1
|
Halstenbach T, Topitsch A, Schilling O, Iglhaut G, Nelson K, Fretwurst T. Mass spectrometry-based proteomic applications in dental implants research. Proteomics Clin Appl 2024; 18:e2300019. [PMID: 38342588 DOI: 10.1002/prca.202300019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/07/2023] [Accepted: 12/21/2023] [Indexed: 02/13/2024]
Abstract
Dental implants have been established as successful treatment options for missing teeth with steadily increasing demands. Today, the primary areas of research in dental implantology revolve around osseointegration, soft and hard tissue grafting as well as peri-implantitis diagnostics, prevention, and treatment. This review provides a comprehensive overview of the current literature on the application of MS-based proteomics in dental implant research, highlights how explorative proteomics provided insights into the biology of peri-implant soft and hard tissues and how proteomics facilitated the stratification between healthy and diseased implants, enabling the identification of potential new diagnostic markers. Additionally, this review illuminates technical aspects, and provides recommendations for future study designs based on the current evidence.
Collapse
Affiliation(s)
- Tim Halstenbach
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Division of Regenerative Oral Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Annika Topitsch
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Division of Regenerative Oral Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Oliver Schilling
- Institute of Surgical Pathology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Gerhard Iglhaut
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Division of Regenerative Oral Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Katja Nelson
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Division of Regenerative Oral Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| | - Tobias Fretwurst
- Department of Oral- and Craniomaxillofacial Surgery/Translational Implantology, Division of Regenerative Oral Medicine, Faculty of Medicine, Medical Center - University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Bianco M, Calvano CD, Ventura G, Losito I, Cataldi TRI. Proteomics for Microalgae Extracts by High-Resolution Mass Spectrometry. Methods Mol Biol 2024; 2820:67-88. [PMID: 38941016 DOI: 10.1007/978-1-0716-3910-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Two protocols of protein extraction from Arthrospira platensis (spirulina) microalgae to study their proteome by mass spectrometry (MS) are here presented. The first is based on an aqueous buffer solution of Tris-HCl and the second on cold acetone. The identification of proteins was carried out by a bottom-up approach, which involves enzymatic digestion of extracted proteins followed by either matrix-assisted laser desorption ionization with time-of-flight (MALDI-TOF) MS or liquid chromatography (LC) coupled with electrospray ionization (ESI) and Fourier-transform tandem MS. While MALDI-TOF MS allowed for a fast peptide mass fingerprinting (PMF) check yet identifying less than 20 proteins in the extracted samples, the data-dependent acquisitions (DDA) mode of reversed-phase (RP) LC-ESI tandem FTMS/MS separations allowed us to recognize more than one hundred proteins by searching into dedicated spectral libraries. The application of MALDI-TOF MS analysis was found, however, of great support for preliminary investigations of cyanobacteria samples before proceeding with the RPLC-ESI-MS/MS DDA investigation, which definitively allows for a qualitative proteome analysis also of minor spirulina proteins in processed foodstuffs. Although the protein content in spirulina can be influenced by cultivation and environmental conditions, e.g., light intensity, climate, and water/air quality, here the qualitative chemical profiles of the examined samples were characterized by similar composition in high-quality proteins as phycocyanins and phycoerythrins.
Collapse
Affiliation(s)
- Mariachiara Bianco
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Cosima D Calvano
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy.
- Centro Interdipartimentale di Ricerca SMART, Università degli Studi di Bari Aldo Moro, Bari, Italy.
| | - Giovanni Ventura
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy
- Centro Interdipartimentale di Ricerca SMART, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy
- Centro Interdipartimentale di Ricerca SMART, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Tommaso R I Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, Italy
- Centro Interdipartimentale di Ricerca SMART, Università degli Studi di Bari Aldo Moro, Bari, Italy
| |
Collapse
|
3
|
Graham KA, Lawlor CF, Borotto NB. Characterizing the top-down sequencing of protein ions prior to mobility separation in a timsTOF. Analyst 2023; 148:1534-1542. [PMID: 36876327 PMCID: PMC10042122 DOI: 10.1039/d2an01682f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Mass spectrometry (MS)-based proteomics workflows of intact protein ions have increasingly been utilized to study biological systems. These workflows, however, frequently result in convoluted and difficult to analyze mass spectra. Ion mobility spectrometry (IMS) is a promising tool to overcome these limitations by separating ions by their mass- and size-to-charge ratios. In this work, we further characterize a newly developed method to collisionally dissociate intact protein ions in a trapped ion mobility spectrometry (TIMS) device. Dissociation occurs prior to ion mobility separation and thus, all product ions are distributed throughout the mobility dimension, enabling facile assignment of near isobaric product ions. We demonstrate that collisional activation within a TIMS device is capable of dissociating protein ions up to 66 kDa. We also demonstrate that the ion population size within the TIMS device significantly influences the efficiency of fragmentation. Lastly, we compare CIDtims to the other modes of collisional activation available on the Bruker timsTOF and demonstrate that the mobility resolution in CIDtims enables the annotation of overlapping fragment ions and improves sequence coverage.
Collapse
Affiliation(s)
- Katherine A Graham
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, NV 89557, USA.
| | - Charles F Lawlor
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, NV 89557, USA.
| | - Nicholas B Borotto
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, NV 89557, USA.
| |
Collapse
|
4
|
Duan H, Cheng K, Ning Z, Li L, Mayne J, Sun Z, Figeys D. Assessing the Dark Field of Metaproteome. Anal Chem 2022; 94:15648-15654. [PMID: 36327159 PMCID: PMC9670033 DOI: 10.1021/acs.analchem.2c02452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
The human gut microbiome is a complex system composed of hundreds of species, and metaproteomics can be used to explore their expressed functions. However, many lower abundance species are not detected by current metaproteomic techniques and represent the dark field of metaproteomics. We do not know the minimal abundance of a bacterium in a microbiome(depth) that can be detected by shotgun metaproteomics. In this study, we spiked 15N-labeled E. coli peptides at different percentages into peptides mixture derived from the human gut microbiome to evaluate the depth that can be achieved by shotgun metaproteomics. We observed that the number of identified peptides and peptide intensity from 15N-labeled E. coli were linearly correlated with the spike-in levels even when 15N-labeled E. coli was down to 0.5% of the biomass. Below that level, it was not detected. Interestingly, the match-between-run strategy significantly increased the number of quantified peptides even when 15N-labeled E. coli peptides were at low abundance. This is indicative that in metaproteomics of complex gut microbiomes many peptides from low abundant species are likely observable in MS1 but are not selected for MS2 by standard shotgun strategies.
Collapse
Affiliation(s)
- Haonan Duan
- Daniel
Figeys - School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada
- Ottawa
Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada
| | - Kai Cheng
- Daniel
Figeys - School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada
- Ottawa
Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada
| | - Zhibin Ning
- Daniel
Figeys - School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada
- Ottawa
Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada
| | - Leyuan Li
- Daniel
Figeys - School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada
- Ottawa
Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada
| | - Janice Mayne
- Daniel
Figeys - School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada
- Ottawa
Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada
| | - Zhongzhi Sun
- Daniel
Figeys - School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada
- Ottawa
Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada
| | - Daniel Figeys
- Daniel
Figeys - School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada
- Ottawa
Institute of Systems Biology, University of Ottawa, Ottawa, Ontario K1H 8L1, Canada
| |
Collapse
|
5
|
Srinivasan A, Sing JC, Gingras AC, Röst HL. Improving Phosphoproteomics Profiling Using Data-Independent Mass Spectrometry. J Proteome Res 2022; 21:1789-1799. [PMID: 35877786 DOI: 10.1021/acs.jproteome.2c00172] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mass spectrometry-based profiling of the phosphoproteome is a powerful method of identifying phosphorylation events at a systems level. Most phosphoproteomics studies have used data-dependent acquisition (DDA) mass spectrometry as their method of choice. In this Perspective, we review some recent studies benchmarking DDA and DIA methods for phosphoproteomics and discuss data analysis options for DIA phosphoproteomics. In order to evaluate the impact of data-dependent and data-independent acquisition (DIA) on identification and quantification, we analyze a previously published phosphopeptide-enriched data set consisting of 10 replicates acquired by DDA and DIA each. We find that though more unique identifications are made in DDA data, phosphopeptides are identified more consistently across replicates in DIA. We further discuss the challenges of identifying chromatographically coeluting phosphopeptide isomers and investigate the impact on reproducibility of identifying high-confidence site-localized phosphopeptides in replicates.
Collapse
Affiliation(s)
- Aparna Srinivasan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Justin C Sing
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
| | - Hannes L Röst
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
6
|
Ravuri HG, Noor Z, Mills PC, Satake N, Sadowski P. Data-Independent Acquisition Enables Robust Quantification of 400 Proteins in Non-Depleted Canine Plasma. Proteomes 2022; 10:9. [PMID: 35324581 PMCID: PMC8953371 DOI: 10.3390/proteomes10010009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 02/22/2022] [Indexed: 12/30/2022] Open
Abstract
Mass spectrometry-based plasma proteomics offers a major advance for biomarker discovery in the veterinary field, which has traditionally been limited to quantification of a small number of proteins using biochemical assays. The development of foundational data and tools related to sequential window acquisition of all theoretical mass spectra (SWATH)-mass spectrometry has allowed for quantitative profiling of a significant number of plasma proteins in humans and several animal species. Enabling SWATH in dogs enhances human biomedical research as a model species, and significantly improves diagnostic and disease monitoring capability. In this study, a comprehensive peptide spectral library specific to canine plasma proteome was developed and evaluated using SWATH for protein quantification in non-depleted dog plasma. Specifically, plasma samples were subjected to various orthogonal fractionation and digestion techniques, and peptide fragmentation data corresponding to over 420 proteins was collected. Subsequently, a SWATH-based assay was introduced that leveraged the developed resource and that enabled reproducible quantification of 400 proteins in non-depleted plasma samples corresponding to various disease conditions. The ability to profile the abundance of such a significant number of plasma proteins using a single method in dogs has the potential to accelerate biomarker discovery studies in this species.
Collapse
Affiliation(s)
- Halley Gora Ravuri
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (H.G.R.); (P.C.M.)
| | - Zainab Noor
- ProCan, Children’s Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia;
| | - Paul C. Mills
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (H.G.R.); (P.C.M.)
| | - Nana Satake
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia; (H.G.R.); (P.C.M.)
| | - Pawel Sadowski
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
7
|
Lee H, Kim SI. Review of Liquid Chromatography-Mass Spectrometry-Based Proteomic Analyses of Body Fluids to Diagnose Infectious Diseases. Int J Mol Sci 2022; 23:ijms23042187. [PMID: 35216306 PMCID: PMC8878692 DOI: 10.3390/ijms23042187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Rapid and precise diagnostic methods are required to control emerging infectious diseases effectively. Human body fluids are attractive clinical samples for discovering diagnostic targets because they reflect the clinical statuses of patients and most of them can be obtained with minimally invasive sampling processes. Body fluids are good reservoirs for infectious parasites, bacteria, and viruses. Therefore, recent clinical proteomics methods have focused on body fluids when aiming to discover human- or pathogen-originated diagnostic markers. Cutting-edge liquid chromatography-mass spectrometry (LC-MS)-based proteomics has been applied in this regard; it is considered one of the most sensitive and specific proteomics approaches. Here, the clinical characteristics of each body fluid, recent tandem mass spectroscopy (MS/MS) data-acquisition methods, and applications of body fluids for proteomics regarding infectious diseases (including the coronavirus disease of 2019 [COVID-19]), are summarized and discussed.
Collapse
Affiliation(s)
- Hayoung Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea;
- Bio-Analytical Science Division, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Seung Il Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea;
- Bio-Analytical Science Division, University of Science and Technology (UST), Daejeon 34113, Korea
- Correspondence:
| |
Collapse
|
8
|
Cho KC, Oh S, Wang Y, Rosenthal LS, Na CH, Zhang H. Evaluation of the Sensitivity and Reproducibility of Targeted Proteomic Analysis Using Data-Independent Acquisition for Serum and Cerebrospinal Fluid Proteins. J Proteome Res 2021; 20:4284-4291. [PMID: 34384221 PMCID: PMC8631582 DOI: 10.1021/acs.jproteome.1c00238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is a need for targeted analysis of biological fluids for diagnosis, prognosis, or monitoring the progression of diseases. Cerebrospinal fluid (CSF) and serum have been widely used for the development of protein analysis for neurodegenerative diseases and other diseases, respectively. Recently, data-independent acquisition (DIA) mass spectrometry (MS) has been developed to increase the throughput over data-dependent acquisition (DDA) on screening of a large number of samples and discovery of candidate targets. When it comes to target validation, the analytical performance of targeted analysis is critical. However, the inter- and intralaboratory analytical performances of the DIA-MS for targeted proteomic analysis of CSF and serum samples have not yet been investigated. In this study, we showed that the DIA-MS approach allowed us to identify and quantify 1732 CSF and 424 serum proteins, with 90% of proteins identified and quantified in at least 50% of DIA-MS runs. To evaluate the sensitivity, linearity, and dynamic range of the DIA approach, we included the stable isotope-labeled (SI) peptides into CSF and serum samples with serial dilutions. The lower limit of quantification (LLOQ) of peptides was 0.1-0.5 fmol, and the dynamic range was over 3.53 orders of magnitude, with excellent linearity (r2 < 0.978) in CSF and serum samples. Finally, the reproducibility of the DIA-MS approach was evaluated using entire proteins identified in CSF and serum samples. The intralaboratory three replicate results showed reliable reproducibility with 12.5 and 17.3% of the median coefficient of variation (CV) in both CSF and serum matrices, whereas the median CVs of interlaboratory three replicates were 23.8 and 32.0% in CSF and serum samples, respectively. The comparison of the quantitative result between replicates showed close similarity at intra- and interlaboratories with a median Pearson correlation value of >0.98 in CSF and serum, respectively. In conclusion, we demonstrate the capability of the DIA approach as a targeted proteomic analysis for candidate proteins from CSF and serum samples.
Collapse
Affiliation(s)
- Kyung-Cho Cho
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
- These authors contributed equally
| | - Sungtaek Oh
- Departments of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
- Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
- These authors contributed equally
| | - Yuefan Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
- These authors contributed equally
| | - Liana S. Rosenthal
- Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chan Hyun Na
- Departments of Neurology, Johns Hopkins University, Baltimore, MD 21205, USA
- Institute for Cell Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| |
Collapse
|
9
|
Zuo Z, Cao L, Nothia LF, Mohimani H. MS2Planner: improved fragmentation spectra coverage in untargeted mass spectrometry by iterative optimized data acquisition. Bioinformatics 2021; 37:i231-i236. [PMID: 34252948 PMCID: PMC8336448 DOI: 10.1093/bioinformatics/btab279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Motivation Untargeted mass spectrometry experiments enable the profiling of metabolites in complex biological samples. The collected fragmentation spectra are the metabolite’s fingerprints that are used for molecule identification and discovery. Two main mass spectrometry strategies exist for the collection of fragmentation spectra: data-dependent acquisition (DDA) and data-independent acquisition (DIA). In the DIA strategy, all the metabolites ions in predefined mass-to-charge ratio ranges are co-isolated and co-fragmented, resulting in multiplexed fragmentation spectra that are challenging to annotate. In contrast, in the DDA strategy, fragmentation spectra are dynamically and specifically collected for the most abundant ions observed, causing redundancy and sub-optimal fragmentation spectra collection. Yet, DDA results in less multiplexed fragmentation spectra that can be readily annotated. Results We introduce the MS2Planner workflow, an Iterative Optimized Data Acquisition strategy that optimizes the number of high-quality fragmentation spectra over multiple experimental acquisitions using topological sorting. Our results showed that MS2Planner increases the annotation rate by 38.6% and is 62.5% more sensitive and 9.4% more specific compared to DDA. Availability and implementation MS2Planner code is available at https://github.com/mohimanilab/MS2Planner. The generation of the inclusion list from MS2Planner was performed with python scripts available at https://github.com/lfnothias/IODA_MS. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Zeyuan Zuo
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Liu Cao
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Louis-Félix Nothia
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
- To whom correspondence should be addressed. or
| | - Hosein Mohimani
- Computational Biology Department, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- To whom correspondence should be addressed. or
| |
Collapse
|
10
|
Borotto NB, Graham KA. Fragmentation and Mobility Separation of Peptide and Protein Ions in a Trapped-Ion Mobility Device. Anal Chem 2021; 93:9959-9964. [PMID: 34258993 DOI: 10.1021/acs.analchem.1c01188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ion mobility separations (IMS) have increasingly been coupled with mass spectrometry to increase peak capacity and deconvolute complex mass spectra in proteomics workflows. IMS separations can be integrated prior to or following the collisional activation step. Post-activation IMS separations have demonstrated many advantages, yet few instrument platforms are capable of this feat. Here, we present the fragmentation of peptide ions within a commercially available trapped-ion mobility spectrometry device. Fragmentation is initiated prior to mobility analysis enabling the separation of generated product ions. The added separation step deconvolutes product ion spectra and permits improved annotation of product ions. Furthermore, we demonstrate the isolation and fragmentation of mobility separated product ions with the downstream quadrupole and collisional cell. When applied to melittin and ubiquitin, this ion mobility assisted pseudo-MS3 fragmentation approach generates sequence coverage ∼50% greater than that of typical MS2 analyses. We envision this ion-mobility-assisted fragmentation technique as the foundation of a powerful new pseudo-MS3 workflow for application toward middle- or top-down proteomics.
Collapse
Affiliation(s)
- Nicholas B Borotto
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| | - Katherine A Graham
- Department of Chemistry, University of Nevada, 1664 N. Virginia Street, Reno, Nevada 89557, United States
| |
Collapse
|
11
|
Su M, Zhang Z, Zhou L, Han C, Huang C, Nice EC. Proteomics, Personalized Medicine and Cancer. Cancers (Basel) 2021; 13:2512. [PMID: 34063807 PMCID: PMC8196570 DOI: 10.3390/cancers13112512] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023] Open
Abstract
As of 2020 the human genome and proteome are both at >90% completion based on high stringency analyses. This has been largely achieved by major technological advances over the last 20 years and has enlarged our understanding of human health and disease, including cancer, and is supporting the current trend towards personalized/precision medicine. This is due to improved screening, novel therapeutic approaches and an increased understanding of underlying cancer biology. However, cancer is a complex, heterogeneous disease modulated by genetic, molecular, cellular, tissue, population, environmental and socioeconomic factors, which evolve with time. In spite of recent advances in treatment that have resulted in improved patient outcomes, prognosis is still poor for many patients with certain cancers (e.g., mesothelioma, pancreatic and brain cancer) with a high death rate associated with late diagnosis. In this review we overview key hallmarks of cancer (e.g., autophagy, the role of redox signaling), current unmet clinical needs, the requirement for sensitive and specific biomarkers for early detection, surveillance, prognosis and drug monitoring, the role of the microbiome and the goals of personalized/precision medicine, discussing how emerging omics technologies can further inform on these areas. Exemplars from recent onco-proteogenomic-related publications will be given. Finally, we will address future perspectives, not only from the standpoint of perceived advances in treatment, but also from the hurdles that have to be overcome.
Collapse
Affiliation(s)
- Miao Su
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Chao Han
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; (M.S.); (Z.Z.); (L.Z.); (C.H.)
| | - Edouard C. Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
12
|
Evaluation of significant features discovered from different data acquisition modes in mass spectrometry-based untargeted metabolomics. Anal Chim Acta 2020; 1137:37-46. [DOI: 10.1016/j.aca.2020.08.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 01/09/2023]
|
13
|
Wang S, Zhu H, Zhou H, Cheng J, Yang H. MSpectraAI: a powerful platform for deciphering proteome profiling of multi-tumor mass spectrometry data by using deep neural networks. BMC Bioinformatics 2020; 21:439. [PMID: 33028193 PMCID: PMC7539376 DOI: 10.1186/s12859-020-03783-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/28/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Mass spectrometry (MS) has become a promising analytical technique to acquire proteomics information for the characterization of biological samples. Nevertheless, most studies focus on the final proteins identified through a suite of algorithms by using partial MS spectra to compare with the sequence database, while the pattern recognition and classification of raw mass-spectrometric data remain unresolved. RESULTS We developed an open-source and comprehensive platform, named MSpectraAI, for analyzing large-scale MS data through deep neural networks (DNNs); this system involves spectral-feature swath extraction, classification, and visualization. Moreover, this platform allows users to create their own DNN model by using Keras. To evaluate this tool, we collected the publicly available proteomics datasets of six tumor types (a total of 7,997,805 mass spectra) from the ProteomeXchange consortium and classified the samples based on the spectra profiling. The results suggest that MSpectraAI can distinguish different types of samples based on the fingerprint spectrum and achieve better prediction accuracy in MS1 level (average 0.967). CONCLUSION This study deciphers proteome profiling of raw mass spectrometry data and broadens the promising application of the classification and prediction of proteomics data from multi-tumor samples using deep learning methods. MSpectraAI also shows a better performance compared to the other classical machine learning approaches.
Collapse
Affiliation(s)
- Shisheng Wang
- West China-Washington Mitochondria and Metabolism Research Center; Key Lab of Transplant Engineering and Immu-Nology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, No. 88, Keyuan South Road, Hi-tech Zone, Chengdu, 610041, China
| | - Hongwen Zhu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Hu Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jingqiu Cheng
- West China-Washington Mitochondria and Metabolism Research Center; Key Lab of Transplant Engineering and Immu-Nology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, No. 88, Keyuan South Road, Hi-tech Zone, Chengdu, 610041, China.
| | - Hao Yang
- West China-Washington Mitochondria and Metabolism Research Center; Key Lab of Transplant Engineering and Immu-Nology, MOH, Regenerative Medicine Research Center, West China Hospital, Sichuan University, No. 88, Keyuan South Road, Hi-tech Zone, Chengdu, 610041, China.
| |
Collapse
|
14
|
Njoku K, Chiasserini D, Whetton AD, Crosbie EJ. Proteomic Biomarkers for the Detection of Endometrial Cancer. Cancers (Basel) 2019; 11:cancers11101572. [PMID: 31623106 PMCID: PMC6826703 DOI: 10.3390/cancers11101572] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 01/01/2023] Open
Abstract
Endometrial cancer is the leading gynaecological malignancy in the western world and its incidence is rising in tandem with the global epidemic of obesity. Early diagnosis is key to improving survival, which at 5 years is less than 20% in advanced disease and over 90% in early-stage disease. As yet, there are no validated biological markers for its early detection. Advances in high-throughput technologies and machine learning techniques now offer unique and promising perspectives for biomarker discovery, especially through the integration of genomic, transcriptomic, proteomic, metabolomic and imaging data. Because the proteome closely mirrors the dynamic state of cells, tissues and organisms, proteomics has great potential to deliver clinically relevant biomarkers for cancer diagnosis. In this review, we present the current progress in endometrial cancer diagnostic biomarker discovery using proteomics. We describe the various mass spectrometry-based approaches and highlight the challenges inherent in biomarker discovery studies. We suggest novel strategies for endometrial cancer detection exploiting biologically important protein biomarkers and set the scene for future directions in endometrial cancer biomarker research.
Collapse
Affiliation(s)
- Kelechi Njoku
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 5th Floor Research, St Mary's Hospital, Oxford Road, Manchester M13 9WL, UK.
- Department of Obstetrics and Gynaecology, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK.
- Stoller Biomarker Discovery Centre, Institute of Cancer Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PL, UK.
| | - Davide Chiasserini
- Stoller Biomarker Discovery Centre, Institute of Cancer Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PL, UK.
| | - Anthony D Whetton
- Stoller Biomarker Discovery Centre, Institute of Cancer Sciences, Faculty of Medical and Human Sciences, University of Manchester, Manchester M13 9PL, UK.
| | - Emma J Crosbie
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 5th Floor Research, St Mary's Hospital, Oxford Road, Manchester M13 9WL, UK.
- Department of Obstetrics and Gynaecology, Manchester Academic Health Science Centre, Manchester University NHS Foundation Trust, Manchester M13 9WL, UK.
| |
Collapse
|
15
|
Fert-Bober J, Murray CI, Parker SJ, Van Eyk JE. Precision Profiling of the Cardiovascular Post-Translationally Modified Proteome: Where There Is a Will, There Is a Way. Circ Res 2019; 122:1221-1237. [PMID: 29700069 DOI: 10.1161/circresaha.118.310966] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is an exponential increase in biological complexity as initial gene transcripts are spliced, translated into amino acid sequence, and post-translationally modified. Each protein can exist as multiple chemical or sequence-specific proteoforms, and each has the potential to be a critical mediator of a physiological or pathophysiological signaling cascade. Here, we provide an overview of how different proteoforms come about in biological systems and how they are most commonly measured using mass spectrometry-based proteomics and bioinformatics. Our goal is to present this information at a level accessible to every scientist interested in mass spectrometry and its application to proteome profiling. We will specifically discuss recent data linking various protein post-translational modifications to cardiovascular disease and conclude with a discussion for enablement and democratization of proteomics across the cardiovascular and scientific community. The aim is to inform and inspire the readership to explore a larger breadth of proteoform, particularity post-translational modifications, related to their particular areas of expertise in cardiovascular physiology.
Collapse
Affiliation(s)
- Justyna Fert-Bober
- From the Advanced Clinical BioSystems Research Institute, Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA
| | - Christopher I Murray
- From the Advanced Clinical BioSystems Research Institute, Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA
| | - Sarah J Parker
- From the Advanced Clinical BioSystems Research Institute, Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA.
| | - Jennifer E Van Eyk
- From the Advanced Clinical BioSystems Research Institute, Smidt Heart Institute, Department of Medicine, Cedars Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
16
|
Rapid Identification of New Delhi Metallo-β-Lactamase (NDM) Using Tryptic Peptides and LC-MS/MS. Antimicrob Agents Chemother 2019; 63:AAC.00461-19. [PMID: 31307990 DOI: 10.1128/aac.00461-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/03/2019] [Indexed: 01/24/2023] Open
Abstract
There is significant interest in the development of mass spectrometry (MS) methods for antimicrobial resistance protein detection, given the ability of these methods to confirm protein expression. In this work, we studied the performance of a liquid chromatography, tandem MS multiple-reaction monitoring (LC-MS/MS MRM) method for the direct detection of the New Delhi metallo-β-lactamase (NDM) carbapenemase in clinical isolates. Using a genoproteomic approach, we selected three unique peptides (SLGNLGDADTEHYAASAR, AFGAAFPK, and ASMIVMSHSAPDSR) specific to NDM that were efficiently ionized and spectrally well-defined. These three peptides were used to build an assay with turnaround time of 90 min. In a blind set, the assay detected 21/24 bla NDM-containing isolates and 76/76 isolates with negative results, corresponding to a sensitivity value of 87.5% (95% confidence interval [CI], 67.6% to 97.3%) and a specificity value of 100% (95% CI, 95.3% to 100%). One of the missed identifications was determined by protein fractionation to be due to low (∼0.1 fm/μg) NDM protein expression (below the assay limit of detection). Parallel disk diffusion susceptibility testing demonstrated this isolate to be meropenem susceptible, consistent with low NDM expression. Total proteomic analysis of the other two missed identifications did not detect NDM peptides but detected other proteins expressed from the bla NDM-containing plasmids, confirming that the plasmids were not lost. The measurement of relative NDM concentrations over the entire isolate test set demonstrated variability spanning 4 orders of magnitude, further confirming the remarkable range that may be seen in levels of NDM expression. This report highlights the sensitivity of LC-MS/MS to variations in NDM protein expression, with implications for how this technology may be used.
Collapse
|
17
|
Saha-Shah A, Esmaeili M, Sidoli S, Hwang H, Yang J, Klein PS, Garcia BA. Single Cell Proteomics by Data-Independent Acquisition To Study Embryonic Asymmetry in Xenopus laevis. Anal Chem 2019; 91:8891-8899. [PMID: 31194517 PMCID: PMC6688503 DOI: 10.1021/acs.analchem.9b00327] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Techniques that allow single cell analysis are gaining widespread attention, and most of these studies utilize genomics-based approaches. While nanofluidic technologies have enabled mass spectrometric analysis of single cells, these measurements have been limited to metabolomics and lipidomic studies. Single cell proteomics has the potential to improve our understanding of intercellular heterogeneity. However, this approach has faced challenges including limited sample availability, as well as a requirement of highly sensitive methods for sample collection, cleanup, and detection. We present a technique to overcome these limitations by combining a micropipette (pulled glass capillary) based sample collection strategy with offline sample preparation and nanoLC-MS/MS to analyze proteins through a bottom-up proteomic strategy. This study explores two types of proteomics data acquisition strategies namely data-dependent (DDA) and data-independent acquisition (DIA). Results from the study indicate DIA to be more sensitive enabling analysis of >1600 proteins from ∼130 μm Xenopus laevis embryonic cells containing <6 nL of cytoplasm. The method was found to be robust in obtaining reproducible protein quantifications from single cells spanning the 1-128-cell stages of development. Furthermore, we used micropipette sampling to study intercellular heterogeneity within cells in a single embryo and investigated embryonic asymmetry along both animal-vegetal and dorsal-ventral axes during early stages of development. Investigation of the animal-vegetal axis led to discovery of various asymmetrically distributed proteins along the animal-vegetal axis. We have further compared the hits found from our proteomic data sets with other studies and validated a few hits using an orthogonal imaging technique. This study forms the first report of vegetal enrichment of the germ plasm associated protein DDX4/VASA in Xenopus embyos. Overall, the method and data presented here holds promise to enable important leads in developmental biology.
Collapse
Affiliation(s)
- Anumita Saha-Shah
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Melody Esmaeili
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Simone Sidoli
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hyojeong Hwang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, 3411 Veterinary Medicine Basic Sciences Building, Urbana, IL 61802, USA
| | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, 3411 Veterinary Medicine Basic Sciences Building, Urbana, IL 61802, USA
| | - Peter S. Klein
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Medicine (Hematology-Oncology), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin A. Garcia
- Epigenetics Institute, Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
18
|
Protein profiling and pseudo-parallel reaction monitoring to monitor a fusion-associated conformational change in hemagglutinin. Anal Bioanal Chem 2019; 411:4987-4998. [PMID: 31254054 DOI: 10.1007/s00216-019-01921-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 12/22/2022]
Abstract
Influenza infection requires viral escape from early endosomes into the cytosol, which is enabled by an acid-induced irreversible conformational transformation in the viral protein hemagglutinin. Despite the direct relationship between this conformational change and infectivity, label-free methods for characterizing this and other protein conformational changes in biological mixtures are limited. While the chemical reactivity of the protein backbone and side-chain residues is a proxy for protein conformation, coupling this reactivity to quantitative mass spectrometry is a challenge in complex environments. Herein, we evaluate whether electrophilic amidination coupled with pseudo-parallel reaction monitoring is an effective label-free approach to detect the fusion-associated conformational transformation in recombinant hemagglutinin (rHA). We identified rHA peptides that are differentially amidinated between the pre- and post-fusion states, and validated that this difference relies upon the fusion-associated conformational switch. We further demonstrate that we can distinguish the fusion profile in a matrix of digested cellular lysate. This fusion assay can be used to evaluate fusion competence for modified HA. Graphical abstract.
Collapse
|
19
|
Recent Advances in MS-Based Plant Proteomics: Proteomics Data Validation Through Integration with Other Classic and -Omics Approaches. PROGRESS IN BOTANY 2019. [DOI: 10.1007/124_2019_32] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Arrington JV, Hsu CC, Elder SG, Andy Tao W. Recent advances in phosphoproteomics and application to neurological diseases. Analyst 2018; 142:4373-4387. [PMID: 29094114 DOI: 10.1039/c7an00985b] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Phosphorylation has an incredible impact on the biological behavior of proteins, altering everything from intrinsic activity to cellular localization and complex formation. It is no surprise then that this post-translational modification has been the subject of intense study and that, with the advent of faster, more accurate instrumentation, the number of large-scale mass spectrometry-based phosphoproteomic studies has swelled over the past decade. Recent developments in sample preparation, phosphorylation enrichment, quantification, and data analysis strategies permit both targeted and ultra-deep phosphoproteome profiling, but challenges remain in pinpointing biologically relevant phosphorylation events. We describe here technological advances that have facilitated phosphoproteomic analysis of cells, tissues, and biofluids and note applications to neuropathologies in which the phosphorylation machinery may be dysregulated, much as it is in cancer.
Collapse
|
21
|
Ma Q, Adua E, Boyce MC, Li X, Ji G, Wang W. IMass Time: The Future, in Future! ACTA ACUST UNITED AC 2018; 22:679-695. [DOI: 10.1089/omi.2018.0162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qingwei Ma
- Bioyong (Beijing) Technology Co., Ltd., Beijing, China
| | - Eric Adua
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Mary C. Boyce
- School of Science, Edith Cowan University, Joondalup, Australia
| | - Xingang Li
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Guang Ji
- China-Canada Centre of Research for Digestive Diseases, University of Ottawa, Ottawa, Canada
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
- School of Public Health, Taishan Medical University, Taian, China
| |
Collapse
|
22
|
Banerjee SL, Dionne U, Lambert JP, Bisson N. Targeted proteomics analyses of phosphorylation-dependent signalling networks. J Proteomics 2018; 189:39-47. [DOI: 10.1016/j.jprot.2018.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/19/2018] [Accepted: 02/01/2018] [Indexed: 01/18/2023]
|
23
|
Parallel reaction monitoring on a Q Exactive mass spectrometer increases reproducibility of phosphopeptide detection in bacterial phosphoproteomics measurements. J Proteomics 2018; 189:60-66. [PMID: 29605292 DOI: 10.1016/j.jprot.2018.03.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/12/2018] [Accepted: 03/27/2018] [Indexed: 12/17/2022]
Abstract
Increasing number of studies report the relevance of protein Ser/Thr/Tyr phosphorylation in bacterial physiology, yet the analysis of this type of modification in bacteria still presents a considerable challenge. Unlike in eukaryotes, where tens of thousands of phosphorylation events likely occupy more than two thirds of the proteome, the abundance of protein phosphorylation is much lower in bacteria. Even the state-of-the-art phosphopeptide enrichment protocols fail to remove the high background of abundant unmodified peptides, leading to low signal intensity and undersampling of phosphopeptide precursor ions in consecutive data-dependent MS runs. Consequently, large-scale bacterial phosphoproteomic datasets often suffer from poor reproducibility and a high number of missing values. Here we explore the application of parallel reaction monitoring (PRM) on a Q Exactive mass spectrometer in bacterial phosphoproteome analysis, focusing especially on run-to-run sampling reproducibility. In multiple measurements of identical phosphopeptide-enriched samples, we show that PRM outperforms data-dependent acquisition (DDA) in terms of detection frequency, reaching almost complete sampling efficiency, compared to 20% in DDA. We observe a similar trend over multiple heterogeneous phosphopeptide-enriched samples and conclude that PRM shows a great promise in bacterial phosphoproteomics analyses where reproducible detection and quantification of a relatively small set of phosphopeptides is desired. SIGNIFICANCE: Bacterial phosphorylated peptides occur in low abundance compared to their unmodified counterparts, and are therefore rarely reproducibly detected in shotgun (DDA) proteomics measurements. Here we show that parallel reaction monitoring complements DDA analyses and makes detection of known, targeted phosphopeptides more reproducible. This will be of significance in replicated MS measurements that have a goal to reproducibly detect and quantify phosphopeptides of interest.
Collapse
|
24
|
Manes NP, Nita-Lazar A. Application of targeted mass spectrometry in bottom-up proteomics for systems biology research. J Proteomics 2018; 189:75-90. [PMID: 29452276 DOI: 10.1016/j.jprot.2018.02.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/25/2018] [Accepted: 02/07/2018] [Indexed: 02/08/2023]
Abstract
The enormous diversity of proteoforms produces tremendous complexity within cellular proteomes, facilitates intricate networks of molecular interactions, and constitutes a formidable analytical challenge for biomedical researchers. Currently, quantitative whole-proteome profiling often relies on non-targeted liquid chromatography-mass spectrometry (LC-MS), which samples proteoforms broadly, but can suffer from lower accuracy, sensitivity, and reproducibility compared with targeted LC-MS. Recent advances in bottom-up proteomics using targeted LC-MS have enabled previously unachievable identification and quantification of target proteins and posttranslational modifications within complex samples. Consequently, targeted LC-MS is rapidly advancing biomedical research, especially systems biology research in diverse areas that include proteogenomics, interactomics, kinomics, and biological pathway modeling. With the recent development of targeted LC-MS assays for nearly the entire human proteome, targeted LC-MS is positioned to enable quantitative proteomic profiling of unprecedented quality and accessibility to support fundamental and clinical research. Here we review recent applications of bottom-up proteomics using targeted LC-MS for systems biology research. SIGNIFICANCE: Advances in targeted proteomics are rapidly advancing systems biology research. Recent applications include systems-level investigations focused on posttranslational modifications (such as phosphoproteomics), protein conformation, protein-protein interaction, kinomics, proteogenomics, and metabolic and signaling pathways. Notably, absolute quantification of metabolic and signaling pathway proteins has enabled accurate pathway modeling and engineering. Integration of targeted proteomics with other technologies, such as RNA-seq, has facilitated diverse research such as the identification of hundreds of "missing" human proteins (genes and transcripts that appear to encode proteins but direct experimental evidence was lacking).
Collapse
Affiliation(s)
- Nathan P Manes
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Aleksandra Nita-Lazar
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
25
|
Borotto NB, McClory PJ, Martin BR, Håkansson K. Targeted Annotation of S-Sulfonylated Peptides by Selective Infrared Multiphoton Dissociation Mass Spectrometry. Anal Chem 2017; 89:8304-8310. [PMID: 28708386 DOI: 10.1021/acs.analchem.7b01461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Protein S-sulfinylation (R-SO2-) and S-sulfonylation (R-SO3-) are irreversible oxidative post-translational modifications of cysteine residues. Greater than 5% of cysteines are reported to occupy these higher oxidation states, which effectively inactivate the corresponding thiols and alter the electronic and physical properties of modified proteins. Such higher oxidation states are reached after excessive exposure to cellular oxidants, and accumulate across different disease states. Despite widespread and functionally relevant cysteine oxidation across the proteome, there are currently no robust methods to profile higher order cysteine oxidation. Traditional data-dependent liquid chromatography/tandem mass spectrometry (LC/MS/MS) methods generally miss low-occupancy modifications in complex analyses. Here, we present a data-independent acquisition (DIA) LC/MS-based approach, leveraging the high IR absorbance of sulfoxides at 10.6 μm, for selective dissociation and discovery of S-sulfonated peptides. Across peptide standards and protein digests, we demonstrate selective infrared multiphoton dissociation (IRMPD) of S-sulfonated peptides in the background of unmodified peptides. This selective DIA IRMPD LC/MS-based approach allows identification and annotation of S-sulfonated peptides across complex mixtures while providing sufficient sequence information to localize the modification site.
Collapse
Affiliation(s)
- Nicholas B Borotto
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Phillip J McClory
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Brent R Martin
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Kristina Håkansson
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
26
|
Clinical Features of Psoriatic Arthritis: a Comprehensive Review of Unmet Clinical Needs. Clin Rev Allergy Immunol 2017; 55:271-294. [DOI: 10.1007/s12016-017-8630-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Liu Q, Wang Q, Deng W, Wang X, Piao M, Cai D, Li Y, Barshop WD, Yu X, Zhou T, Liu B, Oka Y, Wohlschlegel J, Zuo Z, Lin C. Molecular basis for blue light-dependent phosphorylation of Arabidopsis cryptochrome 2. Nat Commun 2017; 8:15234. [PMID: 28492234 PMCID: PMC5437284 DOI: 10.1038/ncomms15234] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 03/03/2017] [Indexed: 12/16/2022] Open
Abstract
Plant cryptochromes undergo blue light-dependent phosphorylation to regulate their activity and abundance, but the protein kinases that phosphorylate plant cryptochromes have remained unclear. Here we show that photoexcited Arabidopsis cryptochrome 2 (CRY2) is phosphorylated in vivo on as many as 24 different residues, including 7 major phosphoserines. We demonstrate that four closely related Photoregulatory Protein Kinases (previously referred to as MUT9-like kinases) interact with and phosphorylate photoexcited CRY2. Analyses of the ppk123 and ppk124 triple mutants and amiR4k artificial microRNA-expressing lines demonstrate that PPKs catalyse blue light-dependent CRY2 phosphorylation to both activate and destabilize the photoreceptor. Phenotypic analyses of these mutant lines indicate that PPKs may have additional substrates, including those involved in the phytochrome signal transduction pathway. These results reveal a mechanism underlying the co-action of cryptochromes and phytochromes to coordinate plant growth and development in response to different wavelengths of solar radiation in nature. Plant cryptochromes are regulated by blue-light dependent phosphorylation. Here the authors map the in vivo phosphorylation sites of Arabidopsis cryptochrome 2 and identify four closely related kinases that act to both activate and destabilize the receptor in response to blue light.
Collapse
Affiliation(s)
- Qing Liu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Plant Science, Jilin University, Changchun 130062, China.,Department of Molecular, Cell &Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Qin Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Department of Molecular, Cell &Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Weixian Deng
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Plant Science, Jilin University, Changchun 130062, China
| | - Xu Wang
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,Department of Molecular, Cell &Developmental Biology, University of California, Los Angeles, California 90095, USA
| | - Mingxin Piao
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Plant Science, Jilin University, Changchun 130062, China
| | - Dawei Cai
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaxing Li
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - William D Barshop
- Department of Biological Chemistry, University of California, Los Angeles, California 90095, USA
| | - Xiaolan Yu
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tingting Zhou
- College of Plant Science, Jilin University, Changchun 130062, China
| | - Bin Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Yoshito Oka
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - James Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, California 90095, USA
| | - Zecheng Zuo
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.,College of Plant Science, Jilin University, Changchun 130062, China
| | - Chentao Lin
- Department of Molecular, Cell &Developmental Biology, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
28
|
Gumienny R, Jedlinski DJ, Schmidt A, Gypas F, Martin G, Vina-Vilaseca A, Zavolan M. High-throughput identification of C/D box snoRNA targets with CLIP and RiboMeth-seq. Nucleic Acids Res 2017; 45:2341-2353. [PMID: 28031372 PMCID: PMC5389715 DOI: 10.1093/nar/gkw1321] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/08/2016] [Accepted: 12/19/2016] [Indexed: 01/02/2023] Open
Abstract
High-throughput sequencing has greatly facilitated the discovery of long and short non-coding RNAs (ncRNAs), which frequently guide ribonucleoprotein complexes to RNA targets, to modulate their metabolism and expression. However, for many ncRNAs, the targets remain to be discovered. In this study, we developed computational methods to map C/D box snoRNA target sites using data from core small nucleolar ribonucleoprotein crosslinking and immunoprecipitation and from transcriptome-wide mapping of 2΄-O-ribose methylation sites. We thereby assigned the snoRNA guide to a known methylation site in the 18S rRNA, we uncovered a novel partially methylated site in the 28S ribosomal RNA, and we captured a site in the 28S rRNA in interaction with multiple snoRNAs. Although we also captured mRNAs in interaction with snoRNAs, we did not detect 2΄-O-methylation of these targets. Our study provides an integrated approach to the comprehensive characterization of 2΄-O-methylation targets of snoRNAs in species beyond those in which these interactions have been traditionally studied and contributes to the rapidly developing field of 'epitranscriptomics'.
Collapse
MESH Headings
- Algorithms
- Base Sequence
- Cross-Linking Reagents/chemistry
- Databases, Genetic
- High-Throughput Nucleotide Sequencing/methods
- Immunoprecipitation
- Methylation
- Protein Binding
- RNA, Ribosomal, 18S/genetics
- RNA, Ribosomal, 18S/metabolism
- RNA, Ribosomal, 28S/genetics
- RNA, Ribosomal, 28S/metabolism
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Ribonucleoproteins, Small Nucleolar/genetics
- Ribonucleoproteins, Small Nucleolar/metabolism
- Ribose/metabolism
- Software
- Transcriptome
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Rafal Gumienny
- Computational and Systems Biology, Biozentrum, University of Basel, Switzerland
- Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Switzerland
| | | | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Switzerland
| | - Foivos Gypas
- Computational and Systems Biology, Biozentrum, University of Basel, Switzerland
- Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Switzerland
| | - Georges Martin
- Computational and Systems Biology, Biozentrum, University of Basel, Switzerland
| | - Arnau Vina-Vilaseca
- Computational and Systems Biology, Biozentrum, University of Basel, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, Switzerland
- Swiss Institute of Bioinformatics, Biozentrum, University of Basel, Switzerland
| |
Collapse
|
29
|
Fisunov GY, Evsyutina DV, Garanina IA, Arzamasov AA, Butenko IO, Altukhov IA, Nikitina AS, Govorun VM. Ribosome profiling reveals an adaptation strategy of reduced bacterium to acute stress. Biochimie 2016; 132:66-74. [PMID: 27984202 DOI: 10.1016/j.biochi.2016.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 10/25/2016] [Indexed: 01/08/2023]
Abstract
Bacteria of class Mollicutes (mycoplasmas) feature significant genome reduction which makes them good model organisms for systems biology studies. Previously we demonstrated, that drastic transcriptional response of mycoplasmas to stress results in a very limited response on the level of protein. In this study we used heat stress model of M. gallisepticum and ribosome profiling to elucidate the process of genetic information transfer under stress. We found that under heat stress ribosomes demonstrate selectivity towards mRNA binding. We identified that heat stress response may be divided into two groups on the basis of absolute transcript abundance and fold-change in the translatome. One represents a noise-like response and another is likely an adaptive one. The latter include ClpB chaperone, cell division cluster, homologs of immunoblocking proteins and short ORFs with unknown function. We found that previously identified read-through of terminators contributes to the upregulation of transcripts in the translatome as well. In addition we identified that ribosomes of M. gallisepticum undergo reorganization under the heat stress. The most notable event is decrease of the amount of associated HU protein. In conclusion, only changes of few adaptive transcripts significantly impact translatome, while widespread noise-like transcription plays insignificant role in translation during stress.
Collapse
Affiliation(s)
- Gleb Y Fisunov
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation.
| | - Daria V Evsyutina
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation; Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskiye Gory, GSP-1, 73, Moscow 119234, Russian Federation
| | - Irina A Garanina
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation
| | - Alexander A Arzamasov
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation
| | - Ivan O Butenko
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation
| | - Ilya A Altukhov
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation
| | - Anastasia S Nikitina
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation; Moscow Institute of Physics and Technology, Institutsky 9, Dolgoprudny 141700, Russian Federation
| | - Vadim M Govorun
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Malaya Pirogovskaya 1a, Moscow 119992, Russian Federation; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, Moscow 117997, Russian Federation; Moscow Institute of Physics and Technology, Institutsky 9, Dolgoprudny 141700, Russian Federation
| |
Collapse
|
30
|
Bauer M, Cubizolles F, Schmidt A, Nigg EA. Quantitative analysis of human centrosome architecture by targeted proteomics and fluorescence imaging. EMBO J 2016; 35:2152-2166. [PMID: 27539480 PMCID: PMC5048348 DOI: 10.15252/embj.201694462] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/25/2016] [Indexed: 12/14/2022] Open
Abstract
Centrioles are essential for the formation of centrosomes and cilia. While numerical and/or structural centrosomes aberrations are implicated in cancer, mutations in centriolar and centrosomal proteins are genetically linked to ciliopathies, microcephaly, and dwarfism. The evolutionarily conserved mechanisms underlying centrosome biogenesis are centered on a set of key proteins, including Plk4, Sas-6, and STIL, whose exact levels are critical to ensure accurate reproduction of centrioles during cell cycle progression. However, neither the intracellular levels of centrosomal proteins nor their stoichiometry within centrosomes is presently known. Here, we have used two complementary approaches, targeted proteomics and EGFP-tagging of centrosomal proteins at endogenous loci, to measure protein abundance in cultured human cells and purified centrosomes. Our results provide a first assessment of the absolute and relative amounts of major components of the human centrosome. Specifically, they predict that human centriolar cartwheels comprise up to 16 stacked hubs and 1 molecule of STIL for every dimer of Sas-6. This type of quantitative information will help guide future studies of the molecular basis of centrosome assembly and function.
Collapse
Affiliation(s)
- Manuel Bauer
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | - Erich A Nigg
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
31
|
Cotham VC, McGee WM, Brodbelt JS. Modulation of Phosphopeptide Fragmentation via Dual Spray Ion/Ion Reactions Using a Sulfonate-Incorporating Reagent. Anal Chem 2016; 88:8158-65. [PMID: 27467576 DOI: 10.1021/acs.analchem.6b01901] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The labile nature of phosphoryl groups has presented a long-standing challenge for the characterization of protein phosphorylation via conventional mass spectrometry-based bottom-up proteomics methods. Collision-induced dissociation (CID) causes preferential cleavage of the phospho-ester bond of peptides, particularly under conditions of low proton mobility, and results in the suppression of sequence-informative fragmentation that often prohibits phosphosite determination. In the present study, the fragmentation patterns of phosphopeptides are improved through ion/ion-mediated peptide derivatization with 4-formyl-1,3-benezenedisulfonic acid (FBDSA) anions using a dual spray reactor. This approach exploits the strong electrostatic interactions between the sulfonate moieties of FBDSA and basic sites to facilitate gas-phase bioconjugation and to reduce charge sequestration and increase the yield of phosphate-retaining sequence ions upon CID. Moreover, comparative CID fragmentation analysis between unmodified phosphopeptides and those modified online with FBDSA or in solution via carbamylation and 4-sulfophenyl isothiocyanate (SPITC) provided evidence for sulfonate interference with charge-directed mechanisms that result in preferential phosphate elimination. Our results indicate the prominence of charge-directed neighboring group participation reactions involved in phosphate neutral loss, and the implementation of ion/ion reactions in a dual spray reactor setup provides a means to disrupt the interactions by competing hydrogen-bonding interactions between sulfonate groups and the side chains of basic residues.
Collapse
Affiliation(s)
- Victoria C Cotham
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - William M McGee
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
32
|
Schmidlin T, Garrigues L, Lane CS, Mulder TC, van Doorn S, Post H, de Graaf EL, Lemeer S, Heck AJR, Altelaar AFM. Assessment of SRM, MRM3, and DIA for the targeted analysis of phosphorylation dynamics in non-small cell lung cancer. Proteomics 2016; 16:2193-205. [DOI: 10.1002/pmic.201500453] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 04/12/2016] [Accepted: 05/20/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Thierry Schmidlin
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
| | - Luc Garrigues
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
| | | | - T. Celine Mulder
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
| | - Sander van Doorn
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
| | - Harm Post
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
| | - Erik L. de Graaf
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
- Current address: Erik L. de Graaf, Fondazione Pisana per la Scienza ONLUS; Via Panfilo Castaldi 2; 56121 Pisa Italy
| | - Simone Lemeer
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
| | - A. F. Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics; Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences; Utrecht University and Netherlands Proteomics Centre; Utrecht The Netherlands
| |
Collapse
|
33
|
Gliesche DG, Hussner J, Witzigmann D, Porta F, Glatter T, Schmidt A, Huwyler J, Meyer Zu Schwabedissen HE. Secreted Matrix Metalloproteinase-9 of Proliferating Smooth Muscle Cells as a Trigger for Drug Release from Stent Surface Polymers in Coronary Arteries. Mol Pharm 2016; 13:2290-300. [PMID: 27241028 DOI: 10.1021/acs.molpharmaceut.6b00033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiovascular diseases are the leading causes of death in industrialized countries. Atherosclerotic coronary arteries are commonly treated with percutaneous transluminal coronary intervention followed by stent deployment. This treatment has significantly improved the clinical outcome. However, triggered vascular smooth muscle cell (SMC) proliferation leads to in-stent restenosis in bare metal stents. In addition, stent thrombosis is a severe side effect of drug eluting stents due to inhibition of endothelialization. The aim of this study was to develop and test a stent surface polymer, where cytotoxic drugs are covalently conjugated to the surface and released by proteases selectively secreted by proliferating smooth muscle cells. Resting and proliferating human coronary artery smooth muscle cells (HCASMC) and endothelial cells (HCAEC) were screened to identify an enzyme exclusively released by proliferating HCASMC. Expression analyses and enzyme activity assays verified selective and exclusive activity of the matrix metalloproteinase-9 (MMP-9) in proliferating HCASMC. The principle of drug release exclusively triggered by proliferating HCASMC was tested using the biodegradable stent surface polymer poly-l-lactic acid (PLLA) and the MMP-9 cleavable peptide linkers named SRL and AVR. The specific peptide cleavage by MMP-9 was verified by attachment of the model compound fluorescein. Fluorescein release was observed in the presence of MMP-9 secreting HCASMC but not of proliferating HCAEC. Our findings suggest that cytotoxic drug conjugated polymers can be designed to selectively release the attached compound triggered by MMP-9 secreting smooth muscle cells. This novel concept may be beneficial for stent endothelialization thereby reducing the risk of restenosis and thrombosis.
Collapse
Affiliation(s)
- Daniel G Gliesche
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel , 4056 Basel, Switzerland
| | - Janine Hussner
- Biopharmacy, Department of Pharmaceutical Sciences, University of Basel , 4056 Basel, Switzerland
| | - Dominik Witzigmann
- Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel , Basel 4056, Switzerland
| | - Fabiola Porta
- Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel , Basel 4056, Switzerland
| | - Timo Glatter
- Proteomics Core Facility, Biozentrum, University of Basel , Basel 4056, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel , Basel 4056, Switzerland
| | - Jörg Huwyler
- Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel , Basel 4056, Switzerland
| | | |
Collapse
|
34
|
Multiple stage MS in analysis of plasma, serum, urine and in vitro samples relevant to clinical and forensic toxicology. Bioanalysis 2016; 8:457-81. [DOI: 10.4155/bio.16.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This paper reviews MS approaches applied to metabolism studies, structure elucidation and qualitative or quantitative screening of drugs (of abuse) and/or their metabolites. Applications in clinical and forensic toxicology were included using blood plasma or serum, urine, in vitro samples, liquids, solids or plant material. Techniques covered are liquid chromatography coupled to low-resolution and high-resolution multiple stage mass analyzers. Only PubMed listed studies published in English between January 2008 and January 2015 were considered. Approaches are discussed focusing on sample preparation and mass spectral settings. Comments on advantages and limitations of these techniques complete the review.
Collapse
|
35
|
Affiliation(s)
- Nicholas M. Riley
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
36
|
Affiliation(s)
- Jennifer S Brodbelt
- Department of Chemistry, University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
37
|
Bauer M, Ahrné E, Baron AP, Glatter T, Fava LL, Santamaria A, Nigg EA, Schmidt A. Assessment of current mass spectrometric workflows for the quantification of low abundant proteins and phosphorylation sites. Data Brief 2015; 5:297-304. [PMID: 26550600 PMCID: PMC4596922 DOI: 10.1016/j.dib.2015.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 08/18/2015] [Indexed: 12/02/2022] Open
Abstract
The data described here provide a systematic performance evaluation of popular data-dependent (DDA) and independent (DIA) mass spectrometric (MS) workflows currently used in quantitative proteomics. We assessed the limits of identification, quantification and detection for each method by analyzing a dilution series of 20 unmodified and 10 phosphorylated synthetic heavy labeled reference peptides, respectively, covering six orders of magnitude in peptide concentration with and without a complex human cell digest background. We found that all methods performed very similarly in the absence of background proteins, however, when analyzing whole cell lysates, targeted methods were at least 5–10 times more sensitive than directed or DDA methods. In particular, higher stage fragmentation (MS3) of the neutral loss peak using a linear ion trap increased dynamic quantification range of some phosphopeptides up to 100-fold. We illustrate the power of this targeted MS3 approach for phosphopeptide monitoring by successfully quantifying 9 phosphorylation sites of the kinetochore and spindle assembly checkpoint component Mad1 over different cell cycle states from non-enriched pull-down samples. The data are associated to the research article ‘Evaluation of data-dependent and data-independent mass spectrometric workflows for sensitive quantification of proteins and phosphorylation sites׳ (Bauer et al., 2014) [1]. The mass spectrometry and the analysis dataset have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository with the dataset identifier PXD000964.
Collapse
Affiliation(s)
- Manuel Bauer
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Erik Ahrné
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Anna P Baron
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Timo Glatter
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Luca L Fava
- Division of Developmental Immunology Biocenter, Innsbruck Medical University, Innraion 80, 6020 Innsbruck, Austria
| | - Anna Santamaria
- Cell Cycle and Mitosis Laboratory, Research unit in Biomedicine and Translational Oncology, Vall Hebron Institute of Research, Psg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Erich A Nigg
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Alexander Schmidt
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| |
Collapse
|
38
|
de Graaf EL, Kaplon J, Mohammed S, Vereijken LAM, Duarte DP, Redondo Gallego L, Heck AJR, Peeper DS, Altelaar AFM. Signal Transduction Reaction Monitoring Deciphers Site-Specific PI3K-mTOR/MAPK Pathway Dynamics in Oncogene-Induced Senescence. J Proteome Res 2015; 14:2906-14. [PMID: 26011226 DOI: 10.1021/acs.jproteome.5b00236] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We report a straightforward strategy to comprehensively monitor signal transduction pathway dynamics in mammalian systems. Combining targeted quantitative proteomics with highly selective phosphopeptide enrichment, we monitor, with great sensitivity, phosphorylation dynamics of the PI3K-mTOR and MAPK signaling networks. Our approach consists of a single enrichment step followed by a single targeted proteomics experiment, circumventing the need for labeling and immune purification while enabling analysis of selected phosphorylation nodes throughout signaling pathways. The need for such a comprehensive pathway analysis is illustrated by highlighting previously uncharacterized phosphorylation changes in oncogene-induced senescence, associated with diverse biological phenotypes and pharmacological intervention of the PI3K-mTOR pathway.
Collapse
Affiliation(s)
- Erik L de Graaf
- †Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,‡Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Joanna Kaplon
- §Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Shabaz Mohammed
- †Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,‡Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Lisette A M Vereijken
- †Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,‡Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Daniel P Duarte
- §Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Laura Redondo Gallego
- †Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,‡Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert J R Heck
- †Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,‡Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Daniel S Peeper
- §Division of Molecular Oncology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - A F Maarten Altelaar
- †Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.,‡Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
39
|
Dunkley T, Costa V, Friedlein A, Lugert S, Aigner S, Ebeling M, Miller MT, Patsch C, Piraino P, Cutler P, Jagasia R. Characterization of a human pluripotent stem cell-derived model of neuronal development using multiplexed targeted proteomics. Proteomics Clin Appl 2015; 9:684-94. [PMID: 25684324 DOI: 10.1002/prca.201400150] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/30/2015] [Accepted: 02/10/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE Human pluripotent stem cell (hPSC)-derived cellular models have great potential to enable drug discovery and improve translation of preclinical insights to the clinic. We have developed a hPSC-derived neural precursor cell model for studying early events in human brain development. We present protein-level characterization of this model, using a multiplexed SRM approach, to establish reproducibility and physiological relevance; essential prerequisites for utilization of the neuronal development model in phenotypic screening-based drug discovery. EXPERIMENTAL DESIGN Profiles of 246 proteins across three key stages of in vitro neuron differentiation were analyzed by SRM. Three independently hPSC-derived isogenic neural stem cell (NSC) lines were analyzed across five to nine independent neuronal differentiations. RESULTS One hundred seventy-five proteins were reliably quantified revealing a time-dependent pattern of protein regulation that reflected protein dynamics during in vivo brain development and that was conserved across replicate differentiations and multiple cell lines. CONCLUSIONS AND CLINICAL RELEVANCE SRM-based protein profiling enabled establishment of the reproducibility and physiological relevance of the hPSC-derived neuronal model. Combined with the successful quantification of proteins relevant to neurodevelopmental diseases, this validates the platform for use as a model to enable neuroscience drug discovery.
Collapse
Affiliation(s)
- Tom Dunkley
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Veronica Costa
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Roche Innovation Center Basel, Basel, Switzerland
| | - Arno Friedlein
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Sebastian Lugert
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Roche Innovation Center Basel, Basel, Switzerland
| | - Stefan Aigner
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Martin Ebeling
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Meghan T Miller
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Roche Innovation Center Basel, Basel, Switzerland
| | - Christoph Patsch
- Roche Pharmaceutical Research and Early Development, Small Molecule Research, Roche Innovation Center Basel, Basel, Switzerland
| | - Paolo Piraino
- Pvalue Research S.R.L, Castel San Giovanni, Piacenza, Italy
| | - Paul Cutler
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Basel, Switzerland
| | - Ravi Jagasia
- Roche Pharmaceutical Research and Early Development, Discovery Neuroscience, Roche Innovation Center Basel, Basel, Switzerland
| |
Collapse
|
40
|
Schreiner D, Simicevic J, Ahrné E, Schmidt A, Scheiffele P. Quantitative isoform-profiling of highly diversified recognition molecules. eLife 2015; 4:e07794. [PMID: 25985086 PMCID: PMC4489214 DOI: 10.7554/elife.07794] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/14/2015] [Indexed: 12/28/2022] Open
Abstract
Complex biological systems rely on cell surface cues that govern cellular self-recognition and selective interactions with appropriate partners. Molecular diversification of cell surface recognition molecules through DNA recombination and complex alternative splicing has emerged as an important principle for encoding such interactions. However, the lack of tools to specifically detect and quantify receptor protein isoforms is a major impediment to functional studies. We here developed a workflow for targeted mass spectrometry by selected reaction monitoring that permits quantitative assessment of highly diversified protein families. We apply this workflow to dissecting the molecular diversity of the neuronal neurexin receptors and uncover an alternative splicing-dependent recognition code for synaptic ligands. DOI:http://dx.doi.org/10.7554/eLife.07794.001 To create a protein, a gene is first copied to form an RNA molecule that contains regions known as introns and exons. Splicing removes the introns and joins the exons together to form a molecule of ‘messenger RNA’, which is translated into a protein. Over the course of evolution, many groups—or families—of proteins have expanded and diversified their roles. One way in which this can occur is through a process known as alternative splicing, in which different exons can be included or excluded to generate the final messenger RNA. In this way, a single gene can produce a number of different proteins. These closely related proteins are known as isoforms. The brain contains billions of neurons that communicate with one another across connections known as synapses. A family of proteins called neurexins helps neurons to form these synapses. Humans have three neurexin genes, which undergo extensive alternative splicing to produce thousands of protein isoforms. However, it is not known whether all of these isoforms are produced in neurons, as existing experimental techniques were not sensitive enough to easily distinguish one isoform from another. A technique known as ‘selected reaction monitoring’ (or SRM for short) has recently emerged as a promising way to identify proteins. This allows proteins containing specific sequences to be separated out for analysis, in contrast to existing techniques that test randomly selected protein samples, which will result in most isoforms being missed. Schreiner, Simicevic et al. have now developed SRM further and show that this technique can detect the identity and amount of the neurexin isoforms present at synapses, including those that are only produced in very small quantities. Using SRM, Schreiner, Simicevic et al. demonstrate that neurexin isoforms differ in how they interact with synaptic receptors. Thus, alternative splicing of neurexins underlies a ‘recognition code’ at neuronal synapses. In the future, this newly developed SRM method could be used to investigate isoforms in other protein families and tissues, and so may prove valuable for understanding how a wide range of cellular recognition processes work. DOI:http://dx.doi.org/10.7554/eLife.07794.002
Collapse
Affiliation(s)
| | | | - Erik Ahrné
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | |
Collapse
|
41
|
Défachelles L, Raich N, Terracol R, Baudin X, Williams B, Goldberg M, Karess RE. RZZ and Mad1 dynamics in Drosophila mitosis. Chromosome Res 2015; 23:333-42. [PMID: 25772408 PMCID: PMC4469085 DOI: 10.1007/s10577-015-9472-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/20/2015] [Accepted: 02/26/2015] [Indexed: 12/14/2022]
Abstract
The presence or absence of Mad1 at kinetochores is a major determinant of spindle assembly checkpoint (SAC) activity, the surveillance mechanism that delays anaphase onset if one or more kinetochores remain unattached to spindle fibers. Among the factors regulating the levels of Mad1 at kinetochores is the Rod, Zw10, and Zwilch (RZZ) complex, which is required for Mad1 recruitment through a mechanism that remains unknown. The relative dynamics and interactions of Mad1 and RZZ at kinetochores have not been extensively investigated, although Mad1 has been reported to be stably recruited to unattached kinetochores. In this study, we directly compare Mad1-green fluorescent protein (GFP) turnover dynamics on unattached Drosophila kinetochores with that of RZZ, tagged either with GFP-Rod or GFP-Zw10. We find that nearly 40 % of kinetochore-bound Mad1 has a significant dynamic component, turning over with a half-life of 12 s. RZZ in contrast is essentially stable on unattached kinetochores. In addition, we report that a fraction of RZZ and Mad1 can co-immunoprecipitate, indicating that the genetically determined recruitment hierarchy (in which Mad1 depends on RZZ) may reflect a physical association of the two complexes.
Collapse
|