1
|
Sansone F, Tonacci A. Non-Invasive Diagnostic Approaches for Kidney Disease: The Role of Electronic Nose Systems. SENSORS (BASEL, SWITZERLAND) 2024; 24:6475. [PMID: 39409515 PMCID: PMC11479338 DOI: 10.3390/s24196475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/20/2024]
Abstract
Kidney diseases are a group of conditions related to the functioning of kidneys, which are in turn unable to properly filter waste and excessive fluids from the blood, resulting in the presence of dangerous levels of electrolytes, fluids, and waste substances in the human body, possibly leading to significant health effects. At the same time, the toxins amassing in the organism can lead to significant changes in breath composition, resulting in halitosis with peculiar features like the popular ammonia breath. Starting from this evidence, scientists have started to work on systems that can detect the presence of kidney diseases using a minimally invasive approach, minimizing the burden to the individuals, albeit providing clinicians with useful information about the disease's presence or its main related features. The electronic nose (e-nose) is one of such tools, and its applications in this specific domain represent the core of the present review, performed on articles published in the last 20 years on humans to stay updated with the latest technological advancements, and conducted under the PRISMA guidelines. This review focuses not only on the chemical and physical principles of detection of such compounds (mainly ammonia), but also on the most popular data processing approaches adopted by the research community (mainly those relying on Machine Learning), to draw exhaustive conclusions about the state of the art and to figure out possible cues for future developments in the field.
Collapse
Affiliation(s)
| | - Alessandro Tonacci
- Institute of Clinical Physiology, National Research Council of Italy (IFC-CNR), 56124 Pisa, Italy;
| |
Collapse
|
2
|
Ye J, Li P, Liu P, Pei W, Wang R, Liu H, Ma C, Zhao D. Serum Metabolomics Analysis Revealed Metabolic Pathways Related to AECOPD Complicated with Anxiety and Depression. Int J Chron Obstruct Pulmon Dis 2024; 19:2135-2151. [PMID: 39355059 PMCID: PMC11444062 DOI: 10.2147/copd.s471817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/15/2024] [Indexed: 10/03/2024] Open
Abstract
Background Anxiety and depression are two of the most common comorbidities of COPD, which can directly lead to the number of acute exacerbations and hospitalizations of COPD patients and reduce their quality of life. At present, there are many studies on anxiety and depression in stable COPD, but few studies on anxiety and depression in acute exacerbation of chronic obstructive pulmonary disease (AECOPD) patients. Objective We aim to explore the changes of serum metabolomics in AECOPD complicated with anxiety and depression and to provide some clues for further understanding its pathogenesis. Methods This is an observational high-throughput experimental study based on retrospective data extraction. Twenty-one AECOPD with anxiety and depressive patients and 17 healthy controls (HCs) were retrospectively enrolled in the Second Affiliated Hospital of Anhui Medical University. Hamilton anxiety scale (HAMA) and Hamilton depression scale (HAMD) for anxiety and depression were used to assess the patients with AECOPD. Untargeted metabolomics analysis was carried out to investigate different molecules in the serum of all participants. General information of all participants, baseline data and clinical measurement data of AECOPD patients were collected. Statistical analysis and bioinformatics analysis were performed to reveal different metabolites and perturbed metabolic pathways. Results A total of 724 metabolites in positive ionization mode and 555 metabolites in negative ionization mode were different in AECOPD patients with anxiety and depression. The 1,279 serum metabolites could be divided into 77 categories. Based on multivariate and univariate analysis, 74 metabolites were detected in positive ionization mode, and 60 metabolites were detected in negative ionization as differential metabolites. The 134 metabolites were enriched in 18 pathways, including biosynthesis of unsaturated fatty acids, aldosterone synthesis and secretion, protein digestion and absorption, ovarian steroidogenesis, long-term depression, retrograde endocannabinoid signaling, and so on. Conclusion This work highlights the key metabolites and metabolic pathways disturbed in AECOPD patients with anxiety and depression. These findings support the use of metabolomics to understand the pathogenic mechanisms involved in AECOPD patients with anxiety and depression.
Collapse
Affiliation(s)
- Jing Ye
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Ping Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Pengcheng Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Wenjing Pei
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Ruowen Wang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Hui Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Changxiu Ma
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| | - Dahai Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
- Institute of Respiratory Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, People’s Republic of China
| |
Collapse
|
3
|
Freund R, Sauvain JJ, Suarez G, Wild P, Charreau T, Debatisse A, Sakthithasan K, Jouannique V, Pralong JA, Guseva Canu I. Discriminative potential of exhaled breath condensate biomarkers with respect to chronic obstructive pulmonary disease. J Occup Med Toxicol 2024; 19:10. [PMID: 38576000 PMCID: PMC10993619 DOI: 10.1186/s12995-024-00409-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) affecting 334 million people in the world remains a major cause of morbidity and mortality. Proper diagnosis of COPD is still a challenge and largely solely based on spirometric criteria. We aimed to investigate the potential of nitrosative/oxidative stress and related metabolic biomarkers in exhaled breath condensate (EBC) to discriminate COPD patients. METHODS Three hundred three participants were randomly selected from a 15,000-transit worker cohort within the Respiratory disease Occupational Biomonitoring Collaborative Project (ROBoCoP). COPD was defined using the Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria as post-bronchodilator ratio of Forced Expiratory Volume in 1st second to Forced Vital Capacity < 0.7 in spirometry validated by an experienced pulmonologist. Discriminative power of biomarker profiles in EBC was analyzed using linear discriminant analyses. RESULTS Amongst 300 participants with validated spirometry, 50.3% were female, 52.3 years old in average, 36.0% were current smokers, 12.7% ex-smokers with mean tobacco exposure of 15.4 pack-years. Twenty-one participants (7.0%) were diagnosed as COPD, including 19 new diagnoses, 12 of which with a mild COPD stage (GOLD 1). Amongst 8 biomarkers measured in EBC, combination of 2 biomarkers, Lactate and Malondialdehyde (MDA) significantly discriminated COPD subjects from non-COPD, with a 71%-accuracy, area under the receiver curve of 0.78 (p-value < 0.001), and a negative predictive value of 96%. CONCLUSIONS These findings support the potential of biomarkers in EBC, in particular lactate and MDA, to discriminate COPD patients even at a mild or moderate stage. These EBC biomarkers present a non-invasive and drugless technique, which can improve COPD diagnosis in the future.
Collapse
Affiliation(s)
- Romain Freund
- Department of Occupational and Environmental Health (DSTE), Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland.
| | - Jean-Jacques Sauvain
- Department of Occupational and Environmental Health (DSTE), Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Guillaume Suarez
- Department of Occupational and Environmental Health (DSTE), Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Pascal Wild
- Department of Occupational and Environmental Health (DSTE), Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | - Thomas Charreau
- Department of Occupational and Environmental Health (DSTE), Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| | | | | | | | - Jacques A Pralong
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
- SwissMedPro Health Services, Geneva, Switzerland
- Hôpital de La Tour, Geneva, Switzerland
| | - Irina Guseva Canu
- Department of Occupational and Environmental Health (DSTE), Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
4
|
Tirelli C, Mira S, Belmonte LA, De Filippi F, De Grassi M, Italia M, Maggioni S, Guido G, Mondoni M, Canonica GW, Centanni S. Exploring the Potential Role of Metabolomics in COPD: A Concise Review. Cells 2024; 13:475. [PMID: 38534319 DOI: 10.3390/cells13060475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/23/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a pathological condition of the respiratory system characterized by chronic airflow obstruction, associated with changes in the lung parenchyma (pulmonary emphysema), bronchi (chronic bronchitis) and bronchioles (small airways disease). In the last years, the importance of phenotyping and endotyping COPD patients has strongly emerged. Metabolomics refers to the study of metabolites (both intermediate or final products) and their biological processes in biomatrices. The application of metabolomics to respiratory diseases and, particularly, to COPD started more than one decade ago and since then the number of scientific publications on the topic has constantly grown. In respiratory diseases, metabolomic studies have focused on the detection of metabolites derived from biomatrices such as exhaled breath condensate, bronchoalveolar lavage, and also plasma, serum and urine. Mass Spectrometry and Nuclear Magnetic Resonance Spectroscopy are powerful tools in the precise identification of potentially prognostic and treatment response biomarkers. The aim of this article was to comprehensively review the relevant literature regarding the applications of metabolomics in COPD, clarifying the potential clinical utility of the metabolomic profile from several biologic matrices in detecting biomarkers of disease and prognosis for COPD. Meanwhile, a complete description of the technological instruments and techniques currently adopted in the metabolomics research will be described.
Collapse
Affiliation(s)
- Claudio Tirelli
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Sabrina Mira
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Luca Alessandro Belmonte
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Federica De Filippi
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Mauro De Grassi
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Marta Italia
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Sara Maggioni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Gabriele Guido
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Michele Mondoni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Giorgio Walter Canonica
- Personalized Medicine, Asthma and Allergy, IRCCS Humanitas Clinical and Research Center, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy
| | - Stefano Centanni
- Respiratory Unit, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| |
Collapse
|
5
|
Gea J, Enríquez-Rodríguez CJ, Agranovich B, Pascual-Guardia S. Update on metabolomic findings in COPD patients. ERJ Open Res 2023; 9:00180-2023. [PMID: 37908399 PMCID: PMC10613990 DOI: 10.1183/23120541.00180-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 08/15/2023] [Indexed: 11/02/2023] Open
Abstract
COPD is a heterogeneous disorder that shows diverse clinical presentations (phenotypes and "treatable traits") and biological mechanisms (endotypes). This heterogeneity implies that to carry out a more personalised clinical management, it is necessary to classify each patient accurately. With this objective, and in addition to clinical features, it would be very useful to have well-defined biological markers. The search for these markers may either be done through more conventional laboratory and hypothesis-driven techniques or relatively blind high-throughput methods, with the omics approaches being suitable for the latter. Metabolomics is the science that studies biological processes through their metabolites, using various techniques such as gas and liquid chromatography, mass spectrometry and nuclear magnetic resonance. The most relevant metabolomics studies carried out in COPD highlight the importance of metabolites involved in pathways directly related to proteins (peptides and amino acids), nucleic acids (nitrogenous bases and nucleosides), and lipids and their derivatives (especially fatty acids, phospholipids, ceramides and eicosanoids). These findings indicate the relevance of inflammatory-immune processes, oxidative stress, increased catabolism and alterations in the energy production. However, some specific findings have also been reported for different COPD phenotypes, demographic characteristics of the patients, disease progression profiles, exacerbations, systemic manifestations and even diverse treatments. Unfortunately, the studies carried out to date have some limitations and shortcomings and there is still a need to define clear metabolomic profiles with clinical utility for the management of COPD and its implicit heterogeneity.
Collapse
Affiliation(s)
- Joaquim Gea
- Respiratory Medicine Department, Hospital del Mar – IMIM, Barcelona, Spain
- MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
- CIBERES, ISCIII, Barcelona, Spain
| | - César J. Enríquez-Rodríguez
- Respiratory Medicine Department, Hospital del Mar – IMIM, Barcelona, Spain
- MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
| | - Bella Agranovich
- Rappaport Institute for Research in the Medical Sciences, Technion University, Haifa, Israel
| | - Sergi Pascual-Guardia
- Respiratory Medicine Department, Hospital del Mar – IMIM, Barcelona, Spain
- MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
- CIBERES, ISCIII, Barcelona, Spain
| |
Collapse
|
6
|
Metabolomic Analysis of Respiratory Epithelial Lining Fluid in Patients with Chronic Obstructive Pulmonary Disease—A Systematic Review. Cells 2023; 12:cells12060833. [PMID: 36980173 PMCID: PMC10047085 DOI: 10.3390/cells12060833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD), as the third leading cause of death among adults, is a significant public health problem around the world. However, about 75% of smokers do not develop the disease despite the severe smoking burden. COPD is a heterogeneous disease, and several phenotypes, with differences in their clinical picture and response to treatment, have been distinguished. Metabolomic studies provide information on metabolic pathways, and therefore are a promising tool for understanding disease etiopathogenesis and the development of effective causal treatment. The aim of this systematic review was to analyze the metabolome of the respiratory epithelial lining fluid of patients with COPD, compared to healthy volunteers, refractory smokers, and subjects with other lung diseases. We included observational human studies. Sphingolipids, phosphatidylethanolamines, and sphingomyelins distinguished COPD from non-smokers; volatile organic compounds, lipids, and amino acids distinguished COPD from smokers without the disease. Five volatile organic compounds were correlated with eosinophilia and four were associated with a phenotype with frequent exacerbations. Fatty acids and ornithine metabolism were correlated with the severity of COPD. Metabolomics, by searching for biomarkers and distinguishing metabolic pathways, can allow us to understand the pathophysiology of COPD and the development of its phenotypes.
Collapse
|
7
|
Kim Y, Cho SH, Lee S, Jung S, Chen WH, Kwon EE. Environmental benefits from the use of CO 2 in the thermal disposal of cigarette butts. ENVIRONMENTAL RESEARCH 2023; 220:115217. [PMID: 36608762 DOI: 10.1016/j.envres.2023.115217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
As the global consumption of cigarettes has increased, the massive generation of cigarette butts (CBs) has led to critical environmental and health problems. Landfilling or incineration of CBs has been conventionally carried out, but such disposal protocols have suffered from the potential risks of the unwanted/uncontrolled release of leachates, carcinogens, and toxic chemicals into all environmental media. Thus, this study focuses on developing an environmentally dependable method for CB disposal. Littered CBs from filtered/electronic cigarettes were valorized into syngas (H2/CO). To seek a greener approach for the valorization of CBs, CO2 was intentionally considered as a reaction intermediate. Prior to multiple pyrolysis studies, the toxic chemicals in the CBs were qualitatively determined. This study experimentally proved that the toxic chemicals in CBs were detoxified/valorized into syngas. Furthermore, this work demonstrated that CO2 was effective in thermally destroying toxic chemicals in CBs via a gas-phase reaction. The reaction features and CO2 synergistically enhance syngas production. With the use of a supported Ni catalyst and CO2, syngas production from the catalytic pyrolysis of CBs was greatly enhanced (approximately 4 times). Finally, the gas-phase reaction by CO2 was reliably maintained owing to the synergistic mechanistic/reaction feature of CO2 for coke formation prevention on the catalyst surface.
Collapse
Affiliation(s)
- Youkwan Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Seong-Heon Cho
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sangyoon Lee
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sungyup Jung
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
8
|
Gea J, Enríquez-Rodríguez CJ, Pascual-Guardia S. Metabolomics in COPD. Arch Bronconeumol 2023; 59:311-321. [PMID: 36717301 DOI: 10.1016/j.arbres.2022.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/28/2022] [Accepted: 12/07/2022] [Indexed: 01/20/2023]
Abstract
The clinical presentation of chronic obstructive pulmonary disease (COPD) is highly heterogeneous. Attempts have been made to define subpopulations of patients who share clinical characteristics (phenotypes and treatable traits) and/or biological characteristics (endotypes), in order to offer more personalized care. Assigning a patient to any of these groups requires the identification of both clinical and biological markers. Ideally, biological markers should be easily obtained from blood or urine, but these may lack specificity. Biomarkers can be identified initially using conventional or more sophisticated techniques. However, the more sophisticated techniques should be simplified in the future if they are to have clinical utility. The -omics approach offers a methodology that can assist in the investigation and identification of useful markers in both targeted and blind searches. Specifically, metabolomics is the science that studies biological processes involving metabolites, which can be intermediate or final products. The metabolites associated with COPD and their specific phenotypic and endotypic features have been studied using various techniques. Several compounds of particular interest have emerged, namely, several types of lipids and derivatives (mainly phospholipids, but also ceramides, fatty acids and eicosanoids), amino acids, coagulation factors, and nucleic acid components, likely to be involved in their function, protein catabolism, energy production, oxidative stress, immune-inflammatory response and coagulation disorders. However, clear metabolomic profiles of the disease and its various manifestations that may already be applicable in clinical practice still need to be defined.
Collapse
Affiliation(s)
- Joaquim Gea
- Servicio de Neumología, Hospital del Mar - IMIM, Barcelona, Spain; Dpt. MELIS, Universitat Pompeu Fabra, Barcelona, Spain; CIBERES, ISCIII, Barcelona, Spain.
| | - César J Enríquez-Rodríguez
- Servicio de Neumología, Hospital del Mar - IMIM, Barcelona, Spain; Dpt. MELIS, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sergi Pascual-Guardia
- Servicio de Neumología, Hospital del Mar - IMIM, Barcelona, Spain; Dpt. MELIS, Universitat Pompeu Fabra, Barcelona, Spain; CIBERES, ISCIII, Barcelona, Spain
| |
Collapse
|
9
|
Sauvain JJ, Hemmendinger M, Suárez G, Creze C, Hopf NB, Jouannique V, Debatisse A, Pralong JA, Wild P, Canu IG. Malondialdehyde and anion patterns in exhaled breath condensate among subway workers. Part Fibre Toxicol 2022; 19:16. [PMID: 35216613 PMCID: PMC8876786 DOI: 10.1186/s12989-022-00456-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Underground transportation systems can contribute to the daily particulates and metal exposures for both commuter and subway workers. The redox and metabolic changes in workers exposed to such metal-rich particles have yet to be characterized. We hypothesize that the distribution of nitrosative/oxidative stress and related metabolic biomarkers in exhaled breath condensate (EBC) are modified depending on exposures. RESULTS Particulate number and size as well as mass concentration and airborne metal content were measured in three groups of nine subway workers (station agents, locomotive operators and security guards). In parallel, pre- and post-shift EBC was collected daily during two consecutive working weeks. In this biological matrix, malondialdehyde, lactate, acetate, propionate, butyrate, formate, pyruvate, the sum of nitrite and nitrate (ΣNOx) and the ratio nitrite/nitrate as well as metals and nanoparticle concentrations was determined. Weekly evolution of the log-transformed selected biomarkers as well as their association with exposure variables was investigated using linear mixed effects models with the participant ID as random effect. The professional activity had a strong influence on the pattern of anions and malondialdehyde in EBC. The daily number concentration and the lung deposited surface area of ultrafine particles was consistently and mainly associated with nitrogen oxides variations during the work-shift, with an inhibitory effect on the ΣNOx. We observed that the particulate matter (PM) mass was associated with a decreasing level of acetate, lactate and ΣNOx during the work-shift, suggestive of a build-up of these anions during the previous night in response to exposures from the previous day. Lactate was moderately and positively associated with some metals and with the sub-micrometer particle concentration in EBC. CONCLUSIONS These results are exploratory but suggest that exposure to subway PM could affect concentrations of nitrogen oxides as well as acetate and lactate in EBC of subway workers. The effect is modulated by the particle size and can correspond to the body's cellular responses under oxidative stress to maintain the redox and/or metabolic homeostasis.
Collapse
Affiliation(s)
- Jean-Jacques Sauvain
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland.
| | - Maud Hemmendinger
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland
| | - Guillaume Suárez
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland
| | - Camille Creze
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland
| | - Nancy B Hopf
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland
| | - Valérie Jouannique
- Service Santé-Travail, Autonomous Paris Transport Authority (RATP), 88 Boulevard Sébastopol, 75003, Paris, France
| | - Amélie Debatisse
- Service Santé-Travail, Autonomous Paris Transport Authority (RATP), 88 Boulevard Sébastopol, 75003, Paris, France
| | - Jacques A Pralong
- Division of Pulmonary Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Rue Gabrielle Perret-Gentil 4, 1205, Geneva, Switzerland
| | - Pascal Wild
- Division of Research Management, National Research and Safety Institute (INRS), Rue du Morvan, CS 60027, 54519, Vandoeuvre Cedex, France
| | - Irina Guseva Canu
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University Lausanne, Route de la Corniche 2, 1066, Epalinges, Switzerland
| |
Collapse
|
10
|
Paris D, Palomba L, Tramice A, Motta L, Fuschillo S, Maniscalco M, Motta A. Identification of biomarkers in COPD by metabolomics of exhaled breath condensate and serum/plasma. Minerva Med 2022; 113:424-435. [PMID: 35191295 DOI: 10.23736/s0026-4806.22.07957-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third cause of death worldwide, presenting poor long-term outcomes and chronic disability. COPD is a condition with a wide spectrum of clinical presentations because its pathophysiological determinants relate to tobacco smoke, genetic factors, alteration of several metabolic pathways, and oxidative stress. As a consequence, patients present different phenotypes even with comparable degrees of airflow limitation. Because of the increasing social and economic costs of COPD, a growing attention is currently payed to "omics" techniques for more personalized treatments and patient-tailored rehabilitation programs. In this regard, the systematic investigation of the metabolome (i.e., the whole set of endogenous molecules) in biomatrices, namely metabolomics, has become indispensable for phenotyping respiratory diseases. The metabolomic profiling of biological samples contains the small molecules produced during biological processes and their identification and quantification help in the diagnosis, comprehension of disease outcome and treatment response. Exhaled breath condensate (EBC), plasma and serum are biofluids readily available, with negligible invasiveness, and, therefore, suitable for metabolomics investigations. In this paper, we describe the latest advances on metabolomic profiling of EBC, plasma and serum in COPD patients.
Collapse
Affiliation(s)
- Debora Paris
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Napoli, Italy
| | - Letizia Palomba
- Department of Biomolecular Sciences, University Carlo Bo, Urbino, Italy
| | - Annabella Tramice
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Napoli, Italy
| | - Lorenzo Motta
- Section of Radiology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Salvatore Fuschillo
- Pulmonary Rehabilitation Division of the Telese Terme Institute, Istituti Clinici Scientifici Maugeri IRCCS, Telese Terme, Benevento, Italy
| | - Mauro Maniscalco
- Pulmonary Rehabilitation Division of the Telese Terme Institute, Istituti Clinici Scientifici Maugeri IRCCS, Telese Terme, Benevento, Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Napoli, Italy -
| |
Collapse
|
11
|
Dasgupta S, Ghosh N, Choudhury P, Joshi M, Chowdhury SR, Bhattacharyya P, Chaudhury K. NMR metabolomic and microarray-based transcriptomic data integration identifies unique molecular signatures of hypersensitivity pneumonitis. Mol Omics 2021; 18:101-111. [PMID: 34881764 DOI: 10.1039/d1mo00209k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypersensitivity pneumonitis (HP) is an immune-mediated granulomatous interstitial lung disease (ILD) that results from repeated inhalation of certain antigens. Despite major advances in research, pathophysiology of the disease remains poorly understood. The present study combines metabolomic and transcriptomic data to determine alterations in HP subjects as compared with healthy controls. Metabolic signatures were identified in serum, exhaled breath condensate (EBC) and bronchoalveolar lavage fluid (BALF) of HP patients using proton nuclear magnetic resonance (NMR) metabolomics. The expression of three metabolites, i.e., lactate, pyruvate, and proline, was found to be significantly altered in all three biofluids. The potential of differential diagnosis based on these three metabolites was investigated by including a group of patients with sarcoidosis, which is another type of granulomatous ILD. In addition, differentially expressed transcriptomic fingerprints in blood samples were identified by analyzing a Gene Expression Omnibus (GEO) database. The transcriptomics analysis of these microarray-based data revealed 59 genes to be significantly dysregulated in patients with HP. Over representation analysis of the metabolites and genes of interest was performed using IMPaLA (Integrated Molecular Pathway Level Analysis) version 12. Integrated analysis of serum metabolite signatures and blood gene expression suggests dysregulation of PI3K-AKT signaling and TCA cycle pathways in these patients. This preliminary study is a step towards better understanding of the pathogenesis of HP by identification of differentially expressed metabolites and transcriptomic fingerprints. These molecular signatures may be explored as diagnostic markers for differentiating HP from other lung diseases.
Collapse
Affiliation(s)
- Sanjukta Dasgupta
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, 721302, India.
| | - Nilanjana Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, 721302, India.
| | - Priyanka Choudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, 721302, India.
| | - Mamata Joshi
- National Facility for High-field NMR, Tata Institute of Fundamental Research, Mumbai, India
| | | | | | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, 721302, India.
| |
Collapse
|
12
|
Choudhury P, Bhattacharya A, Dasgupta S, Ghosh N, Senpupta S, Joshi M, Bhattacharyya P, Chaudhury K. Identification of novel metabolic signatures potentially involved in the pathogenesis of COPD associated pulmonary hypertension. Metabolomics 2021; 17:94. [PMID: 34599402 DOI: 10.1007/s11306-021-01845-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/21/2021] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) associated pulmonary hypertension (COPD-PH), one of the most prevalent forms of PH, is a major burden on the healthcare system. Although PH in COPD is usually of mild-to-moderate severity, its presence is associated with shorter survival, more frequent exacerbations and worse clinical outcomes. The pathophysiologic mechanisms responsible for PH development in COPD patients remain unclear. It is envisioned that a better understanding of the underlying mechanism will help in diagnosis and future treatment strategies. OBJECTIVES The present study aims to determine metabolomic alterations in COPD-PH patients as compared to healthy controls. Additionally, to ensure that the dysregulated metabolites arise due to the presence of PH per se, an independent COPD cohort is included for comparison purposes. METHODS Paired serum and exhaled breath condensate (EBC) samples were collected from male patients with COPD-PH (n = 60) in accordance with the 2015 European Society of Cardiology (ESC)/European Respiratory Society (ERS) guidelines. Age, sex and BMI matched healthy controls (n = 57) and COPD patients (n = 59) were recruited for comparison purposes. All samples were characterized using 1H nuclear magnetic resonance (NMR) spectroscopy. RESULTS Fifteen serum and 9 EBC metabolites were found to be significantly altered in COPD-PH patients as compared to healthy controls. Lactate and pyruvate were dysregulated in both the biofluids and were further correlated with echocardiographic systolic pulmonary artery pressure (sPAP). Multivariate analysis showed distinct class separation between COPD-PH and COPD. CONCLUSIONS The findings of this study indicate an increased energy demand in patients with COPD-PH. Furthermore, both lactate and pyruvate correlate with sPAP, indicating their importance in the clinical course of the disease.
Collapse
Affiliation(s)
- Priyanka Choudhury
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Anindita Bhattacharya
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Sanjukta Dasgupta
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Nilanjana Ghosh
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | | | - Mamata Joshi
- National Facility for High-Field NMR, Tata Institute of Fundamental Research, Mumbai, India
| | | | - Koel Chaudhury
- School of Medical Science and Technology (SMST), Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
13
|
Ghosh N, Choudhury P, Joshi M, Bhattacharyya P, Roychowdhury S, Banerjee R, Chaudhury K. Global metabolome profiling of exhaled breath condensates in male smokers with asthma COPD overlap and prediction of the disease. Sci Rep 2021; 11:16664. [PMID: 34404870 PMCID: PMC8370999 DOI: 10.1038/s41598-021-96128-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
Asthma-chronic obstructive pulmonary disease (COPD) overlap, termed as ACO, is a complex heterogeneous disease characterised by persistent airflow limitation, which manifests features of both asthma and COPD. These patients have a worse prognosis, in terms of more frequent and severe exacerbations, more frequent symptoms, worse quality of life, increased comorbidities and a faster lung function decline. In absence of clear diagnostic or therapeutic guidelines, ACO presents as a challenge to clinicians. The present study aims to investigate whether ACO patients have a distinct exhaled breath condensate (EBC) metabolic profile in comparison to asthma and COPD. A total of 132 age and BMI matched male smokers were recruited in the exploratory phase which consisted of (i) controls = 33 (ii) asthma = 34 (iii) COPD = 30 and (iv) ACO = 35. Using nuclear magnetic resonance (NMR) metabolomics, 8 metabolites (fatty acid, propionate, isopropanol, lactate, acetone, valine, methanol and formate) were identified to be significantly dysregulated in ACO subjects when compared to both, asthma and COPD. The expression of these dysregulated metabolites were further validated in a fresh patient cohort consisting of (i) asthma = 32 (ii) COPD = 32 and (iii) ACO = 40, which exhibited a similar expression pattern. Multivariate receiver operating characteristic (ROC) curves generated using these metabolites provided a robust ACO classification model. The findings were also integrated with previously identified serum metabolites and inflammatory markers to develop a robust predictive model for differentiation of ACO. Our findings suggest that NMR metabolomics of EBC holds potential as a platform to identify robust, non-invasive biomarkers for differentiating ACO from asthma and COPD.
Collapse
Affiliation(s)
- Nilanjana Ghosh
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Priyanka Choudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Mamata Joshi
- National Facility for High-Field NMR, Tata Institute of Fundamental Research, Mumbai, India
| | | | | | - Rintu Banerjee
- Department of Agricultural and Food Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Koel Chaudhury
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
14
|
Fuschillo S, Paris D, Tramice A, Ambrosino P, Palomba L, Maniscalco M, Motta A. Metabolomic profiling of exhaled breath condensate and plasma/serum in chronic obstructive pulmonary disease. Curr Med Chem 2021; 29:2385-2398. [PMID: 34375174 DOI: 10.2174/0929867328666210810122350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/13/2021] [Accepted: 06/17/2021] [Indexed: 11/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is an increasing cause of global morbidity and mortality, with poor long-term outcomes and chronic disability. COPD is a condition with a wide spectrum of clinical presentations, with different phenotypes being identified even among patients with comparable degrees of airflow limitation. Considering the burden of COPD in terms of social and economic costs, in recent years a growing attention has been given to the need of more personalized approaches and patient-tailored rehabilitation programs. In this regard, the systematic analysis of metabolites in biological matrices, namely metabolomics, may become an essential tool in phenotyping diseases. Through the identification and quantification of the small molecules produced during biological processes, metabolomic profiling of biological samples has thus been proposed as an opportunity to identify novel biomarkers of disease outcome and treatment response. Exhaled breath condensate (EBC) and plasma/serum are fluid pools, which can be easily extracted and analyzed. In this review, we discuss the potential clinical applications of the metabolomic profiling of EBC and plasma/serum in COPD.
Collapse
Affiliation(s)
- Salvatore Fuschillo
- Institute Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Division of the Telese Terme Institute, 82037 Telese Terme (BN), Italy
| | - Debora Paris
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli (NA), Italy
| | - Annabella Tramice
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli (NA), Italy
| | - Pasquale Ambrosino
- Institute Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Division of the Telese Terme Institute, 82037 Telese Terme (BN), Italy
| | - Letizia Palomba
- Department of Biomolecular Sciences, University "Carlo Bo", 61029 Urbino, Italy
| | - Mauro Maniscalco
- Institute Clinici Scientifici Maugeri IRCCS, Pulmonary Rehabilitation Division of the Telese Terme Institute, 82037 Telese Terme (BN), Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli (NA), Italy
| |
Collapse
|
15
|
Tang Y, Chen Z, Fang Z, Zhao J, Zhou Y, Tang C. Multi-Omics study on biomarker and pathway discovery of chronic obstructive pulmonary disease. J Breath Res 2021; 15. [PMID: 34280912 DOI: 10.1088/1752-7163/ac15ea] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/19/2021] [Indexed: 11/12/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a common heterogeneous respiratory disease characterized by persistent and incompletely reversible airflow limitation. Due to the heterogeneity and phenotypes complexity of COPD, traditionally diagnostic methods can only give limited information on predicted results and treatment, which are not sufficient for accurate diagnosis and evaluation. With the development of omics technologies in recent years, genomics, proteomics, and metabolomics are widely used in the study of COPD, providing good tools for discovering biomarkers to diagnose and elucidate the complex mechanism of COPD. In this review, we summarized the biomarkers of COPD based on metabolomic, proteomic and transcriptomic studies that have been reported in recent years. Furthermore, protein-protein interactions and multi-omics integrated analysis were carried out to explore the important metabolites and proteins that involved in significant pathways in the progression of COPD for explanation the pathogenesis of COPD. Finally, the prospective and challenges in the study of COPD were proposed. It is expected that this review will provide some references for the development of diagnostic methods and elucidation of the pathogenesis of COPD.
Collapse
Affiliation(s)
- Yuqing Tang
- Ningbo University Medical School, The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China, Ningbo, Zhejiang, 315020, CHINA
| | - Zhengjun Chen
- Ningbo University Medical School, The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China, Ningbo, Zhejiang, 315020, CHINA
| | - Zhiling Fang
- Ningbo University Medical School, Ningbo University School of Medicine, Ningbo 315211, China, Ningbo, Zhejiang, 315211, CHINA
| | - Jinshun Zhao
- Ningbo University Medical School, Ningbo University School of Medicine, Ningbo 315211, China, Ningbo, Zhejiang, 315211, CHINA
| | - Yuping Zhou
- Ningbo University Medical School, The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China, Ningbo, Zhejiang, 315020, CHINA
| | - Chunlan Tang
- Ningbo University Medical School, The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China, Ningbo, Zhejiang, 315020, CHINA
| |
Collapse
|
16
|
Effects of Workers Exposure to Nanoparticles Studied by NMR Metabolomics. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, the effects of occupational exposure to nanoparticles (NPs) were studied by NMR metabolomics. Exhaled breath condensate (EBC) and blood plasma samples were obtained from a research nanoparticles-processing unit at a national research university. The samples were taken from three groups of subjects: samples from workers exposed to nanoparticles collected before and after shift, and from controls not exposed to NPs. Altogether, 60 1H NMR spectra of exhaled breath condensate (EBC) samples and 60 1H NMR spectra of blood plasma samples were analysed, 20 in each group. The metabolites identified together with binning data were subjected to multivariate statistical analysis, which provided clear discrimination of the groups studied. Statistically significant metabolites responsible for group separation served as a foundation for analysis of impaired metabolic pathways. It was found that the acute effect of NPs exposure is mainly reflected in the pathways related to the production of antioxidants and other protective species, while the chronic effect is manifested mainly in the alteration of glutamine and glutamate metabolism, and the purine metabolism pathway.
Collapse
|
17
|
Application of chemoresistive gas sensors and chemometric analysis to differentiate the fingerprints of global volatile organic compounds from diseases. Preliminary results of COPD, lung cancer and breast cancer. Clin Chim Acta 2021; 518:83-92. [PMID: 33766555 DOI: 10.1016/j.cca.2021.03.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/20/2021] [Accepted: 03/18/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Analysis of volatile organic compounds (VOCs) in exhaled breath has been proposed as a screening method that discriminates between disease and healthy subjects, few studies evaluate whether these chemical fingerprints are specific when compared between diseases. We evaluated global VOCs and their discrimination capacity in chronic obstructive pulmonary disease (COPD), lung cancer, breast cancer and healthy subjects by chemoresistive sensors and chemometric analysis. METHODS A cross-sectional study was conducted with the participation of 30 patients with lung cancer, 50 with breast cancer, 50 with COPD and 50 control subjects. Each participant's exhaled breath was analyzed with the electronic nose. A multivariate analysis was carried: principal component analysis (PCA) and, canonical analysis of principal coordinates (CAP). Twenty single-blind samples from the 4 study groups were evaluated by CAP. RESULTS A separation between the groups of patients to the controls was achieved through PCA with explanations of >90% of the data and with a correct classification of 100%. In the CAP of the 4 study groups, discrimination between the diseases was obtained with 2 canonical axes with a correct general classification of 91.35%. This model was used for the prediction of the single-blind samples resulting in correct classification of 100%. CONCLUSIONS The application of chemoresistive gas sensors and chemometric analysis can be used as a useful tool for a screening test for lung cancer, breast cancer and COPD since this equipment detects the set of VOCs present in the exhaled breath to generate a characteristic chemical fingerprint of each disease.
Collapse
|
18
|
Khoubnasabjafari M, Mogaddam MRA, Rahimpour E, Soleymani J, Saei AA, Jouyban A. Breathomics: Review of Sample Collection and Analysis, Data Modeling and Clinical Applications. Crit Rev Anal Chem 2021; 52:1461-1487. [PMID: 33691552 DOI: 10.1080/10408347.2021.1889961] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metabolomics research is rapidly gaining momentum in disease diagnosis, on top of other Omics technologies. Breathomics, as a branch of metabolomics is developing in various frontiers, for early and noninvasive monitoring of disease. This review starts with a brief introduction to metabolomics and breathomics. A number of important technical issues in exhaled breath collection and factors affecting the sampling procedures are presented. We review the recent progress in metabolomics approaches and a summary of their applications on the respiratory and non-respiratory diseases investigated by breath analysis. Recent reports on breathomics studies retrieved from Scopus and Pubmed were reviewed in this work. We conclude that analyzing breath metabolites (both volatile and nonvolatile) is valuable in disease diagnoses, and therefore believe that breathomics will turn into a promising noninvasive discipline in biomarker discovery and early disease detection in personalized medicine. The problem of wide variations in the reported metabolite concentrations from breathomics studies should be tackled by developing more accurate analytical methods and sophisticated numerical analytical alogorithms.
Collapse
Affiliation(s)
- Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center and Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elaheh Rahimpour
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleymani
- Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Liver and Gastrointestinal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Ata Saei
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry I, Karolinska Institutet, Stockholm, Sweden
| | - Abolghasem Jouyban
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Kuo TC, Tan CE, Wang SY, Lin OA, Su BH, Hsu MT, Lin J, Cheng YY, Chen CS, Yang YC, Chen KH, Lin SW, Ho CC, Kuo CH, Tseng YJ. Human Breathomics Database. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:5682403. [PMID: 31976536 PMCID: PMC6978997 DOI: 10.1093/database/baz139] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/12/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022]
Abstract
Breathomics is a special branch of metabolomics that quantifies volatile organic compounds (VOCs) from collected exhaled breath samples. Understanding how breath molecules are related to diseases, mechanisms and pathways identified from experimental analytical measurements is challenging due to the lack of an organized resource describing breath molecules, related references and biomedical information embedded in the literature. To provide breath VOCs, related references and biomedical information, we aim to organize a database composed of manually curated information and automatically extracted biomedical information. First, VOCs-related disease information was manually organized from 207 literature linked to 99 VOCs and known Medical Subject Headings (MeSH) terms. Then an automated text mining algorithm was used to extract biomedical information from this literature. In the end, the manually curated information and auto-extracted biomedical information was combined to form a breath molecule database—the Human Breathomics Database (HBDB). We first manually curated and organized disease information including MeSH term from 207 literatures associated with 99 VOCs. Then, an automatic pipeline of text mining approach was used to collect 2766 literatures and extract biomedical information from breath researches. We combined curated information with automatically extracted biomedical information to assemble a breath molecule database, the HBDB. The HBDB is a database that includes references, VOCs and diseases associated with human breathomics. Most of these VOCs were detected in human breath samples or exhaled breath condensate samples. So far, the database contains a total of 913 VOCs in relation to human exhaled breath researches reported in 2766 publications. The HBDB is the most comprehensive HBDB of VOCs in human exhaled breath to date. It is a useful and organized resource for researchers and clinicians to identify and further investigate potential biomarkers from the breath of patients. Database URL: https://hbdb.cmdm.tw
Collapse
Affiliation(s)
- Tien-Chueh Kuo
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.,The Metabolomics Core Laboratory, Centers of Genomic Medicine and Precision Medicine, National Taiwan University, No. 2, Syu-Jhou Road, Taipei 10055, Taiwan.,Drug Research Center, College of Pharmacy, College of Medicine, National Taiwan University, No. 33, Linsen S. Road, Taipei 10055, Taiwan
| | - Cheng-En Tan
- The Metabolomics Core Laboratory, Centers of Genomic Medicine and Precision Medicine, National Taiwan University, No. 2, Syu-Jhou Road, Taipei 10055, Taiwan.,Drug Research Center, College of Pharmacy, College of Medicine, National Taiwan University, No. 33, Linsen S. Road, Taipei 10055, Taiwan.,Department of Computer Science and Information Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - San-Yuan Wang
- The Metabolomics Core Laboratory, Centers of Genomic Medicine and Precision Medicine, National Taiwan University, No. 2, Syu-Jhou Road, Taipei 10055, Taiwan.,Department of Computer Science and Information Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.,Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, No. 250, Wu-Hsing St., Taipei 11031, Taiwan
| | - Olivia A Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Bo-Han Su
- Department of Computer Science and Information Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Ming-Tsung Hsu
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Jessica Lin
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yu-Yen Cheng
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.,The Metabolomics Core Laboratory, Centers of Genomic Medicine and Precision Medicine, National Taiwan University, No. 2, Syu-Jhou Road, Taipei 10055, Taiwan
| | - Ciao-Sin Chen
- Department of Pharmacy, School of Pharmacy, College of Medicine, National Taiwan University, No. 33, Linsen S. Road, Taipei 10055, Taiwan
| | - Yu-Chieh Yang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital-Yunlin Branch, No. 579, Sec. 2, Yunlin Road, Douliu, Yunlin County 640, Taiwan
| | - Kuo-Hsing Chen
- Department of Oncology, National Taiwan University Hospital, National Taiwan University Cancer Center, No. 1, Sec. 4, Roosevelt Road, Taipei 10048, Taiwan
| | - Shu-Wen Lin
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, No. 33, Linsen S. Road, Taipei 10055, Taiwan
| | - Chao-Chi Ho
- Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung-Shan South Road, Taipei 10002, Taiwan
| | - Ching-Hua Kuo
- The Metabolomics Core Laboratory, Centers of Genomic Medicine and Precision Medicine, National Taiwan University, No. 2, Syu-Jhou Road, Taipei 10055, Taiwan.,Drug Research Center, College of Pharmacy, College of Medicine, National Taiwan University, No. 33, Linsen S. Road, Taipei 10055, Taiwan.,Department of Pharmacy, School of Pharmacy, College of Medicine, National Taiwan University, No. 33, Linsen S. Road, Taipei 10055, Taiwan
| | - Yufeng Jane Tseng
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.,The Metabolomics Core Laboratory, Centers of Genomic Medicine and Precision Medicine, National Taiwan University, No. 2, Syu-Jhou Road, Taipei 10055, Taiwan.,Drug Research Center, College of Pharmacy, College of Medicine, National Taiwan University, No. 33, Linsen S. Road, Taipei 10055, Taiwan.,Department of Computer Science and Information Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| |
Collapse
|
20
|
NMR Profiling of Exhaled Breath Condensate Defines Different Metabolic Phenotypes of Non-Cystic Fibrosis Bronchiectasis. Int J Mol Sci 2020; 21:ijms21228600. [PMID: 33202684 PMCID: PMC7698311 DOI: 10.3390/ijms21228600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Nuclear-magnetic-resonance (NMR) profiling of exhaled breath condensate (EBC) provides insights into the pathophysiology of bronchiectasis by identifying specific biomarkers. We evaluated whether NMR-based metabolomics discriminates the EBC-derived metabolic phenotypes (“metabotypes”) of 41 patients with non-cystic fibrosis (nCF) bronchiectasis of various etiology [24 subjects with Primary Ciliary Dyskinesia (PCD); 17 patients with bronchiectasis not associated with PCD (nCF/nPCD)], who were compared to 17 healthy subjects (HS). NMR was used for EBC profiling, and Orthogonal Projections to Latent Structures with partial least-squares discriminant analysis (OPLS-DA) was used as a classifier. The results were validated by using the EBC from 17 PCD patients not included in the primary analysis. Different statistical models were built, which compared nCF/nPCD and HS, PCD and HS, all classes (nCF/nPCD-PCD-HS), and, finally, PCD and nCF/nPCD. In the PCD-nCF/nPCD model, four statistically significant metabolites were able to discriminate between the two groups, with only a minor reduction of the quality parameters. In particular, for nCF/nPCD, acetone/acetoin and methanol increased by 21% and 18%, respectively. In PCD patients, ethanol and lactate increased by 25% and 28%, respectively. They are all related to lung inflammation as methanol is found in the exhaled breath of lung cancer patients, acetone/acetoin produce toxic ROS that damage lung tissue in CF, and lactate is observed in acute inflammation. Interestingly, a high concentration of ethanol hampers cilia beating and can be associated with the genetic defect of PCD. Model validation with 17 PCD samples not included in the primary analysis correctly predicted all samples. Our results indicate that NMR of EBC discriminates nCF/nPCD and PCD bronchiectasis patients from HS, and patients with nCF/nPCD from those with PCD. The metabolites responsible for between-group separation identified specific metabotypes, which characterize bronchiectasis of a different etiology.
Collapse
|
21
|
Nelson J, Chalbot MCG, Pavicevic Z, Kavouras IG. Characterization of exhaled breath condensate (EBC) non-exchangeable hydrogen functional types and lung function of wildland firefighters. J Breath Res 2020; 14:046010. [PMID: 32969351 DOI: 10.1088/1752-7163/abb761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inhalation of smoke is shown to be associated with adverse respiratory outcomes in firefighters. Due to invasiveness of procedures to obtain airways lining fluid, the immediate responses of the target organ (i.e. lung) are secondarily assessed through biomarkers in blood and urine. The objective of this study was to identify changes in metabolic profile of exhaled breath condensate (EBC) and lung function of firefighters exposed to wildfires smoke. A total of 29 subjects were studied over 16 events; 14 of these subjects provided cross-shift EBC samples. The predominant types of non-exchangeable hydrogen in EBC were saturated oxygenated hydrogen, aliphatic alkyl and allylic. Non-exchangeable allylic and oxygenated hydrogen concentrations decreased in post-exposure EBC samples. Longer exposures were correlated with increased abundance of oxidized carbon in ketones, acids and esters. Post-exposure lung function declines (forced expiratory volume in 1 s (FEV1): 0.08 l, forced vital capacity (FVC): 0.07 l, FEV1/FVC: 0.03 l, peak expiratory flow (PEF): 0.39 l s-1) indicated airways inflammation. They were related to exposure intensity (FEV1 and FVC) and exposure duration (PEF). This study showed that EBC characterization of non-exchangeable hydrogen types by NMR may provide insights on EBC molecular compositions in response to smoke inhalation and facilitate targeted analysis to identify specific biomarkers.
Collapse
Affiliation(s)
- Jordan Nelson
- Department of Environmental Health Sciences, Ryals School of Public Health, University of Alabama at Birmingham, Birmingham, AL 35219, United States of America
| | | | | | | |
Collapse
|
22
|
Satyamitra MM, Cassatt DR, Hollingsworth BA, Price PW, Rios CI, Taliaferro LP, Winters TA, DiCarlo AL. Metabolomics in Radiation Biodosimetry: Current Approaches and Advances. Metabolites 2020; 10:metabo10080328. [PMID: 32796693 PMCID: PMC7465152 DOI: 10.3390/metabo10080328] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/01/2020] [Accepted: 08/06/2020] [Indexed: 12/11/2022] Open
Abstract
Triage and medical intervention strategies for unanticipated exposure during a radiation incident benefit from the early, rapid and accurate assessment of dose level. Radiation exposure results in complex and persistent molecular and cellular responses that ultimately alter the levels of many biological markers, including the metabolomic phenotype. Metabolomics is an emerging field that promises the determination of radiation exposure by the qualitative and quantitative measurements of small molecules in a biological sample. This review highlights the current role of metabolomics in assessing radiation injury, as well as considerations for the diverse range of bioanalytical and sampling technologies that are being used to detect these changes. The authors also address the influence of the physiological status of an individual, the animal models studied, the technology and analysis employed in interrogating response to the radiation insult, and variables that factor into discovery and development of robust biomarker signatures. Furthermore, available databases for these studies have been reviewed, and existing regulatory guidance for metabolomics are discussed, with the ultimate goal of providing both context for this area of radiation research and the consideration of pathways for continued development.
Collapse
Affiliation(s)
- Merriline M. Satyamitra
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
- Correspondence: ; Tel.: +1-240-669-5432
| | - David R. Cassatt
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Brynn A. Hollingsworth
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Paul W. Price
- Office of Regulatory Affairs, Division of Allergy, Immunology and Transplantation (DAIT), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA;
| | - Carmen I. Rios
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Lanyn P. Taliaferro
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Thomas A. Winters
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| | - Andrea L. DiCarlo
- Radiation and Nuclear Countermeasures Program (RNCP), Division of Allergy, Immunology and Transplantation (DAIT), and National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), 5601 Fishers Lane, Rockville, MD 20852, USA; (D.R.C.); (B.A.H.); (C.I.R.); (L.P.T.); (T.A.W.); (A.L.D.)
| |
Collapse
|
23
|
Chen X, Wang T, Qiu X, Que C, Zhang H, Zhang L, Zhu T. Susceptibility of individuals with chronic obstructive pulmonary disease to air pollution exposure in Beijing, China: A case-control panel study (COPDB). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137285. [PMID: 32092811 DOI: 10.1016/j.scitotenv.2020.137285] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Exposure to air pollution is one of the major risk factors contributing to the occurrence and development of chronic obstructive pulmonary disease (COPD). However, few studies have investigated the susceptibility of patients with COPD to air pollution. Here, we provided a study protocol. A panel study of a total of 480 samples to compare the response to air pollution exposure between 60 patients with COPD and 60 healthy control subjects has been performed in Beijing (the COPDB study) since May 2016. The health assessment and exposure evaluation methods used in this COPDB study are summarized here. Throat, exhaled breath and condensate, urine, serum, plasma, and blood samples, as well as cardiopulmonary function indexes were repeatedly collected over four visits. Indicators of inflammation, oxidative stress, infection, metabolic changes, and genetic differences were then analyzed. Personal and ambient levels of fine particles and their components, as well as gaseous pollutants were monitored during the follow-up period. Linear mixed-effects models were used to evaluate the associations between changes in biomarkers and exposure to air pollution in both patients with COPD and healthy control subjects. Based on the COPDB study, the susceptibility of COPD patients and underlying mechanisms, involving difference in inflammatory, infection, metabolic, and genetic response to different air pollutants, were investigated. Our preliminary result shows that air pollution-associated changes in heart rate were higher in COPD patients than the healthy controls. More investigations of the underlying mechanisms of the susceptibility are ongoing. This study has been registered in ChiCTR with the number of ChiCTR1900023692.
Collapse
Affiliation(s)
- Xi Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; The Beijing Innovation Center for Engineering Science and Advanced Technology, College of Environmental Sciences and Engineering, Peking University, Beijing, China; GRiC, Shenzhen Institute of Building Research Co., Ltd., Shenzhen, China.
| | - Teng Wang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; The Beijing Innovation Center for Engineering Science and Advanced Technology, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Chengli Que
- Peking University First Hospital, Peking University, Beijing, China.
| | - Hanxiyue Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Lina Zhang
- Beijing Xicheng District Shichahai Community Health Center, Beijing, China.
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; The Beijing Innovation Center for Engineering Science and Advanced Technology, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| |
Collapse
|
24
|
Maniscalco M, Cutignano A, Paris D, Melck DJ, Molino A, Fuschillo S, Motta A. Metabolomics of Exhaled Breath Condensate by Nuclear Magnetic Resonance Spectroscopy and Mass Spectrometry: A Methodological Approach. Curr Med Chem 2020; 27:2381-2399. [DOI: 10.2174/0929867325666181008122749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 12/15/2022]
Abstract
:
Respiratory diseases present a very high prevalence in the general population, with an
increase in morbidity, mortality and health-care expenses worldwide. They are complex and heterogeneous
pathologies that may present different pathological facets in different subjects, often
with personal evolution. Therefore, there is a need to identify patients with similar characteristics,
prognosis or treatment, defining the so-called phenotype, but also to mark specific differences
within each phenotype, defining the endotypes.
:
Biomarkers are very useful to study respiratory phenotypes and endotypes. Metabolomics, one of
the recently introduced “omics”, is becoming a leading technique for biomarker discovery. For the
airways, metabolomics appears to be well suited as the respiratory tract offers a natural matrix, the
Exhaled Breath Condensate (EBC), in which several biomarkers can be measured. In this review,
we will discuss the main methodological issues related to the application of Nuclear Magnetic
Resonance (NMR) spectroscopy and Mass Spectrometry (MS) to EBC metabolomics for investigating
respiratory diseases.
Collapse
Affiliation(s)
- Mauro Maniscalco
- Pulmonary Rehabilitation Unit, ICS Maugeri SpA IRCCS, Via Bagni Vecchi 1, 82037 Telese Terme (Benevento), Italy
| | - Adele Cutignano
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, Comprensorio Olivetti Edificio A, 80078 Pozzuoli (Naples), Italy
| | - Debora Paris
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, Comprensorio Olivetti Edificio A, 80078 Pozzuoli (Naples), Italy
| | - Dominique J. Melck
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, Comprensorio Olivetti Edificio A, 80078 Pozzuoli (Naples), Italy
| | - Antonio Molino
- Department of Respiratory Medicine, University Federico II, 80131 Naples, Italy
| | - Salvatore Fuschillo
- Pulmonary Rehabilitation Unit, ICS Maugeri SpA IRCCS, Via Bagni Vecchi 1, 82037 Telese Terme (Benevento), Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, Via Campi Flegrei 34, Comprensorio Olivetti Edificio A, 80078 Pozzuoli (Naples), Italy
| |
Collapse
|
25
|
Sauvain JJ, Edmé JL, Wild P, Suarez G, Bezerra OMPA, Talvani A, Algranti E, Carneiro APS, Chérot-Kornobis N, Sobaszek A, Hulo S. Does exposure to inflammatory particles modify the pattern of anion in exhaled breath condensate? J Breath Res 2020; 14:026005. [PMID: 31783386 DOI: 10.1088/1752-7163/ab5d88] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Exposure to environmental and occupational particulate matter (PM) induces health effects on the cardio-pulmonary system. In addition, associations between exposure to PM and metabolic syndromes like diabetes mellitus or obesity are now emerging in the literature. Collection of exhaled breath condensate (EBC) is an appealing non-invasive technique to sample pulmonary fluids. This hypothesis-generating study aims to (1) validate an ion chromatography method allowing the robust determination of different metabolism-related molecules (lactate, formate, acetate, propionate, butyrate, pyruvate, nitrite, nitrate) in EBC; (2) apply this method to EBC samples collected from workers exposed to quartz (a known inflammatory particle), to soapstone (a less inflammatory particle than quartz), as well as to controls. A multi-compound standard solution was used to determine the linearity range, detection limit, repeatability and bias from spiked EBC. The biological samples were injected without further treatment into an ion chromatograph with a conductivity detector. RTube® were used for field collection of EBC from 11 controls, 55 workers exposed to soapstone and 12 volunteers exposed to quartz dust. The analytical method used proved to be adequate for quantifying eight anions in EBC samples. Its sub-micromolar detection limits and repeatability, combined with a very simple sample preparation, allowed an easy and fast quantification of different glycolysis or nitrosative stress metabolites. Using multivariate discriminant analysis to maximize differences between groups, we observed a different pattern of anions with a higher formate/acetate ratio in the EBC samples for quartz exposed workers compared to the two other groups. We hypothesize that a modification of the metabolic signature could be induced by exposure to inflammatory particles like quartz and might be observed in the EBC via a change in the formate/acetate ratio.
Collapse
Affiliation(s)
- J-J Sauvain
- Center for Primary Care and Public Health (Unisanté), Department of Occupational and Environmental Health, University of Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhou J, Li Q, Liu C, Pang R, Yin Y. Plasma Metabolomics and Lipidomics Reveal Perturbed Metabolites in Different Disease Stages of Chronic Obstructive Pulmonary Disease. Int J Chron Obstruct Pulmon Dis 2020; 15:553-565. [PMID: 32210549 PMCID: PMC7073598 DOI: 10.2147/copd.s229505] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) is a common disease characterized by persistent respiratory symptoms and airflow restriction. It is usually manifested as airway and/or alveolar abnormalities caused by significant exposure to harmful particulates or gases. OBJECTIVE We aim to explore plasma metabolomic changes in the acute exacerbation stage of COPD (AECOPD) and stable stage of COPD (Stable COPD) to identify potential biomarkers for diagnosis or prognosis in clinical practice. METHODS Untargeted metabolomics and lipidomics analyses were performed to investigate dysregulated molecules in blood plasma of AECOPD patients (n=48) and Stable COPD (n=48), and a cohort of healthy people were included as a control group (n=48). Statistical analysis and bioinformatics analysis were performed to reveal dysregulated metabolites and perturbed metabolic pathways. SVM-based multivariate ROC analysis was used for candidate biomarker screening. RESULTS A total of 142 metabolites and 688 lipids were dysregulated in COPD patients. Pathway enrichment analysis showed that several metabolic pathways were perturbed after COPD onset. Several biomarker panels were proposed for diagnosis of COPD vs healthy control and AECOPD vs Stable COPD with AUC greater than 0.9. CONCLUSION Numerous plasma metabolites and several metabolic pathways were detected relevant to COPD disease onset or progression. These metabolites may be considered as candidate biomarkers for diagnosis or prognosis of COPD. The perturbed pathways involved in COPD provide clues for further pathological mechanism studies of COPD.
Collapse
Affiliation(s)
- Juntuo Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing100083, People’s Republic of China
| | - Qiuyu Li
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Chengyang Liu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing100191, People’s Republic of China
| | - Ruifang Pang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing100083, People’s Republic of China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing100191, People’s Republic of China
- Correspondence: Yuxin Yin Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking-Tsinghua Center for Life Sciences, Peking University Health Science Center, Beijing100191, People’s Republic of China Email
| |
Collapse
|
27
|
Vignoli A, Santini G, Tenori L, Macis G, Mores N, Macagno F, Pagano F, Higenbottam T, Luchinat C, Montuschi P. NMR-Based Metabolomics for the Assessment of Inhaled Pharmacotherapy in Chronic Obstructive Pulmonary Disease Patients. J Proteome Res 2019; 19:64-74. [PMID: 31621329 DOI: 10.1021/acs.jproteome.9b00345] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this proof-of-concept, pilot study was the evaluation of the effects of steroid administration and suspension of an inhaled corticosteroid (ICS)-long-acting β2-agonist (LABA) extrafine fixed dose combination (FDC) on metabolomic fingerprints in subjects with chronic obstructive pulmonary disease (COPD). We hypothesized that a comprehensive metabolomics approach discriminates across inhaled pharmacotherapies and that their effects on metabolomic signatures depend on the biological fluids analyzed. We performed metabolomics via nuclear magnetic resonance (NMR) spectroscopy in exhaled breath condensate (EBC), sputum supernatants, serum, and urine. Fourteen patients suffering from COPD who were on regular inhaled fluticasone propionate/salmeterol therapy (visit 1) were consecutively treated with 2-week beclomethasone dipropionate/formoterol (visit 2), 4-week formoterol alone (visit 3), and 4-week beclomethasone/formoterol (visit 4). The comprehensive NMR-based metabolomics approach showed differences across all pharmacotherapies and that different biofluids provided orthogonal information. Serum formate was lower at visits 1 versus 3 (P = 0.03), EBC formate was higher at visit 1 versus 4 (P = 0.03), and urinary 1-methyl-nicotinamide was lower at 3 versus 4 visit (P = 0.002). NMR-based metabolomics of different biofluids distinguishes across inhaled pharmacotherapies, provides complementary information on the effects of an extrafine ICS/LABA FDC on metabolic fingerprints in COPD patients, and might be useful for elucidating the ICS mechanism of action.
Collapse
Affiliation(s)
- Alessia Vignoli
- Magnetic Resonance Center (CERM) , University of Florence , Via Luigi Sacconi 6 , Sesto Fiorentino , Italy 50019.,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP) , Piazza San Marco 4 , Florence , Italy 50121
| | - Giuseppe Santini
- Department of Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Largo F. Vito, 1, Rome, Italy 00168,Pharmacology Unit, University Hospital Agostino Gemelli Foundation, IRCCS, Largo Agostino Gemelli, 8, Rome, Italy 00168
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM) , University of Florence , Via Luigi Sacconi 6 , Sesto Fiorentino , Italy 50019.,Department of Experimental and Clinical Medicine , University of Florence , Largo Brambilla 3 , Florence , Italy 50100
| | - Giuseppe Macis
- Imaging Diagnostics,University Hospital Agostino Gemelli Foundation, IRCCS, Largo Agostino Gemelli, 8, Rome, Italy 00168
| | - Nadia Mores
- Department of Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Largo F. Vito, 1, Rome, Italy 00168,Pharmacology Unit, University Hospital Agostino Gemelli Foundation, IRCCS, Largo Agostino Gemelli, 8, Rome, Italy 00168
| | - Francesco Macagno
- Respiratory Medicine Unit,University Hospital Agostino Gemelli Foundation, IRCCS, Largo Agostino Gemelli, 8, Rome, Italy 00168
| | - Francesco Pagano
- Ageing Unit, University Hospital Agostino Gemelli Foundation, IRCCS, Largo Agostino Gemelli, 8, Rome, Italy 00168,Department of Internal Medicine and Geriatrics, Faculty of Medicine, Catholic University of the Sacred Heart, Largo F. Vito, 1, Rome, Italy 00168
| | - Tim Higenbottam
- Faculty of Pharmaceutical Medicine , Royal College of Physicians , London NW1 4LE , United Kingdom
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM) , University of Florence , Via Luigi Sacconi 6 , Sesto Fiorentino , Italy 50019.,Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP) , Piazza San Marco 4 , Florence , Italy 50121.,Department of Chemistry "Ugo Schiff" , University of Florence , Via della Lastruccia 3 , Sesto Fiorentino , Italy 50019
| | - Paolo Montuschi
- Department of Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, Largo F. Vito, 1, Rome, Italy 00168,Pharmacology Unit, University Hospital Agostino Gemelli Foundation, IRCCS, Largo Agostino Gemelli, 8, Rome, Italy 00168
| |
Collapse
|
28
|
D'Amato M, Paris D, Molino A, Cuomo P, Fulgione A, Sorrentino N, Palomba L, Maniscalco M, Motta A. The Immune-Modulator Pidotimod Affects the Metabolic Profile of Exhaled Breath Condensate in Bronchiectatic Patients: A Metabolomics Pilot Study. Front Pharmacol 2019; 10:1115. [PMID: 31632269 PMCID: PMC6785784 DOI: 10.3389/fphar.2019.01115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/30/2019] [Indexed: 01/16/2023] Open
Abstract
Introduction: Pidotimod, a synthetic dipeptide molecule with biological and immunological activities, is used to reduce the number of exacerbations or pneumonitis in patients with inflammatory diseases. In the present study, we investigated whether Pidotimod modifies the metabolomic pathways measured in the exhaled breath condensate (EBC) of non-cystic fibrosis bronchiectatic patients (NCFB). Materials and Methods: We analyzed 40 adult patients affected by NCFB. They were randomly selected to receive Pidotimod 800 mg b/d for 21 consecutive days (3 weeks) per month for 6 months (20 patients, V1 group) or no drug (20 patients, V0 group), with a 1:1 criterion and then followed as outpatients. Results: EBC samples were collected from all patients at baseline and after 6 months. They were investigated by combined nuclear magnetic resonance (NMR) spectroscopy and multivariate statistical analysis to uncover metabolic differences between EBC from NCFB patients before and after therapy with Pidotimod. Pulmonary function test and pulmonary exacerbations were analyzed at baseline and at the end of Pidotimod therapy. The EBC metabolites were all identified, and through statistical evaluation, we were able to discriminate the two samples' classes, with acetate, acetoin, lactate, and citrate as statistically significant discriminatory metabolites. The model vas validated by using a blind set of 20 NCFB samples, not included in the primary analysis. No differences were observed in PFT after 6 months. At the end of the study, there was a significant decrease of exacerbation rate in V1 group as compared with V0 group, with a substantial reduction of the number of mild or severe exacerbations (p < 0.001). Discussion: Pidotimod modifies the respiratory metabolic phenotype ("metabotype") of NCFB patients and reduces the number of exacerbations.
Collapse
Affiliation(s)
- Maria D'Amato
- Division of Pneumology, Department of Respiratory Diseases, University of Naples Federico II, AORN dei Colli-Monaldi Hospital, Naples, Italy
| | - Debora Paris
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Antonio Molino
- Division of Pneumology, Department of Respiratory Diseases, University of Naples Federico II, AORN dei Colli-Monaldi Hospital, Naples, Italy
| | - Paola Cuomo
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Andrea Fulgione
- Department of Agriculture, University of Naples Federico II, Portici, Italy
| | - Nunzia Sorrentino
- Division of Pneumology, Department of Respiratory Diseases, University of Naples Federico II, AORN dei Colli-Monaldi Hospital, Naples, Italy
| | - Letizia Palomba
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Mauro Maniscalco
- Pulmonary Rehabilitation Unit, ICS Maugeri SPA, IRCCS, Telese Terme, Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| |
Collapse
|
29
|
Rodríguez-Aguilar M, Ramírez-García S, Ilizaliturri-Hernández C, Gómez-Gómez A, Van-Brussel E, Díaz-Barriga F, Medellín-Garibay S, Flores-Ramírez R. Ultrafast gas chromatography coupled to electronic nose to identify volatile biomarkers in exhaled breath from chronic obstructive pulmonary disease patients: A pilot study. Biomed Chromatogr 2019; 33:e4684. [PMID: 31423612 DOI: 10.1002/bmc.4684] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/07/2019] [Accepted: 08/13/2019] [Indexed: 11/11/2022]
Abstract
An analytical method to identify volatile organic compounds (VOCs) in the exhaled breath from patients with a diagnosis of chronic obstructive pulmonary disease (COPD) using a ultrafast gas chromatography system equipped with an electronic nose detector (FGC eNose) has been developed. A prospective study was performed in 23 COPD patients and 33 healthy volunteers; exhalation breathing tests were performed with Tedlar bags. Each sample was analyzed by FCG eNose and the identification of VOCs was based on the Kovats index. Raw data were reduced by principal component analysis (PCA) and canonical discriminant analysis [canonical analysis of principal coordinates (CAP)]. The FCG eNose technology was able to identify 17 VOCs that distinguish COPD patients from healthy volunteers. At all stages of PCA and CAP the discrimination between groups was obvious. Chemical prints were correctly classified up to 82.2%, and were matched with 78.9% of the VOCs detected in the exhaled breath samples. Receiver operating characteristic curve analysis indicated the sensitivity and specificity to be 96% and 91%, respectively. This pilot study demonstrates that FGC eNose is a useful tool to identify VOCs as biomarkers in exhaled breath from COPD patients. Further studies should be performed to enhance the clinical relevance of this quick and ease methodology for COPD diagnosis.
Collapse
Affiliation(s)
- Maribel Rodríguez-Aguilar
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Sofía Ramírez-García
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Cesar Ilizaliturri-Hernández
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Alejandro Gómez-Gómez
- Pulmonology Service, Hospital Central "Dr. Ignacio Morones Prieto" San Luis Potosí, San Luis Potosí, Mexico
| | - Evelyn Van-Brussel
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Fernando Díaz-Barriga
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Susanna Medellín-Garibay
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| | - Rogelio Flores-Ramírez
- Centro de Investigación Aplicada en Ambiente y Salud, CIACYT, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico.,Coordinación para la Innovación y Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, San Luis Potosí, S.L.P., Mexico
| |
Collapse
|
30
|
Diao W, Labaki WW, Han MK, Yeomans L, Sun Y, Smiley Z, Kim JH, McHugh C, Xiang P, Shen N, Sun X, Guo C, Lu M, Standiford TJ, He B, Stringer KA. Disruption of histidine and energy homeostasis in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 2019; 14:2015-2025. [PMID: 31564849 PMCID: PMC6732562 DOI: 10.2147/copd.s210598] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/01/2019] [Indexed: 01/01/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is a systemic condition that is too complex to be assessed by lung function alone. Metabolomics has the potential to help understand the mechanistic underpinnings that contribute to COPD pathogenesis. Since blood metabolomics may be affected by sex and body mass index (BMI), the aim of this study was to determine the metabolomic variability in male smokers with and without COPD who have a narrow BMI range. Methods We compared the quantitative proton nuclear magnetic resonance acquired serum metabolomics of a male Chinese Han population of non-smokers without COPD, and smokers with and without COPD. We also assessed the impact of smoking status on metabolite concentrations and the associations between metabolite concentrations and inflammatory markers such as serum interleukin-6 and histamine, and blood cell differential (%). Metabolomics data were log-transformed and auto-scaled for parametric statistical analysis. Mean normalized metabolite concentration values and continuous demographic variables were compared by Student’s t-test with Welch correction or ANOVA with post-hoc Tukey’s test, as applicable; t-test p-values for metabolomics data were corrected for false discovery rate (FDR). A Pearson association matrix was built to evaluate the relationship between metabolite concentrations, clinical parameters and markers of inflammation. Results Twenty-eight metabolites were identified and quantified. Creatine, glycine, histidine, and threonine concentrations were reduced in COPD patients compared to non-COPD smokers (FDR ≤15%). Concentrations of these metabolites were inversely correlated with interleukin-6 levels. COPD patients had overall dampening of metabolite concentrations including energy-related metabolic pathways such as creatine metabolism. They also had higher histamine levels and percent basophils compared to smokers without COPD. Conclusion COPD is associated with alterations in the serum metabolome, including a disruption in the histidine-histamine and creatine metabolic pathways. These findings support the use of metabolomics to understand the pathogenic mechanisms involved in COPD. Trial registrationwww.clinicaltrials.gov, NCT03310177.
Collapse
Affiliation(s)
- Wenqi Diao
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing, People's Republic of China
| | - Wassim W Labaki
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - MeiLan K Han
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Larisa Yeomans
- Biochemical Nuclear Magnetic Resonance Core, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Yihan Sun
- NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Zyad Smiley
- NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Jae Hyun Kim
- Biochemical Nuclear Magnetic Resonance Core, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Cora McHugh
- NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| | - Pingchao Xiang
- Department of Respiratory and Critical Care Medicine, Shou-Gang Hospital Affiliated to Peking University, Beijing, People's Republic of China
| | - Ning Shen
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Xiaoyan Sun
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Chenxia Guo
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Ming Lu
- Department of Respiratory Medicine, Peking University Third Hospital, Beijing 100191, People's Republic of China
| | - Theodore J Standiford
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Bei He
- Department of Respiratory Medicine, Peking University Health Sciences Center, Third Hospital, Beijing, People's Republic of China
| | - Kathleen A Stringer
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, School of Medicine, University of Michigan, Ann Arbor, MI, USA.,NMR Metabolomics Laboratory, Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
31
|
Serum amino acid concentrations and clinical outcomes in smokers: SPIROMICS metabolomics study. Sci Rep 2019; 9:11367. [PMID: 31388056 PMCID: PMC6684630 DOI: 10.1038/s41598-019-47761-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/22/2019] [Indexed: 01/12/2023] Open
Abstract
Metabolomics is an emerging science that can inform pathogenic mechanisms behind clinical phenotypes in COPD. We aimed to understand disturbances in the serum metabolome associated with respiratory outcomes in ever-smokers from the SPIROMICS cohort. We measured 27 serum metabolites, mostly amino acids, by 1H-nuclear magnetic resonance spectroscopy in 157 white ever-smokers with and without COPD. We tested the association between log-transformed metabolite concentrations and one-year incidence of respiratory exacerbations after adjusting for age, sex, current smoking, body mass index, diabetes, inhaled or oral corticosteroid use, study site and clinical predictors of exacerbations, including FEV1% predicted and history of exacerbations. The mean age of participants was 53.7 years and 58% had COPD. Lower concentrations of serum amino acids were independently associated with 1-year incidence of respiratory exacerbations, including tryptophan (β = −4.1, 95% CI [−7.0; −1.1], p = 0.007) and the branched-chain amino acids (leucine: β = −6.0, 95% CI [−9.5; −2.4], p = 0.001; isoleucine: β = −5.2, 95% CI [−8.6; −1.8], p = 0.003; valine: β = −4.1, 95% CI [−6.9; −1.4], p = 0.003). Tryptophan concentration was inversely associated with the blood neutrophil-to-lymphocyte ratio (p = 0.03) and the BODE index (p = 0.03). Reduced serum amino acid concentrations in ever-smokers with and without COPD are associated with an increased incidence of respiratory exacerbations.
Collapse
|
32
|
An Updated Overview of Metabolomic Profile Changes in Chronic Obstructive Pulmonary Disease. Metabolites 2019; 9:metabo9060111. [PMID: 31185592 PMCID: PMC6631716 DOI: 10.3390/metabo9060111] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/11/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD), a common and heterogeneous respiratory disease, is characterized by persistent and incompletely reversible airflow limitation. Metabolomics is applied to analyze the difference of metabolic profile based on the low-molecular-weight metabolites (<1 kDa). Emerging metabolomic analysis may provide insights into the pathogenesis and diagnosis of COPD. This review aims to summarize the alteration of metabolites in blood/serum/plasma, urine, exhaled breath condensate, lung tissue samples, etc. from COPD individuals, thereby uncovering the potential pathogenesis of COPD according to the perturbed metabolic pathways. Metabolomic researches have indicated that the dysfunctions of amino acid metabolism, lipid metabolism, energy production pathways, and the imbalance of oxidations and antioxidations might lead to local and systematic inflammation by activating the Nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway and releasing inflammatory cytokines, like interleutin-6 (IL-6), tumor necrosis factor-α, and IL-8. In addition, they might cause protein malnutrition and oxidative stress and contribute to the development and exacerbation of COPD.
Collapse
|
33
|
Maniscalco M. Meet Our Editorial Board Member. Curr Med Chem 2019. [DOI: 10.2174/092986732604190401100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Maniscalco M, Motta A. Biomarkers in allergic asthma: Which matrix should we use? Clin Exp Allergy 2019; 47:1097-1098. [PMID: 28703932 DOI: 10.1111/cea.12978] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- M Maniscalco
- Pulmonary Rehabilitation Unit, ICS Maugeri SPA, IRCCS, Telese Terme, BN, Italy
| | - A Motta
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, NA, Italy
| |
Collapse
|
35
|
Farne H, Groves HT, Gill SK, Stokes I, McCulloch S, Karoly E, Trujillo-Torralbo MB, Johnston SL, Mallia P, Tregoning JS. Comparative Metabolomic Sampling of Upper and Lower Airways by Four Different Methods to Identify Biochemicals That May Support Bacterial Growth. Front Cell Infect Microbiol 2018; 8:432. [PMID: 30619778 PMCID: PMC6305596 DOI: 10.3389/fcimb.2018.00432] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 11/30/2018] [Indexed: 12/16/2022] Open
Abstract
Bacteria need nutrients from the host environment to survive, yet we know little about which biochemicals are present in the airways (the metabolome), which of these biochemicals are essential for bacterial growth and how they change with airway disease. The aims of this pilot study were to develop and compare methodologies for sampling the upper and lower airway metabolomes and to identify biochemicals present in the airways that could potentially support bacterial growth. Eight healthy human volunteers were sampled by four methods: two standard approaches - nasal lavage and induced sputum, and two using a novel platform, synthetic adsorptive matrix (SAM) strips—nasosorption and bronchosorption. Collected samples were analyzed by Ultrahigh Performance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS). Five hundred and eighty-one biochemicals were recovered from the airways belonging to a range of metabolomic super-pathways. We observed significant differences between the sampling approaches. Significantly more biochemicals were recovered when SAM strips were used, compared to standard sampling techniques. A range of biochemicals that could support bacterial growth were detected in the different samples. This work demonstrates for the first time that SAM strips are a highly effective method for sampling the airway metabolome. This work will assist further studies to understand how changes in the airway metabolome affect bacterial infection in patients with underlying airway disease.
Collapse
Affiliation(s)
- Hugo Farne
- COPD and Asthma, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Helen T Groves
- Mucosal Infection and Immunity, Section of Virology, Imperial College London, London, United Kingdom
| | - Simren K Gill
- Mucosal Infection and Immunity, Section of Virology, Imperial College London, London, United Kingdom
| | - Isobel Stokes
- School of Veterinary Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | | | | | | - Sebastian L Johnston
- COPD and Asthma, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Patrick Mallia
- COPD and Asthma, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - John S Tregoning
- Mucosal Infection and Immunity, Section of Virology, Imperial College London, London, United Kingdom
| |
Collapse
|
36
|
Biomonitoring of workers using nuclear magnetic resonance-based metabolomics of exhaled breath condensate: A pilot study. Toxicol Lett 2018; 298:4-12. [DOI: 10.1016/j.toxlet.2018.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 09/27/2018] [Accepted: 10/16/2018] [Indexed: 12/17/2022]
|
37
|
Clinical metabolomics of exhaled breath condensate in chronic respiratory diseases. Adv Clin Chem 2018; 88:121-149. [PMID: 30612604 DOI: 10.1016/bs.acc.2018.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chronic respiratory diseases (CRDs) are complex multifactorial disorders involving the airways and other lung structures. The development of reliable markers for an early and accurate diagnosis, including disease phenotype, and prediction of the response and/or adherence to treatment prescribed are essential points for the correct management of CRDs. Beside the traditional techniques to detect biomarkers, "omics" sciences have stimulated interest in clinical field as they could potentially improve the study of disease phenotype. Perturbations in a variety of metabolic and signaling pathways could contribute an understanding of CRDs pathogenesis. In particular, metabolomics provides powerful tools to map biological perturbations and their relationship with disease pathogenesis. The exhaled breath condensate (EBC) is a natural matrix of the respiratory tract, and is well suited for metabolomics studies. In this article, we review the current state of metabolomics methodology applied to EBC in the study of CRDs.
Collapse
|
38
|
Paris D, Maniscalco M, Motta A. Nuclear magnetic resonance-based metabolomics in respiratory medicine. Eur Respir J 2018; 52:13993003.01107-2018. [PMID: 30115612 DOI: 10.1183/13993003.01107-2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/05/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Debora Paris
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli (Naples), Italy.,Both authors contributed equally
| | - Mauro Maniscalco
- Pulmonary Rehabilitation Unit, ICS Maugeri SpA, IRCCS, Telese Terme (Benevento), Italy.,Both authors contributed equally
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli (Naples), Italy
| |
Collapse
|
39
|
Bazzano M, Laghi L, Zhu C, Magi GE, Serri E, Spaterna A, Tesei B, Laus F. Metabolomics of tracheal wash samples and exhaled breath condensates in healthy horses and horses affected by equine asthma. J Breath Res 2018; 12:046015. [PMID: 30168442 DOI: 10.1088/1752-7163/aade13] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The present work characterized the metabolomic profile of tracheal wash (TW) and exhaled breath condensate (EBC) in healthy horses and horses with respiratory disease. Six asthma-affected horses (group A) and six healthy controls (group H) underwent clinical, endoscopic and cytologic examinations of upper airways to confirm the active phase of asthma. TW and EBC samples were collected from each animal and investigated by proton nuclear magnetic resonance (1H-NMR) metabolomic analysis. A total of ten out of 38 metabolites found in the TW were significantly different between the groups (p < 0.05). Higher concentrations of histamine and oxidant agents, such as glutamate, valine, leucine and isoleucine, as well as lower levels of ascorbate, methylamine, dimethylamine and O-phosphocholine, were found in group A compared to group H. Eight metabolites were found in equine EBC, namely methanol, ethanol, formate, trimethylamine, acetone, acetate, lactate and butanone, previously observed also in human EBC. Despite the fact that this was a pilot study, the results showed that the metabolomic analysis of TW and EBC has the potentiality to serve as a basis for diagnostic tools in horses with asthma.
Collapse
Affiliation(s)
- Marilena Bazzano
- School of Biosciences and Veterinary Medicine, University of Camerino, Macerata, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Montuschi P, Santini G, Mores N, Vignoli A, Macagno F, Shoreh R, Tenori L, Zini G, Fuso L, Mondino C, Di Natale C, D'Amico A, Luchinat C, Barnes PJ, Higenbottam T. Breathomics for Assessing the Effects of Treatment and Withdrawal With Inhaled Beclomethasone/Formoterol in Patients With COPD. Front Pharmacol 2018; 9:258. [PMID: 29719507 PMCID: PMC5914154 DOI: 10.3389/fphar.2018.00258] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/08/2018] [Indexed: 01/15/2023] Open
Abstract
Background: Prospective pharmacological studies on breathomics profiles in COPD patients have not been previously reported. We assessed the effects of treatment and withdrawal of an extrafine inhaled corticosteroid (ICS)-long-acting β2-agonist (LABA) fixed dose combination (FDC) using a multidimensional classification model including breathomics. Methods: A pilot, proof-of-concept, pharmacological study was undertaken in 14 COPD patients on maintenance treatment with inhaled fluticasone propionate/salmeterol (500/50 μg b.i.d.) for at least 8 weeks (visit 1). Patients received 2-week treatment with inhaled beclomethasone dipropionate/formoterol (100/6 μg b.i.d.) (visit 2), 4-week treatment with formoterol alone (6 μg b.i.d.) (visit 3), and 4-week treatment with beclomethasone/formoterol (100/6 μg b.i.d.) (visit 4). Exhaled breath analysis with two e-noses, based on different technologies, and exhaled breath condensate (EBC) NMR-based metabolomics were performed. Sputum cell counts, sputum supernatant and EBC prostaglandin E2 (PGE2) and 15-F2t-isoprostane, fraction of exhaled nitric oxide, and spirometry were measured. Results: Compared with formoterol alone, EBC acetate and sputum PGE2, reflecting airway inflammation, were reduced after 4-week beclomethasone/formoterol. Three independent breathomics techniques showed that extrafine beclomethasone/formoterol short-term treatment was associated with different breathprints compared with regular fluticasone propionate/salmeterol. Either ICS/LABA FDC vs. formoterol alone was associated with increased pre-bronchodilator FEF25−75% and FEV1/FVC (P = 0.008–0.029). The multidimensional model distinguished fluticasone propionate/salmeterol vs. beclomethasone/formoterol, fluticasone propionate/salmeterol vs. formoterol, and formoterol vs. beclomethasone/formoterol (accuracy > 70%, P < 0.01). Conclusions: Breathomics could be used for assessing ICS treatment and withdrawal in COPD patients. Large, controlled, prospective pharmacological trials are required to clarify the biological implications of breathomics changes. EUDRACT number: 2012-001749-42.
Collapse
Affiliation(s)
- Paolo Montuschi
- Department of Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, University Hospital Agostino Gemelli Foundation, Rome, Italy
| | - Giuseppe Santini
- Department of Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, University Hospital Agostino Gemelli Foundation, Rome, Italy
| | - Nadia Mores
- Department of Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart, University Hospital Agostino Gemelli Foundation, Rome, Italy
| | - Alessia Vignoli
- Magnetic Resonance Center (CERM), University of Florence, Florence, Italy
| | - Francesco Macagno
- Department of Internal Medicine and Geriatrics, Catholic University of the Sacred Heart, University Hospital Agostino Gemelli Foundation, Rome, Italy
| | - Rugia Shoreh
- Department of Drug Sciences, Faculty of Pharmacy, University "G. d'Annunzio", Chieti, Italy
| | - Leonardo Tenori
- Magnetic Resonance Center (CERM), University of Florence, Florence, Italy
| | - Gina Zini
- Department of Hematology, Faculty of Medicine, Catholic University of the Sacred Heart, University Hospital Agostino Gemelli Foundation, Rome, Italy
| | - Leonello Fuso
- Department of Internal Medicine and Geriatrics, Catholic University of the Sacred Heart, University Hospital Agostino Gemelli Foundation, Rome, Italy
| | - Chiara Mondino
- Department of Allergology, 'Bellinzona e Valli' Hospital, Bellinzona, Switzerland
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Tor Vergata, Rome, Italy
| | - Arnaldo D'Amico
- Department of Electronic Engineering, University of Tor Vergata, Rome, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Florence, Italy
| | - Peter J Barnes
- Airway Disease Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Tim Higenbottam
- Faculty of Pharmaceutical Medicine, Royal College of Physicians, London, United Kingdom
| |
Collapse
|
41
|
Correlation of severity of chronic obstructive pulmonary disease with potential biomarkers. Immunol Lett 2018; 196:1-10. [DOI: 10.1016/j.imlet.2018.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/16/2017] [Accepted: 01/08/2018] [Indexed: 01/13/2023]
|
42
|
Phenotyping of Chronic Obstructive Pulmonary Disease Based on the Integration of Metabolomes and Clinical Characteristics. Int J Mol Sci 2018; 19:ijms19030666. [PMID: 29495451 PMCID: PMC5877527 DOI: 10.3390/ijms19030666] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/21/2018] [Accepted: 02/24/2018] [Indexed: 12/13/2022] Open
Abstract
Apart from the refined management-oriented clinical stratification of chronic obstructive pulmonary disease (COPD), the molecular pathologies behind this highly prevalent disease have remained obscure. The aim of this study was the characterization of patients with COPD, based on the metabolomic profiling of peripheral blood and exhaled breath condensate (EBC) within the context of defined clinical and demographic variables. Mass-spectrometry-based targeted analysis of serum metabolites (mainly amino acids and lipid species), untargeted profiles of serum and EBC of patients with COPD of different clinical characteristics (n = 25) and control individuals (n = 21) were performed. From the combined clinical/demographic and metabolomics data, associations between clinical/demographic and metabolic parameters were searched and a de novo phenotyping for COPD was attempted. Adjoining the clinical parameters, sphingomyelins were the best to differentiate COPD patients from controls. Unsaturated fatty acid-containing lipids, ornithine metabolism and plasma protein composition-associated signals from the untargeted analysis differentiated the Global Initiative for COPD (GOLD) categories. Hierarchical clustering did not reveal a clinical-metabolomic stratification superior to the strata set by the GOLD consensus. We conclude that while metabolomics approaches are good for finding biomarkers and clarifying the mechanism of the disease, there are no distinct co-variate independent clinical-metabolic phenotypes.
Collapse
|
43
|
Chronic obstructive pulmonary disease and long-term mortality in elderly subjects with chronic heart failure. Aging Clin Exp Res 2017; 29:1157-1164. [PMID: 28224475 DOI: 10.1007/s40520-016-0720-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/23/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Chronic heart failure (CHF) and chronic obstructive pulmonary disease (COPD) are associated with high rates of mortality in elderly subjects. Concurrent CHF and COPD frequently occur, especially in with advancing age. This study examines long-term mortality in community-dwelling elderly subjects affected by CHF alone, COPD alone, and coexistent CHF and COPD. METHODS The study evaluated 12-years mortality in 1288 subjects stratified for the presence or absence of CHF or COPD alone, and for coexistence of CHF and COPD. RESULTS Mortality, at 12 year follow-up, was 46.7% overall, 68.6% in the presence of CHF alone (p < 0.001), 56.9% in the presence of COPD alone (p < 0.01); mortality was 86.2% where CHF and COPD coexisted (p < 0.001) and was significantly higher than in CHF or COPD alone (p < 0.05). Multivariate analysis indicates that CHF (Hazard risk = 1.67, 95% confidence interval 1.15-3.27, p < 0.031) and COPD (Hazard risk = 1.27, 95% confidence interval = 1.08-1.85, p < 0.042) were predictive of long-term mortality. When CHF and COPD simultaneously occurred, the risk dramatically increased up to 3.73 (95% confidence interval = 1.19-6.93, p < 0.001). CONCLUSIONS Long-term follow-up showed higher mortality among elderly subjects affected by CHF or COPD. Simultaneous presence of CHF and COPD significantly increased the risk of death. Therefore, the presence of COPD in CHF patients should be considered a relevant factor in predicting high risk of mortality.
Collapse
|
44
|
Bowler RP, Wendt CH, Fessler MB, Foster MW, Kelly RS, Lasky-Su J, Rogers AJ, Stringer KA, Winston BW. New Strategies and Challenges in Lung Proteomics and Metabolomics. An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2017; 14:1721-1743. [PMID: 29192815 PMCID: PMC5946579 DOI: 10.1513/annalsats.201710-770ws] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This document presents the proceedings from the workshop entitled, "New Strategies and Challenges in Lung Proteomics and Metabolomics" held February 4th-5th, 2016, in Denver, Colorado. It was sponsored by the National Heart Lung Blood Institute, the American Thoracic Society, the Colorado Biological Mass Spectrometry Society, and National Jewish Health. The goal of this workshop was to convene, for the first time, relevant experts in lung proteomics and metabolomics to discuss and overcome specific challenges in these fields that are unique to the lung. The main objectives of this workshop were to identify, review, and/or understand: (1) emerging technologies in metabolomics and proteomics as applied to the study of the lung; (2) the unique composition and challenges of lung-specific biological specimens for metabolomic and proteomic analysis; (3) the diverse informatics approaches and databases unique to metabolomics and proteomics, with special emphasis on the lung; (4) integrative platforms across genetic and genomic databases that can be applied to lung-related metabolomic and proteomic studies; and (5) the clinical applications of proteomics and metabolomics. The major findings and conclusions of this workshop are summarized at the end of the report, and outline the progress and challenges that face these rapidly advancing fields.
Collapse
|
45
|
Rindlisbacher B, Strebel C, Guler S, Kollár A, Geiser T, Martin Fiedler G, Benedikt Leichtle A, Bovet C, Funke-Chambour M. Exhaled breath condensate as a potential biomarker tool for idiopathic pulmonary fibrosis—a pilot study. J Breath Res 2017; 12:016003. [DOI: 10.1088/1752-7163/aa840a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
46
|
Prasad S, Kaisar MA, Cucullo L. Unhealthy smokers: scopes for prophylactic intervention and clinical treatment. BMC Neurosci 2017; 18:70. [PMID: 28985714 PMCID: PMC5639581 DOI: 10.1186/s12868-017-0388-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/21/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Globally, tobacco use causes approximately 6 million deaths per year, and predictions report that with current trends; more than 8 million deaths are expected annually by 2030. Cigarette smokings is currently accountable for more than 480,000 deaths each year in United States (US) and is the leading cause of preventable death in the US. On average, smokers die 10 years earlier than nonsmokers and if smoking continues at its current proportion among adolescents, one in every 13 Americans aged 17 years or younger is expected to die prematurely from a smoking-related illness. Even though there has been a marginal smoking decline of around 5% in recent years (2005 vs 2015), smokers still account for 15% of the US adult population. What is also concerning is that 41,000 out of 480,000 deaths results from secondhand smoke (SHS) exposure. Herein, we provide a detailed review of health complications and major pathological mechanisms including mutation, inflammation, oxidative stress, and hemodynamic and plasma protein changes associated with chronic smoking. Further, we discuss prophylactic interventions and associated benefits and provide a rationale for the scope of clinical treatment. CONCLUSIONS Considering these premises, it is evident that much detailed translational and clinical studies are needed. Factors such as the length of smoking cessation for ex-smokers, the level of smoke exposure in case of SHS, pre-established health conditions, genetics (and epigenetics modification caused by chronic smoking) are few of the criteria that need to be evaluated to begin assessing the prophylactic and/or therapeutic impact of treatments aimed at chronic and former smokers (especially early stage ex-smokers) including those frequently subjected to second hand tobacco smoke exposure. Herein, we provide a detailed review of health complications and major pathological mechanisms including mutation, inflammation, oxidative stress, and hemodynamic and plasma protein changes associated with chronic smoking. Further, we discuss about prophylactic interventions and associated benefits and provide a rationale and scope for clinical treatment.
Collapse
Affiliation(s)
- Shikha Prasad
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, 60611, USA
| | - Mohammad Abul Kaisar
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA. .,Center for Blood Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| |
Collapse
|
47
|
Maniscalco M, Motta A. Metabolomics of exhaled breath condensate: a means for phenotyping respiratory diseases? Biomark Med 2017; 11:405-407. [PMID: 28617073 DOI: 10.2217/bmm-2017-0068] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Mauro Maniscalco
- Pulmonary Rehabilitation Unit, ICS Maugeri SPA, IRCCS, 82037 Telese Terme, Benevento, Italy
| | - Andrea Motta
- Institute of Biomolecular Chemistry, National Research Council, 80078 Pozzuoli, Naples, Italy
| |
Collapse
|
48
|
Demirjian S, Paschke KM, Wang X, Grove D, Heyka RJ, Dweik RA. Molecular breath analysis identifies the breathprint of renal failure. J Breath Res 2017; 11:026009. [DOI: 10.1088/1752-7163/aa7143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
49
|
Peralbo-Molina A, Calderón-Santiago M, Jurado-Gámez B, Luque de Castro MD, Priego-Capote F. Exhaled breath condensate to discriminate individuals with different smoking habits by GC-TOF/MS. Sci Rep 2017; 7:1421. [PMID: 28469199 PMCID: PMC5431160 DOI: 10.1038/s41598-017-01564-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/31/2017] [Indexed: 12/29/2022] Open
Abstract
Smoking is a crucial factor in respiratory diseases and lung inflammation, which are the reasons for high mortality worldwide. Despite the negative impact that tobacco consumption causes on health, few metabolomics studies have compared the composition of biofluids from smoker and non-smoker individuals. Exhaled breath condensate (EBC) is one of the biofluids less employed for clinical studies despite its non-invasive sampling and the foreseeable relationship between its composition and respiratory diseases. EBC was used in this research as clinical sample to compare three groups of individuals: current smokers (CS), former smokers (FS) and never smokers (NS). Special attention was paid to the cumulative consumption expressed as smoked pack-year. The levels of 12 metabolites found statistically significant among the three groups of individuals were discussed to find an explanation to their altered levels. Significant compounds included monoacylglycerol derivatives, terpenes and other compounds, the presence of which could be associated to the influence of smoking on the qualitative and quantitative composition of the microbiome.
Collapse
Affiliation(s)
- A Peralbo-Molina
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, E-14071, Córdoba, Spain.,Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, E-14004, Córdoba, Spain
| | - M Calderón-Santiago
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, E-14071, Córdoba, Spain.,Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, E-14004, Córdoba, Spain
| | - B Jurado-Gámez
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, E-14004, Córdoba, Spain.,Department of Respiratory Medicine, Reina Sofia Hospital, E-14004, Córdoba, Spain
| | - M D Luque de Castro
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, E-14071, Córdoba, Spain. .,Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, E-14004, Córdoba, Spain.
| | - F Priego-Capote
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, E-14071, Córdoba, Spain. .,Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía Hospital, University of Córdoba, E-14004, Córdoba, Spain.
| |
Collapse
|
50
|
Bianco A, Nigro E, Monaco ML, Matera MG, Scudiero O, Mazzarella G, Daniele A. The burden of obesity in asthma and COPD: Role of adiponectin. Pulm Pharmacol Ther 2017; 43:20-25. [PMID: 28115224 DOI: 10.1016/j.pupt.2017.01.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 12/15/2022]
Abstract
The influence of obesity on development, severity and prognosis of both asthma and COPD is attracting growing interest. The impact of obesity on the respiratory system ranges from structural modifications (decline of total lung capacity) to humoral alterations. Adipose tissue strongly contributes to the establishment of an inflammatory state being an important source of adipokines. Amongst adipokines, adiponectin is an important component of organ cross talk with adipose tissue exerting protective effects on a variety of pathophysiological processes. Adiponectin is secreted in serum where it abundantly circulates as complexes of different molecular weight. Adiponectin properties are mediated by specific receptors that are widely expressed with AdipoR1, AdipoR2, and T-cadherin being present on epithelial and endothelial pulmonary cells indicating a functional role on lung physiology. In COPD, mild to moderate obesity has been shown to have protective effects on patient's survival, while a higher mortality rate has been observed in patients with low BMI. A specific cluster of obese patients has been identified; in this group, asthma features are particularly severe and difficult to treat. Better understanding of the molecular mechanisms at the base of cross talk among different tissues and organs will lead to identification of new targets for both diagnosis and treatment of asthma and COPD.
Collapse
Affiliation(s)
- Andrea Bianco
- Dipartimento di Scienze Cardio-Toraciche e Respiratorie, Seconda Università degli Studi di Napoli, via L. Bianchi, 80131, Napoli, Italy
| | - Ersilia Nigro
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Seconda Università degli Studi di Napoli, via G. Vivaldi 42, 81100 Caserta, Italy; CEINGE-Biotecnologie Avanzate Scarl, via G. Salvatore 486, 80145 Napoli, Italy
| | | | - Maria Gabriella Matera
- Dipartimento di Medicina Sperimentale, Seconda Università degli Studi di Napoli, via L. Bianchi, 80131, Napoli, Italy.
| | - Olga Scudiero
- CEINGE-Biotecnologie Avanzate Scarl, via G. Salvatore 486, 80145 Napoli, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, via S. Pansini 5, 80131 Napoli, Italy
| | - Gennaro Mazzarella
- Dipartimento di Scienze Cardio-Toraciche e Respiratorie, Seconda Università degli Studi di Napoli, via L. Bianchi, 80131, Napoli, Italy
| | - Aurora Daniele
- Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Seconda Università degli Studi di Napoli, via G. Vivaldi 42, 81100 Caserta, Italy; CEINGE-Biotecnologie Avanzate Scarl, via G. Salvatore 486, 80145 Napoli, Italy
| |
Collapse
|