1
|
Cornelius P, Mayes BA, Petersen JS, Turnquist DJ, Dufour PJ, Dannenberg AJ, Shanahan JM, Carver BJ. Pharmacological Characterization of SDX-7320/Evexomostat: A Novel Methionine Aminopeptidase Type 2 Inhibitor with Anti-tumor and Anti-metastatic Activity. Mol Cancer Ther 2024; 23:595-605. [PMID: 38530115 PMCID: PMC11063762 DOI: 10.1158/1535-7163.mct-23-0574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 02/07/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Methionine aminopeptidase type 2 (METAP2) is a ubiquitous, evolutionarily conserved metalloprotease fundamental to protein biosynthesis which catalyzes removal of the N-terminal methionine residue from nascent polypeptides. METAP2 is an attractive target for cancer therapeutics based upon its over-expression in multiple human cancers, the importance of METAP2-specific substrates whose biological activity may be altered following METAP2 inhibition, and additionally, that METAP2 was identified as the target for the anti-angiogenic natural product, fumagillin. Irreversible inhibition of METAP2 using fumagillin analogues has established the anti-angiogenic and anti-tumor characteristics of these derivatives; however, their full clinical potential has not been realized due to a combination of poor drug-like properties and dose-limiting central nervous system (CNS) toxicity. This report describes the physicochemical and pharmacological characterization of SDX-7320 (evexomostat), a polymer-drug conjugate of the novel METAP2 inhibitor (METAP2i) SDX-7539. In vitro binding, enzyme, and cell-based assays demonstrated that SDX-7539 is a potent and selective METAP2 inhibitor. In utilizing a high molecular weight, water-soluble polymer to conjugate the novel fumagillol-derived, cathepsin-released, METAP2i SDX-7539, limitations observed with prior generation, small molecule fumagillol derivatives were ameliorated including reduced CNS exposure of the METAP2i, and prolonged half-life enabling convenient administration. Multiple xenograft and syngeneic cancer models were utilized to demonstrate the anti-tumor and anti-metastatic profile of SDX-7320. Unlike polymer-drug conjugates in general, reductions in small molecule-equivalent efficacious doses following polymer conjugation were observed. SDX-7320 has completed a phase I clinical safety study in patients with late-stage cancer and is currently being evaluated in multiple phase Ib/II clinical studies in patients with advanced solid tumors.
Collapse
|
2
|
Friese-Hamim M, Ortiz Ruiz MJ, Bogatyrova O, Keil M, Rohdich F, Blume B, Leuthner B, Czauderna F, Hahn D, Jabs J, Jaehrling F, Heinrich T, Kellner R, Chan K, Tong AH, Wienke D, Moffat J, Blaukat A, Zenke FT. Novel Methionine Aminopeptidase 2 Inhibitor M8891 Synergizes with VEGF Receptor Inhibitors to Inhibit Tumor Growth of Renal Cell Carcinoma Models. Mol Cancer Ther 2024; 23:159-173. [PMID: 37940144 PMCID: PMC10831447 DOI: 10.1158/1535-7163.mct-23-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/05/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
N-terminal processing by methionine aminopeptidases (MetAP) is a crucial step in the maturation of proteins during protein biosynthesis. Small-molecule inhibitors of MetAP2 have antiangiogenic and antitumoral activity. Herein, we characterize the structurally novel MetAP2 inhibitor M8891. M8891 is a potent, selective, reversible small-molecule inhibitor blocking the growth of human endothelial cells and differentially inhibiting cancer cell growth. A CRISPR genome-wide screen identified the tumor suppressor p53 and MetAP1/MetAP2 as determinants of resistance and sensitivity to pharmacologic MetAP2 inhibition. A newly identified substrate of MetAP2, translation elongation factor 1-alpha-1 (EF1a-1), served as a pharmacodynamic biomarker to follow target inhibition in cell and mouse studies. Robust angiogenesis and tumor growth inhibition was observed with M8891 monotherapy. In combination with VEGF receptor inhibitors, tumor stasis and regression occurred in patient-derived xenograft renal cell carcinoma models, particularly those that were p53 wild-type, had Von Hippel-Landau gene (VHL) loss-of-function mutations, and a mid/high MetAP1/2 expression score.
Collapse
Affiliation(s)
- Manja Friese-Hamim
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Maria J. Ortiz Ruiz
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Olga Bogatyrova
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Marina Keil
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Felix Rohdich
- Discovery Technologies, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Beatrix Blume
- Discovery Technologies, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Birgitta Leuthner
- Discovery Technologies, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Frank Czauderna
- Research Unit Oncology, EMD Serono Research & Development Institute Inc., Billerica, Massachusetts
| | - Diane Hahn
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Julia Jabs
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Frank Jaehrling
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Timo Heinrich
- Discovery Technologies, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Roland Kellner
- Discovery Technologies, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Katherine Chan
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Amy H.Y. Tong
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
| | - Dirk Wienke
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Jason Moffat
- Donnelly Centre, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Institute for Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Andree Blaukat
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| | - Frank T. Zenke
- Research Unit Oncology, Merck Healthcare KGaA, the healthcare business of Merck KGaA, Darmstadt, Germany
| |
Collapse
|
3
|
Epoxide containing molecules: A good or a bad drug design approach. Eur J Med Chem 2020; 201:112327. [PMID: 32526552 DOI: 10.1016/j.ejmech.2020.112327] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022]
Abstract
Functional group modification is one of the main strategies used in drug discovery and development. Despite the controversy of being identified for many years as a biologically hazardous functional group, the introduction of an epoxide function in a structural backbone is still one of the possible modifications being implemented in drug design. In this manner, it is our intention to prove with this work that epoxides can have significant interest in medicinal chemistry, not only as anticancer agents, but also as important drugs for other pathologies. Thus, this revision paper aims to highlight the biological activity and the proposed mechanisms of action of several epoxide-containing molecules either in preclinical studies or in clinical development or even in clinical use. An overview of the chemistry of epoxides is also reported. Some of the conclusions are that effectively most of the epoxide-containing molecules referred in this work were being studied or are in the market as anticancer drugs. However, some of them in preclinical studies, were also associated with other different activities such as anti-malarial, anti-arthritic, insecticidal, antithrombotic, and selective inhibitory activity of FXIII-A (a transglutaminase). As for the epoxide-containing molecules in clinical trials, some of them are being tested for obesity and schizophrenia. Finally, drugs containing epoxide groups already in the market are mostly used for the treatment of different types of cancer, such as breast cancer and multiple myeloma. Other diseases for which the referred drugs are being used include heart failure, infections and gastrointestinal disturbs. In summary, epoxides can be a suitable option in drug design, particularly in the design of anticancer agents, and deserve to be better explored. However, and despite the promising results, it is imperative to explore the mechanisms of action of these compounds in order to have a better picture of their efficiency and safety.
Collapse
|
4
|
Moore MC, Coate KC, Scott M, Kraft G, Vath JE, Hughes TE, Farmer B, Cherrington AD. MetAP2 inhibitor treatment of high-fat and -fructose-fed dogs: impact on the response to oral glucose ingestion and a hyperinsulinemic hyperglycemic clamp. Am J Physiol Endocrinol Metab 2020; 318:E514-E524. [PMID: 31990576 PMCID: PMC7191409 DOI: 10.1152/ajpendo.00451.2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the methionine aminopeptidase 2 inhibitor fumagillin in dogs consuming a high-fat and -fructose diet (HFFD). In pilot studies (3 dogs that had consumed HFFD for 3 yr), 8 wk of daily treatment with fumagillin reduced food intake 29%, weight 6%, and the glycemic excursion during an oral glucose tolerance test (OGTT) 44%. A second group of dogs consumed the HFFD for 17 wk: pretreatment (weeks 0-4), treatment with fumagillin (FUM; n = 6), or no drug (Control, n = 8) (weeks 4-12), washout period (weeks 12-16), and fumagillin or no drug for 1 wk (week 17). OGTTs were performed at 0, 4, 11, and 16 wk. A hyperinsulinemic hyperglycemic clamp was performed in week 12; 4 chow-fed dogs underwent identical clamps. Kilocalories per day intake during the treatment period was 2,067 ± 50 (Control) versus 1,824 ± 202 (FUM). Body weights (kg) increased 1.9 ± 0.3 vs. 2.7 ± 0.8 (0-4 wk) and 1.2 ± 0.2 vs. -0.02 ± 0.9 (4-12 wk) in Control versus fumagillin. The OGTT glycemic response was 30% greater in Control versus fumagillin at 11 wk. Net hepatic glucose uptake (NHGU; mg·kg-1·min-1) in the Chow, Control, and fumagillin dogs was ~1.5 ± 0.6, -0.1 ± 0.1, and 0.3 ± 0.4 (with no portal glucose infusion) and 3.1 ± 0.6, 0.5 ± 0.3, and 1.5 ± 0.5 (portal glucose infusion at 4 mg·kg-1·min-1), respectively. Fumagillin improved glucose tolerance and NHGU in HFFD dogs, suggesting methionine aminopeptidase 2 (MetAP2) inhibitors have the potential for improving glycemic control in prediabetes and diabetes.
Collapse
Affiliation(s)
- Mary Courtney Moore
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Katie C Coate
- Diabetes Research and Training Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Melanie Scott
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Guillaume Kraft
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Thomas E Hughes
- Zafgen, Incorporated, Boston, Massachusetts
- Navitor Pharmaceuticals, Incorporated, Cambridge, Massachusetts
| | - Ben Farmer
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Alan D Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
5
|
Rebello CJ, Greenway FL. Obesity medications in development. Expert Opin Investig Drugs 2020; 29:63-71. [PMID: 31847611 PMCID: PMC6990416 DOI: 10.1080/13543784.2020.1705277] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/12/2019] [Indexed: 12/21/2022]
Abstract
Introduction: Obesity is compounded by a neurobiology that is resistant to weight loss. Therefore, the development of pharmacotherapies to address the pathology underlying the dysregulation of energy homeostasis is critical.Areas covered: This review examines selected clinical trial evidence for the pharmacologic treatment of obesity and provides an expert opinion on anti-obesity drug development. The article includes the outcomes of anti-obesity medications that have been evaluated in clinical trials but have not yet received approval from the U.S. Food and Drug Administration. The mechanisms of action of glucagon-like peptide-1 agonists and co-agonists, diabetes medications being investigated for weight loss, and medications acting on the central nervous system as well as peripherally are reviewed. A search was conducted on PubMed using the terms 'Obesity AND Medications' restricted to clinical trials reported in English. Using similar terms, a search was also conducted on ClinicalTrials.gov.Expert opinion: The goal of anti-obesity therapy is finding compounds that are effective and have minimal side effects. Combining medications targeting more than one of the redundant mechanisms driving obesity increases efficacy. However, targeting peripheral mechanisms to overcome the trickle-down effects of centrally acting drugs may be the key to success in treating obesity.
Collapse
Affiliation(s)
- Candida J. Rebello
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| | - Frank L. Greenway
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
6
|
Guruceaga X, Perez-Cuesta U, Abad-Diaz de Cerio A, Gonzalez O, Alonso RM, Hernando FL, Ramirez-Garcia A, Rementeria A. Fumagillin, a Mycotoxin of Aspergillus fumigatus: Biosynthesis, Biological Activities, Detection, and Applications. Toxins (Basel) 2019; 12:E7. [PMID: 31861936 PMCID: PMC7020470 DOI: 10.3390/toxins12010007] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/26/2022] Open
Abstract
Fumagillin is a mycotoxin produced, above all, by the saprophytic filamentous fungus Aspergillus fumigatus. This mold is an opportunistic pathogen that can cause invasive aspergillosis, a disease that has high mortality rates linked to it. Its ability to adapt to environmental stresses through the production of secondary metabolites, including several mycotoxins (gliotoxin, fumagillin, pseurotin A, etc.) also seem to play an important role in causing these infections. Since the discovery of the A. fumigatus fumagillin in 1949, many studies have focused on this toxin and in this review we gather all the information currently available. First of all, the structural characteristics of this mycotoxin and the different methods developed for its determination are given in detail. Then, the biosynthetic gene cluster and the metabolic pathway involved in its production and regulation are explained. The activity of fumagillin on its target, the methionine aminopeptidase type 2 (MetAP2) enzyme, and the effects of blocking this enzyme in the host are also described. Finally, the applications that this toxin and its derivatives have in different fields, such as the treatment of cancer and its microsporicidal activity in the treatment of honeybee hive infections with Nosema spp., are reviewed. Therefore, this work offers a complete review of all the information currently related to the fumagillin mycotoxin secreted by A. fumigatus, important because of its role in the fungal infection process but also because it has many other applications, notably in beekeeping, the treatment of infectious diseases, and in oncology.
Collapse
Affiliation(s)
- Xabier Guruceaga
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (X.G.); (U.P.-C.); (A.A.-D.d.C.); (F.L.H.)
| | - Uxue Perez-Cuesta
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (X.G.); (U.P.-C.); (A.A.-D.d.C.); (F.L.H.)
| | - Ana Abad-Diaz de Cerio
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (X.G.); (U.P.-C.); (A.A.-D.d.C.); (F.L.H.)
| | - Oskar Gonzalez
- FARMARTEM Group, Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (O.G.); (R.M.A.)
| | - Rosa M. Alonso
- FARMARTEM Group, Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (O.G.); (R.M.A.)
| | - Fernando Luis Hernando
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (X.G.); (U.P.-C.); (A.A.-D.d.C.); (F.L.H.)
| | - Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (X.G.); (U.P.-C.); (A.A.-D.d.C.); (F.L.H.)
| | - Aitor Rementeria
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain; (X.G.); (U.P.-C.); (A.A.-D.d.C.); (F.L.H.)
| |
Collapse
|
7
|
Sanderson SM, Gao X, Dai Z, Locasale JW. Methionine metabolism in health and cancer: a nexus of diet and precision medicine. Nat Rev Cancer 2019; 19:625-637. [PMID: 31515518 DOI: 10.1038/s41568-019-0187-8] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/24/2019] [Indexed: 01/11/2023]
Abstract
Methionine uptake and metabolism is involved in a host of cellular functions including methylation reactions, redox maintenance, polyamine synthesis and coupling to folate metabolism, thus coordinating nucleotide and redox status. Each of these functions has been shown in many contexts to be relevant for cancer pathogenesis. Intriguingly, the levels of methionine obtained from the diet can have a large effect on cellular methionine metabolism. This establishes a link between nutrition and tumour cell metabolism that may allow for tumour-specific metabolic vulnerabilities that can be influenced by diet. Recently, a number of studies have begun to investigate the molecular and cellular mechanisms that underlie the interaction between nutrition, methionine metabolism and effects on health and cancer.
Collapse
Affiliation(s)
- Sydney M Sanderson
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Xia Gao
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Ziwei Dai
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
8
|
MetAP1 and MetAP2 drive cell selectivity for a potent anti-cancer agent in synergy, by controlling glutathione redox state. Oncotarget 2018; 7:63306-63323. [PMID: 27542228 PMCID: PMC5325365 DOI: 10.18632/oncotarget.11216] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/19/2016] [Indexed: 12/17/2022] Open
Abstract
Fumagillin and its derivatives are therapeutically useful because they can decrease cancer progression. The specific molecular target of fumagillin is methionine aminopeptidase 2 (MetAP2), one of the two MetAPs present in the cytosol. MetAPs catalyze N-terminal methionine excision (NME), an essential pathway of cotranslational protein maturation. To date, it remains unclear the respective contribution of MetAP1 and MetAP2 to the NME process in vivo and why MetAP2 inhibition causes cell cycle arrest only in a subset of cells. Here, we performed a global characterization of the N-terminal methionine excision pathway and the inhibition of MetAP2 by fumagillin in a number of lines, including cancer cell lines. Large-scale N-terminus profiling in cells responsive and unresponsive to fumagillin treatment revealed that both MetAPs were required in vivo for M[VT]X-targets and, possibly, for lower-level M[G]X-targets. Interestingly, we found that the responsiveness of the cell lines to fumagillin was correlated with the ability of the cells to modulate their glutathione homeostasis. Indeed, alterations to glutathione status were observed in fumagillin-sensitive cells but not in cells unresponsive to this agent. Proteo-transcriptomic analyses revealed that both MetAP1 and MetAP2 accumulated in a cell-specific manner and that cell sensitivity to fumagillin was related to the levels of these MetAPs, particularly MetAP1. We suggest that MetAP1 levels could be routinely checked in several types of tumor and used as a prognostic marker for predicting the response to treatments inhibiting MetAP2.
Collapse
|
9
|
Burkey BF, Hoglen NC, Inskeep P, Wyman M, Hughes TE, Vath JE. Preclinical Efficacy and Safety of the Novel Antidiabetic, Antiobesity MetAP2 Inhibitor ZGN-1061. J Pharmacol Exp Ther 2018; 365:301-313. [PMID: 29491038 DOI: 10.1124/jpet.117.246272] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 02/23/2018] [Indexed: 01/12/2023] Open
Abstract
Methionine aminopeptidase 2 (MetAP2) inhibition is a promising approach to treating diabetes, obesity, and associated metabolic disorders. Beloranib, a MetAP2 inhibitor previously investigated for treatment of Prader-Willi syndrome, was associated with venous thrombotic adverse events likely resulting from drug effects on vascular endothelial cells (ECs). Here, we report the pharmacological characterization of ZGN-1061, a novel MetAP2 inhibitor being investigated for treatment of diabetes and obesity. Four weeks of subcutaneous administration of ZGN-1061 to diet-induced obese (DIO) insulin-resistant mice produced a 25% reduction in body weight, primarily due to reduced fat mass, that was comparable to beloranib. ZGN-1061 also produced improvements in metabolic parameters, including plasma glucose and insulin, and, in HepG2 cells, initiated gene changes similar to beloranib that support observed in vivo pharmacodynamics. In vitro studies in ECs demonstrated that ZGN-1061 effects on EC proliferation and coagulation proteins were greatly attenuated, or absent, relative to beloranib, due to lower intracellular drug concentrations, shorter half-life of inhibitor-bound MetAP2 complex, and reduced cellular enzyme inhibition. In dogs, ZGN-1061 was more rapidly absorbed and cleared, with a shorter half-life than beloranib. Unlike beloranib, ZGN-1061 did not increase coagulation markers in dogs, and ZGN-1061 had a greatly improved safety profile in rats relative to beloranib. In conclusion, ZGN-1061 and beloranib demonstrated similar efficacy in a mouse model of obesity, while ZGN-1061 had a markedly improved safety profile in multiple in vitro and in vivo models. The lower duration of exposure characteristic of ZGN-1061 is expected to provide a meaningfully enhanced clinical safety profile.
Collapse
Affiliation(s)
- Bryan F Burkey
- Zafgen, Inc., Boston, Massachusetts (B.F.B., N.C.H., M.W., T.E.H., J.E.V.) and InskeepDMPK, LLC (P.I.), East Lyme, Connecticut
| | - Niel C Hoglen
- Zafgen, Inc., Boston, Massachusetts (B.F.B., N.C.H., M.W., T.E.H., J.E.V.) and InskeepDMPK, LLC (P.I.), East Lyme, Connecticut
| | - Philip Inskeep
- Zafgen, Inc., Boston, Massachusetts (B.F.B., N.C.H., M.W., T.E.H., J.E.V.) and InskeepDMPK, LLC (P.I.), East Lyme, Connecticut
| | - Margaret Wyman
- Zafgen, Inc., Boston, Massachusetts (B.F.B., N.C.H., M.W., T.E.H., J.E.V.) and InskeepDMPK, LLC (P.I.), East Lyme, Connecticut
| | - Thomas E Hughes
- Zafgen, Inc., Boston, Massachusetts (B.F.B., N.C.H., M.W., T.E.H., J.E.V.) and InskeepDMPK, LLC (P.I.), East Lyme, Connecticut
| | - James E Vath
- Zafgen, Inc., Boston, Massachusetts (B.F.B., N.C.H., M.W., T.E.H., J.E.V.) and InskeepDMPK, LLC (P.I.), East Lyme, Connecticut
| |
Collapse
|
10
|
Xu L, Zhang M, Li H, Guan W, Liu B, Liu F, Wang H, Li J, Yang S, Tong X, Wang H. SH3BGRL as a novel prognostic biomarker is down-regulated in acute myeloid leukemia. Leuk Lymphoma 2017; 59:918-930. [PMID: 28679293 DOI: 10.1080/10428194.2017.1344843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Limei Xu
- Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mingming Zhang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Hui Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Wen Guan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Bin Liu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fengqi Liu
- Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hehua Wang
- Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Juan Li
- Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shulan Yang
- Centre for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiuzhen Tong
- Department of Hematology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory of Ministry of Education, Sun Yat-sen University, Guangzhou, China
- Guangdong Engineering and Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Cordova A, Woodrick J, Grindrod S, Zhang L, Saygideger-Kont Y, Wang K, DeVito S, Daniele SG, Paige M, Brown ML. Aminopeptidase P Mediated Targeting for Breast Tissue Specific Conjugate Delivery. Bioconjug Chem 2016; 27:1981-90. [PMID: 26965452 DOI: 10.1021/acs.bioconjchem.5b00481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytotoxic chemotherapies are used to treat breast cancer, but are limited by systemic toxicity. The key to addressing this important issue is the development of a nontoxic, tissue selective, and molecular specific delivery system. In order to potentially increase the therapeutic index of clinical reagents, we designed an Aminopeptidase P (APaseP) targeting tissue-specific construct conjugated to a homing peptide for selective binding to human breast-derived cancer cells. Homing peptides are short amino acid sequences derived from phage display libraries that have the unique property of localizing to specific organs. Our molecular construct allows for tissue-specific drug delivery, by binding to APaseP in the vascular endothelium. The breast homing peptide evaluated in our studies is a cyclic nine-amino-acid peptide with the sequence CPGPEGAGC, referred to as PEGA. We show by confocal microscopy that the PEGA peptide and similar peptide conjugates distribute to human breast tissue xenograft specifically and evaluate the interaction with the membrane-bound proline-specific APaseP (KD = 723 ± 3 nM) by binding studies. To achieve intracellular breast cancer cell delivery, the incorporation of the Tat sequence, a cell-penetrating motif derived from HIV, was conjugated with the fluorescently labeled PEGA peptide sequence. Ultimately, tissue specific peptides and their conjugates can enhance drug delivery and treatment by their ability to discriminate between tissue types. Tissue specific conjugates as we have designed may be valuable tools for drug delivery and visualization, including the potential to treat breast cancer, while simultaneously minimizing systemic toxicity.
Collapse
Affiliation(s)
- Antoinette Cordova
- Center for Drug Discovery, Georgetown University Medical Center , 3970 Reservoir Road NW Washington, DC 20057, United States
| | - Jordan Woodrick
- Georgetown University Medical Center , 3900 Reservoir Road NW, Washington, DC 20057, United States
| | - Scott Grindrod
- Center for Drug Discovery, Georgetown University Medical Center , 3970 Reservoir Road NW Washington, DC 20057, United States
| | - Li Zhang
- Center for Drug Discovery, Georgetown University Medical Center , 3970 Reservoir Road NW Washington, DC 20057, United States
| | - Yasemin Saygideger-Kont
- Georgetown University Medical Center , 3900 Reservoir Road NW, Washington, DC 20057, United States
| | - Kan Wang
- Center for Drug Discovery, Georgetown University Medical Center , 3970 Reservoir Road NW Washington, DC 20057, United States
| | - Stephen DeVito
- Georgetown University Medical Center , 3900 Reservoir Road NW, Washington, DC 20057, United States
| | - Stefano G Daniele
- Georgetown University Medical Center , 3900 Reservoir Road NW, Washington, DC 20057, United States
| | - Mikell Paige
- George Mason University , Department of Chemistry and Biochemistry, 10900 University Boulevard, Manassas, Virginia 20110, United States
| | - Milton L Brown
- Center for Drug Discovery, Georgetown University Medical Center , 3970 Reservoir Road NW Washington, DC 20057, United States
| |
Collapse
|
12
|
Abstract
Protein translation is initiated with methionine in eukaryotes, and the majority of proteins have their N-terminal methionine removed by methionine aminopeptidases (MetAP1 and MetAP2) prior to action. Methionine removal can be important for protein function, localization, or stability. No mechanism of regulation of MetAP activity has been identified. MetAP2, but not MetAP1, contains a single Cys(228)-Cys(448) disulfide bond that has an -RHStaple configuration and links two β-loop structures, which are hallmarks of allosteric disulfide bonds. From analysis of crystal structures and using mass spectrometry and activity assays, we found that the disulfide bond exists in oxidized and reduced states in the recombinant enzyme. The disulfide has a standard redox potential of -261 mV and is efficiently reduced by the protein reductant, thioredoxin, with a rate constant of 16,180 m(-1) s(-1). The MetAP2 disulfide bond also exists in oxidized and reduced states in glioblastoma tumor cells, and stressing the cells by oxygen or glucose deprivation results in more oxidized enzyme. The Cys(228)-Cys(448) disulfide is at the rim of the active site and is only three residues distant from the catalytic His(231), which suggested that cleavage of the bond would influence substrate hydrolysis. Indeed, oxidized and reduced isoforms have different catalytic efficiencies for hydrolysis of MetAP2 peptide substrates. These findings indicate that MetAP2 is post-translationally regulated by an allosteric disulfide bond, which controls substrate specificity and catalytic efficiency.
Collapse
Affiliation(s)
- Joyce Chiu
- From the Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jason W H Wong
- From the Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Philip J Hogg
- From the Lowy Cancer Research Centre and Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
13
|
Kass DJ, Rattigan E, Kahloon R, Loh K, Yu L, Savir A, Markowski M, Saqi A, Rajkumar R, Ahmad F, Champion HC. Early treatment with fumagillin, an inhibitor of methionine aminopeptidase-2, prevents Pulmonary Hypertension in monocrotaline-injured rats. PLoS One 2012; 7:e35388. [PMID: 22509410 PMCID: PMC3324555 DOI: 10.1371/journal.pone.0035388] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/16/2012] [Indexed: 01/30/2023] Open
Abstract
Pulmonary Hypertension (PH) is a pathophysiologic condition characterized by hypoxemia and right ventricular strain. Proliferation of fibroblasts, smooth muscle cells, and endothelial cells is central to the pathology of PH in animal models and in humans. Methionine aminopeptidase-2 (MetAP2) regulates proliferation in a variety of cell types including endothelial cells, smooth muscle cells, and fibroblasts. MetAP2 is inhibited irreversibly by the angiogenesis inhibitor fumagillin. We have previously found that inhibition of MetAP2 with fumagillin in bleomycin-injured mice decreased pulmonary fibrosis by selectively decreasing the proliferation of lung myofibroblasts. In this study, we investigated the role of fumagillin as a potential therapy in experimental PH. In vivo, treatment of rats with fumagillin early after monocrotaline injury prevented PH and right ventricular remodeling by decreasing the thickness of the medial layer of the pulmonary arteries. Treatment with fumagillin beginning two weeks after monocrotaline injury did not prevent PH but was associated with decreased right ventricular mass and decreased cardiomyocyte hypertrophy, suggesting a direct effect of fumagillin on right ventricular remodeling. Incubation of rat pulmonary artery smooth muscle cells (RPASMC) with fumagillin and MetAP2-targeting siRNA inhibited proliferation of RPASMC in vitro. Platelet-derived growth factor, a growth factor that is important in the pathogenesis of PH and stimulates proliferation of fibroblasts and smooth muscle cells, strongly increased expression of MetP2. By immunohistochemistry, we found that MetAP2 was expressed in the lesions of human pulmonary arterial hypertension. We propose that fumagillin may be an effective adjunctive therapy for treating PH in patients.
Collapse
MESH Headings
- Aminopeptidases/antagonists & inhibitors
- Aminopeptidases/genetics
- Aminopeptidases/metabolism
- Animals
- Cell Proliferation/drug effects
- Cells, Cultured
- Cyclohexanes/administration & dosage
- Disease Models, Animal
- Fatty Acids, Unsaturated/administration & dosage
- Gene Expression Regulation
- Glycoproteins/antagonists & inhibitors
- Glycoproteins/genetics
- Glycoproteins/metabolism
- Heart Ventricles/drug effects
- Heart Ventricles/physiopathology
- Hemodynamics
- Humans
- Hypertension, Pulmonary/chemically induced
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/prevention & control
- Male
- Monocrotaline/pharmacology
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/metabolism
- Myocytes, Smooth Muscle/cytology
- Myofibroblasts/drug effects
- Myofibroblasts/pathology
- Platelet-Derived Growth Factor/genetics
- Platelet-Derived Growth Factor/metabolism
- Pulmonary Artery/cytology
- Pulmonary Artery/drug effects
- Rats
- Rats, Sprague-Dawley
- Sesquiterpenes/administration & dosage
Collapse
Affiliation(s)
- Daniel J Kass
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine and the Dorothy P and Richard P Simmons Center for Interstitial Lung Disease, Pittsburgh, Pennsylvania, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sundberg TB, Darricarrere N, Cirone P, Li X, McDonald L, Mei X, Westlake CJ, Slusarski DC, Beynon RJ, Crews CM. Disruption of Wnt planar cell polarity signaling by aberrant accumulation of the MetAP-2 substrate Rab37. ACTA ACUST UNITED AC 2012; 18:1300-11. [PMID: 22035799 DOI: 10.1016/j.chembiol.2011.07.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/18/2011] [Accepted: 07/28/2011] [Indexed: 11/25/2022]
Abstract
Identification of methionine aminopeptidase-2 (MetAP-2) as the molecular target of the antiangiogenic compound TNP-470 has sparked interest in N-terminal Met excision's (NME) role in endothelial cell biology. In this regard, we recently demonstrated that MetAP-2 inhibition suppresses Wnt planar cell polarity (PCP) signaling and that endothelial cells depend on this pathway for normal function. Despite this advance, the substrate(s) whose activity is altered upon MetAP-2 inhibition, resulting in loss of Wnt PCP signaling, is not known. Here we identify the small G protein Rab37 as a MetAP-2-specific substrate that accumulates in the presence of TNP-470. A functional role for aberrant Rab37 accumulation in TNP-470's mode of action is demonstrated using a Rab37 point mutant that is resistant to NME, because expression of this mutant phenocopies the effects of MetAP-2 inhibition on Wnt PCP signaling-dependent processes.
Collapse
Affiliation(s)
- Thomas B Sundberg
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bhat S, Shim JS, Zhang F, Chong CR, Liu JO. Substituted oxines inhibit endothelial cell proliferation and angiogenesis. Org Biomol Chem 2012; 10:2979-92. [PMID: 22391578 DOI: 10.1039/c2ob06978d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two substituted oxines, nitroxoline (5) and 5-chloroquinolin-8-yl phenylcarbamate (22), were identified as hits in a high-throughput screen aimed at finding new anti-angiogenic agents. In a previous study, we have elucidated the molecular mechanism of antiproliferative activity of nitroxoline in endothelial cells, which comprises of a dual inhibition of type 2 human methionine aminopeptidase (MetAP2) and sirtuin 1 (SIRT1). Structure-activity relationship study (SAR) of nitroxoline offered many surprises where minor modifications yielded oxine derivatives with increased potency against human umbilical vein endothelial cells (HUVEC), but with entirely different as yet unknown mechanisms. For example, 5-nitrosoquinolin-8-ol (33) inhibited HUVEC growth with sub-micromolar IC(50), but did not affect MetAP2 or MetAP1, and it only showed weak inhibition against SIRT1. Other sub-micromolar inhibitors were derivatives of 5-aminoquinolin-8-ol (34) and 8-sulfonamidoquinoline (32). A sulfamate derivative of nitroxoline (48) was found to be more potent than nitroxoline with the retention of activities against MetAP2 and SIRT1. The bioactivity of the second hit, micromolar HUVEC and MetAP2 inhibitor carbamate 22 was improved further with an SAR study culminating in carbamate 24 which is a nanomolar inhibitor of HUVEC and MetAP2.
Collapse
Affiliation(s)
- Shridhar Bhat
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
16
|
Affiliation(s)
- Feng Xian
- Department
of Chemistry and
Biochemistry, Florida State University,
95 Chieftain Way, Tallahassee, Florida 32310-4390, United States
| | - Christopher L. Hendrickson
- Department
of Chemistry and
Biochemistry, Florida State University,
95 Chieftain Way, Tallahassee, Florida 32310-4390, United States
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, 1800
East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United States
| | - Alan G. Marshall
- Department
of Chemistry and
Biochemistry, Florida State University,
95 Chieftain Way, Tallahassee, Florida 32310-4390, United States
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, 1800
East Paul Dirac Drive, Tallahassee, Florida 32310-4005, United States
| |
Collapse
|
17
|
Xiao Q, Zhang F, Nacev BA, Liu JO, Pei D. Protein N-terminal processing: substrate specificity of Escherichia coli and human methionine aminopeptidases. Biochemistry 2010; 49:5588-99. [PMID: 20521764 DOI: 10.1021/bi1005464] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methionine aminopeptidase (MetAP) catalyzes the hydrolytic cleavage of the N-terminal methionine from newly synthesized polypeptides. The extent of removal of methionyl from a protein is dictated by its N-terminal peptide sequence. Earlier studies revealed that MetAPs require amino acids containing small side chains (e.g., Gly, Ala, Ser, Cys, Pro, Thr, and Val) as the P1' residue, but their specificity at positions P2' and beyond remains incompletely defined. In this work, the substrate specificities of Escherichia coli MetAP1, human MetAP1, and human MetAP2 were systematically profiled by screening against a combinatorial peptide library and kinetic analysis of individually synthesized peptide substrates. Our results show that although all three enzymes require small residues at the P1' position, they have differential tolerance for Val and Thr at this position. The catalytic activity of human MetAP2 toward Met-Val peptides is consistently 2 orders of magnitude higher than that of MetAP1, suggesting that MetAP2 is responsible for processing proteins containing N-terminal Met-Val and Met-Thr sequences in vivo. At positions P2'-P5', all three MetAPs have broad specificity but are poorly active toward peptides containing a proline at the P2' position. In addition, the human MetAPs disfavor acidic residues at the P2'-P5' positions. The specificity data have allowed us to formulate a simple set of rules that can reliably predict the N-terminal processing of E. coli and human proteins.
Collapse
Affiliation(s)
- Qing Xiao
- Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|