1
|
Fridjonsdottir E, Nilsson A, Fricker LD, Andrén PE. Two Different Strategies for Stabilization of Brain Tissue and Extraction of Neuropeptides. Methods Mol Biol 2024; 2758:49-60. [PMID: 38549007 DOI: 10.1007/978-1-0716-3646-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Neuropeptides are bioactive peptides that are synthesized and secreted by neurons in signaling pathways in the brain. Peptides and proteins are extremely vulnerable to proteolytic cleavage when their biological surrounding changes. This makes neuropeptidomics challenging due to the rapid alterations that occur to the peptidome after harvesting of brain tissue samples. For a successful neuropeptidomic study, the biological tissue sample analyzed should resemble the living state as much as possible. Heat stabilization has been proven to inhibit postmortem degradation by denaturing proteolytic enzymes, hence increasing identification rates of neuropeptides. Here, we describe two different stabilization protocols for rodent brain samples that increase the number of intact mature neuropeptides and minimize interference from degradation products of abundant proteins. Additionally, we present an extraction protocol that aims to extract a wide range of hydrophilic and hydrophobic neuropeptides by sequentially using an aqueous and an organic extraction medium.
Collapse
Affiliation(s)
- Elva Fridjonsdottir
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Nilsson
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Lloyd D Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Per E Andrén
- Department of Pharmaceutical Biosciences, Spatial Mass Spectrometry, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
2
|
Maeda R, Seki N, Uwamino Y, Wakui M, Nakagama Y, Kido Y, Sasai M, Taira S, Toriu N, Yamamoto M, Matsuura Y, Uchiyama J, Yamaguchi G, Hirakawa M, Kim YG, Mishima M, Yanagita M, Suematsu M, Sugiura Y. Amino acid catabolite markers for early prognostication of pneumonia in patients with COVID-19. Nat Commun 2023; 14:8469. [PMID: 38123556 PMCID: PMC10733290 DOI: 10.1038/s41467-023-44266-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Effective early-stage markers for predicting which patients are at risk of developing SARS-CoV-2 infection have not been fully investigated. Here, we performed comprehensive serum metabolome analysis of a total of 83 patients from two cohorts to determine that the acceleration of amino acid catabolism within 5 days from disease onset correlated with future disease severity. Increased levels of de-aminated amino acid catabolites involved in the de novo nucleotide synthesis pathway were identified as early prognostic markers that correlated with the initial viral load. We further employed mice models of SARS-CoV2-MA10 and influenza infection to demonstrate that such de-amination of amino acids and de novo synthesis of nucleotides were associated with the abnormal proliferation of airway and vascular tissue cells in the lungs during the early stages of infection. Consequently, it can be concluded that lung parenchymal tissue remodeling in the early stages of respiratory viral infections induces systemic metabolic remodeling and that the associated key amino acid catabolites are valid predictors for excessive inflammatory response in later disease stages.
Collapse
Affiliation(s)
- Rae Maeda
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Natsumi Seki
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshifumi Uwamino
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Infectious Diseases, Keio University School of Medicine, Tokyo, Japan
| | - Masatoshi Wakui
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yu Nakagama
- Department of Virology & Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Yasutoshi Kido
- Department of Virology & Parasitology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Miwa Sasai
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Shu Taira
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Naoya Toriu
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Masahiro Yamamoto
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Yoshiharu Matsuura
- Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Jun Uchiyama
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Genki Yamaguchi
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Makoto Hirakawa
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Yun-Gi Kim
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo, Japan
| | - Masayo Mishima
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Motoko Yanagita
- Department of Nephrology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
- WPI-Bio2Q Research Center, Keio University, and Central Institute for Experimental Medicine and Life Science, Kanagawa, Japan
| | - Yuki Sugiura
- Center for Cancer Immunotherapy and Immunobiology, Kyoto University Graduate School of Medicine, Kyoto, Japan.
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
3
|
Fan KT, Hsu CW, Chen YR. Mass spectrometry in the discovery of peptides involved in intercellular communication: From targeted to untargeted peptidomics approaches. MASS SPECTROMETRY REVIEWS 2023; 42:2404-2425. [PMID: 35765846 DOI: 10.1002/mas.21789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/17/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
Endogenous peptide hormones represent an essential class of biomolecules, which regulate cell-cell communications in diverse physiological processes of organisms. Mass spectrometry (MS) has been developed to be a powerful technology for identifying and quantifying peptides in a highly efficient manner. However, it is difficult to directly identify these peptide hormones due to their diverse characteristics, dynamic regulations, low abundance, and existence in a complicated biological matrix. Here, we summarize and discuss the roles of targeted and untargeted MS in discovering peptide hormones using bioassay-guided purification, bioinformatics screening, or the peptidomics-based approach. Although the peptidomics approach is expected to discover novel peptide hormones unbiasedly, only a limited number of successful cases have been reported. The critical challenges and corresponding measures for peptidomics from the steps of sample preparation, peptide extraction, and separation to the MS data acquisition and analysis are also discussed. We also identify emerging technologies and methods that can be integrated into the discovery platform toward the comprehensive study of endogenous peptide hormones.
Collapse
Affiliation(s)
- Kai-Ting Fan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Wei Hsu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
4
|
Hellinger R, Sigurdsson A, Wu W, Romanova EV, Li L, Sweedler JV, Süssmuth RD, Gruber CW. Peptidomics. NATURE REVIEWS. METHODS PRIMERS 2023; 3:25. [PMID: 37250919 PMCID: PMC7614574 DOI: 10.1038/s43586-023-00205-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 05/31/2023]
Abstract
Peptides are biopolymers, typically consisting of 2-50 amino acids. They are biologically produced by the cellular ribosomal machinery or by non-ribosomal enzymes and, sometimes, other dedicated ligases. Peptides are arranged as linear chains or cycles, and include post-translational modifications, unusual amino acids and stabilizing motifs. Their structure and molecular size render them a unique chemical space, between small molecules and larger proteins. Peptides have important physiological functions as intrinsic signalling molecules, such as neuropeptides and peptide hormones, for cellular or interspecies communication, as toxins to catch prey or as defence molecules to fend off enemies and microorganisms. Clinically, they are gaining popularity as biomarkers or innovative therapeutics; to date there are more than 60 peptide drugs approved and more than 150 in clinical development. The emerging field of peptidomics comprises the comprehensive qualitative and quantitative analysis of the suite of peptides in a biological sample (endogenously produced, or exogenously administered as drugs). Peptidomics employs techniques of genomics, modern proteomics, state-of-the-art analytical chemistry and innovative computational biology, with a specialized set of tools. The complex biological matrices and often low abundance of analytes typically examined in peptidomics experiments require optimized sample preparation and isolation, including in silico analysis. This Primer covers the combination of techniques and workflows needed for peptide discovery and characterization and provides an overview of various biological and clinical applications of peptidomics.
Collapse
Affiliation(s)
- Roland Hellinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Arnar Sigurdsson
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Wenxin Wu
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elena V Romanova
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Lingjun Li
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
5
|
Phetsanthad A, Vu NQ, Yu Q, Buchberger AR, Chen Z, Keller C, Li L. Recent advances in mass spectrometry analysis of neuropeptides. MASS SPECTROMETRY REVIEWS 2023; 42:706-750. [PMID: 34558119 PMCID: PMC9067165 DOI: 10.1002/mas.21734] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/22/2021] [Accepted: 08/28/2021] [Indexed: 05/08/2023]
Abstract
Due to their involvement in numerous biochemical pathways, neuropeptides have been the focus of many recent research studies. Unfortunately, classic analytical methods, such as western blots and enzyme-linked immunosorbent assays, are extremely limited in terms of global investigations, leading researchers to search for more advanced techniques capable of probing the entire neuropeptidome of an organism. With recent technological advances, mass spectrometry (MS) has provided methodology to gain global knowledge of a neuropeptidome on a spatial, temporal, and quantitative level. This review will cover key considerations for the analysis of neuropeptides by MS, including sample preparation strategies, instrumental advances for identification, structural characterization, and imaging; insightful functional studies; and newly developed absolute and relative quantitation strategies. While many discoveries have been made with MS, the methodology is still in its infancy. Many of the current challenges and areas that need development will also be highlighted in this review.
Collapse
Affiliation(s)
- Ashley Phetsanthad
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Nhu Q. Vu
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Qing Yu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Amanda R. Buchberger
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Caitlin Keller
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
6
|
Baijnath S, Kaya I, Nilsson A, Shariatgorji R, Andrén PE. Advances in spatial mass spectrometry enable in-depth neuropharmacodynamics. Trends Pharmacol Sci 2022; 43:740-753. [DOI: 10.1016/j.tips.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/06/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
|
7
|
Voß H, Moritz M, Pelczar P, Gagliani N, Huber S, Nippert V, Schlüter H, Hahn J. Tissue Sampling and Homogenization with NIRL Enables Spatially Resolved Cell Layer Specific Proteomic Analysis of the Murine Intestine. Int J Mol Sci 2022; 23:ijms23116132. [PMID: 35682811 PMCID: PMC9181169 DOI: 10.3390/ijms23116132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/18/2022] [Accepted: 05/27/2022] [Indexed: 02/04/2023] Open
Abstract
For investigating the molecular physiology and pathophysiology in organs, the most exact data should be obtained; if not, organ-specific cell lines are analyzed, or the whole organ is homogenized, followed by the analysis of its biomolecules. However, if the morphological organization of the organ can be addressed, then, in the best case, the composition of molecules in single cells of the target organ can be analyzed. Laser capture microdissection (LCM) is a technique which enables the selection of specific cells of a tissue for further analysis of their molecules. However, LCM is a time-consuming two-dimensional technique, and optimal results are only obtained if the tissue is fixed, e.g., by formalin. Especially for proteome analysis, formalin fixation reduced the number of identifiable proteins, and this is an additional drawback. Recently, it was demonstrated that sampling of fresh-frozen (non-fixed) tissue with an infrared-laser is giving higher yields with respect to the absolute protein amount and number of identifiable proteins than conventional mechanical homogenization of tissues. In this study, the applicability of the infrared laser tissue sampling for the proteome analysis of different cell layers of murine intestine was investigated, using LC–MS/MS-based differential quantitative bottom-up proteomics. By laser ablation, eight consecutive layers of colon tissue were obtained and analyzed. However, a clear distinguishability of protein profiles between ascending, descending, and transversal colon was made, and we identified the different intestinal-cell-layer proteins, which are cell-specific, as confirmed by data from the Human Protein Atlas. Thus, for the first time, sampling directly from intact fresh-frozen tissue with three-dimensional resolution is giving access to the different proteomes of different cell layers of colon tissue.
Collapse
Affiliation(s)
- Hannah Voß
- Section/Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (H.V.); (M.M.); (V.N.)
| | - Manuela Moritz
- Section/Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (H.V.); (M.M.); (V.N.)
| | - Penelope Pelczar
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (P.P.); (N.G.); (S.H.)
| | - Nicola Gagliani
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (P.P.); (N.G.); (S.H.)
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany
| | - Samuel Huber
- Section of Molecular Immunology und Gastroenterology, I. Department of Medicine, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (P.P.); (N.G.); (S.H.)
| | - Vivien Nippert
- Section/Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (H.V.); (M.M.); (V.N.)
| | - Hartmut Schlüter
- Section/Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (H.V.); (M.M.); (V.N.)
- Correspondence: (H.S.); (J.H.); Tel.: +49-1575-6085997 (H.S.); +49-1522-2827168 (J.H.)
| | - Jan Hahn
- Section/Core Facility Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße 52, 20246 Hamburg, Germany; (H.V.); (M.M.); (V.N.)
- Correspondence: (H.S.); (J.H.); Tel.: +49-1575-6085997 (H.S.); +49-1522-2827168 (J.H.)
| |
Collapse
|
8
|
Foreman RE, George AL, Reimann F, Gribble FM, Kay RG. Peptidomics: A Review of Clinical Applications and Methodologies. J Proteome Res 2021; 20:3782-3797. [PMID: 34270237 DOI: 10.1021/acs.jproteome.1c00295] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Improvements in both liquid chromatography (LC) and mass spectrometry (MS) instrumentation have greatly enhanced proteomic and small molecule metabolomic analysis in recent years. Less focus has been on the improved capability to detect and quantify small bioactive peptides, even though the exact sequences of the peptide species produced can have important biological consequences. Endogenous bioactive peptide hormones, for example, are generated by the targeted and regulated cleavage of peptides from their prohormone sequence. This process may include organ specific variants, as proglucagon is converted to glucagon in the pancreas but glucagon-like peptide-1 (GLP-1) in the small intestine, with glucagon raising, whereas GLP-1, as an incretin, lowering blood glucose. Therefore, peptidomics workflows must preserve the structure of the processed peptide products to prevent the misidentification of ambiguous peptide species. The poor in vivo and in vitro stability of peptides in biological matrices is a major factor that needs to be considered when developing methods to study them. The bioinformatic analysis of peptidomics data sets requires the inclusion of specific post-translational modifications, which are critical for the function of many bioactive peptides. This review aims to discuss and contrast the various extraction, analytical, and bioinformatics approaches used for human peptidomics studies in a multitude of matrices.
Collapse
Affiliation(s)
- Rachel E Foreman
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| | - Amy L George
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| | - Frank Reimann
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| | - Fiona M Gribble
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| | - Richard G Kay
- University of Cambridge Metabolic Research Laboratories, Level 4, Wellcome Trust-MRC Institute of Metabolic Science, Box 289, Addenbrooke's Hospital, Cambridge CB2 0QQ, U.K
| |
Collapse
|
9
|
Basu SS, Agar NYR. Bringing Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging to the Clinics. Clin Lab Med 2021; 41:309-324. [PMID: 34020766 DOI: 10.1016/j.cll.2021.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) is an emerging analytical technique that promises to change tissue-based diagnostics. This article provides a brief introduction to MALDI MSI as well as clinical diagnostic workflows and opportunities to apply this powerful approach. It describes various MALDI MSI applications, from more clinically mature applications such as cancer to emerging applications such as infectious diseases and drug distribution. In addition, it discusses the analytical considerations that need to be considered when bringing these approaches to different diagnostic problems and settings.
Collapse
Affiliation(s)
- Sankha S Basu
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Amez Martín M, Wuhrer M, Falck D. Serum and Plasma Immunoglobulin G Fc N-Glycosylation Is Stable during Storage. J Proteome Res 2021; 20:2935-2941. [PMID: 33909442 PMCID: PMC8155565 DOI: 10.1021/acs.jproteome.1c00148] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
![]()
Immunoglobulin G
(IgG) glycosylation is studied in biological samples
to develop clinical markers for precision medicine, for example, in
autoimmune diseases and oncology. Inappropriate storage of proteins,
lipids, or metabolites can lead to degradation or modification of
biomolecular features, which can have a strong negative impact on
accuracy and precision of clinical omics studies. Regarding the preservation
of IgG glycosylation, the range of appropriate storage conditions
and time frame is understudied. Therefore, we investigated the effect
of storage on IgG Fc N-glycosylation in the commonly analyzed biofluids,
serum and plasma. Short-term storage and accelerated storage stability
were tested by incubating samples from three healthy donors under
stress conditions of up to 50 °C for 2 weeks using −80
°C for 2 weeks as the reference condition. All tested IgG glycosylation
features—sialylation, galactosylation, bisection, and fucosylation—remained
unchanged up to room temperature as well as during multiple freeze–thaw
cycles and exposure to light. Only when subjected to 37 °C or
50 °C for 2 weeks, galactosylation and sialylation subtly changed.
Therefore, clinical IgG glycosylation analysis does not rely as heavily
on mild serum and plasma storage conditions and timely analysis as
many other omics analyses.
Collapse
Affiliation(s)
- Manuela Amez Martín
- Center of Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Manfred Wuhrer
- Center of Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - David Falck
- Center of Proteomics and Metabolomics, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
11
|
Nakagawa Y, Matsui T, Konno R, Kawashima Y, Sato T, Itakura M, Kodera Y. A highly efficient method for extracting peptides from a single mouse hypothalamus. Biochem Biophys Res Commun 2021; 548:155-160. [PMID: 33640609 DOI: 10.1016/j.bbrc.2021.02.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 01/13/2023]
Abstract
Living organisms contain a variety of endogenous peptides that function as significant regulators of many biological processes. Endogenous peptides are typically analyzed using liquid chromatography-mass spectrometry (LC-MS). However, due to the low efficiency of peptide extraction and low abundance of peptides in a single animal, LC-MS-based peptidomics studies have not facilitated an understanding of the individual differences and tissue specificity of peptide abundance. In this study, we developed a peptide extraction method followed by nano-flow LC-MS/MS analysis. This method enabled highly efficient and reproducible peptide extraction from sub-milligram quantities of hypothalamus dissected from a single animal. Diverse bioactive and authentic peptides were detected from a sample volume equivalent to 135 μg of hypothalamus. This method may be useful for elucidating individual differences and tissue specificity, as well as for facilitating the discovery of novel bioactive peptides and biomarkers and developing peptide therapeutics.
Collapse
Affiliation(s)
- Yuzuru Nakagawa
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Takashi Matsui
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan; Center for Disease Proteomics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Ryo Konno
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Yusuke Kawashima
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-5-23 Kazusa-kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Toshiya Sato
- Department of Laboratory Animal Science, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan; Center for Genetic Studies of Integrated Biological Functions, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Makoto Itakura
- Center for Disease Proteomics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan; Department of Biochemistry, School of Medicine, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Yoshio Kodera
- Department of Physics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan; Center for Disease Proteomics, School of Science, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan.
| |
Collapse
|
12
|
Balluff B, Hopf C, Porta Siegel T, Grabsch HI, Heeren RMA. Batch Effects in MALDI Mass Spectrometry Imaging. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:628-635. [PMID: 33523675 PMCID: PMC7944567 DOI: 10.1021/jasms.0c00393] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Mass spectrometry imaging (MSI) has become an indispensible tool for spatially resolved molecular investigation of tissues. One of the key application areas is biomedical research, where matrix-assisted laser desorption/ionization (MALDI) MSI is predominantly used due to its high-throughput capability, flexibility in the molecular class to investigate, and ability to achieve single cell spatial resolution. While many of the initial technical challenges have now been resolved, so-called batch effects, a phenomenon already known from other omics fields, appear to significantly impede reliable comparison of data from particular midsized studies typically performed in translational clinical research. This critical insight will discuss at what levels (pixel, section, slide, time, and location) batch effects can manifest themselves in MALDI-MSI data and what consequences this might have for biomarker discovery or multivariate classification. Finally, measures are presented that could be taken to recognize and/or minimize these potentially detrimental effects, and an outlook is provided on what is still needed to ultimately overcome these effects.
Collapse
Affiliation(s)
- Benjamin Balluff
- Maastricht
MultiModal Molecular Imaging Institute (M4i), Maastricht University, 6229 ER Maastricht, The Netherlands
- Mailing address: Dr. Benjamin Balluff,
Maastricht University, Maastricht MultiModal Molecular Imaging institute
(M4I), Universiteitssingel 50, 6229 ER Maastricht, The Netherlands;
Phone: +31 43 388 1251;
| | - Carsten Hopf
- Center
for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, 68163 Mannheim, Germany
| | - Tiffany Porta Siegel
- Maastricht
MultiModal Molecular Imaging Institute (M4i), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Heike I. Grabsch
- Department
of Pathology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center (MUMC+), 6229 HX Maastricht, The Netherlands
- Pathology
and Data Analytics, Leeds Institute of Medical Research at St. James’s, University of Leeds, LS9 7TF Leeds, U.K.
| | - Ron M. A. Heeren
- Maastricht
MultiModal Molecular Imaging Institute (M4i), Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
13
|
Michaud SA, Pětrošová H, Jackson AM, McGuire JC, Sinclair NJ, Ganguly M, Flenniken AM, Nutter LMJ, McKerlie C, Schibli D, Smith D, Borchers CH. Process and Workflow for Preparation of Disparate Mouse Tissues for Proteomic Analysis. J Proteome Res 2020; 20:305-316. [PMID: 33151080 DOI: 10.1021/acs.jproteome.0c00399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We investigated the effect of homogenization strategy and protein precipitation on downstream protein quantitation using multiple reaction monitoring mass spectrometry (MRM-MS). Our objective was to develop a workflow capable of processing disparate tissue types with high throughput, minimal variability, and maximum purity. Similar abundances of endogenous proteins were measured in nine different mouse tissues regardless of the homogenization method used; however, protein precipitation had strong positive effects on several targets. The best throughput was achieved by lyophilizing tissues to dryness, followed by homogenization via bead-beating without sample buffer. Finally, the effect of tissue perfusion prior to dissection and collection was explored in 20 mouse tissues. MRM-MS showed decreased abundances of blood-related proteins in perfused tissues; however, complete removal was not achieved. Concentrations of nonblood proteins were largely unchanged, although significantly higher variances were observed for proteins from the perfused lung, indicating that perfusion may not be suitable for this organ. We present a simple yet effective tissue processing workflow consisting of harvest of fresh nonperfused tissue, novel lyophilization and homogenization by bead-beating, and protein precipitation. This workflow can be applied to a range of mouse tissues with the advantages of simplicity, minimal manual manipulation of samples, use of commonly available equipment, and high sample quality.
Collapse
Affiliation(s)
- Sarah A Michaud
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria V8Z 7X8, British Columbia, Canada
| | - Helena Pětrošová
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria V8Z 7X8, British Columbia, Canada
| | - Angela M Jackson
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria V8Z 7X8, British Columbia, Canada
| | - Jamie C McGuire
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria V8Z 7X8, British Columbia, Canada
| | - Nicholas J Sinclair
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria V8Z 7X8, British Columbia, Canada
| | - Milan Ganguly
- The Center for Phenogenomics, Toronto M5T 3H7, Ontario, Canada.,The Hospital for Sick Children, Toronto M5G 1X8, Ontario, Canada
| | - Ann M Flenniken
- The Center for Phenogenomics, Toronto M5T 3H7, Ontario, Canada.,Sinai Health Lunenfeld-Tanenbaum Research Institute, Toronto M5G 1X5, Ontario, Canada
| | - Lauryl M J Nutter
- The Center for Phenogenomics, Toronto M5T 3H7, Ontario, Canada.,The Hospital for Sick Children, Toronto M5G 1X8, Ontario, Canada
| | - Colin McKerlie
- The Center for Phenogenomics, Toronto M5T 3H7, Ontario, Canada.,The Hospital for Sick Children, Toronto M5G 1X8, Ontario, Canada
| | - David Schibli
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria V8Z 7X8, British Columbia, Canada
| | - Derek Smith
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria V8Z 7X8, British Columbia, Canada
| | - Christoph H Borchers
- University of Victoria-Genome British Columbia Proteomics Centre, Victoria V8Z 7X8, British Columbia, Canada.,Department of Data Intensive Science and Engineering, Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, Nobel Street, Moscow 143026, Russia.,Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal H3T 1E2, Quebec, Canada.,Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal H3T 1E2, Quebec, Canada
| |
Collapse
|
14
|
Comparative Proteomic Profiling of Marine and Freshwater Synechocystis Strains Using Liquid Chromatography-Tandem Mass Spectrometry. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8100790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Freshwater Synechocystis sp. PCC 6803 has been considered to be a platform for the production of the next generation of biofuels and is used as a model organism in various fields. Various genomics, transcriptomics, metabolomics, and proteomics studies have been performed on this strain, whereas marine Synechocystis sp. PCC 7338 has not been widely studied despite its wide distribution. This study analyzed the proteome profiles of two Synechocystis strains using a liquid chromatography–tandem mass spectrometry-based bottom-up proteomic approach. Proteomic profiling of Synechocystis sp. PCC 7338 was performed for the first time with a data-dependent acquisition method, revealing 18,779 unique peptides and 1794 protein groups. A data-independent acquisition method was carried out for the comparative quantitation of Synechocystis sp. PCC 6803 and 7338. Among 2049 quantified proteins, 185 up- and 211 down-regulated proteins were defined in Synechocystis sp. PCC 7338. Some characteristics in the proteome of Synechocystis sp. PCC 7338 were revealed, such as its adaptation to living conditions, including the down-regulation of some photosynthesis proteins, the up-regulation of kdpB, and the use of osmolyte glycine as a substrate in C1 metabolism for the regulation of carbon flow. This study will facilitate further studies on Synechocystis 7338 to define in depth the proteomic differences between it and other Synechocystis strains.
Collapse
|
15
|
Goodwin RJA, Takats Z, Bunch J. A Critical and Concise Review of Mass Spectrometry Applied to Imaging in Drug Discovery. SLAS DISCOVERY 2020; 25:963-976. [PMID: 32713279 DOI: 10.1177/2472555220941843] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During the past decade, mass spectrometry imaging (MSI) has become a robust and versatile methodology to support modern pharmaceutical research and development. The technologies provide data on the biodistribution, metabolism, and delivery of drugs in tissues, while also providing molecular maps of endogenous metabolites, lipids, and proteins. This allows researchers to make both pharmacokinetic and pharmacodynamic measurements at cellular resolution in tissue sections or clinical biopsies. Despite drug imaging within samples now playing a vital role within research and development (R&D) in leading pharmaceutical companies, however, the challenges in turning compounds into medicines continue to evolve as rapidly as the technologies used to discover them. The increasing cost of development of new and emerging therapeutic modalities, along with the associated risks of late-stage program attrition, means there is still an unmet need in our ability to address an increasing array of challenging bioanalytical questions within drug discovery. We require new capabilities and strategies of integrated imaging to provide context for fundamental disease-related biological questions that can also offer insights into specific project challenges. Integrated molecular imaging and advanced image analysis have the opportunity to provide a world-class capability that can be deployed on projects in which we cannot answer the question with our battery of established assays. Therefore, here we will provide an updated concise review of the use of MSI for drug discovery; we will also critically consider what is required to embed MSI into a wider evolving R&D landscape and allow long-lasting impact in the industry.
Collapse
Affiliation(s)
- Richard J A Goodwin
- Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.,Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, UK
| | - Zoltan Takats
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK.,The Rosalind Franklin Institute, Oxfordshire, UK
| | - Josephine Bunch
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College, London, UK.,The Rosalind Franklin Institute, Oxfordshire, UK.,National Physical Laboratory, Teddington, London, UK
| |
Collapse
|
16
|
Conner KP, Devanaboyina SC, Thomas VA, Rock DA. The biodistribution of therapeutic proteins: Mechanism, implications for pharmacokinetics, and methods of evaluation. Pharmacol Ther 2020; 212:107574. [PMID: 32433985 DOI: 10.1016/j.pharmthera.2020.107574] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/30/2020] [Indexed: 02/08/2023]
Abstract
Therapeutic proteins (TPs) are a diverse drug class that include monoclonal antibodies (mAbs), recombinantly expressed enzymes, hormones and growth factors, cytokines (e.g. chemokines, interleukins, interferons), as well as a wide range of engineered fusion scaffolds containing IgG1 Fc domain for half-life extension. As the pharmaceutical industry advances more potent and selective protein-based medicines through discovery and into the clinical stages of development, it has become widely appreciated that a comprehensive understanding of the mechanisms of TP biodistribution can aid this endeavor. This review aims to highlight the literature that has advanced our understanding of the determinants of TP biodistribution. A particular emphasis is placed on the multi-faceted role of the neonatal Fc receptor (FcRn) in mAb and Fc-fusion protein disposition. In addition, characterization of the TP-target interaction at the cell-level is discussed as an essential strategy to establish pharmacokinetic-pharmacodynamic (PK/PD) relationships that may lead to more informed human dose projections during clinical development. Methods for incorporation of tissue and cell-level parameters defining these characteristics into higher-order mechanistic and semi-mechanistic PK models will also be presented.
Collapse
Affiliation(s)
- Kip P Conner
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| | - Siva Charan Devanaboyina
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| | - Veena A Thomas
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| | - Dan A Rock
- Dept. of Pharmacokinetics and Drug Metabolism, Amgen Inc, 1120 Veterans Blvd, South San Francisco, CA 94080, USA.
| |
Collapse
|
17
|
Bekker-Jensen DB, Martínez-Val A, Steigerwald S, Rüther P, Fort KL, Arrey TN, Harder A, Makarov A, Olsen JV. A Compact Quadrupole-Orbitrap Mass Spectrometer with FAIMS Interface Improves Proteome Coverage in Short LC Gradients. Mol Cell Proteomics 2020; 19:716-729. [PMID: 32051234 PMCID: PMC7124470 DOI: 10.1074/mcp.tir119.001906] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/03/2020] [Indexed: 12/31/2022] Open
Abstract
State-of-the-art proteomics-grade mass spectrometers can measure peptide precursors and their fragments with ppm mass accuracy at sequencing speeds of tens of peptides per second with attomolar sensitivity. Here we describe a compact and robust quadrupole-orbitrap mass spectrometer equipped with a front-end High Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) Interface. The performance of the Orbitrap Exploris 480 mass spectrometer is evaluated in data-dependent acquisition (DDA) and data-independent acquisition (DIA) modes in combination with FAIMS. We demonstrate that different compensation voltages (CVs) for FAIMS are optimal for DDA and DIA, respectively. Combining DIA with FAIMS using single CVs, the instrument surpasses 2500 peptides identified per minute. This enables quantification of >5000 proteins with short online LC gradients delivered by the Evosep One LC system allowing acquisition of 60 samples per day. The raw sensitivity of the instrument is evaluated by analyzing 5 ng of a HeLa digest from which >1000 proteins were reproducibly identified with 5 min LC gradients using DIA-FAIMS. To demonstrate the versatility of the instrument, we recorded an organ-wide map of proteome expression across 12 rat tissues quantified by tandem mass tags and label-free quantification using DIA with FAIMS to a depth of >10,000 proteins.
Collapse
Affiliation(s)
- Dorte B Bekker-Jensen
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DENMARK
| | - Ana Martínez-Val
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DENMARK
| | - Sophia Steigerwald
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DENMARK
| | - Patrick Rüther
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DENMARK
| | | | | | | | | | - Jesper V Olsen
- The Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DENMARK.
| |
Collapse
|
18
|
Tharakan R, Kreimer S, Ubaida-Mohien C, Lavoie J, Olexiouk V, Menschaert G, Ingolia NT, Cole RN, Ishizuka K, Sawa A, Nucifora LG. A methodology for discovering novel brain-relevant peptides: Combination of ribosome profiling and peptidomics. Neurosci Res 2020; 151:31-37. [DOI: 10.1016/j.neures.2019.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/26/2022]
|
19
|
Abstract
Castration-resistant prostate cancer (CRPC) remains incurable despite the approval of several new treatments. Identification of new biomarkers and therapeutic targets to enable personalization of CRPC therapy, with the aim of maximizing therapeutic responses and minimizing toxicity in patients, is urgently needed. Prostate cancer progression and therapeutic resistance are frequently driven by aberrantly activated kinase signalling pathways that are amenable to pharmacological inhibition. Personalized phosphoproteomics, which enables the analysis of signalling networks in individual tumours, is a promising approach to advance personalized therapy by discovering biomarkers of pathway activity and clinically actionable targets. Several technologies for global and targeted phosphoproteomic analysis exist, each with its own strengths and shortcomings. Global discovery phosphoproteomics is predominantly conducted using liquid chromatography-tandem mass spectrometry coupled with data-dependent or data-independent acquisition technologies. Multiplexed targeted phosphoproteomics can be divided into platforms based on mass spectrometry or antibodies, including selected or parallel reaction monitoring and triggered by offset, multiplexed, accurate mass, high-resolution, absolute quantification (known as TOMAHAQ) or forward-phase or reverse-phase protein arrays, respectively. Several obstacles still need to be overcome before the full potential of phosphoproteomics can be realized in routine clinical practice, but a future phosphoproteomics-centric trans-omic profiling approach should enable optimized personalized CRPC management through improved biomarkers and targeted treatments.
Collapse
|
20
|
Eveque-Mourroux MR, Emans PJ, Zautsen RRM, Boonen A, Heeren RMA, Cillero-Pastor B. Spatially resolved endogenous improved metabolite detection in human osteoarthritis cartilage by matrix assisted laser desorption ionization mass spectrometry imaging. Analyst 2019; 144:5953-5958. [PMID: 31418440 DOI: 10.1039/c9an00944b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osteoarthritis (OA) is one of the most common musculoskeletal diseases, characterized by the progressive deterioration of articular cartilage. Although the disease has been well studied in the past few years, the endogenous metabolic composition and more importantly the spatial information of these molecules in cartilage is still poorly understood. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) has been previously used for the investigation of the bimolecular distribution of proteins and lipids through the in situ analysis of cartilage tissue sections. MALDI-MSI as a tool to detect metabolites remains challenging, as these species have low abundance and degrade rapidly. In this work, we present a complete methodology, from sample preparation to data analysis for the detection of endogenous metabolites on cartilage by MSI. Our results demonstrate for the first time the ability to detect small molecules in fragile, challenging tissues through an optimized protocol, and render MSI as a tool towards a better understanding of OA.
Collapse
Affiliation(s)
- M R Eveque-Mourroux
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands.
| | | | | | | | | | | |
Collapse
|
21
|
Schroeder MR, Loparev V. Rapid Inactivation of Non-Endospore-Forming Bacterial Pathogens by Heat Stabilization is Compatible with Downstream Next-Generation Sequencing. APPLIED BIOSAFETY 2019; 24:129-133. [DOI: 10.1177/1535676019861261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Introduction:Heat stabilization treatment preserves the in vivo state of biological samples by rapidly inactivating enzymes that cause degradation of proteins and nucleic acids. Historically, proteomics studies used this technique as an alternative to chemical fixation. More recently, microbiologists discovered that heat stabilization treatment rapidly inactivates pathogens present in tissue samples and preserves deoxyribonucleic acid (DNA) in the tissue. However, these recent studies did not investigate the inactivation of high-density bacterial suspensions and the quality of bacterial DNA.Methods and Results:High-density suspensions of Escherichia coli (>109cfu/mL) were completely inactivated by heat stabilization treatment using the Denator Stabilizor T1 instrument at 72°C and 95°C for 45 seconds. Using the heat stabilization instrument, a panel of 30 species, 20 Gram-negative and 10 non-endospore-forming Gram-positive species, were fully inactivated by treatment (95°C for 45 seconds). DNA was isolated from bacterial suspensions of Gram-negative bacteria, including E. albertii, E. coli, Shigella dysenteriae, and S. flexneri, following inactivation via heat stabilization treatment and without treatment. DNA isolated following heat stabilization treatment was fully compatible with all downstream molecular applications tested, including next-generation sequencing, pulsed-field gel electrophoresis, multiplex polymerase chain reaction (PCR), and real-time PCR.Conclusions and Discussion:Heat stabilization treatment of Gram-negative and non-endospore-forming Gram-positive pathogens completely inactivates high-density bacterial suspensions. This treatment is compatible with downstream DNA molecular assays, including next-generation sequencing, pulsed-field gel electrophoresis, and PCR. Inactivation by heat stabilization is a rapid process that may increase safety by decreasing risks for laboratory-associated infections and risks associated with transportation of infectious materials.
Collapse
Affiliation(s)
- Max R. Schroeder
- Centers for Disease Control and Prevention, Division of Scientific Resources, Atlanta, GA, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Vladimir Loparev
- Centers for Disease Control and Prevention, Division of Scientific Resources, Atlanta, GA, USA
| |
Collapse
|
22
|
Affiliation(s)
- Gary B Smejkal
- a Core Services Laboratory , Focus Proteomics , Hudson , NH , USA
| | | |
Collapse
|
23
|
Dagley LF, Infusini G, Larsen RH, Sandow JJ, Webb AI. Universal Solid-Phase Protein Preparation (USP3) for Bottom-up and Top-down Proteomics. J Proteome Res 2019; 18:2915-2924. [DOI: 10.1021/acs.jproteome.9b00217] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Laura F. Dagley
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Giuseppe Infusini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Rune H. Larsen
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jarrod J. Sandow
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Andrew I. Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
24
|
Humphrey SJ, Karayel O, James DE, Mann M. High-throughput and high-sensitivity phosphoproteomics with the EasyPhos platform. Nat Protoc 2019; 13:1897-1916. [PMID: 30190555 DOI: 10.1038/s41596-018-0014-9] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mass spectrometry has transformed the field of cell signaling by enabling global studies of dynamic protein phosphorylation ('phosphoproteomics'). Recent developments are enabling increasingly sophisticated phosphoproteomics studies, but practical challenges remain. The EasyPhos workflow addresses these and is sufficiently streamlined to enable the analysis of hundreds of phosphoproteomes at a depth of >10,000 quantified phosphorylation sites. Here we present a detailed and updated workflow that further ensures high performance in sample-limited conditions while also reducing sample preparation time. By eliminating protein precipitation steps and performing the entire protocol, including digestion, in a single 96-well plate, we now greatly minimize opportunities for sample loss and variability. This results in very high reproducibility and a small sample size requirement (≤200 μg of protein starting material). After cell culture or tissue collection, the protocol takes 1 d, whereas mass spectrometry measurements require ~1 h per sample. Applied to glioblastoma cells acutely treated with epidermal growth factor (EGF), EasyPhos quantified 20,132 distinct phosphopeptides from 200 μg of protein in less than 1 d of measurement time, revealing thousands of EGF-regulated phosphorylation events.
Collapse
Affiliation(s)
- Sean J Humphrey
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia. .,The Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.
| | - Ozge Karayel
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - David E James
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.,The Charles Perkins Centre, The University of Sydney, Sydney, New South Wales, Australia.,Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Matthias Mann
- Max Planck Institute of Biochemistry, Martinsried, Germany. .,NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
25
|
Mezger STP, Mingels AMA, Bekers O, Cillero-Pastor B, Heeren RMA. Trends in mass spectrometry imaging for cardiovascular diseases. Anal Bioanal Chem 2019; 411:3709-3720. [PMID: 30980090 PMCID: PMC6594994 DOI: 10.1007/s00216-019-01780-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 02/26/2019] [Accepted: 03/13/2019] [Indexed: 01/01/2023]
Abstract
Mass spectrometry imaging (MSI) is a widely established technology; however, in the cardiovascular research field, its use is still emerging. The technique has the advantage of analyzing multiple molecules without prior knowledge while maintaining the relation with tissue morphology. Particularly, MALDI-based approaches have been applied to obtain in-depth knowledge of cardiac (dys)function. Here, we discuss the different aspects of the MSI protocols, from sample handling to instrumentation used in cardiovascular research, and critically evaluate these methods. The trend towards structural lipid analysis, identification, and “top-down” protein MSI shows the potential for implementation in (pre)clinical research and complementing the diagnostic tests. Moreover, new insights into disease progression are expected and thereby contribute to the understanding of underlying mechanisms related to cardiovascular diseases.
Collapse
Affiliation(s)
- Stephanie T P Mezger
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.,Central Diagnostic Laboratory, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Alma M A Mingels
- Central Diagnostic Laboratory, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Otto Bekers
- Central Diagnostic Laboratory, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, The Netherlands.,CARIM School for Cardiovascular Diseases, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging (M4I) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
26
|
Krutilin A, Maier S, Schuster R, Kruber S, Kwiatkowski M, Robertson WD, Hansen NO, Miller RJD, Schlüter H. Sampling of Tissues with Laser Ablation for Proteomics: Comparison of Picosecond Infrared Laser and Microsecond Infrared Laser. J Proteome Res 2019; 18:1451-1457. [PMID: 30669834 DOI: 10.1021/acs.jproteome.9b00009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It was recently shown that sampling of tissues with a picosecond infrared laser (PIRL) for analysis with bottom-up proteomics is advantageous compared to mechanical homogenization. Because the cold ablation of tissues with PIRL irradiation is soft, proteins remain intact and even enzymatic activities are detectable in PIRL homogenates. In contrast, it was observed that irradiation of tissues with a microsecond infrared laser (MIRL) heats the tissue, thereby causing significant damage. In this study, we investigated the question if sampling of tissues with a MIRL for analysis of their proteomes via bottom-up proteomics is possible and how the results are different from sampling of tissues with a PIRL. Comparison of the proteomes of the MIRL and PIRL tissue homogenates showed that the yield of proteins identified by bottom-up proteomics was larger in PIRL homogenates of liver tissue, whereas the yield was higher in MIRL homogenates of muscle tissue, which has a significantly higher content of connective tissue than liver tissue. In the PIRL homogenate of renal tissue, enzymatic activities were detectable, whereas in the corresponding MIRL homogenate, enzymatic activities were absent. In conclusion, MIRL and PIRL pulses are suited for sampling tissues for bottom-up proteomics. If it is important for bottom-up proteomic investigations to inactivate enzymatic activities already in the tissue before its ablation, MIRL tissue sampling is an option, because the proteins in the tissues are denatured and inactivated by the heating of the tissue during irradiation with MIRL irradiation prior to the ablation of the tissue. This heating effect is absent during irradiation of tissue with a PIRL; therefore, sampling of tissues with a PIRL is a choice for purifying enzymes, because their activities are maintained.
Collapse
Affiliation(s)
- Andrey Krutilin
- Atomically Resolved Dynamics Department, Center for Free Electron Laser Science , Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - Stephanie Maier
- Atomically Resolved Dynamics Department, Center for Free Electron Laser Science , Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - Raphael Schuster
- University of Hamburg , Martin-Luther-King-Platz 6 , 20146 Hamburg , Germany
| | - Sebastian Kruber
- Atomically Resolved Dynamics Department, Center for Free Electron Laser Science , Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - Marcel Kwiatkowski
- Groningen Research Institute of Pharmacy, Pharmacokinetics, Toxicology and Targeting , University of Groningen , Antonius Deusinglaan 1 , 9713 AV Groningen , Netherlands
| | - Wesley D Robertson
- Atomically Resolved Dynamics Department, Center for Free Electron Laser Science , Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - Nils-Owe Hansen
- Atomically Resolved Dynamics Department, Center for Free Electron Laser Science , Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 Hamburg , Germany
| | - R J Dwayne Miller
- Atomically Resolved Dynamics Department, Center for Free Electron Laser Science , Max Planck Institute for the Structure and Dynamics of Matter , Luruper Chaussee 149 , 22761 Hamburg , Germany.,Departments of Chemistry and Physics , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine , University Medical Center Hamburg-Eppendorf , Martinistraße 52 , 20246 Hamburg , Germany
| |
Collapse
|
27
|
Ryan DJ, Spraggins JM, Caprioli RM. Protein identification strategies in MALDI imaging mass spectrometry: a brief review. Curr Opin Chem Biol 2019; 48:64-72. [PMID: 30476689 PMCID: PMC6382520 DOI: 10.1016/j.cbpa.2018.10.023] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/26/2018] [Accepted: 10/26/2018] [Indexed: 01/21/2023]
Abstract
Matrix assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is a powerful technology used to investigate the spatial distributions of thousands of molecules throughout a tissue section from a single experiment. As proteins represent an important group of functional molecules in tissue and cells, the imaging of proteins has been an important point of focus in the development of IMS technologies and methods. Protein identification is crucial for the biological contextualization of molecular imaging data. However, gas-phase fragmentation efficiency of MALDI generated proteins presents significant challenges, making protein identification directly from tissue difficult. This review highlights methods and technologies specifically related to protein identification that have been developed to overcome these challenges in MALDI IMS experiments.
Collapse
Affiliation(s)
- Daniel J. Ryan
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN 37235, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
| | - Jeffrey M. Spraggins
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN 37235, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA
| | - Richard M. Caprioli
- Department of Chemistry, Vanderbilt University, 7330 Stevenson Center, Station B 351822, Nashville, TN 37235, USA
- Mass Spectrometry Research Center, Vanderbilt University, 465 21 Ave S #9160, Nashville, TN 37235, USA
- Department of Biochemistry, Vanderbilt University, 607 Light Hall, Nashville, TN 37205, USA
- Department of Pharmacology, Vanderbilt University, 442 Robinson Research Building, 2220 Pierce Avenue, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University, 465 21 Ave #9160, Nashville, TN 37235, USA
| |
Collapse
|
28
|
Liljedahl L, Pedersen MH, McGuire JN, James P. The impact of the glucagon-like peptide 1 receptor agonist liraglutide on the streptozotocin-induced diabetic mouse kidney proteome. Physiol Rep 2019; 7:e13994. [PMID: 30806030 PMCID: PMC6389751 DOI: 10.14814/phy2.13994] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/02/2019] [Indexed: 11/24/2022] Open
Abstract
In diabetes mellitus (DM), the kidneys are exposed to increased levels of hyperglycemia-induced oxidative stress. Elevated amounts of reactive oxygen species (ROS) are believed to provoke ultrastructural changes in kidney tissue and can eventually result in DM late complications such as diabetic nephropathy. While it is reported that glucagon-like peptide 1 receptors (GLP-1R) are present in the kidney vasculature, the effects of GLP-1 on the kidney proteome in DM is not well described. Thus, we set out to investigate potential effects on the proteomic level. Here the effects of GLP-1R agonism using the GLP-1 analogue liraglutide are studied in the kidneys of streptozotocin (STZ)-treated mice (n = 6/group) by label-free shotgun mass spectrometry (MS) and targeted MS. Unsupervised and supervised multivariate analyses are followed by one-way ANOVA. Shotgun MS data of vehicle and liraglutide-treated mouse groups are separated in the supervised multivariate analysis and separation is also achieved in the subsequent unsupervised multivariate analysis using targeted MS data. The mouse group receiving the GLP-1R agonist liraglutide has increased protein abundances of glutathione peroxidase-3 (GPX3) and catalase (CATA) while the abundances of neuroplastin (NPTN) and bifunctional glutamate/proline-tRNA ligase (SYEP) are decreased compared to the STZ vehicle mice. The data suggest that GLP-1R agonism mainly influences abundances of structurally involved proteins and proteins involved in oxidative stress responses in the STZ mouse kidney. The changes could be direct effects of GLP-1R agonism in the kidneys or indirectly caused by a systemic response to GLP-1R activation.
Collapse
Affiliation(s)
| | | | | | - Peter James
- Department of ImmunotechnologyLund UniversityLundSweden
| |
Collapse
|
29
|
Fridjonsdottir E, Nilsson A, Wadensten H, Andrén PE. Brain Tissue Sample Stabilization and Extraction Strategies for Neuropeptidomics. Methods Mol Biol 2019; 1719:41-49. [PMID: 29476502 DOI: 10.1007/978-1-4939-7537-2_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neuropeptides are bioactive peptides that are synthesized and secreted by neurons in signaling pathways in the brain. Peptides and proteins are extremely vulnerable to proteolytic cleavage when their biological surrounding changes. This makes neuropeptidomics challenging due to the rapid alterations that occur to the peptidome after harvesting of brain tissue samples. For a successful neuropeptidomic study the biological tissue sample analyzed should resemble the premortem state as much as possible. Heat stabilization has been proven to inhibit postmortem degradation by denaturing proteolytic enzymes, hence increasing identification rates of neuropeptides. Here, we describe a stabilization protocol of a frozen tissue specimen that increases the number of intact mature neuropeptides identified and minimizes interference of degradation products from abundant proteins. Additionally, we present an extraction protocol that aims to extract a wide range of hydrophilic and hydrophobic neuropeptides by using both an aqueous and an organic extraction medium.
Collapse
Affiliation(s)
- Elva Fridjonsdottir
- Biomolecular Imaging and Proteomics, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Anna Nilsson
- Biomolecular Imaging and Proteomics, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Henrik Wadensten
- Biomolecular Imaging and Proteomics, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Per E Andrén
- Biomolecular Imaging and Proteomics, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
30
|
Yang N, Anapindi KDB, Romanova EV, Rubakhin SS, Sweedler JV. Improved identification and quantitation of mature endogenous peptides in the rodent hypothalamus using a rapid conductive sample heating system. Analyst 2018; 142:4476-4485. [PMID: 29098220 DOI: 10.1039/c7an01358b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Measurement, identification, and quantitation of endogenous peptides in tissue samples by mass spectrometry (MS) contribute to our understanding of the complex molecular mechanisms of numerous biological phenomena. For accurate results, it is essential to arrest the postmortem degradation of ubiquitous proteins in samples prior to performing peptidomic measurements. Doing so ensures that the detection of endogenous peptides, typically present at relatively low levels of abundance, is not overwhelmed by protein degradation products. Heat stabilization has been shown to inactivate the enzymes in tissue samples and minimize the presence of protein degradation products in the subsequent peptide extracts. However, the efficacy of different heat treatments to preserve the integrity of full-length endogenous peptides has not been well documented; prior peptidomic studies of heat stabilization methods have not distinguished between the full-length (mature) and numerous truncated (possible artifacts of sampling) forms of endogenous peptides. We show that thermal sample treatment via rapid conductive heat transfer is effective for detection of mature endogenous peptides in fresh and frozen rodent brain tissues. Freshly isolated tissue processing with the commercial Stabilizor T1 heat stabilization system resulted in the confident identification of 65% more full-length mature neuropeptides compared to widely used sample treatment in a hot water bath. This finding was validated by a follow-up quantitative multiple reaction monitoring MS analysis of select neuropeptides. The rapid conductive heating in partial vacuum provided by the Stabilizor T1 effectively reduces protein degradation and decreases the chemical complexity of the sample, as assessed by determining total protein content. This system enabled the detection, identification, and quantitation of neuropeptides related to 22 prohormones expressed in individual rat hypothalami and suprachiasmatic nuclei.
Collapse
Affiliation(s)
- Ning Yang
- Department of Chemistry and the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana 61801, USA.
| | | | | | | | | |
Collapse
|
31
|
Piga I, Capitoli G, Tettamanti S, Denti V, Smith A, Chinello C, Stella M, Leni D, Garancini M, Galimberti S, Magni F, Pagni F. Feasibility Study for the MALDI-MSI Analysis of Thyroid Fine Needle Aspiration Biopsies: Evaluating the Morphological and Proteomic Stability Over Time. Proteomics Clin Appl 2018; 13:e1700170. [PMID: 30411853 DOI: 10.1002/prca.201700170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 10/18/2018] [Indexed: 11/05/2022]
Abstract
PURPOSE MALDI-MS imaging (MALDI-MSI) is an emerging technology that enables the spatial distribution of biomolecules within tissue to be combined with the traditional morphological information familiar to clinicians. Thus, for diagnostic or prognostic purposes, along with predicting response to therapeutic treatment, it is important to properly collect and handle biological specimens in order to avoid degradation or the formation of artifacts in the morphological structure and proteomic profile. EXPERIMENTAL DESIGN In this work, the morphological and proteomic stability of thyroid fine needle aspiration biopsies in PreservCyt (up to 14 days) and CytoLyt (up to 7 days) solutions at 4 °C has been verified, by MALDI-MSI analysis. Moreover, a new measure has been introduced in order to assess the similarity of the obtained MALDI-MSI spectra, by equally taking into account the number of signals (fit and retrofit), and their intensities (Spearman's correlation and spectra overlap). RESULTS Results show no degradation of the cellular morphology and a good stability of the samples up to 14 days in PreservCyt solution. CONCLUSIONS AND CLINICAL RELEVANCE Moreover, this protocol can be easily implemented in pathological units, allowing simple sample collection and shipment to be used not only for the proteomic MALDI-MSI analysis of thyroid FNABs but also for other biological liquid based specimens.
Collapse
Affiliation(s)
- Isabella Piga
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy.,Department of Medicine and Surgery, Section of Pathology, University of Milano-Bicocca, Monza, Italy
| | - Giulia Capitoli
- Department of Medicine and Surgery, Centre of Biostatistics for Clinical Epidemiology, University of Milano-Bicocca, Monza, Italy
| | - Silvia Tettamanti
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Vanna Denti
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Andrew Smith
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Clizia Chinello
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Martina Stella
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Davide Leni
- Department of Radiology, San Gerardo Hospital, Monza, Italy
| | | | - Stefania Galimberti
- Department of Medicine and Surgery, Centre of Biostatistics for Clinical Epidemiology, University of Milano-Bicocca, Monza, Italy
| | - Fulvio Magni
- Department of Medicine and Surgery, Clinical Proteomics and Metabolomics Unit, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Section of Pathology, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
32
|
Griffiths RL, Simmonds AL, Swales JG, Goodwin RJA, Cooper HJ. LESA MS Imaging of Heat-Preserved and Frozen Tissue: Benefits of Multistep Static FAIMS. Anal Chem 2018; 90:13306-13314. [DOI: 10.1021/acs.analchem.8b02739] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Rian L. Griffiths
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, U.K
| | - Anna L. Simmonds
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, U.K
| | - John G. Swales
- Pathology, Drug Safety & Metabolism, IMED Biotech Unit, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, U.K
| | - Richard J. A. Goodwin
- Pathology, Drug Safety & Metabolism, IMED Biotech Unit, AstraZeneca, Darwin Building, Cambridge Science Park, Milton Road, Cambridge CB4 0WG, U.K
| | - Helen J. Cooper
- School of Biosciences, University of Birmingham, Edgbaston B15 2TT, U.K
| |
Collapse
|
33
|
DeAtley KL, Colgrave ML, Cánovas A, Wijffels G, Ashley RL, Silver GA, Rincon G, Medrano JF, Islas-Trejo A, Fortes MRS, Reverter A, Porto-Neto L, Lehnert SA, Thomas MG. Neuropeptidome of the Hypothalamus and Pituitary Gland of Indicine × Taurine Heifers: Evidence of Differential Neuropeptide Processing in the Pituitary Gland before and after Puberty. J Proteome Res 2018; 17:1852-1865. [PMID: 29510626 DOI: 10.1021/acs.jproteome.7b00875] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Puberty in cattle is regulated by an endocrine axis, which includes a complex milieu of neuropeptides in the hypothalamus and pituitary gland. The neuropeptidome of hypothalamic-pituitary gland tissue of pre- (PRE) and postpubertal (POST) Bos indicus-influenced heifers was characterized, followed by quantitative analysis of 51 fertility-related neuropeptides in these tissues. Comparison of peptide abundances with gene expression levels allowed assessment of post-transcriptional peptide processing. On the basis of classical cleavage, 124 mature neuropeptides from 35 precursor proteins were detected in hypothalamus and pituitary gland tissues of three PRE and three POST Brangus heifers. An additional 19 peptides (cerebellins, PEN peptides) previously reported as neuropeptides that did not follow classical cleavage were also identified. In the pre-pubertal hypothalamus, a greater diversity of neuropeptides (25.8%) was identified relative to post-pubertal heifers, while in the pituitary gland, 38.6% more neuropeptides were detected in the post-pubertal heifers. Neuro-tissues of PRE and POST heifers revealed abundance differences ( p < 0.05) in peptides from protein precursors involved in packaging and processing (e.g., the granin family and ProSAAS) or neuron stimulation (PENK, CART, POMC, cerebellins). On their own, the transcriptome data of the precursor genes could not predict the neuropeptide profile in the exact same tissues in several cases. This provides further evidence of the importance of differential processing of the neuropeptide precursors in the pituitary before and after puberty.
Collapse
Affiliation(s)
- Kasey L DeAtley
- Department of Animal and Range Sciences , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| | - Michelle L Colgrave
- CSIRO, Agriculture and Food , 306 Carmody Road , St. Lucia , Queensland 4067 , Australia
| | - Angela Cánovas
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences , University of Guelph , Guelph , Ontario N1G 2W1 , Canada
| | - Gene Wijffels
- CSIRO, Agriculture and Food , 306 Carmody Road , St. Lucia , Queensland 4067 , Australia
| | - Ryan L Ashley
- Department of Animal and Range Sciences , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| | - Gail A Silver
- Department of Animal and Range Sciences , New Mexico State University , Las Cruces , New Mexico 88003 , United States
| | - Gonzalo Rincon
- Zoetis Animal Health , Kalamazoo , Michigan 49007 , United States
| | - Juan F Medrano
- Department of Animal Science , University of California , Davis , California 95616 , United States
| | - Alma Islas-Trejo
- Department of Animal Science , University of California , Davis , California 95616 , United States
| | - Marina R S Fortes
- School of Chemistry and Molecular Biosciences , University of Queensland , St. Lucia , Queensland 4042 , Australia
- Queensland Alliance for Agriculture and Food Innovation, St. Lucia , Queensland 4072 , Australia
| | - Antonio Reverter
- CSIRO, Agriculture and Food , 306 Carmody Road , St. Lucia , Queensland 4067 , Australia
| | - Laercio Porto-Neto
- CSIRO, Agriculture and Food , 306 Carmody Road , St. Lucia , Queensland 4067 , Australia
| | - Sigrid A Lehnert
- CSIRO, Agriculture and Food , 306 Carmody Road , St. Lucia , Queensland 4067 , Australia
| | - Milton G Thomas
- Department of Animal Sciences , Colorado State University , Fort Collins , Colorado 80523 , United States
| |
Collapse
|
34
|
Cao Q, Ouyang C, Zhong X, Li L. Profiling of small molecule metabolites and neurotransmitters in crustacean hemolymph and neuronal tissues using reversed-phase LC-MS/MS. Electrophoresis 2018; 39:1241-1248. [PMID: 29579349 PMCID: PMC7382969 DOI: 10.1002/elps.201800058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/04/2018] [Accepted: 03/07/2018] [Indexed: 12/14/2022]
Abstract
Crustaceans have been long used as model animals for neuromodulation studies because of their well-defined neural circuitry. The identification of small molecule metabolites and signaling molecules in circulating fluids and neuronal tissues presents unique challenges due to their diverse structures, biological functions, and wide range of concentrations. LC combined with high resolution MS/MS is one of the most powerful tools to uncover endogenous small molecules. Here we explored several sample preparation techniques (solid-phase extraction and denaturing) and MS data acquisition strategies (data-dependent acquisition and targeted MS2-based acquisition) that provided complementary coverage and improved overall identification rate in C18 LC-MS/MS experiment. By MS/MS spectral matching with mzCloud database and those generated from standard compounds, a total of 129 small molecule metabolites and neurotransmitters were identified from crustacean hemolymph and neuronal tissues. These confidently identified small molecules covered predominant biosynthetic pathways for major neurotransmitters, validating the effectiveness of the high-throughput RPLC-MS/MS approach in studying the metabolism of neurotransmitters.
Collapse
Affiliation(s)
- Qinjingwen Cao
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin, 53706, United States
| | - Chuanzi Ouyang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin, 53706, United States
| | - Xuefei Zhong
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin, 53705, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin, 53706, United States
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, Wisconsin, 53705, United States
- School of Life Sciences, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
35
|
Susman S, Berindan-Neagoe I, Petrushev B, Pirlog R, Florian IS, Mihu CM, Berce C, Craciun L, Grewal R, Tomuleasa C. The role of the pathology department in the preanalytical phase of molecular analyses. Cancer Manag Res 2018; 10:745-753. [PMID: 29695931 PMCID: PMC5903845 DOI: 10.2147/cmar.s150851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
After introducing the new molecules for the treatment of patients with tumoral pathology, the therapeutical decision will be taken depending on the molecular profile performed upon the harvested tissues. This major modification makes the molecular and morphological analysis an essential part in the clinical management of patients and the pathologist plays an important role in this process. The quality and reproducibility of the results are imperative today and they depend on both the reliability of the molecular techniques and the quality of the tissue we use in the process. Also, the genomics and proteomics techniques, used increasingly often, require high-quality tissues, and pathology laboratories play a very significant role in the management of all phases of this process. In this paper the parameters which must be followed in order to obtain optimal results within the techniques which analyze nucleic acids and proteins were reviewed.
Collapse
Affiliation(s)
- Sergiu Susman
- Department of Pathology, Imogen Research Center.,Department of Morphological Sciences
| | | | - Bobe Petrushev
- Research Center for Functional Genomics and Translational Medicine
| | | | - Ioan-Stefan Florian
- Department of Neurosurgery, Iuliu Hatieganu University of Medicine and Pharmacy
| | | | - Cristian Berce
- Research Center for Functional Genomics and Translational Medicine
| | | | - Ravnit Grewal
- Department of Hematology, Ion Chiricuta Oncology Institute
| | - Ciprian Tomuleasa
- Research Center for Functional Genomics and Translational Medicine.,Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Haematopathology, Tygerberg Academic Hospital, Tygerberg, South Africa
| |
Collapse
|
36
|
Li W, Papilloud A, Lozano-Montes L, Zhao N, Ye X, Zhang X, Sandi C, Rainer G. Stress Impacts the Regulation Neuropeptides in the Rat Hippocampus and Prefrontal Cortex. Proteomics 2018; 18:e1700408. [PMID: 29406625 DOI: 10.1002/pmic.201700408] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/10/2018] [Indexed: 11/05/2022]
Abstract
Adverse life experiences increase the lifetime risk to several stress-related psychopathologies, such as anxiety or depressive-like symptoms following stress in adulthood. However, the neurochemical modulations triggered by stress have not been fully characterized. Neuropeptides play an important role as signaling molecules that contribute to physiological regulation and have been linked to neurological and psychiatric diseases. However, little is known about the influence of stress on neuropeptide regulation in the brain. Here, we have performed an exploratory study of how neuropeptide expression at adulthood is modulated by experiencing a period of multiple stressful experiences. We have targeted hippocampus and prefrontal cortex (PFC) brain areas, which have previously been shown to be modulated by stressors, employing a targeted liquid chromatography-mass spectrometry (LC-MS) based approach that permits broad peptide coverage with high sensitivity. We found that in the hippocampus, Met-enkephalin, Met-enkephalin-Arg-Phe, and Met-enkephalin-Arg-Gly-Leu were upregulated, while Leu-enkephalin and Little SAAS were downregulated after stress. In the PFC area, Met-enkephalin-Arg-Phe, Met-enkephalin-Arg-Gly-Leu, peptide PHI-27, somatostatin-28 (AA1-12), and Little SAAS were all downregulated. This systematic evaluation of neuropeptide alterations in the hippocampus and PFC suggests that stressors impact neuropeptides and that neuropeptide regulation is brain-area specific. These findings suggest several potential peptide candidates, which warrant further investigations in terms of correlation with depression-associated behaviors.
Collapse
Affiliation(s)
- Wenxue Li
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
| | - Aurelie Papilloud
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Science, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | | | - Nan Zhao
- Division of Biological Technology, Chinese Academy of Science, Dalian Institute of Chemical Physics, Dalian, P. R. China
| | - Xueting Ye
- Division of Biological Technology, Chinese Academy of Science, Dalian Institute of Chemical Physics, Dalian, P. R. China
| | - Xiaozhe Zhang
- Division of Biological Technology, Chinese Academy of Science, Dalian Institute of Chemical Physics, Dalian, P. R. China
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, School of Life Science, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Gregor Rainer
- Department of Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
37
|
Adamczyk B, Jin C, Polom K, Muñoz P, Rojas-Macias MA, Zeeberg D, Borén M, Roviello F, Karlsson NG. Sample handling of gastric tissue and O-glycan alterations in paired gastric cancer and non-tumorigenic tissues. Sci Rep 2018; 8:242. [PMID: 29321476 PMCID: PMC5762837 DOI: 10.1038/s41598-017-18299-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 12/07/2017] [Indexed: 12/13/2022] Open
Abstract
Sample collection, handling and storage are the most critical steps for ensuring the highest preservation of specimens. Pre-analytical variability can influence the results as protein signatures alter rapidly after tissue excision or during long-term storage. Hence, we evaluated current state-of-the-art biobank preservation methods from a glycomics perspective and analyzed O-glycan alterations occurring in the gastric cancer tissues. Paired tumor and adjacent normal tissue samples were obtained from six patients undergoing gastric cancer surgery. Collected samples (n = 24) were either snap-frozen or heat stabilized and then homogenized. Glycans were released from extracted glycoproteins and analyzed by LC-MS/MS. In total, the relative abundance of 83 O-glycans and 17 derived structural features were used for comparison. There was no statistically significant difference found in variables between snap frozen and heat-stabilized samples, which indicated the two preservation methods were comparable. The data also showed significant changes between normal and cancerous tissue. In addition to a shift from high sialylation in the cancer area towards blood group ABO in the normal area, we also detected that the LacdiNAc epitope (N,N'-diacetyllactosamine) was significantly decreased in cancer samples. The O-glycan alterations that are presented here may provide predictive power for the detection and prognosis of gastric cancer.
Collapse
Affiliation(s)
- Barbara Adamczyk
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Chunsheng Jin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karol Polom
- Department General Surgery and Surgical Oncology, University of Siena, Siena, Italy
- Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Pedro Muñoz
- Department of Biochemistry and Molecular Biology III, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Miguel A Rojas-Macias
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Mats Borén
- Denator AB, Uppsala Science Park, Uppsala, Sweden
| | - Franco Roviello
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Niclas G Karlsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
38
|
Sasaki K, Tsuchiya T, Osaki T. Isolation of Endogenous Peptides from Cultured Cell Conditioned Media for Mass Spectrometry. Methods Mol Biol 2018; 1719:51-58. [PMID: 29476503 DOI: 10.1007/978-1-4939-7537-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Media conditioned by cultured cells represent an excellent source rich in endogenous peptides. Unbiased mass spectrometric analysis of the constituent peptides provides an opportunity to look into proteolytic events such as bioactive peptide processing, membrane protein ectodomain shedding, or even regulated intramembrane proteolysis. If conducted on a large scale, peptidomics has the potential to pinpoint primary cleavage sites. Here a method is described for isolating peptides from cultured cell conditioned media before mass spectrometry analysis.
Collapse
Affiliation(s)
- Kazuki Sasaki
- National Cerebral and Cardiovascular Center, Osaka, Japan.
| | | | - Tsukasa Osaki
- National Cerebral and Cardiovascular Center, Osaka, Japan
| |
Collapse
|
39
|
Liljedahl L, Norlin J, McGuire JN, James P. Effects of insulin and the glucagon-like peptide 1 receptor agonist liraglutide on the kidney proteome in db/db mice. Physiol Rep 2017; 5:5/6/e13187. [PMID: 28330952 PMCID: PMC5371560 DOI: 10.14814/phy2.13187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 02/09/2017] [Indexed: 01/04/2023] Open
Abstract
Diabetes mellitus (DM) is a worldwide disease that affects 9% of the adult world population and type 2 DM accounts for 90% of those. A common consequence of DM is kidney complications, which could lead to kidney failure. We studied the potential effects of treatment with insulin and the glucagon-like peptide 1 receptor (GLP-1R) agonist liraglutide on the diabetic kidney proteome through the use of the db/db mouse model system and mass spectrometry (MS). Multivariate analyses revealed distinct effects of insulin and liraglutide on the db/db kidney proteome, which was seen on the protein levels of, for example, pterin-4 α-carbinolamine dehydratase/dimerization cofactor of hepatocyte nuclear factor-1α (PCBD1), neural precursor cell expressed developmentally down-regulated-8 (NEDD8), transcription elongation factor-B polypeptide-1 (ELOC) and hepcidin (HEPC). Furthermore, the separation of the insulin, liraglutide and vehicle db/db mouse groups in multivariate analyses was not mainly related to the albumin excretion rate (AER) or the level of glycated hemoglobin A1c (HbA1c%) in the mice. In summary, we show that insulin and liraglutide give rise to separate protein profiles in the db/db mouse kidney.
Collapse
Affiliation(s)
- Leena Liljedahl
- Department of Immunotechnology, Lund University, Lund, Sweden
| | | | | | - Peter James
- Department of Immunotechnology, Lund University, Lund, Sweden
| |
Collapse
|
40
|
Sjöholm LK, Ransome Y, Ekström TJ, Karlsson O. Evaluation of Post-Mortem Effects on Global Brain DNA Methylation and Hydroxymethylation. Basic Clin Pharmacol Toxicol 2017; 122:208-213. [PMID: 28834189 DOI: 10.1111/bcpt.12875] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/07/2017] [Indexed: 12/17/2022]
Abstract
The number of epigenetic studies on brain functions and diseases are dramatically increasing, but little is known about the impact of post-mortem intervals and post-sampling effects on DNA modifications such as 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). Here, we examined post-mortem-induced changes in global brain 5mC and 5hmC levels at post-mortem intervals up to 540 min., and studied effects of tissue heat stabilization, using LUMA and ELISA. The global 5mC and 5hmC levels were generally higher in the cerebellum of adult rats than neonates. When measured by ELISA, the global 5mC content in adults, but not neonates, decreased with the post-mortem interval reaching a significantly lower level in cerebellum tissue at the post-mortem interval 540 min. (2.9 ± 0.7%; mean ± S.E.M.) compared to control (3.7 ± 0.6%). The global 5hmC levels increased with post-mortem interval reaching a significantly higher level at 540 min. (0.29 ± 0.06%) compared to control (0.19 ± 0.03%). This suggests that the post-mortem interval may confound 5mC and 5hmC analysis in human brain tissues as the post-mortem handling could vary substantially. The reactive oxygen species (ROS) level in cerebellum also increased over time, in particular in adults, and may be part of the mechanism that causes the observed post-mortem changes in 5mC and 5hmC. The global 5mC and 5hmC states were unaffected by heat stabilization, allowing analysis of tissues that are stabilized to preserve more labile analytes. Further studies in human samples are needed to confirm post-mortem effects on DNA methylation/hydroxymethylation and elucidate details of the underlying mechanisms.
Collapse
Affiliation(s)
- Louise K Sjöholm
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Yusuf Ransome
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tomas J Ekström
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Oskar Karlsson
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden.,Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
41
|
Abstract
The ability to adequately measure the phosphorylation state of a protein has major biological as well as clinical relevance. Due to its variable nature, reversible protein phosphorylations are sensitive to changes in the tissue environment. StabilizorTM T1 is a system for rapid inactivation of enzymatic activity in biological samples. Enzyme inactivation is accomplished using thermal denaturation in a rapid, homogeneous, and reproducible fashion without the need of added chemical inhibitors. Using pCREB(Ser133) as a model system, the applicability of the Stabilizor system to preserve a rapidly lost phosphorylation is shown.
Collapse
|
42
|
Rocha B, Ruiz-Romero C, Blanco FJ. Mass spectrometry imaging: a novel technology in rheumatology. Nat Rev Rheumatol 2016; 13:52-63. [DOI: 10.1038/nrrheum.2016.184] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
43
|
Liljedahl L, Pedersen MH, Norlin J, McGuire JN, James P. N-glycosylation proteome enrichment analysis in kidney reveals differences between diabetic mouse models. Clin Proteomics 2016; 13:22. [PMID: 27757071 PMCID: PMC5065702 DOI: 10.1186/s12014-016-9123-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 08/23/2016] [Indexed: 11/26/2022] Open
Abstract
Background Diabetic nephropathy (DN) is a late complication in both type 1 diabetes mellitus (T1DM) and T2DM. Already at an early stage of DN morphological changes occur at the cell surface and in the extracellular matrix where the majority of the proteins carry N-linked glycosylations. These glycosylated proteins are highly important in cell adhesion and cell–matrix processes but not much is known about how they change in DN or whether the distinct etiology of T1DM and T2DM could have an effect on their abundances. Method We enriched for the N-glycosylated kidney proteome in db/db mice dosed with insulin or vehicle, in streptozotocin-induced (STZ) diabetic mice and healthy control mice dosed with vehicle. Glycopeptides were analyzed with label-free shotgun mass spectrometry and differential protein abundances identified in both mouse models were compared using multivariate analyses. Results The majority of the N-glycosylated proteins were similarly regulated in both mouse models. However, distinct differences between the two mouse models were for example seen for integrin-β1, a protein expressed mainly in the glomeruli which abundance was increased in the STZ diabetic mice while decreased in the db/db mice and for the sodium/glucose cotransporter-1, mainly expressed in the proximal tubules which abundance was increased in the db/db mice but decreased in the STZ diabetic mice. Insulin had an effect on the level of both glomerular and tubular proteins in the db/db mice. It decreased the abundance of G-protein coupled receptor-116 and of tyrosine-protein phosphatase non-receptor type substrate-1 away from the level in the healthy control mice. Conclusions Our finding of differences in the N-glycosylation protein profiles in the db/db and STZ mouse models suggest that the etiology of DN could give rise to variations in the cell adhesion and cell–matrix composition in T1DM and T2DM. Thus, N-glycosylated protein differences could be a clue to dissimilarities in T1DM and T2DM at later stages of DN. Furthermore, we observed insulin specific regulation of N-glycosylated proteins both in the direction of and away from the abundances in healthy control mice. Electronic supplementary material The online version of this article (doi:10.1186/s12014-016-9123-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leena Liljedahl
- Department of Immunotechnology, Lund University, House 406, Medicon Village, 221 83 Lund, Sweden
| | | | - Jenny Norlin
- Novo Nordisk A/S, Novo Nordisk Park, 2760 Måløv, Denmark
| | | | - Peter James
- Department of Immunotechnology, Lund University, House 406, Medicon Village, 221 83 Lund, Sweden
| |
Collapse
|
44
|
Rocha B, Cillero-Pastor B, Blanco FJ, Ruiz-Romero C. MALDI mass spectrometry imaging in rheumatic diseases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1865:784-794. [PMID: 27742553 DOI: 10.1016/j.bbapap.2016.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 09/29/2016] [Accepted: 10/04/2016] [Indexed: 01/15/2023]
Abstract
Mass spectrometry imaging (MSI) is a technique used to visualize the spatial distribution of biomolecules such as peptides, proteins, lipids or other organic compounds by their molecular masses. Among the different MSI strategies, MALDI-MSI provides a sensitive and label-free approach for imaging of a wide variety of protein or peptide biomarkers from the surface of tissue sections, being currently used in an increasing number of biomedical applications such as biomarker discovery and tissue classification. In the field of rheumatology, MALDI-MSI has been applied to date for the analysis of joint tissues such as synovial membrane or cartilage. This review summarizes the studies and key achievements obtained using MALDI-MSI to increase understanding on rheumatic pathologies and to describe potential diagnostic or prognostic biomarkers of these diseases. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.
Collapse
Affiliation(s)
- Beatriz Rocha
- Proteomics Unit-ProteoRed/ISCIII, Rheumatology Group, INIBIC - Hospital Universitario de A Coruña, SERGAS, A Coruña, Spain
| | | | - Francisco J Blanco
- Proteomics Unit-ProteoRed/ISCIII, Rheumatology Group, INIBIC - Hospital Universitario de A Coruña, SERGAS, A Coruña, Spain; RIER-RED de Inflamación y Enfermedades Reumáticas, INIBIC-CHUAC, A Coruña, Spain.
| | - Cristina Ruiz-Romero
- Proteomics Unit-ProteoRed/ISCIII, Rheumatology Group, INIBIC - Hospital Universitario de A Coruña, SERGAS, A Coruña, Spain; CIBER-BBN Instituto de Salud Carlos III, INIBIC-CHUAC, A Coruña, Spain.
| |
Collapse
|
45
|
Mulder IA, Esteve C, Wermer MJ, Hoehn M, Tolner EA, van den Maagdenberg AM, McDonnell LA. Funnel-freezing versus heat-stabilization for the visualization of metabolites by mass spectrometry imaging in a mouse stroke model. Proteomics 2016; 16:1652-9. [DOI: 10.1002/pmic.201500402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/17/2016] [Accepted: 03/03/2016] [Indexed: 01/12/2023]
Affiliation(s)
- Inge A. Mulder
- Department of Neurology; Leiden University Medical Center; Leiden The Netherlands
| | - Clara Esteve
- Center for Proteomics and Metabolomics; Leiden University Medical Center; Leiden The Netherlands
| | - Marieke J.H. Wermer
- Department of Neurology; Leiden University Medical Center; Leiden The Netherlands
| | - Mathias Hoehn
- Department of Radiology; Leiden University Medical Center; Leiden The Netherlands
- Percuros BV; Enschede The Netherlands
- In-vivo-NMR Laboratory; Max Planck Institute for Neurological Research; Cologne Germany
| | - Else A. Tolner
- Department of Neurology; Leiden University Medical Center; Leiden The Netherlands
- Department of Human Genetics; Leiden University Medical Center; Leiden The Netherlands
| | - Arn M.J.M. van den Maagdenberg
- Department of Neurology; Leiden University Medical Center; Leiden The Netherlands
- Department of Human Genetics; Leiden University Medical Center; Leiden The Netherlands
| | - Liam A. McDonnell
- Center for Proteomics and Metabolomics; Leiden University Medical Center; Leiden The Netherlands
- Fondazione Pisana per la Scienza ONLUS; Pisa Italy
| |
Collapse
|
46
|
Secher A, Kelstrup CD, Conde-Frieboes KW, Pyke C, Raun K, Wulff BS, Olsen JV. Analytic framework for peptidomics applied to large-scale neuropeptide identification. Nat Commun 2016; 7:11436. [PMID: 27142507 PMCID: PMC4857386 DOI: 10.1038/ncomms11436] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 03/24/2016] [Indexed: 01/03/2023] Open
Abstract
Large-scale mass spectrometry-based peptidomics for drug discovery is relatively unexplored because of challenges in peptide degradation and identification following tissue extraction. Here we present a streamlined analytical pipeline for large-scale peptidomics. We developed an optimized sample preparation protocol to achieve fast, reproducible and effective extraction of endogenous peptides from sub-dissected organs such as the brain, while diminishing unspecific protease activity. Each peptidome sample was analysed by high-resolution tandem mass spectrometry and the resulting data set was integrated with publically available databases. We developed and applied an algorithm that reduces the peptide complexity for identification of biologically relevant peptides. The developed pipeline was applied to rat hypothalamus and identifies thousands of neuropeptides and their post-translational modifications, which is combined in a resource format for visualization, qualitative and quantitative analyses. Neuropeptide research is challenged by technical difficulties in identifying new bioactive peptides. Here the authors present an analytical pipeline for large-scale peptidomics applied to the rat hypothalamus, identifying thousands of endogenous neuropeptides and their post-translational modifications.
Collapse
Affiliation(s)
- Anna Secher
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark.,Histology and Imaging, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Christian D Kelstrup
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| | | | - Charles Pyke
- Histology and Imaging, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Kirsten Raun
- Incretin &Obesity Pharmacology, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Birgitte S Wulff
- Incretin &Obesity Research, Novo Nordisk A/S, Novo Nordisk Park, DK-2760 Maaloev, Denmark
| | - Jesper V Olsen
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Blegdamsvej 3b, DK-2200 Copenhagen, Denmark
| |
Collapse
|
47
|
Segerström L, Gustavsson J, Nylander I. Minimizing Postsampling Degradation of Peptides by a Thermal Benchtop Tissue Stabilization Method. Biopreserv Biobank 2016; 14:172-9. [PMID: 27007059 PMCID: PMC4834486 DOI: 10.1089/bio.2015.0088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Enzymatic degradation is a major concern in peptide analysis. Postmortem metabolism in biological samples entails considerable risk for measurements misrepresentative of true in vivo concentrations. It is therefore vital to find reliable, reproducible, and easy-to-use procedures to inhibit enzymatic activity in fresh tissues before subjecting them to qualitative and quantitative analyses. The aim of this study was to test a benchtop thermal stabilization method to optimize measurement of endogenous opioids in brain tissue. Endogenous opioid peptides are generated from precursor proteins through multiple enzymatic steps that include conversion of one bioactive peptide to another, often with a different function. Ex vivo metabolism may, therefore, lead to erroneous functional interpretations. The efficacy of heat stabilization was systematically evaluated in a number of postmortem handling procedures. Dynorphin B (DYNB), Leu-enkephalin-Arg6 (LARG), and Met-enkephalin-Arg6-Phe7 (MEAP) were measured by radioimmunoassay in rat hypothalamus, striatum (STR), and cingulate cortex (CCX). Also, simplified extraction protocols for stabilized tissue were tested. Stabilization affected all peptide levels to varying degrees compared to those prepared by standard dissection and tissue handling procedures. Stabilization increased DYNB in hypothalamus, but not STR or CCX, whereas LARG generally decreased. MEAP increased in hypothalamus after all stabilization procedures, whereas for STR and CCX, the effect was dependent on the time point for stabilization. The efficacy of stabilization allowed samples to be left for 2 hours in room temperature (20°C) without changes in peptide levels. This study shows that conductive heat transfer is an easy-to-use and efficient procedure for the preservation of the molecular composition in biological samples. Region- and peptide-specific critical steps were identified and stabilization enabled the optimization of tissue handling and opioid peptide analysis. The result is improved diagnostic and research value of the samples with great benefits for basic research and clinical work.
Collapse
Affiliation(s)
- Lova Segerström
- Department of Pharmaceutical Biosciences, Neuropharmacology, Addiction & Behavior, Uppsala University , Uppsala, Sweden
| | - Jenny Gustavsson
- Department of Pharmaceutical Biosciences, Neuropharmacology, Addiction & Behavior, Uppsala University , Uppsala, Sweden
| | - Ingrid Nylander
- Department of Pharmaceutical Biosciences, Neuropharmacology, Addiction & Behavior, Uppsala University , Uppsala, Sweden
| |
Collapse
|
48
|
Kwiatkowski M, Wurlitzer M, Krutilin A, Kiani P, Nimer R, Omidi M, Mannaa A, Bussmann T, Bartkowiak K, Kruber S, Uschold S, Steffen P, Lübberstedt J, Küpker N, Petersen H, Knecht R, Hansen NO, Zarrine-Afsar A, Robertson WD, Miller RJD, Schlüter H. Homogenization of tissues via picosecond-infrared laser (PIRL) ablation: Giving a closer view on the in-vivo composition of protein species as compared to mechanical homogenization. J Proteomics 2016; 134:193-202. [PMID: 26778141 PMCID: PMC4767054 DOI: 10.1016/j.jprot.2015.12.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 12/22/2015] [Accepted: 12/31/2015] [Indexed: 12/30/2022]
Abstract
Posttranslational modifications and proteolytic processing regulate almost all physiological processes. Dysregulation can potentially result in pathologic protein species causing diseases. Thus, tissue species proteomes of diseased individuals provide diagnostic information. Since the composition of tissue proteomes can rapidly change during tissue homogenization by the action of enzymes released from their compartments, disease specific protein species patterns can vanish. Recently, we described a novel, ultrafast and soft method for cold vaporization of tissue via desorption by impulsive vibrational excitation (DIVE) using a picosecond-infrared-laser (PIRL). Given that DIVE extraction may provide improved access to the original composition of protein species in tissues, we compared the proteome composition of tissue protein homogenates after DIVE homogenization with conventional homogenizations. A higher number of intact protein species was observed in DIVE homogenates. Due to the ultrafast transfer of proteins from tissues via gas phase into frozen condensates of the aerosols, intact protein species were exposed to a lesser extent to enzymatic degradation reactions compared with conventional protein extraction. In addition, total yield of the number of proteins is higher in DIVE homogenates, because they are very homogenous and contain almost no insoluble particles, allowing direct analysis with subsequent analytical methods without the necessity of centrifugation. Biological significance Enzymatic protein modifications during tissue homogenization are responsible for changes of the in-vivo protein species composition. Cold vaporization of tissues by PIRL-DIVE is comparable with taking a snapshot at the time of the laser irradiation of the dynamic changes that occur continuously under in-vivo conditions. At that time point all biomolecules are transferred into an aerosol, which is immediately frozen.
Collapse
Affiliation(s)
- M Kwiatkowski
- University Medical Centre Hamburg-Eppendorf, Institute for Clinical Chemistry, Department for Mass Spectrometric Proteomics, Martinistraße 52, 20246 Hamburg, Germany
| | - M Wurlitzer
- University Medical Centre Hamburg-Eppendorf, Institute for Clinical Chemistry, Department for Mass Spectrometric Proteomics, Martinistraße 52, 20246 Hamburg, Germany
| | - A Krutilin
- University Medical Centre Hamburg-Eppendorf, Institute for Clinical Chemistry, Department for Mass Spectrometric Proteomics, Martinistraße 52, 20246 Hamburg, Germany
| | - P Kiani
- University Medical Centre Hamburg-Eppendorf, Institute for Clinical Chemistry, Department for Mass Spectrometric Proteomics, Martinistraße 52, 20246 Hamburg, Germany
| | - R Nimer
- University Medical Centre Hamburg-Eppendorf, Institute for Clinical Chemistry, Department for Mass Spectrometric Proteomics, Martinistraße 52, 20246 Hamburg, Germany
| | - M Omidi
- University Medical Centre Hamburg-Eppendorf, Institute for Clinical Chemistry, Department for Mass Spectrometric Proteomics, Martinistraße 52, 20246 Hamburg, Germany
| | - A Mannaa
- University Medical Centre Hamburg-Eppendorf, Institute for Clinical Chemistry, Department for Mass Spectrometric Proteomics, Martinistraße 52, 20246 Hamburg, Germany
| | - T Bussmann
- Beiersdorf AG, Research & Development, Unnastrasse 48, 20245, Hamburg, Germany
| | - K Bartkowiak
- University Medical Centre Hamburg-Eppendorf, Department of Tumor Biology, Martinistraße 52, 20246 Hamburg, Germany
| | - S Kruber
- Max Planck Institute for the Structure and Dynamics of Matter, Atomically Resolved Dynamics Division, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - S Uschold
- Max Planck Institute for the Structure and Dynamics of Matter, Atomically Resolved Dynamics Division, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - P Steffen
- University Medical Centre Hamburg-Eppendorf, Institute for Clinical Chemistry, Department for Mass Spectrometric Proteomics, Martinistraße 52, 20246 Hamburg, Germany
| | - J Lübberstedt
- University Medical Centre Hamburg-Eppendorf, Institute for Clinical Chemistry, Department for Mass Spectrometric Proteomics, Martinistraße 52, 20246 Hamburg, Germany
| | - N Küpker
- University Medical Centre Hamburg-Eppendorf, Institute for Clinical Chemistry, Department for Mass Spectrometric Proteomics, Martinistraße 52, 20246 Hamburg, Germany
| | - H Petersen
- University Medical Centre Hamburg-Eppendorf, Department of Otorhinolaryngology, Head and Neck Surgery and Oncology, Martinistraße 52, 20246 Hamburg, Germany
| | - R Knecht
- University Medical Centre Hamburg-Eppendorf, Department of Otorhinolaryngology, Head and Neck Surgery and Oncology, Martinistraße 52, 20246 Hamburg, Germany
| | - N O Hansen
- Max Planck Institute for the Structure and Dynamics of Matter, Atomically Resolved Dynamics Division, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - A Zarrine-Afsar
- Techna Institute for the Advancement of Technology for Health, University Health Network, Toronto, ON M5G-1P5, Canada & Department of Medical Biophysics, University of Toronto, 101 College Street Suite 15-701, Toronto, ON M5G 1L7, Canada
| | - W D Robertson
- Max Planck Institute for the Structure and Dynamics of Matter, Atomically Resolved Dynamics Division, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - R J D Miller
- Max Planck Institute for the Structure and Dynamics of Matter, Atomically Resolved Dynamics Division, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - H Schlüter
- University Medical Centre Hamburg-Eppendorf, Institute for Clinical Chemistry, Department for Mass Spectrometric Proteomics, Martinistraße 52, 20246 Hamburg, Germany.
| |
Collapse
|
49
|
Abstract
A vital process in drug discovery and development is to assess the absorption, distribution, metabolism, excretion and toxicology of potentially therapeutic compounds in the body. The potential utility of MS imaging has been demonstrated in many studies focusing on molecules including peptides, proteins and lipids. However, MS imaging also permits the direct analysis of drugs and drug metabolites in tissue samples without requiring the use of target-specific labels or reagents. Here, a brief technical description of the technique is presented along with examples of its usefulness at different stages of the drug discovery and development process including absorption, distribution, metabolism, excretion and toxicology, and blood–brain barrier drug penetration investigations.
Collapse
|
50
|
Rinschen MM, Benzing T, Limbutara K, Pisitkun T. Proteomic analysis of the kidney filtration barrier--Problems and perspectives. Proteomics Clin Appl 2015; 9:1053-68. [PMID: 25907645 DOI: 10.1002/prca.201400201] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/21/2015] [Accepted: 04/20/2015] [Indexed: 12/12/2022]
Abstract
Diseases of the glomerular filter of the kidney are a leading cause of end-stage renal failure. The kidney filter is localized within the renal glomeruli, small microvascular units that are responsible for ultrafiltration of about 180 liters of primary urine every day. The renal filter consists of three layers, fenestrated endothelial cells, glomerular basement membrane, and the podocytes, terminally differentiated, arborized epithelial cells. This review demonstrates the use of proteomics to generate insights into the regulation of the renal filtration barrier at a molecular level. The advantages and disadvantages of different glomerular purification methods are examined, and the technical limitations that have been significantly improved by in silico or biochemical approaches are presented. We also comment on phosphoproteomic studies that have generated considerable molecular-level understanding of the physiological regulation of the kidney filter. Lastly, we conclude with an analysis of urinary exosomes as a potential filter-derived resource for the noninvasive discovery of glomerular disease mechanisms.
Collapse
Affiliation(s)
- Markus M Rinschen
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Thomas Benzing
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Systems Biology of Ageing Cologne (Sybacol), University of Cologne, Cologne, Germany
| | - Kavee Limbutara
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Trairak Pisitkun
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|