investigation of parallel transcriptional and translational activity within Cyanothece sp. PCC 7822 provided quantitative information on expression levels of metabolic pathways relevant to engineering efforts. The identification of expression patterns for both mRNA and protein affords a basis for improving biofuel production in this strain and for further genetic manipulations. Expression analysis of the genes encoded on the 6 plasmids provided insight into the possible acquisition and maintenance of some of these extra-chromosomal elements. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1185) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Louis A Sherman
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
43
|
Miyamoto M, Ueno HM, Watanabe M, Tatsuma Y, Seto Y, Miyamoto T, Nakajima H. Distinctive proteolytic activity of cell envelope proteinase of Lactobacillus helveticus isolated from airag, a traditional Mongolian fermented mare's milk. Int J Food Microbiol 2014; 197:65-71. [PMID: 25557185 DOI: 10.1016/j.ijfoodmicro.2014.12.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 12/11/2014] [Accepted: 12/14/2014] [Indexed: 10/24/2022]
Abstract
Airag is a traditional fermented milk of Mongolia that is usually made from raw mare's milk. Lactobacillus helveticus is one of the lactic acid bacteria most frequently isolated from airag. In this study, we investigated the genetic and physiological characteristics of L. helveticus strains isolated from airag and clarified their significance in airag by comparing them with strains from different sources. Six strains of L. helveticus were isolated from five home-made airag samples collected from different regions of Mongolia. The optimal temperature for acidification in skim milk was 30 to 35°C for all the Mongolian strains, which is lower than those for the reference strains (JCM 1554 and JCM 1120(T)) isolated from European cheeses. All of the strains had a prtH1-like gene encoding a variant type of cell envelope proteinase (CEP). The CEP amino acid sequence in Snow Brand Typeculture (SBT) 11087 isolated from airag shared 71% identity with PrtH of L. helveticus CNRZ32 (AAD50643.1) but 98% identity with PrtH of Lactobacillus kefiranofaciens ZW3 (AEG40278.1) isolated from a traditional fermented milk in Tibet. The proteolytic activities of the CEP from SBT11087 on artificial substrate (N-succinyl-Ala-Ala-Pro-Phe-p-nitroanilide) and pure casein were measured using an intact-cell degradation assay. The activity of the CEP from SBT11087 was observed to be weak and exhibited a lower optimal temperature (40°C) than those from the reference strains (45-50°C). The specificity of the SBT11087 CEP for αS1-casein was typical of the CEPs previously reported in L. helveticus, as determined through the degradation profiles obtained through gel electrophoresis and mass spectrometry analyses. In contrast, the degradation profile of β-casein revealed that the CEP of SBT11087 primarily hydrolyzes its C-terminal domain and hydrolyzed nine of the 16 cleavage sites shared among the CEPs of other L. helveticus strains. Thus, the CEP of SBT11087 is distinct from those from previously reported L. helveticus strains in terms of its optimal temperature and its degradation of β-casein. Therefore, the Mongolian L. helveticus strains differ from other strains of the species in different collections and are specifically suited for the natural lactic acid bacterial population in airag.
Collapse
Affiliation(s)
- Mari Miyamoto
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., Minamidai 1-1-2, Kawagoe, Saitama 350-1165, Japan
| | - Hiroshi M Ueno
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., Minamidai 1-1-2, Kawagoe, Saitama 350-1165, Japan
| | - Masayuki Watanabe
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., Minamidai 1-1-2, Kawagoe, Saitama 350-1165, Japan
| | - Yumi Tatsuma
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., Minamidai 1-1-2, Kawagoe, Saitama 350-1165, Japan
| | - Yasuyuki Seto
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., Minamidai 1-1-2, Kawagoe, Saitama 350-1165, Japan
| | - Taku Miyamoto
- Animal Food Function, Graduate School of Environmental and Life Science, Okayama University, Tsushimanaka 3-1, Kita-ku, Okayama-shi, Okayama 700-8530, Japan
| | - Hadjime Nakajima
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., Minamidai 1-1-2, Kawagoe, Saitama 350-1165, Japan.
| |
Collapse
|
44
|
Orellana R, Hixson KK, Murphy S, Mester T, Sharma ML, Lipton MS, Lovley DR. Proteome of Geobacter sulfurreducens in the presence of U(VI). Microbiology (Reading) 2014; 160:2607-2617. [DOI: 10.1099/mic.0.081398-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Geobacter species often play an important role in the in situ bioremediation of uranium-contaminated groundwater, but little is known about how these microbes avoid uranium toxicity. To evaluate this further, the proteome of Geobacter sulfurreducens exposed to 100 µM U(VI) acetate was compared to control cells not exposed to U(VI). Of the 1363 proteins detected from these cultures, 203 proteins had higher abundance during exposure to U(VI) compared with the control cells and 148 proteins had lower abundance. U(VI)-exposed cultures expressed lower levels of proteins involved in growth, protein and amino acid biosynthesis, as well as key central metabolism enzymes as a result of the deleterious effect of U(VI) on the growth of G. sulfurreducens. In contrast, proteins involved in detoxification, such as several efflux pumps belonging to the RND (resistance–nodulation–cell division) family, and membrane protection, and other proteins, such as chaperones and proteins involved in secretion systems, were found in higher abundance in cells exposed to U(VI). Exposing G. sulfurreducens to U(VI) resulted in a higher abundance of many proteins associated with the oxidative stress response, such as superoxide dismutase and superoxide reductase. A strain in which the gene for superoxide dismutase was deleted grew more slowly than the WT strain in the presence of U(VI), but not in its absence. The results suggested that there is no specific mechanism for uranium detoxification. Rather, multiple general stress responses are induced, which presumably enable Geobacter species to tolerate high uranium concentrations.
Collapse
Affiliation(s)
- Roberto Orellana
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Kim K. Hixson
- Environmental Molecular Sciences Laboratory and Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Sean Murphy
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Tünde Mester
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Kellogg Eye Center, Ann Arbor, MI 48105, USA
| | - Manju L. Sharma
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Mary S. Lipton
- Environmental Molecular Sciences Laboratory and Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Derek R. Lovley
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
45
|
Lin SY, Hsu WH, Lin CC, Chen CJ. Mass spectrometry-based proteomics in Chest Medicine, Gerontology, and Nephrology: subgroups omics for personalized medicine. Biomedicine (Taipei) 2014; 4:25. [PMID: 25520938 PMCID: PMC4264973 DOI: 10.7603/s40681-014-0025-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 07/30/2014] [Indexed: 12/12/2022] Open
Abstract
Mass spectrometry (MS) is currently the most promising tool for studying proteomics to investigate largescale proteins in a specific proteome. Emerging MS-based proteomics is widely applied to decipher complex proteome for discovering potential biomarkers. Given its growing usage in clinical medicine for biomarker discovery to predict, diagnose and confer prognosis, MS-based proteomics can benefit study of personalized medicine. In this review we introduce some fundamental MS theory and MS-based quantitative proteomic approaches as well as several representative clinical MS-based proteomics issues in Chest Medicine, Gerontology, and Nephrology.
Collapse
Affiliation(s)
- Shih-Yi Lin
- Institute of Clinical Medical Science, China Medical University College of Medicine, 404 Taichung, Taiwan
- Department of Internal Medicine, China Medical University Hospital, 404 Taichung, Taiwan
- Division of Nephrology and Kidney Institute, China Medical University Hospital, 404 Taichung, Taiwan
| | - Wu-Huei Hsu
- Institute of Clinical Medical Science, China Medical University College of Medicine, 404 Taichung, Taiwan
- Department of Internal Medicine, China Medical University Hospital, 404 Taichung, Taiwan
- Division of Pulmonary and Critical Care Medicine, China Medical University Hospital and China Medical University, 404 Taichung, Taiwan
| | - Cheng-Chieh Lin
- Institute of Clinical Medical Science, China Medical University College of Medicine, 404 Taichung, Taiwan
- Department of Family Medicine, China Medical University Hospital, 404 Taichung, Taiwan
- School of Medicine, College of Medicine China Medical University, No. 91, Hsueh Shih Road, 404 Taichung, Taiwan
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, College of Chinese Medicine, China Medical University, No. 91, Hsueh-Shih Road, 402 Taichung, Taiwan
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, 404 Taichung, Taiwan
| |
Collapse
|
46
|
Guo J, Nguyen AY, Dai Z, Su D, Gaffrey MJ, Moore RJ, Jacobs JM, Monroe ME, Smith RD, Koppenaal DW, Pakrasi HB, Qian WJ. Proteome-wide light/dark modulation of thiol oxidation in cyanobacteria revealed by quantitative site-specific redox proteomics. Mol Cell Proteomics 2014; 13:3270-85. [PMID: 25118246 DOI: 10.1074/mcp.m114.041160] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reversible protein thiol oxidation is an essential regulatory mechanism of photosynthesis, metabolism, and gene expression in photosynthetic organisms. Herein, we present proteome-wide quantitative and site-specific profiling of in vivo thiol oxidation modulated by light/dark in the cyanobacterium Synechocystis sp. PCC 6803, an oxygenic photosynthetic prokaryote, using a resin-assisted thiol enrichment approach. Our proteomic approach integrates resin-assisted enrichment with isobaric tandem mass tag labeling to enable site-specific and quantitative measurements of reversibly oxidized thiols. The redox dynamics of ∼2,100 Cys-sites from 1,060 proteins under light, dark, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (a photosystem II inhibitor) conditions were quantified. In addition to relative quantification, the stoichiometry or percentage of oxidation (reversibly oxidized/total thiols) for ∼1,350 Cys-sites was also quantified. The overall results revealed broad changes in thiol oxidation in many key biological processes, including photosynthetic electron transport, carbon fixation, and glycolysis. Moreover, the redox sensitivity along with the stoichiometric data enabled prediction of potential functional Cys-sites for proteins of interest. The functional significance of redox-sensitive Cys-sites in NADP-dependent glyceraldehyde-3-phosphate dehydrogenase, peroxiredoxin (AhpC/TSA family protein Sll1621), and glucose 6-phosphate dehydrogenase was further confirmed with site-specific mutagenesis and biochemical studies. Together, our findings provide significant insights into the broad redox regulation of photosynthetic organisms.
Collapse
Affiliation(s)
- Jia Guo
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352
| | - Amelia Y Nguyen
- ¶Department of Biology, Washington University, St. Louis, Missouri, 63130
| | - Ziyu Dai
- ‖Energy and Efficiency Division, Pacific Northwest National Laboratory, Richland, Washington, 99352
| | - Dian Su
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352
| | - Matthew J Gaffrey
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352
| | - Ronald J Moore
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352
| | - Jon M Jacobs
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352
| | - Matthew E Monroe
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352
| | - Richard D Smith
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352; ‡‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, 99352
| | - David W Koppenaal
- ‡‡Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, 99352
| | - Himadri B Pakrasi
- ¶Department of Biology, Washington University, St. Louis, Missouri, 63130
| | - Wei-Jun Qian
- From the ‡Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99352;
| |
Collapse
|
47
|
Aguilar-Pontes MV, de Vries RP, Zhou M. (Post-)genomics approaches in fungal research. Brief Funct Genomics 2014; 13:424-39. [PMID: 25037051 DOI: 10.1093/bfgp/elu028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To date, hundreds of fungal genomes have been sequenced and many more are in progress. This wealth of genomic information has provided new directions to study fungal biodiversity. However, to further dissect and understand the complicated biological mechanisms involved in fungal life styles, functional studies beyond genomes are required. Thanks to the developments of current -omics techniques, it is possible to produce large amounts of fungal functional data in a high-throughput fashion (e.g. transcriptome, proteome, etc.). The increasing ease of creating -omics data has also created a major challenge for downstream data handling and analysis. Numerous databases, tools and software have been created to meet this challenge. Facing such a richness of techniques and information, hereby we provide a brief roadmap on current wet-lab and bioinformatics approaches to study functional genomics in fungi.
Collapse
|
48
|
Jiang Y, Kong Q, Roland KL, Curtiss R. Membrane vesicles of Clostridium perfringens type A strains induce innate and adaptive immunity. Int J Med Microbiol 2014; 304:431-43. [PMID: 24631214 PMCID: PMC4285460 DOI: 10.1016/j.ijmm.2014.02.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 01/21/2014] [Accepted: 02/02/2014] [Indexed: 02/07/2023] Open
Abstract
Vesicle shedding from bacteria is a universal process in most Gram-negative bacteria and a few Gram-positive bacteria. In this report, we isolate extracellular membrane vesicles (MVs) from the supernatants of Gram-positive pathogen Clostridium perfringens (C. perfringens). We demonstrated vesicle production in a variety of virulent and nonvirulent type A strains. MVs did not contain alpha-toxin and NetB toxin demonstrated by negative reaction to specific antibody and absence of specific proteins identified by LC-MS/MS. C. perfringens MVs contained DNA components such as 16S ribosomal RNA gene (16S rRNA), alpha-toxin gene (plc) and the perfringolysin O gene (pfoA) demonstrated by PCR. We also identified a total of 431 proteins in vesicles by 1-D gel separation and LC-MS/MS analysis. In vitro studies demonstrated that vesicles could be internalized into murine macrophage RAW264.7 cells without direct cytotoxicity effects, causing release of inflammation cytokines including granulocyte colony stimulating factor (G-CSF), tumor necrosis factor-alpha (TNF-α) and interleukin-1 (IL-1), which could also be detected in mice injected with MVs through intraperitoneal (i.p.) route. Mice immunized with C. perfringens MVs produced high titer IgG, especially IgG1, antibodies against C. perfringens membrane proteins. However, this kind of antibody could not provide protection in mice following challenge, though it could slightly postpone the time of death. Our results indicate that release of MVs from C. perfringens could provide a previously unknown mechanism to induce release of inflammatory cytokines, especially TNF-α, these findings may contribute to a better understanding of the pathogenesis of C. perfringens infection.
Collapse
Affiliation(s)
- Yanlong Jiang
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Qingke Kong
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Kenneth L Roland
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Roy Curtiss
- Center for Infectious Diseases and Vaccinology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
49
|
Ivanov MV, Levitsky LI, Lobas AA, Panic T, Laskay ÜA, Mitulovic G, Schmid R, Pridatchenko ML, Tsybin YO, Gorshkov MV. Empirical Multidimensional Space for Scoring Peptide Spectrum Matches in Shotgun Proteomics. J Proteome Res 2014; 13:1911-20. [DOI: 10.1021/pr401026y] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Mark V. Ivanov
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia
- Moscow Institute of Physics and Technology (State University), Inststitutskii per., 9, Dolgoprudny 141700, Moscow region, Russia
| | - Lev I. Levitsky
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia
- Moscow Institute of Physics and Technology (State University), Inststitutskii per., 9, Dolgoprudny 141700, Moscow region, Russia
| | - Anna A. Lobas
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia
- Moscow Institute of Physics and Technology (State University), Inststitutskii per., 9, Dolgoprudny 141700, Moscow region, Russia
| | - Tanja Panic
- Medical University of Vienna, Spitalgasse 23, Vienna 1090, Austria
| | - Ünige A. Laskay
- Biomolecular
Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 2 av. Forel, Lausanne 1015, Switzerland
| | - Goran Mitulovic
- Medical University of Vienna, Spitalgasse 23, Vienna 1090, Austria
| | - Rainer Schmid
- Medical University of Vienna, Spitalgasse 23, Vienna 1090, Austria
| | - Marina L. Pridatchenko
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia
| | - Yury O. Tsybin
- Biomolecular
Mass Spectrometry Laboratory, Ecole Polytechnique Fédérale de Lausanne, 2 av. Forel, Lausanne 1015, Switzerland
| | - Mikhail V. Gorshkov
- Institute
for Energy Problems of Chemical Physics, Russian Academy of Sciences, 38 Leninsky Pr., Bld. 2, Moscow 119334, Russia
- Moscow Institute of Physics and Technology (State University), Inststitutskii per., 9, Dolgoprudny 141700, Moscow region, Russia
| |
Collapse
|
50
|
Metabolic reprogramming during purine stress in the protozoan pathogen Leishmania donovani. PLoS Pathog 2014; 10:e1003938. [PMID: 24586154 PMCID: PMC3937319 DOI: 10.1371/journal.ppat.1003938] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 01/06/2014] [Indexed: 01/18/2023] Open
Abstract
The ability of Leishmania to survive in their insect or mammalian host is dependent upon an ability to sense and adapt to changes in the microenvironment. However, little is known about the molecular mechanisms underlying the parasite response to environmental changes, such as nutrient availability. To elucidate nutrient stress response pathways in Leishmania donovani, we have used purine starvation as the paradigm. The salvage of purines from the host milieu is obligatory for parasite replication; nevertheless, purine-starved parasites can persist in culture without supplementary purine for over three months, indicating that the response to purine starvation is robust and engenders parasite survival under conditions of extreme scarcity. To understand metabolic reprogramming during purine starvation we have employed global approaches. Whole proteome comparisons between purine-starved and purine-replete parasites over a 6–48 h span have revealed a temporal and coordinated response to purine starvation. Purine transporters and enzymes involved in acquisition at the cell surface are upregulated within a few hours of purine removal from the media, while other key purine salvage components are upregulated later in the time-course and more modestly. After 48 h, the proteome of purine-starved parasites is extensively remodeled and adaptations to purine stress appear tailored to deal with both purine deprivation and general stress. To probe the molecular mechanisms affecting proteome remodeling in response to purine starvation, comparative RNA-seq analyses, qRT-PCR, and luciferase reporter assays were performed on purine-starved versus purine-replete parasites. While the regulation of a minority of proteins tracked with changes at the mRNA level, for many regulated proteins it appears that proteome remodeling during purine stress occurs primarily via translational and/or post-translational mechanisms. Leishmania, the cause of a deadly spectrum of diseases in humans, surmounts a number of environmental challenges, including changes in the availability of salvageable nutrients, to successfully colonize its host. Adaptation to environmental stress is clearly of significance in parasite biology, but the underlying mechanisms are not well understood. To simulate the response to periodic nutrient scarcity in vivo, we have induced purine starvation in vitro. Purines are essential for growth and viability, and serve as the major energy currency of cells. Leishmania cannot synthesize purines and must salvage them from the surroundings. Extracellular purine depletion in culture induces a robust survival response in Leishmania, whereby growth arrests, but parasites persist for months. To profile the events that enable endurance of purine starvation, we used shotgun proteomics. Our data suggest that purine starvation induces extensive proteome remodeling, tailored to enhance purine capture and recycling, reduce energy expenditures, and maintain viability of the metabolically active, non-dividing population. Through global and targeted approaches, we reveal that proteome remodeling is multifaceted, and occurs through an array of responses at the mRNA, translational, and post-translational level. Our data provide one of the most inclusive views of adaptation to microenvironmental stress in Leishmania.
Collapse
|