1
|
Mansuri MS, Bathla S, Lam TT, Nairn AC, Williams KR. Optimal conditions for carrying out trypsin digestions on complex proteomes: From bulk samples to single cells. J Proteomics 2024; 297:105109. [PMID: 38325732 PMCID: PMC10939724 DOI: 10.1016/j.jprot.2024.105109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
To identify proteins by the bottom-up mass spectrometry workflow, enzymatic digestion is essential to break down proteins into smaller peptides amenable to both chromatographic separation and mass spectrometric analysis. Trypsin is the most extensively used protease due to its high cleavage specificity and generation of peptides with desirable positively charged N- and C-terminal amino acid residues that are amenable to reverse phase HPLC separation and MS/MS analyses. However, trypsin can yield variable digestion profiles and its protein cleavage activity is interdependent on trypsin source and quality, digestion time and temperature, pH, denaturant, trypsin and substrate concentrations, composition/complexity of the sample matrix, and other factors. There is therefore a need for a more standardized, general-purpose trypsin digestion protocol. Based on a review of the literature we delineate optimal conditions for carrying out trypsin digestions of complex proteomes from bulk samples to limiting amounts of protein extracts. Furthermore, we highlight recent developments and technological advances used in digestion protocols to quantify complex proteomes from single cells. SIGNIFICANCE: Currently, bottom-up MS-based proteomics is the method of choice for global proteome analysis. Since trypsin is the most utilized protease in bottom-up MS proteomics, delineating optimal conditions for carrying out trypsin digestions of complex proteomes in samples ranging from tissues to single cells should positively impact a broad range of biomedical research.
Collapse
Affiliation(s)
- M Shahid Mansuri
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA.
| | - Shveta Bathla
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - TuKiet T Lam
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA; Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT 06511, USA
| | - Angus C Nairn
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06511, USA
| | - Kenneth R Williams
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA; Keck MS & Proteomics Resource, Yale School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
2
|
de Vries L, Brouckaert M, Chanoca A, Kim H, Regner MR, Timokhin VI, Sun Y, De Meester B, Van Doorsselaere J, Goeminne G, Chiang VL, Wang JP, Ralph J, Morreel K, Vanholme R, Boerjan W. CRISPR-Cas9 editing of CAFFEOYL SHIKIMATE ESTERASE 1 and 2 shows their importance and partial redundancy in lignification in Populus tremula × P. alba. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2221-2234. [PMID: 34160888 PMCID: PMC8541784 DOI: 10.1111/pbi.13651] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 05/06/2023]
Abstract
Lignins are cell wall-located aromatic polymers that provide strength and hydrophobicity to woody tissues. Lignin monomers are synthesized via the phenylpropanoid pathway, wherein CAFFEOYL SHIKIMATE ESTERASE (CSE) converts caffeoyl shikimate into caffeic acid. Here, we explored the role of the two CSE homologs in poplar (Populus tremula × P. alba). Reporter lines showed that the expression conferred by both CSE1 and CSE2 promoters is similar. CRISPR-Cas9-generated cse1 and cse2 single mutants had a wild-type lignin level. Nevertheless, CSE1 and CSE2 are not completely redundant, as both single mutants accumulated caffeoyl shikimate. In contrast, the cse1 cse2 double mutants had a 35% reduction in lignin and associated growth penalty. The reduced-lignin content translated into a fourfold increase in cellulose-to-glucose conversion upon limited saccharification. Phenolic profiling of the double mutants revealed large metabolic shifts, including an accumulation of p-coumaroyl, 5-hydroxyferuloyl, feruloyl and sinapoyl shikimate, in addition to caffeoyl shikimate. This indicates that the CSEs have a broad substrate specificity, which was confirmed by in vitro enzyme kinetics. Taken together, our results suggest an alternative path within the phenylpropanoid pathway at the level of the hydroxycinnamoyl-shikimates, and show that CSE is a promising target to improve plants for the biorefinery.
Collapse
Affiliation(s)
- Lisanne de Vries
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Marlies Brouckaert
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Alexandra Chanoca
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Hoon Kim
- Department of Biochemistry, and U.S. Department of Energy Great Lakes Bioenergy Research CenterWisconsin Energy InstituteUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Matthew R. Regner
- Department of Biochemistry, and U.S. Department of Energy Great Lakes Bioenergy Research CenterWisconsin Energy InstituteUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Vitaliy I. Timokhin
- Department of Biochemistry, and U.S. Department of Energy Great Lakes Bioenergy Research CenterWisconsin Energy InstituteUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Yi Sun
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Barbara De Meester
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | | | - Geert Goeminne
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
- VIB Metabolomics CoreGhentBelgium
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
- Forest Biotechnology GroupDepartment of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNCUSA
- Department of Forest BiomaterialsNorth Carolina State UniversityRaleighNCUSA
| | - Jack P. Wang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
- Forest Biotechnology GroupDepartment of Forestry and Environmental ResourcesNorth Carolina State UniversityRaleighNCUSA
| | - John Ralph
- Department of Biochemistry, and U.S. Department of Energy Great Lakes Bioenergy Research CenterWisconsin Energy InstituteUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Kris Morreel
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Wout Boerjan
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| |
Collapse
|
3
|
Lin CY, Sun Y, Song J, Chen HC, Shi R, Yang C, Liu J, Tunlaya-Anukit S, Liu B, Loziuk PL, Williams CM, Muddiman DC, Lin YCJ, Sederoff RR, Wang JP, Chiang VL. Enzyme Complexes of Ptr4CL and PtrHCT Modulate Co-enzyme A Ligation of Hydroxycinnamic Acids for Monolignol Biosynthesis in Populus trichocarpa. FRONTIERS IN PLANT SCIENCE 2021; 12:727932. [PMID: 34691108 PMCID: PMC8527181 DOI: 10.3389/fpls.2021.727932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
Co-enzyme A (CoA) ligation of hydroxycinnamic acids by 4-coumaric acid:CoA ligase (4CL) is a critical step in the biosynthesis of monolignols. Perturbation of 4CL activity significantly impacts the lignin content of diverse plant species. In Populus trichocarpa, two well-studied xylem-specific Ptr4CLs (Ptr4CL3 and Ptr4CL5) catalyze the CoA ligation of 4-coumaric acid to 4-coumaroyl-CoA and caffeic acid to caffeoyl-CoA. Subsequently, two 4-hydroxycinnamoyl-CoA:shikimic acid hydroxycinnamoyl transferases (PtrHCT1 and PtrHCT6) mediate the conversion of 4-coumaroyl-CoA to caffeoyl-CoA. Here, we show that the CoA ligation of 4-coumaric and caffeic acids is modulated by Ptr4CL/PtrHCT protein complexes. Downregulation of PtrHCTs reduced Ptr4CL activities in the stem-differentiating xylem (SDX) of transgenic P. trichocarpa. The Ptr4CL/PtrHCT interactions were then validated in vivo using biomolecular fluorescence complementation (BiFC) and protein pull-down assays in P. trichocarpa SDX extracts. Enzyme activity assays using recombinant proteins of Ptr4CL and PtrHCT showed elevated CoA ligation activity for Ptr4CL when supplemented with PtrHCT. Numerical analyses based on an evolutionary computation of the CoA ligation activity estimated the stoichiometry of the protein complex to consist of one Ptr4CL and two PtrHCTs, which was experimentally confirmed by chemical cross-linking using SDX plant protein extracts and recombinant proteins. Based on these results, we propose that Ptr4CL/PtrHCT complexes modulate the metabolic flux of CoA ligation for monolignol biosynthesis during wood formation in P. trichocarpa.
Collapse
Affiliation(s)
- Chien-Yuan Lin
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Yi Sun
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Jina Song
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, United States
| | - Hsi-Chuan Chen
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Rui Shi
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Chenmin Yang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Jie Liu
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Sermsawat Tunlaya-Anukit
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Baoguang Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Department of Forestry, Beihua University, Jilin, China
| | - Philip L. Loziuk
- W.M. Keck FTMS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | - Cranos M. Williams
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, United States
| | - David C. Muddiman
- W.M. Keck FTMS Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | - Ying-Chung Jimmy Lin
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Ronald R. Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
| | - Jack P. Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Vincent L. Chiang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, United States
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
4
|
Burdman I, Burckhardt BB. Human prorenin determination by hybrid immunocapture liquid chromatography/mass spectrometry: A mixed-solvent-triggered digestion utilizing D-optimal design. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8932. [PMID: 32845569 DOI: 10.1002/rcm.8932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/03/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Human prorenin, representing the precursor of mature renin, has been discussed as a potential biomarker, e.g. in diagnosing primary hyperaldosteronism or diabetes-induced nephropathy. Currently, only immunoassays are available for prorenin quantification. As the similarity of prorenin to active renin impedes its accurate determination by immunoassay, mass spectrometry appears as an accurate alternative for differentiation of that protein. METHODS Immunoaffinity purification plus a mixed-solvent-triggered digestion was combined with liquid chromatography/mass spectrometry (LC/MS) to enable a fast, sensitive, and less laboratory-intensive approach to the quantification of prorenin. Statistical experimental planning, which is known as Design of Experiments (DOE), was used to identify the optimal conditions for the generation of the signature peptides within a manageable number of experiments. The efficiency of the mixed-solvent-triggered digestion by trypsin was investigated using four different organic solvents: acetonitrile, acetone, tetrahydrofuran and methanol. RESULTS By utilizing a D-optimal design, we found that the optimal mixed-solvent type for the generation of both signature peptides was acetonitrile at a concentration of 84% and an incubation temperature of 16°C. Using the mixed-solvent-triggered digestion, the procedure time allowed a fast analysis of active renin and prorenin with a short digestion time of 98 min. This optimized mixed-solvent-triggered digestion procedure was applied to detect renin and prorenin successfully in human plasma by the newly developed hybrid approach. CONCLUSIONS The identification of unique surrogates for human prorenin enabled the mass spectrometric differentiation between the two similar proteins. The novel hybrid approach successfully proved its ability to purify, detect and distinguish between prorenin and active renin in human plasma.
Collapse
Affiliation(s)
- Ilja Burdman
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, Universitaetsstr. 1, Dusseldorf, Germany
| | - Bjoern B Burckhardt
- Institute of Clinical Pharmacy and Pharmacotherapy, Heinrich Heine University, Universitaetsstr. 1, Dusseldorf, Germany
| |
Collapse
|
5
|
Matthews ML, Wang JP, Sederoff R, Chiang VL, Williams CM. A multiscale model of lignin biosynthesis for predicting bioenergy traits in Populus trichocarpa. Comput Struct Biotechnol J 2020; 19:168-182. [PMID: 33425249 PMCID: PMC7773863 DOI: 10.1016/j.csbj.2020.11.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 11/15/2022] Open
Abstract
Understanding the mechanisms behind lignin formation is an important research area with significant implications for the bioenergy and biomaterial industries. Computational models are indispensable tools for understanding this complex process. Models of the monolignol pathway in Populus trichocarpa and other plants have been developed to explore how transgenic modifications affect important bioenergy traits. Many of these models, however, only capture one level of biological organization and are unable to capture regulation across multiple biological scales. This limits their ability to predict how gene modification strategies will impact lignin and other wood properties. While the first multiscale model of lignin biosynthesis in P. trichocarpa spanned the transcript, protein, metabolic, and phenotypic layers, it did not account for cross-regulatory influences that could impact abundances of untargeted monolignol transcripts and proteins. Here, we present a multiscale model incorporating these cross-regulatory influences for predicting lignin and wood traits from transgenic knockdowns of the monolignol genes. The three main components of this multiscale model are (1) a transcript-protein model capturing cross-regulatory influences, (2) a kinetic-based metabolic model, and (3) random forest models relating the steady state metabolic fluxes to 25 physical traits. We demonstrate that including the cross-regulatory behavior results in smaller predictive error for 23 of the 25 traits. We use this multiscale model to explore the predicted impact of novel combinatorial knockdowns on key bioenergy traits, and identify the perturbation of PtrC3H3 and PtrCAld5H1&2 monolignol genes as a candidate strategy for increasing saccharification efficiencies while reducing negative impacts on wood density and height.
Collapse
Affiliation(s)
- Megan L Matthews
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jack P Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.,Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Ronald Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.,Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Cranos M Williams
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
6
|
Sulis DB, Wang JP. Regulation of Lignin Biosynthesis by Post-translational Protein Modifications. FRONTIERS IN PLANT SCIENCE 2020; 11:914. [PMID: 32714349 PMCID: PMC7343852 DOI: 10.3389/fpls.2020.00914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/04/2020] [Indexed: 05/24/2023]
Abstract
Post-translational modification of proteins exerts essential roles in many biological processes in plants. The function of these chemical modifications has been extensively characterized in many physiological processes, but how these modifications regulate lignin biosynthesis for wood formation remained largely unknown. Over the past decade, post-translational modification of several proteins has been associated with lignification. Phosphorylation, ubiquitination, glycosylation, and S-nitrosylation of transcription factors, monolignol enzymes, and peroxidases were shown to have primordial roles in the regulation of lignin biosynthesis. The main discoveries of post-translational modifications in lignin biosynthesis are discussed in this review.
Collapse
|
7
|
Lin Z, Ren Y, Shi Z, Zhang K, Yang H, Liu S, Hao P. Evaluation and minimization of nonspecific tryptic cleavages in proteomic sample preparation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8733. [PMID: 32031715 DOI: 10.1002/rcm.8733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
UNLABELLED High specificity of trypsin is a prerequisite for accurate identification and quantification of proteins in shotgun proteomics. It is important to minimize nonspecific enzymatic cleavages during proteomic sample preparation. METHODS In this study, protein extraction and trypsin digestion conditions were extensively evaluated using the less-complex Escherichia coli lysates to improve the sensitivity of detecting low-abundance nonspecific peptides by liquid chromatography/tandem mass spectrometry. RESULTS Trypsin digestion buffers and digestion times were proved to have a significant effect on nonspecific cleavages. The triethylammonium bicarbonate buffer induces significantly lower nonspecific cleavages than the other two buffers, but a freshly prepared urea solution does not induce more than sodium dodecyl sulfate. Because prolonged trypsin digestion resulted in a considerable number of nonspecific cleavages, an optimized 2-h protocol was developed with 45.2% less semispecific tryptic peptides but 18.5% more unmodified peptides identified than the commonly used 16-h protocol. CONCLUSIONS The significant decrease in nonspecific cleavages and artificial modifications improves the accuracy of protein quantification and the identification of low-abundance proteins, and it is especially useful for studying protein posttranslational modifications. For trypsin digestion, the proposed 2-h protocol can potentially be a replacement for the traditional 16-h protocol.
Collapse
Affiliation(s)
| | - Yan Ren
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Zhaomei Shi
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | | | - Huanming Yang
- BGI-Shenzhen, Shenzhen, Guangdong, China
- James D. Watson Institute of Genome Sciences, Hangzhou, China
| | - Siqi Liu
- BGI-Shenzhen, Shenzhen, Guangdong, China
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
8
|
Matthews ML, Wang JP, Sederoff R, Chiang VL, Williams CM. Modeling cross-regulatory influences on monolignol transcripts and proteins under single and combinatorial gene knockdowns in Populus trichocarpa. PLoS Comput Biol 2020; 16:e1007197. [PMID: 32275650 PMCID: PMC7147730 DOI: 10.1371/journal.pcbi.1007197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 02/27/2020] [Indexed: 11/18/2022] Open
Abstract
Accurate manipulation of metabolites in monolignol biosynthesis is a key step for controlling lignin content, structure, and other wood properties important to the bioenergy and biomaterial industries. A crucial component of this strategy is predicting how single and combinatorial knockdowns of monolignol specific gene transcripts influence the abundance of monolignol proteins, which are the driving mechanisms of monolignol biosynthesis. Computational models have been developed to estimate protein abundances from transcript perturbations of monolignol specific genes. The accuracy of these models, however, is hindered by their inability to capture indirect regulatory influences on other pathway genes. Here, we examine the manifestation of these indirect influences on transgenic transcript and protein abundances, identifying putative indirect regulatory influences that occur when one or more specific monolignol pathway genes are perturbed. We created a computational model using sparse maximum likelihood to estimate the resulting monolignol transcript and protein abundances in transgenic Populus trichocarpa based on targeted knockdowns of specific monolignol genes. Using in-silico simulations of this model and root mean square error, we showed that our model more accurately estimated transcript and protein abundances, in comparison to previous models, when individual and families of monolignol genes were perturbed. We leveraged insight from the inferred network structure obtained from our model to identify potential genes, including PtrHCT, PtrCAD, and Ptr4CL, involved in post-transcriptional and/or post-translational regulation. Our model provides a useful computational tool for exploring the cascaded impact of single and combinatorial modifications of monolignol specific genes on lignin and other wood properties.
Collapse
Affiliation(s)
- Megan L. Matthews
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Jack P. Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Department of Forestry and Environmental Resources, Forest Biotechnology Group, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Ronald Sederoff
- Department of Forestry and Environmental Resources, Forest Biotechnology Group, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Department of Forestry and Environmental Resources, Forest Biotechnology Group, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Cranos M. Williams
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
9
|
Burdman I, Burckhardt BB. A concept to make low-abundance endogenous renin accessible to mass spectrometry: A multistep experimental design approach. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1134-1135:121856. [DOI: 10.1016/j.jchromb.2019.121856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/20/2019] [Accepted: 10/29/2019] [Indexed: 01/08/2023]
|
10
|
Yan X, Liu J, Kim H, Liu B, Huang X, Yang Z, Lin YCJ, Chen H, Yang C, Wang JP, Muddiman DC, Ralph J, Sederoff RR, Li Q, Chiang VL. CAD1 and CCR2 protein complex formation in monolignol biosynthesis in Populus trichocarpa. THE NEW PHYTOLOGIST 2019; 222:244-260. [PMID: 30276825 DOI: 10.1111/nph.15505] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/20/2018] [Indexed: 05/18/2023]
Abstract
Lignin is the major phenolic polymer in plant secondary cell walls and is polymerized from monomeric subunits, the monolignols. Eleven enzyme families are implicated in monolignol biosynthesis. Here, we studied the functions of members of the cinnamyl alcohol dehydrogenase (CAD) and cinnamoyl-CoA reductase (CCR) families in wood formation in Populus trichocarpa, including the regulatory effects of their transcripts and protein activities on monolignol biosynthesis. Enzyme activity assays from stem-differentiating xylem (SDX) proteins showed that RNAi suppression of PtrCAD1 in P. trichocarpa transgenics caused a reduction in SDX CCR activity. RNAi suppression of PtrCCR2, the only CCR member highly expressed in SDX, caused a reciprocal reduction in SDX protein CAD activities. The enzyme assays of mixed and coexpressed recombinant proteins supported physical interactions between PtrCAD1 and PtrCCR2. Biomolecular fluorescence complementation and pull-down/co-immunoprecipitation experiments supported a hypothesis of PtrCAD1/PtrCCR2 heterodimer formation. These results provide evidence for the formation of PtrCAD1/PtrCCR2 protein complexes in monolignol biosynthesis in planta.
Collapse
Affiliation(s)
- Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jie Liu
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Hoon Kim
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, 53726, USA
| | - Baoguang Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- Department of Forestry, Beihua University, Jilin, 132013, China
| | - Xiong Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zhichang Yang
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Ying-Chung Jimmy Lin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- Department of Life Sciences, Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, 10617, Taiwan
| | - Hao Chen
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Chenmin Yang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jack P Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - David C Muddiman
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - John Ralph
- Department of Biochemistry and DOE Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, WI, 53726, USA
| | - Ronald R Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Vincent L Chiang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
11
|
Wang JP, Matthews ML, Naik PP, Williams CM, Ducoste JJ, Sederoff RR, Chiang VL. Flux modeling for monolignol biosynthesis. Curr Opin Biotechnol 2019; 56:187-192. [DOI: 10.1016/j.copbio.2018.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/30/2018] [Accepted: 12/02/2018] [Indexed: 10/27/2022]
|
12
|
Daly P, McClellan C, Maluk M, Oakey H, Lapierre C, Waugh R, Stephens J, Marshall D, Barakate A, Tsuji Y, Goeminne G, Vanholme R, Boerjan W, Ralph J, Halpin C. RNAi-suppression of barley caffeic acid O-methyltransferase modifies lignin despite redundancy in the gene family. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:594-607. [PMID: 30133138 PMCID: PMC6381794 DOI: 10.1111/pbi.13001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 08/18/2018] [Indexed: 05/12/2023]
Abstract
Caffeic acid O-methyltransferase (COMT), the lignin biosynthesis gene modified in many brown-midrib high-digestibility mutants of maize and sorghum, was targeted for downregulation in the small grain temperate cereal, barley (Hordeum vulgare), to improve straw properties. Phylogenetic and expression analyses identified the barley COMT orthologue(s) expressed in stems, defining a larger gene family than in brachypodium or rice with three COMT genes expressed in lignifying tissues. RNAi significantly reduced stem COMT protein and enzyme activity, and modestly reduced stem lignin content while dramatically changing lignin structure. Lignin syringyl-to-guaiacyl ratio was reduced by ~50%, the 5-hydroxyguaiacyl (5-OH-G) unit incorporated into lignin at 10--15-fold higher levels than normal, and the amount of p-coumaric acid ester-linked to cell walls was reduced by ~50%. No brown-midrib phenotype was observed in any RNAi line despite significant COMT suppression and altered lignin. The novel COMT gene family structure in barley highlights the dynamic nature of grass genomes. Redundancy in barley COMTs may explain the absence of brown-midrib mutants in barley and wheat. The barley COMT RNAi lines nevertheless have the potential to be exploited for bioenergy applications and as animal feed.
Collapse
Affiliation(s)
- Paul Daly
- Division of Plant SciencesSchool of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeUK
- Present address:
Fungal PhysiologyWesterdijk Fungal Biodiversity Institute and Fungal Molecular PhysiologyUtrecht UniversityUtrechtThe Netherlands
| | - Christopher McClellan
- Division of Plant SciencesSchool of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeUK
| | - Marta Maluk
- Division of Plant SciencesSchool of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeUK
| | - Helena Oakey
- Division of Plant SciencesSchool of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeUK
- Faculty of SciencesSchool of Agriculture, Food and WineUniversity of AdelaideAdelaideAustralia
| | - Catherine Lapierre
- UMR1318 INRA‐AgroParistechIJPBUniversite Paris‐SaclayVersailles CedexFrance
| | - Robbie Waugh
- Division of Plant SciencesSchool of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeUK
- Cell and Molecular SciencesJames Hutton InstituteDundeeUK
| | | | - David Marshall
- Information and Computational SciencesJames Hutton InstituteDundeeUK
| | - Abdellah Barakate
- Division of Plant SciencesSchool of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeUK
| | - Yukiko Tsuji
- Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Energy's Great Lakes Bioenergy Research CenterThe Wisconsin Energy InstituteUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Geert Goeminne
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Ruben Vanholme
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - Wout Boerjan
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- VIB Center for Plant Systems BiologyGhentBelgium
| | - John Ralph
- Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Energy's Great Lakes Bioenergy Research CenterThe Wisconsin Energy InstituteUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Claire Halpin
- Division of Plant SciencesSchool of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeUK
| |
Collapse
|
13
|
Improving wood properties for wood utilization through multi-omics integration in lignin biosynthesis. Nat Commun 2018; 9:1579. [PMID: 29679008 PMCID: PMC5910405 DOI: 10.1038/s41467-018-03863-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 03/16/2018] [Indexed: 11/21/2022] Open
Abstract
A multi-omics quantitative integrative analysis of lignin biosynthesis can advance the strategic engineering of wood for timber, pulp, and biofuels. Lignin is polymerized from three monomers (monolignols) produced by a grid-like pathway. The pathway in wood formation of Populus trichocarpa has at least 21 genes, encoding enzymes that mediate 37 reactions on 24 metabolites, leading to lignin and affecting wood properties. We perturb these 21 pathway genes and integrate transcriptomic, proteomic, fluxomic and phenomic data from 221 lines selected from ~2000 transgenics (6-month-old). The integrative analysis estimates how changing expression of pathway gene or gene combination affects protein abundance, metabolic-flux, metabolite concentrations, and 25 wood traits, including lignin, tree-growth, density, strength, and saccharification. The analysis then predicts improvements in any of these 25 traits individually or in combinations, through engineering expression of specific monolignol genes. The analysis may lead to greater understanding of other pathways for improved growth and adaptation. A systematic analysis of lignin biosynthetic genes to quantitatively understand their effect on wood properties is still lacking. Here, the authors integrate transcriptomic, proteomic, fluxomic and phenomic data to quantify the impact of perturbations of transcript abundance on lignin biosynthesis and wood properties.
Collapse
|
14
|
Kottke PA, Lee JY, Jonke AP, Seneviratne CA, Hecht ES, Muddiman DC, Torres MP, Fedorov AG. DRILL: An Electrospray Ionization-Mass Spectrometry Interface for Improved Sensitivity via Inertial Droplet Sorting and Electrohydrodynamic Focusing in a Swirling Flow. Anal Chem 2017; 89:8981-8987. [PMID: 28612611 PMCID: PMC5587373 DOI: 10.1021/acs.analchem.7b01555] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the DRILL (dry ion localization and locomotion) device, which is an interface for electrospray ionization (ESI)-mass spectrometry (MS) that exploits a swirling flow to enable the use of inertial separation to prescribe different fates for electrosprayed droplets based on their size. This source adds a new approach to charged droplet trajectory manipulation which, when combined with hydrodynamic drag forces and electric field forces, provides a rich range of possible DRILL operational modes. Here, we experimentally demonstrate sensitivity improvement obtained via vortex-induced inertial sorting of electrosprayed droplets/ions: one possible mode of DRILL operation. In this mode, DRILL removes larger droplets while accelerating the remainder of the ESI plume, producing a high velocity stream of gas-enriched spray with small, highly charged droplets and ions and directing it toward the MS inlet. The improved signal-to-noise ratio (10-fold enhancement) in the detection of angiotensin I is demonstrated using the DRILL interface coupled to ESI-MS along with an improved limit of detection (10-fold enhancement, 100 picomole) in the detection of angiotensin II. The utility of DRILL has also been demonstrated by liquid chromatography (LC)-MS: a stable isotope labeled peptide cocktail was spiked into a complex native tissue extract and quantified by unscheduled multiple reaction monitoring on a TSQ Vantage. DRILL demonstrated improved signal strength (up to a 700-fold) for 8 out of 9 peptides and had no effects on the peak shape of the transitions.
Collapse
Affiliation(s)
- Peter A. Kottke
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jung Y. Lee
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Alex P. Jonke
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chinthaka A. Seneviratne
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Elizabeth S. Hecht
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - David C. Muddiman
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Matthew P. Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Andrei G. Fedorov
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
15
|
N-linked glycosite profiling and use of Skyline as a platform for characterization and relative quantification of glycans in differentiating xylem of Populus trichocarpa. Anal Bioanal Chem 2016; 409:487-497. [PMID: 27491298 DOI: 10.1007/s00216-016-9776-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/28/2016] [Accepted: 07/06/2016] [Indexed: 01/02/2023]
Abstract
Our greater understanding of the importance of N-linked glycosylation in biological systems has spawned the field of glycomics and development of analytical tools to address the many challenges regarding our ability to characterize and quantify this complex and important modification as it relates to biological function. One of the unmet needs of the field remains a systematic method for characterization of glycans in new biological systems. This study presents a novel workflow for identification of glycans using Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT™) strategy developed in our lab. This consists of monoisotopic mass extraction followed by peak pair identification of tagged glycans from a theoretical library using an in-house program. Identification and relative quantification could then be performed using the freely available bioinformatics tool Skyline. These studies were performed in the biological context of studying the N-linked glycome of differentiating xylem of the poplar tree, a widely studied model woody plant, particularly with respect to understanding lignin biosynthesis during wood formation. Through our workflow, we were able to identify 502 glycosylated proteins including 12 monolignol enzymes and 1 peroxidase (PO) through deamidation glycosite analysis. Finally, our novel semi-automated workflow allowed for rapid identification of 27 glycans by intact mass and by NAT/SIL peak pairing from a library containing 1573 potential glycans, eliminating the need for extensive manual analysis. Implementing Skyline for relative glycan quantification allowed for improved accuracy and precision of quantitative measurements over current processing tools which we attribute to superior algorithms correction for baseline variation and MS1 peak filtering. Graphical abstract Workflow for FANGS-INLIGHT glycosite profiling of plant xylem and monolignol proteins followed by INLIGHT tagging with semi-automated identification of glycans by light-heavy peak pairs. Finally, manual validation and relative quantification was performed in Skyline.
Collapse
|
16
|
Hecht ES, Oberg AL, Muddiman DC. Optimizing Mass Spectrometry Analyses: A Tailored Review on the Utility of Design of Experiments. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:767-85. [PMID: 26951559 PMCID: PMC4841694 DOI: 10.1007/s13361-016-1344-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/14/2016] [Accepted: 01/16/2016] [Indexed: 05/07/2023]
Abstract
Mass spectrometry (MS) has emerged as a tool that can analyze nearly all classes of molecules, with its scope rapidly expanding in the areas of post-translational modifications, MS instrumentation, and many others. Yet integration of novel analyte preparatory and purification methods with existing or novel mass spectrometers can introduce new challenges for MS sensitivity. The mechanisms that govern detection by MS are particularly complex and interdependent, including ionization efficiency, ion suppression, and transmission. Performance of both off-line and MS methods can be optimized separately or, when appropriate, simultaneously through statistical designs, broadly referred to as "design of experiments" (DOE). The following review provides a tutorial-like guide into the selection of DOE for MS experiments, the practices for modeling and optimization of response variables, and the available software tools that support DOE implementation in any laboratory. This review comes 3 years after the latest DOE review (Hibbert DB, 2012), which provided a comprehensive overview on the types of designs available and their statistical construction. Since that time, new classes of DOE, such as the definitive screening design, have emerged and new calls have been made for mass spectrometrists to adopt the practice. Rather than exhaustively cover all possible designs, we have highlighted the three most practical DOE classes available to mass spectrometrists. This review further differentiates itself by providing expert recommendations for experimental setup and defining DOE entirely in the context of three case-studies that highlight the utility of different designs to achieve different goals. A step-by-step tutorial is also provided.
Collapse
Affiliation(s)
- Elizabeth S Hecht
- W. M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | - Ann L Oberg
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - David C Muddiman
- W. M. Keck FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
17
|
Loziuk PL, Parker J, Li W, Lin CY, Wang JP, Li Q, Sederoff RR, Chiang VL, Muddiman DC. Elucidation of Xylem-Specific Transcription Factors and Absolute Quantification of Enzymes Regulating Cellulose Biosynthesis in Populus trichocarpa. J Proteome Res 2015; 14:4158-68. [PMID: 26325666 DOI: 10.1021/acs.jproteome.5b00233] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellulose, the main chemical polymer of wood, is the most abundant polysaccharide in nature.1 The ability to perturb the abundance and structure of cellulose microfibrils is of critical importance to the pulp and paper industry as well as for the textile, wood products, and liquid biofuels industries. Although much has been learned at the transcript level about the biosynthesis of cellulose, a quantitative understanding at the proteome level has yet to be established. The study described herein sought to identify the proteins directly involved in cellulose biosynthesis during wood formation in Populus trichocarpa along with known xylem-specific transcription factors involved in regulating these key proteins. Development of an effective discovery proteomic strategy through a combination of subcellular fractionation of stem differentiating xylem tissue (SDX) with recently optimized FASP digestion protocols, StageTip fractionation, as well as optimized instrument parameters for global proteomic analysis using the quadrupole-orbitrap mass spectrometer resulted in the deepest proteomic coverage of SDX protein from P. trichocarpa with 9,146 protein groups being identified (1% FDR). Of these, 20 cellulosic/hemicellulosic enzymes and 43 xylem-specific transcription factor groups were identified. Finally, selection of surrogate peptides led to an assay for absolute quantification of 14 cellulosic proteins in SDX of P. trichocarpa.
Collapse
Affiliation(s)
- Philip L Loziuk
- W.M. Keck FTMS Laboratory, Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Jennifer Parker
- W.M. Keck FTMS Laboratory, Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Wei Li
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Chien-Yuan Lin
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Jack P Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry , Beijing 100091, China
| | - Ronald R Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - Vincent L Chiang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University , Raleigh, North Carolina 27695, United States
| | - David C Muddiman
- W.M. Keck FTMS Laboratory, Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| |
Collapse
|
18
|
Loziuk PL, Sederoff RR, Chiang VL, Muddiman DC. Establishing ion ratio thresholds based on absolute peak area for absolute protein quantification using protein cleavage isotope dilution mass spectrometry. Analyst 2015; 139:5439-50. [PMID: 25154770 DOI: 10.1039/c4an00567h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Quantitative mass spectrometry has become central to the field of proteomics and metabolomics. Selected reaction monitoring is a widely used method for the absolute quantification of proteins and metabolites. This method renders high specificity using several product ions measured simultaneously. With growing interest in quantification of molecular species in complex biological samples, confident identification and quantitation has been of particular concern. A method to confirm purity or contamination of product ion spectra has become necessary for achieving accurate and precise quantification. Ion abundance ratio assessments were introduced to alleviate some of these issues. Ion abundance ratios are based on the consistent relative abundance (RA) of specific product ions with respect to the total abundance of all product ions. To date, no standardized method of implementing ion abundance ratios has been established. Thresholds by which product ion contamination is confirmed vary widely and are often arbitrary. This study sought to establish criteria by which the relative abundance of product ions can be evaluated in an absolute quantification experiment. These findings suggest that evaluation of the absolute ion abundance for any given transition is necessary in order to effectively implement RA thresholds. Overall, the variation of the RA value was observed to be relatively constant beyond an absolute threshold ion abundance. Finally, these RA values were observed to fluctuate significantly over a 3 year period, suggesting that these values should be assessed as close as possible to the time at which data is collected for quantification.
Collapse
Affiliation(s)
- Philip L Loziuk
- W. M. Keck Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, USA.
| | | | | | | |
Collapse
|
19
|
Phosphorylation is an on/off switch for 5-hydroxyconiferaldehyde O-methyltransferase activity in poplar monolignol biosynthesis. Proc Natl Acad Sci U S A 2015; 112:8481-6. [PMID: 26109572 DOI: 10.1073/pnas.1510473112] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although phosphorylation has long been known to be an important regulatory modification of proteins, no unequivocal evidence has been presented to show functional control by phosphorylation for the plant monolignol biosynthetic pathway. Here, we present the discovery of phosphorylation-mediated on/off regulation of enzyme activity for 5-hydroxyconiferaldehyde O-methyltransferase 2 (PtrAldOMT2), an enzyme central to monolignol biosynthesis for lignification in stem-differentiating xylem (SDX) of Populus trichocarpa. Phosphorylation turned off the PtrAldOMT2 activity, as demonstrated in vitro by using purified phosphorylated and unphosphorylated recombinant PtrAldOMT2. Protein extracts of P. trichocarpa SDX, which contains endogenous kinases, also phosphorylated recombinant PtrAldOMT2 and turned off the recombinant protein activity. Similarly, ATP/Mn(2+)-activated phosphorylation of SDX protein extracts reduced the endogenous SDX PtrAldOMT2 activity by ∼ 60%, and dephosphorylation fully restored the activity. Global shotgun proteomic analysis of phosphopeptide-enriched P. trichocarpa SDX protein fractions identified PtrAldOMT2 monophosphorylation at Ser(123) or Ser(125) in vivo. Phosphorylation-site mutagenesis verified the PtrAldOMT2 phosphorylation at Ser(123) or Ser(125) and confirmed the functional importance of these phosphorylation sites for O-methyltransferase activity. The PtrAldOMT2 Ser(123) phosphorylation site is conserved across 93% of AldOMTs from 46 diverse plant species, and 98% of the AldOMTs have either Ser(123) or Ser(125). PtrAldOMT2 is a homodimeric cytosolic enzyme expressed more abundantly in syringyl lignin-rich fiber cells than in guaiacyl lignin-rich vessel cells. The reversible phosphorylation of PtrAldOMT2 is likely to have an important role in regulating syringyl monolignol biosynthesis of P. trichocarpa.
Collapse
|
20
|
Lin CY, Wang JP, Li Q, Chen HC, Liu J, Loziuk P, Song J, Williams C, Muddiman DC, Sederoff RR, Chiang VL. 4-Coumaroyl and caffeoyl shikimic acids inhibit 4-coumaric acid:coenzyme A ligases and modulate metabolic flux for 3-hydroxylation in monolignol biosynthesis of Populus trichocarpa. MOLECULAR PLANT 2015; 8:176-87. [PMID: 25578281 DOI: 10.1016/j.molp.2014.12.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/07/2014] [Indexed: 05/06/2023]
Abstract
Downregulation of 4-coumaric acid:coenzyme A ligase (4CL) can reduce lignin content in a number of plant species. In lignin precursor (monolignol) biosynthesis during stem wood formation in Populus trichocarpa, two enzymes, Ptr4CL3 and Ptr4CL5, catalyze the coenzyme A (CoA) ligation of 4-coumaric acid to 4-coumaroyl-CoA and caffeic acid to caffeoyl-CoA. CoA ligation of 4-coumaric acid is essential for the 3-hydroxylation of 4-coumaroyl shikimic acid. This hydroxylation results from sequential reactions of 4-hydroxycinnamoyl-CoA:shikimic acid hydroxycinnamoyl transferases (PtrHCT1 and PtrHCT6) and 4-coumaric acid 3-hydroxylase 3 (PtrC3H3). Alternatively, 3-hydroxylation of 4-coumaric acid to caffeic acid may occur through an enzyme complex of cinnamic acid 4-hydroxylase 1 and 2 (PtrC4H1 and PtrC4H2) and PtrC3H3. We found that 4-coumaroyl and caffeoyl shikimic acids are inhibitors of Ptr4CL3 and Ptr4CL5. 4-Coumaroyl shikimic acid strongly inhibits the formation of 4-coumaroyl-CoA and caffeoyl-CoA. Caffeoyl shikimic acid inhibits only the formation of 4-coumaroyl-CoA. 4-Coumaroyl and caffeoyl shikimic acids both act as competitive and uncompetitive inhibitors. Metabolic flux in wild-type and PtrC3H3 downregulated P. trichocarpa transgenics has been estimated by absolute protein and metabolite quantification based on liquid chromatography-tandem mass spectrometry, mass action kinetics, and inhibition equations. Inhibition by 4-coumaroyl and caffeoyl shikimic acids may play significant regulatory roles when these inhibitors accumulate.
Collapse
Affiliation(s)
- Chien-Yuan Lin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Jack P Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Hsi-Chuan Chen
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Jie Liu
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Philip Loziuk
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Jina Song
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Cranos Williams
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - David C Muddiman
- W.M. Keck FT-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Ronald R Sederoff
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| | - Vincent L Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
21
|
Nepomuceno AI, Gibson RJ, Randall SM, Muddiman DC. Accurate identification of deamidated peptides in global proteomics using a quadrupole orbitrap mass spectrometer. J Proteome Res 2013; 13:777-85. [PMID: 24289162 DOI: 10.1021/pr400848n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Deamidation of asparagine and glutamine residues is a common post-translational modification. Researchers often rely on mass spectrometric based proteomic techniques for the identification of these post-translational sites. Mass spectral analysis of deamidated peptides is complicated and often misassigned due to overlapping (13)C peak of the amidated form with the deamidated monoisotopic peak; these two peaks are only separated by 19.34 mDa. For proper assignment, it is inherently important to use a mass spectrometer with high mass measurement accuracy and high resolving power. Herein, mouse brain tissue lysate was prepared using filter-aided sample preparation (FASP) method and Stage Tip fractionation followed by analysis on a nanoLC coupled with a quadrupole orbitrap (Q-Exactive) mass spectrometer to accurately identify more than 5400 proteins. Mass spectral data was processed using MASCOT and ProteoIQ for accurate identification of peptides and proteins. MASCOT search values for precursor and MS/MS mass tolerances were investigated, and it was determined that data searched with greater than 5 ppm precursor mass tolerance resulted in the misassignment of deamidated peptides. Peptides that were identified with a mass measurement accuracy of ±5 ppm were correctly assigned.
Collapse
Affiliation(s)
- Angelito I Nepomuceno
- W.M. Keck Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | | | |
Collapse
|
22
|
Loziuk PL, Wang J, Li Q, Sederoff RR, Chiang VL, Muddiman DC. Understanding the Role of Proteolytic Digestion on Discovery and Targeted Proteomic Measurements Using Liquid Chromatography Tandem Mass Spectrometry and Design of Experiments. J Proteome Res 2013; 12:5820-9. [DOI: 10.1021/pr4008442] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Philip L. Loziuk
- W.M. Keck
Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695, United States
| | - Jack Wang
- Forest
Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, 27695, United States
| | - Quanzi Li
- Forest
Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, 27695, United States
| | - Ronald R. Sederoff
- Forest
Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, 27695, United States
| | - Vincent L. Chiang
- Forest
Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina, 27695, United States
| | - David C. Muddiman
- W.M. Keck
Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695, United States
| |
Collapse
|
23
|
Randall SM, Cardasis HL, Muddiman DC. Factorial experimental designs elucidate significant variables affecting data acquisition on a quadrupole Orbitrap mass spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1501-1512. [PMID: 23913023 DOI: 10.1007/s13361-013-0693-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/08/2013] [Accepted: 06/16/2013] [Indexed: 06/02/2023]
Abstract
Instrument parameter values for a quadrupole Orbitrap mass spectrometer were optimized for performing global proteomic analyses. Fourteen factors were evaluated for their influence on data-dependent acquisition with an emphasis on both the rate of sequencing and spectral quality by maximizing two individually tested response variables (unique peptides and protein groups). Of the 14 factors, 12 factors were assigned significant contrast values (P < 0.05) for both response variables. Fundamentally, when optimizing parameters, a balance between spectral quality and duty cycle needs to be reached in order to maximize proteome coverage. This is especially true when using a data-dependent approach for sequencing complex proteomes. For example, maximum ion injection time, automatic gain control settings, and minimum threshold settings for triggering MS/MS isolation and activation all heavily influence ion signal, the number of spectra collected, and spectral quality. To better assess the effect these parameters have on data acquisition, all MS/MS data were parsed according to ion abundance by calculating the percent of the AGC target reached for each MS/MS event and then compared with successful peptide-spectrum matches. This proved to be an effective approach for understanding the effect of ion abundance on successful peptide-spectrum matches and establishing minimum ion abundance thresholds for triggering MS/MS isolation and activation.
Collapse
Affiliation(s)
- Shan M Randall
- W. M. Keck Fourier Transform Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA
| | | | | |
Collapse
|
24
|
Shi R, Shuford CM, Wang JP, Sun YH, Yang Z, Chen HC, Tunlaya-Anukit S, Li Q, Liu J, Muddiman DC, Sederoff RR, Chiang VL. Regulation of phenylalanine ammonia-lyase (PAL) gene family in wood forming tissue of Populus trichocarpa. PLANTA 2013; 238:487-97. [PMID: 23765265 DOI: 10.1007/s00425-013-1905-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 05/27/2013] [Indexed: 05/12/2023]
Abstract
Phenylalanine ammonia-lyase (PAL) catalyzes the initial step of phenylpropanoid biosynthesis in plants. Five PAL genes (PtrPAL1 to 5) have been identified in Populus trichocarpa. These genes are classified into two subgroups according to their transcript sequence similarity and tissue specificity. However, the regulation of these genes and their protein functions are not well understood. In this study, enzymatic properties of each PtrPALs were characterized based on their recombinant proteins expressed in E.coli. Subcellular localizations of each PtrPALs in stem wood forming tissue were investigated and individual PtrPAL protein abundances in cytosol and membrane protein fractions were measured using protein cleavage-isotope dilution mass spectrometry (PC-IDMS). Protein/mRNA ratios of PtrPALs were further verified using RNA-Seq and gel-enhanced liquid chromatography mass spectrometry (GeLC-MS). All PtrPALs have similar catalytic properties for the deamination of L-phenylalanine, their major substrate. All PtrPALs have similar subcellular locations in stem wood forming tissue, with major amount in the cytosol (93-96 %) and less in the membrane (4-7 %). However, the protein/mRNA ratios of subgroup A (PtrPAL2, 4 and 5) are about five times that of subgroup B (PtrPAL1 and 3) in stem wood forming tissue, while all PtrPALs have similar transcript abundances. These results indicate a greater functional significance of subgroup A PtrPALs for stem wood formation, and highlight the role of gene post-transcriptional regulation.
Collapse
Affiliation(s)
- Rui Shi
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Franck WL, Gokce E, Oh Y, Muddiman DC, Dean RA. Temporal analysis of the magnaporthe oryzae proteome during conidial germination and cyclic AMP (cAMP)-mediated appressorium formation. Mol Cell Proteomics 2013; 12:2249-65. [PMID: 23665591 PMCID: PMC3734583 DOI: 10.1074/mcp.m112.025874] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 04/09/2013] [Indexed: 11/06/2022] Open
Abstract
Rice blast disease caused by Magnaporthe oryzae is one of the most serious threats to global rice production. During the earliest stages of rice infection, M. oryzae conidia germinate on the leaf surface and form a specialized infection structure termed the appressorium. The development of the appressorium represents the first critical stage of infectious development. A total of 3200 unique proteins were identified by nanoLC-MS/MS in a temporal study of conidial germination and cAMP-induced appressorium formation in M. oryzae. Using spectral counting based label free quantification, observed changes in relative protein abundance during the developmental process revealed changes in the cell wall biosynthetic machinery, transport functions, and production of extracellular proteins in developing appressoria. One hundred and sixty-six up-regulated and 208 down-regulated proteins were identified in response to cAMP treatment. Proteomic analysis of a cAMP-dependent protein kinase A mutant that is compromised in the ability to form appressoria identified proteins whose developmental regulation is dependent on cAMP signaling. Selected reaction monitoring was used for absolute quantification of four regulated proteins to validate the global proteomics data and confirmed the germination or appressorium specific regulation of these proteins. Finally, a comparison of the proteome and transcriptome was performed and revealed little correlation between transcript and protein regulation. A subset of regulated proteins were identified whose transcripts show similar regulation patterns and include many of the most strongly regulated proteins indicating a central role in appressorium formation. A temporal quantitative RT-PCR analysis confirmed a strong correlation between transcript and protein abundance for some but not all genes. Collectively, the data presented here provide the first comprehensive view of the M. oryzae proteome during early infection-related development and highlight biological processes important for pathogenicity.
Collapse
Affiliation(s)
| | - Emine Gokce
- §W.M. Keck Fourier Transform-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27606
| | - Yeonyee Oh
- From the ‡Center for Integrated Fungal Research
| | - David C. Muddiman
- §W.M. Keck Fourier Transform-ICR Mass Spectrometry Laboratory, Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27606
| | | |
Collapse
|
26
|
Chen HC, Song J, Williams CM, Shuford CM, Liu J, Wang JP, Li Q, Shi R, Gokce E, Ducoste J, Muddiman DC, Sederoff RR, Chiang VL. Monolignol pathway 4-coumaric acid:coenzyme A ligases in Populus trichocarpa: novel specificity, metabolic regulation, and simulation of coenzyme A ligation fluxes. PLANT PHYSIOLOGY 2013; 161:1501-16. [PMID: 23344904 PMCID: PMC3585612 DOI: 10.1104/pp.112.210971] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/21/2013] [Indexed: 05/20/2023]
Abstract
4-Coumaric acid:coenzyme A ligase (4CL) is involved in monolignol biosynthesis for lignification in plant cell walls. It ligates coenzyme A (CoA) with hydroxycinnamic acids, such as 4-coumaric and caffeic acids, into hydroxycinnamoyl-CoA thioesters. The ligation ensures the activated state of the acid for reduction into monolignols. In Populus spp., it has long been thought that one monolignol-specific 4CL is involved. Here, we present evidence of two monolignol 4CLs, Ptr4CL3 and Ptr4CL5, in Populus trichocarpa. Ptr4CL3 is the ortholog of the monolignol 4CL reported for many other species. Ptr4CL5 is novel. The two Ptr4CLs exhibited distinct Michaelis-Menten kinetic properties. Inhibition kinetics demonstrated that hydroxycinnamic acid substrates are also inhibitors of 4CL and suggested that Ptr4CL5 is an allosteric enzyme. Experimentally validated flux simulation, incorporating reaction/inhibition kinetics, suggested two CoA ligation paths in vivo: one through 4-coumaric acid and the other through caffeic acid. We previously showed that a membrane protein complex mediated the 3-hydroxylation of 4-coumaric acid to caffeic acid. The demonstration here of two ligation paths requiring these acids supports this 3-hydroxylation function. Ptr4CL3 regulates both CoA ligation paths with similar efficiencies, whereas Ptr4CL5 regulates primarily the caffeic acid path. Both paths can be inhibited by caffeic acid. The Ptr4CL5-catalyzed caffeic acid metabolism, therefore, may also act to mitigate the inhibition by caffeic acid to maintain a proper ligation flux. A high level of caffeic acid was detected in stem-differentiating xylem of P. trichocarpa. Our results suggest that Ptr4CL5 and caffeic acid coordinately modulate the CoA ligation flux for monolignol biosynthesis.
Collapse
|
27
|
Bereman MS, Hsieh EJ, Corso TN, Van Pelt CK, Maccoss MJ. Development and characterization of a novel plug and play liquid chromatography-mass spectrometry (LC-MS) source that automates connections between the capillary trap, column, and emitter. Mol Cell Proteomics 2013; 12:1701-8. [PMID: 23422586 DOI: 10.1074/mcp.o112.024893] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report the development and characterization of a novel, vendor-neutral ultra-high pressure-compatible (~10,000 p.s.i.) LC-MS source. This device is the first to make automated connections with user-packed capillary traps, columns, and capillary emitters. The source uses plastic rectangular inserts (referred to here as cartridges) where individual components (i.e. trap, column, or emitter) can be exchanged independent of one another in a plug and play manner. Automated robotic connections are made between the three cartridges using linear translation powered by stepper motors to axially compress each cartridge by applying a well controlled constant compression force to each commercial LC fitting. The user has the versatility to tailor the separation (e.g. the length of the column, type of stationary phase, and mode of separation) to the experimental design of interest in a cost-effective manner. The source is described in detail, and several experiments are performed to evaluate the robustness of both the system and the exchange of the individual trap and emitter cartridges. The standard deviation in the retention time of four targeted peptides from a standard digest interlaced with a soluble Caenorhabditis elegans lysate ranged between 3.1 and 5.3 s over 3 days of analyses. Exchange of the emitter cartridge was found to have an insignificant effect on the abundance of various peptides. In addition, the trap cartridge can be replaced with minimal effects on retention time (<20 s).
Collapse
Affiliation(s)
- Michael S Bereman
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | |
Collapse
|
28
|
Abraham P, Giannone RJ, Adams RM, Kalluri U, Tuskan GA, Hettich RL. Putting the pieces together: high-performance LC-MS/MS provides network-, pathway-, and protein-level perspectives in Populus. Mol Cell Proteomics 2012; 12:106-19. [PMID: 23073815 DOI: 10.1074/mcp.m112.022996] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
High-performance mass spectrometry (MS)-based proteomics enabled the construction of a detailed proteome atlas for Populus, a woody perennial plant model organism. Optimization of experimental procedures and implementation of current state-of-the-art instrumentation afforded the most detailed look into the predicted proteome space of Populus, offering varying proteome perspectives: (1) network-wide, (2) pathway-specific, and (3) protein-level viewpoints. Together, enhanced protein retrieval through a detergent-based lysis approach and maximized peptide sampling via the dual-pressure linear ion trap mass spectrometer (LTQ Velos), have resulted in the identification of 63,056 tryptic peptides. The technological advancements, specifically spectral-acquisition and sequencing speed, afforded the deepest look into the Populus proteome, with peptide abundances spanning 6 orders of magnitude and mapping to ∼25% of the predicted proteome space. In total, tryptic peptides mapped to 11,689 protein assignments across four organ-types: mature (fully expanded, leaf plastichronic index (LPI) 10-12) leaf, young (juvenile, LPI 4-6) leaf, root, and stem. To resolve protein ambiguity, identified proteins were grouped by sequence similarity (≥ 90%), thereby reducing the protein assignments into 7538 protein groups. In addition, this large-scale data set features the first systems-wide survey of protein expression across different Populus organs. As a demonstration of the precision and comprehensiveness of the semiquantitative analysis, we were able to contrast two stages of leaf development, mature versus young leaf. Statistical comparison through ANOVA analysis revealed 1432 protein groups that exhibited statistically significant (p ≤ 0.01) differences in protein abundance. Experimental validation of the metabolic circuitry expected in mature leaf (characterized by photosynthesis and carbon fixation) compared with young leaf (characterized by rapid growth and moderate photosynthetic activities) strongly testifies to the credibility of the approach. Instead of quantitatively comparing a few proteins, a systems view of all the changes associated with a given cellular perturbation could be made.
Collapse
Affiliation(s)
- Paul Abraham
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37830, USA
| | | | | | | | | | | |
Collapse
|
29
|
Wang JP, Shuford CM, Li Q, Song J, Lin YC, Sun YH, Chen HC, Williams CM, Muddiman DC, Sederoff RR, Chiang VL. Functional redundancy of the two 5-hydroxylases in monolignol biosynthesis of Populus trichocarpa: LC-MS/MS based protein quantification and metabolic flux analysis. PLANTA 2012; 236:795-808. [PMID: 22628084 DOI: 10.1007/s00425-012-1663-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 05/06/2012] [Indexed: 06/01/2023]
Abstract
Flowering plants have syringyl and guaiacyl subunits in lignin in contrast to the guaiacyl lignin in gymnosperms. The biosynthesis of syringyl subunits is initiated by coniferaldehyde 5-hydroxylase (CAld5H). In Populus trichocarpa there are two closely related CAld5H enzymes (PtrCAld5H1 and PtrCAld5H2) associated with lignin biosynthesis during wood formation. We used yeast recombinant PtrCAld5H1 and PtrCAld5H2 proteins to carry out Michaelis-Menten and inhibition kinetics with LC-MS/MS based absolute protein quantification. CAld5H, a monooxygenase, requires a cytochrome P450 reductase (CPR) as an electron donor. We cloned and expressed three P. trichocarpa CPRs in yeast and show that all are active with both CAld5Hs. The kinetic analysis shows both CAld5Hs have essentially the same biochemical functions. When both CAld5Hs are coexpressed in the same yeast membranes, the resulting enzyme activities are additive, suggesting functional redundancy and independence of these two enzymes. Simulated reaction flux based on Michaelis-Menten kinetics and inhibition kinetics confirmed the redundancy and independence. Subcellular localization of both CAld5Hs as sGFP fusion proteins expressed in P. trichocarpa differentiating xylem protoplasts indicate that they are endoplasmic reticulum resident proteins. These results imply that during wood formation, 5-hydroxylation in monolignol biosynthesis of P. trichocarpa requires the combined metabolic flux of these two CAld5Hs to maintain adequate biosynthesis of syringyl lignin. The combination of genetic analysis, absolute protein quantitation-based enzyme kinetics, homologous CPR specificity, SNP characterization, and ER localization provides a more rigorous basis for a comprehensive systems understanding of 5-hydroxylation in lignin biosynthesis.
Collapse
Affiliation(s)
- Jack P Wang
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Liu J, Shi R, Li Q, Sederoff RR, Chiang VL. A standard reaction condition and a single HPLC separation system are sufficient for estimation of monolignol biosynthetic pathway enzyme activities. PLANTA 2012; 236:879-85. [PMID: 22729823 DOI: 10.1007/s00425-012-1688-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Accepted: 06/04/2012] [Indexed: 05/13/2023]
Abstract
Lignin content and composition are largely determined by the composition and quantity of the monolignol precursors. Individual enzymes of the monolignol biosynthetic pathway determine the composition and quantity of monolignols. Monolignol biosynthesis in angiosperms is mediated by ten enzyme families. We developed a method using a total protein extract (soluble and microsomal) for the comprehensive and simultaneous analysis of these ten enzyme activities in a single target tissue, stem differentiating xylem (SDX) of Populus trichocarpa. As little as 300 mg fresh weight of SDX is sufficient for triplicate assays of all ten enzyme activities. To expand the effectiveness of the analysis, we quantified the reaction products directly by HPLC and developed a universal method that can separate the substrates and products of all enzymes. The specific activities measured with this simple approach are similar to those obtained with the optimum conditions previously established for each individual enzyme. This approach is applicable to the enzyme activity analysis for both P. trichocarpa (angiosperm) and Pinus taeda (gymnosperm) and is particularly useful when a large number of samples need to be analyzed for all monolignol biosynthetic enzymes.
Collapse
Affiliation(s)
- Jie Liu
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA.
| | | | | | | | | |
Collapse
|
31
|
Abstract
Selected reaction monitoring mass spectrometry is an emerging targeted proteomics technology that allows for the investigation of complex protein samples with high sensitivity and efficiency. It requires extensive knowledge about the sample for the many parameters needed to carry out the experiment to be set appropriately. Most studies today rely on parameter estimation from prior studies, public databases, or from measuring synthetic peptides. This is efficient and sound, but in absence of prior data, de novo parameter estimation is necessary. Computational methods can be used to create an automated framework to address this problem. However, the number of available applications is still small. This review aims at giving an orientation on the various bioinformatical challenges. To this end, we state the problems in classical machine learning and data mining terms, give examples of implemented solutions and provide some room for alternatives. This will hopefully lead to an increased momentum for the development of algorithms and serve the needs of the community for computational methods. We note that the combination of such methods in an assisted workflow will ease both the usage of targeted proteomics in experimental studies as well as the further development of computational approaches.
Collapse
Affiliation(s)
- Daniel Reker
- ETH Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich, Switzerland
| | | |
Collapse
|