1
|
Muñoz-Fernández G, Montero-Bullón JF, Martínez JL, Buey RM, Jiménez A. Ashbya gossypii as a versatile platform to produce sabinene from agro-industrial wastes. Fungal Biol Biotechnol 2024; 11:16. [PMID: 39472989 PMCID: PMC11520522 DOI: 10.1186/s40694-024-00186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/21/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Ashbya gossypii is a filamentous fungus widely utilized for industrial riboflavin production and has a great potential as a microbial chassis for synthesizing other valuable metabolites such as folates, biolipids, and limonene. Engineered strains of A. gossypii can effectively use various waste streams, including xylose-rich feedstocks. Notably, A. gossypii has been identified as a proficient biocatalyst for producing limonene from xylose-rich sources. This study aims to investigate the capability of engineered A. gossypii strains to produce various plant monoterpenes using agro-industrial waste as carbon sources. RESULTS We overexpressed heterologous terpene synthases to produce acyclic, monocyclic, and bicyclic monoterpenes in two genetic backgrounds of A. gossypii. These backgrounds included an NPP synthase orthogonal pathway and a mutant erg20F95W allele with reduced FPP synthase activity. Our findings demonstrate that A. gossypii can synthesize linalool, limonene, pinene, and sabinene, with terpene synthases showing differential substrate selectivity for NPP or GPP precursors. Additionally, co-overexpression of endogenous HMG1 and ERG12 with heterologous NPP synthase and terpene synthases significantly increased sabinene yields from xylose-containing media. Using mixed formulations of corn-cob lignocellulosic hydrolysates and either sugarcane or beet molasses, we achieved limonene and sabinene productions of 383 mg/L and 684.5 mg/L, respectively, the latter representing a significant improvement compared to other organisms in flask culture mode. CONCLUSIONS Engineered A. gossypii strains serve as a suitable platform for assessing plant terpene synthase functionality and substrate selectivity in vivo, which are crucial to understand monoterpene bioproduction. The NPP synthase pathway markedly enhances limonene and sabinene production in A. gossypii, achieving levels comparable to those of other industrial microbial producers. Furthermore, these engineered strains offer a novel approach for producing monoterpenes through the valorization of agro-industrial wastes.
Collapse
Affiliation(s)
- Gloria Muñoz-Fernández
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, 2800, Kgs. Lyngby, Denmark
| | - Javier-Fernando Montero-Bullón
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - José Luis Martínez
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads Building 223, 2800, Kgs. Lyngby, Denmark
| | - Rubén M Buey
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|
2
|
Baker JJ, Shi J, Wang S, Mujica EM, Bianco S, Capponi S, Dueber JE. ML-enhanced peroxisome capacity enables compartmentalization of multienzyme pathway. Nat Chem Biol 2024:10.1038/s41589-024-01759-2. [PMID: 39402374 DOI: 10.1038/s41589-024-01759-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 09/20/2024] [Indexed: 11/10/2024]
Abstract
Repurposing an organelle for specialized metabolism provides an avenue for fermentable, unicellular organisms such as Saccharomyces cerevisiae to mimic compartmentalization of metabolic pathways within different plant tissues. Peroxisomes are attractive organelles for repurposing as they are not required for yeast viability when grown on glucose and can efficiently compartmentalize heterologous enzymes to enable physical separation of cytosolic native metabolism and peroxisomal engineered metabolism. However, when not required, peroxisomes are repressed, leading to low functional capacities for heterologous proteins. Here we engineer peroxisomes with enhanced functional capacities, with the goal of compartmentalizing up to eight metabolic enzymes to enhance titers. We implement a machine learning pipeline that allows the identification of factors to overexpress, culminating in a 137% increase in peroxisome functional capacity compared to a wild-type strain. Improved pathway compartmentalization enables an 80% increase in the biosynthesis titers of the monoterpene geraniol, up to 9.5 g L-1.
Collapse
Affiliation(s)
- Jordan J Baker
- Department of Bioengineering, University of California, Berkeley, CA, USA
- UC Berkeley and UCSF Joint Graduate Program in Bioengineering, University of California, Berkeley, CA, USA
- NSF Center for Cellular Construction, University of California, San Francisco, CA, USA
| | - Jie Shi
- NSF Center for Cellular Construction, University of California, San Francisco, CA, USA
- Department of Functional Genomics and Cellular Engineering, IBM Almaden Research Center, San Jose, CA, USA
| | - Shangying Wang
- NSF Center for Cellular Construction, University of California, San Francisco, CA, USA
- Department of Functional Genomics and Cellular Engineering, IBM Almaden Research Center, San Jose, CA, USA
- Bay Area Institute of Science, Altos Labs, Redwood City, CA, USA
| | - Elena M Mujica
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Simone Bianco
- NSF Center for Cellular Construction, University of California, San Francisco, CA, USA
- Department of Functional Genomics and Cellular Engineering, IBM Almaden Research Center, San Jose, CA, USA
- Bay Area Institute of Science, Altos Labs, Redwood City, CA, USA
| | - Sara Capponi
- NSF Center for Cellular Construction, University of California, San Francisco, CA, USA.
- Department of Functional Genomics and Cellular Engineering, IBM Almaden Research Center, San Jose, CA, USA.
| | - John E Dueber
- Department of Bioengineering, University of California, Berkeley, CA, USA.
- NSF Center for Cellular Construction, University of California, San Francisco, CA, USA.
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
3
|
Wang S, Zhan C, Chen R, Li W, Song H, Zhao G, Wen M, Liang D, Qiao J. Achievements and perspectives of synthetic biology in botanical insecticides. J Cell Physiol 2024; 239:e30888. [PMID: 36183373 DOI: 10.1002/jcp.30888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/07/2022] [Accepted: 09/19/2022] [Indexed: 11/10/2022]
Abstract
Botanical insecticides are the origin of all insecticidal compounds. They have been widely used to control pests in crops for a long time. Currently, the commercial production of botanical insecticides extracted from plants is limited because of insufficient raw material supply. Synthetic biology is a promising and effective approach for addressing the current problems of the production of botanical insecticides. It is an emerging biological research hotspot in the field of botanical insecticides. However, the biosynthetic pathways of many botanical insecticides are not completely elucidated. On the other hand, the cytotoxicity of botanical pesticides and low efficiency of these biosynthetic enzymes in new hosts make it still challenging for their heterologous production. In the present review, we summarized the recent developments in the heterologous production of botanical insecticides, analyzed the current challenges, and discussed the feasible production strategies, focusing on elucidating biosynthetic pathways, enzyme engineering, host engineering, and cytotoxicity engineering. Looking to the future, synthetic biology promises to further advance heterologous production of more botanical pesticides.
Collapse
Affiliation(s)
- Shengli Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Chuanling Zhan
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Ruiqi Chen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Weiguo Li
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Hongjian Song
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Guangrong Zhao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Mingzhang Wen
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Dongmei Liang
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
- Zhejiang Shaoxing Research Institute of Tianjin University, Shaoxing, China
| |
Collapse
|
4
|
Wang X, Zhang X, Zhang J, Zhou Y, Wang F, Wang Z, Li X. Advances in microbial production of geraniol: from metabolic engineering to potential industrial applications. Crit Rev Biotechnol 2024:1-16. [PMID: 39266251 DOI: 10.1080/07388551.2024.2391881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 09/14/2024]
Abstract
Geraniol, an acyclic monoterpene alcohol, has significant potential applications in various fields, including: food, cosmetics, biofuels, and pharmaceuticals. However, the current sources of geraniol mainly include plant tissue extraction or chemical synthesis, which are unsustainable and suffer severely from high energy consumption and severe environmental problems. The process of microbial production of geraniol has recently undergone vigorous development. Particularly, the sustainable construction of recombinant Escherichia coli (13.2 g/L) and Saccharomyces cerevisiae (5.5 g/L) laid a solid foundation for the microbial production of geraniol. In this review, recent advances in the development of geraniol-producing strains, including: metabolic pathway construction, key enzyme improvement, genetic modification strategies, and cytotoxicity alleviation, are critically summarized. Furthermore, the key challenges in scaling up geraniol production and future perspectives for the development of robust geraniol-producing strains are suggested. This review provides theoretical guidance for the industrial production of geraniol using microbial cell factories.
Collapse
Affiliation(s)
- Xun Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Xinyi Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jia Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yujunjie Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
5
|
Shu Y, Dong T, Zhou X, Wang H, Liu H, Yao M, Wang Y, Xiao W. Systematic Engineering to Enhance β-Myrcene Production in Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19395-19402. [PMID: 39176472 DOI: 10.1021/acs.jafc.4c05046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
β-Myrcene is an important monoterpene compound widely used in the fragrance, agricultural, and food industries. The microbial production of β-myrcene conforms to the trend of green biological manufacturing, which has great potential for development. The poor catalytic activity of β-myrcene synthase (MS) and the insufficient supply of precursors are considered to be the bottlenecks of β-myrcene production. Here, source screening, subcellular localization, enzyme fusion, and precursor-enhancing strategies were integrated for β-myrcene biosynthesis with Saccharomyces cerevisiae. The β-myrcene titer gradually increased by 218-fold (up to 63.59 mg/L) compared to that of the initial titer of the shake flask. Moreover, the titer reached 66.82 mg/L after the addition of antioxidants (1 mM glutathione, GSH, and 1% butylated hydroxytoluene, BHT). Ultimately, 142.64 mg/L β-myrcene in S. cerevisiae was achieved in 5.0 L of fed-batch fermentation under a carbon restriction strategy, which was the highest reported titer in yeast thus far. This study not only established a platform for β-myrcene production but also provided a reference for the efficient biosynthesis of other monoterpene compounds.
Collapse
Affiliation(s)
- Yujie Shu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Tianyu Dong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Xiao Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Herong Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Haoyu Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Mingdong Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Ying Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China
| |
Collapse
|
6
|
Chen Q, Lyu L, Xue H, Shah AM, Zhao ZK. Engineering a non-model yeast Rhodotorula mucilaginosa for terpenoids synthesis. Synth Syst Biotechnol 2024; 9:569-576. [PMID: 38690180 PMCID: PMC11058065 DOI: 10.1016/j.synbio.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Terpenoids have tremendous biological activities and are widely employed in food, healthcare and pharmaceutical industries. Using synthetic biology to product terpenoids from microbial cell factories presents a promising alternative route compared to conventional methods such as chemical synthesis or phytoextraction. The red yeast Rhodotorula mucilaginosa has been widely studied due to its natural production capacity of carotenoid and lipids, indicating a strong endogenous isoprene pathway with readily available metabolic intermediates. This study constructed several engineered strains of R. mucilaginosa with the aim of producing different terpenoids. Monoterpene α-terpineol was produced by expressing the α-terpineol synthase from Vitis vinifera. The titer of α-terpineol was further enhanced to 0.39 mg/L by overexpressing the endogenous rate-limiting gene of the MVA pathway. Overexpression of α-farnesene synthase from Malus domestica, in combination with MVA pathway rate-limiting gene resulted in significant increase in α-farnesene production, reaching a titer of 822 mg/L. The carotenoid degradation product β-ionone was produced at a titer of 0.87 mg/L by expressing the β-ionone synthase from Petunia hybrida. This study demonstrates the potential of R. mucilaginosa as a platform host for the direct biosynthesis of various terpenoids and provides insights for further development of such platforms.
Collapse
Affiliation(s)
- Qiongqiong Chen
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Liting Lyu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Haizhao Xue
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Aabid Manzoor Shah
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
| | - Zongbao Kent Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
7
|
Yang H, Guo J, Zhang L, Shen W, Xia Y, Chen X. Systematic metabolic engineering for improved synthesis of perillic acid in Candida tropicalis. Appl Microbiol Biotechnol 2024; 108:447. [PMID: 39190181 DOI: 10.1007/s00253-024-13279-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 08/28/2024]
Abstract
Perillic acid has been studied as an anticancer and antimicrobial drug. Production of perillic acid has attracted considerable attention. Meanwhile, Candida tropicalis is an unconventional diploid yeast, most significantly characterized by its ability to metabolize alkanes or fatty acids for growth and proliferation. Therefore, perillic acid's precursor (L-limonene) in C. tropicalis was firstly synthesized by expressing a Mentha spicata L-limonene synthase gene, LS_Ms in this work. Expression of a gene which encoded for a truncated version of tLS_Ms increased the production of L-limonene with a 2.78-fold increase in the titer over C. tropicalis GJR-LS-01. Compartmentalized expression of the gene tLS_Ms inhibited the production of L-limonene in C. tropicalis compared to cytoplasmic expression. Cytoplasmic overexpression of seven precursor synthesis genes significantly enhanced the production of L-limonene in C. tropicalis compared to their compartmentalized expression (mitochondria or peroxisomes), which increased by 31.7-fold in C. tropicalis GJR-tLS-01. The L-limonene titer in C. tropicalis GJR-EW-tLS-04 overexpressing the mutant gene ERG20WW in the cytoplasm was significantly increased, 11.33-fold higher than the control. The titer of L-limonene for 60 g/L glucose was increased by 1.40-fold compared to the control. Finally, a Salvia miltiorrhiza cytochrome P450 enzyme gene CYP7176 and an Arabidopsis thaliana NADPH cytochrome P450 reductase gene CPR were heterologously expressed in C. tropicalis GJR-EW-tLS-04C for the synthesis of perillic acid, which reached a titer of 106.69 mg/L in a 5-L fermenter. This is the first report of de novo synthesis of perillic acid in engineered microorganisms. The results also showed that other chemicals may be efficiently produced in C. tropicalis. KEY POINTS: • Key genes cytoplasmic expression was conducive to L-limonene production in C. tropicalis. • Perillic acid was first synthesized de novo in engineered microorganisms. • The titer of perillic acid reached 106.69 mg/L in a 5-L fermenter.
Collapse
Affiliation(s)
- Haiquan Yang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jinrong Guo
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Lihua Zhang
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Wei Shen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yuanyuan Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xianzhong Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
8
|
Park YK, Sellés Vidal L, Bell D, Zabret J, Soldat M, Kavšček M, Ledesma-Amaro R. Efficient synthesis of limonene production in Yarrowia lipolytica by combinatorial engineering strategies. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:94. [PMID: 38961416 PMCID: PMC11223395 DOI: 10.1186/s13068-024-02535-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Limonene has a variety of applications in the foods, cosmetics, pharmaceuticals, biomaterials, and biofuels industries. In order to meet the growing demand for sustainable production of limonene at industry scale, it is essential to find an alternative production system to traditional plant extraction. A promising and eco-friendly alternative is the use of microbes as cell factories for the synthesis of limonene. RESULTS In this study, the oleaginous yeast Yarrowia lipolytica has been engineered to produce D- and L-limonene. Four target genes, l- or d-LS (limonene synthase), HMG (HMG-CoA reductase), ERG20 (geranyl diphosphate synthase), and NDPS1 (neryl diphosphate) were expressed individually or fused together to find the optimal combination for higher limonene production. The strain expressing HMGR and the fusion protein ERG20-LS was the best limonene producer and, therefore, selected for further improvement. By increasing the expression of target genes and optimizing initial OD, 29.4 mg/L of L-limonene and 24.8 mg/L of D-limonene were obtained. We also studied whether peroxisomal compartmentalization of the synthesis pathway was beneficial for limonene production. The introduction of D-LS and ERG20 within the peroxisome improved limonene titers over cytosolic expression. Then, the entire MVA pathway was targeted to the peroxisome to improve precursor supply, which increased D-limonene production to 47.8 mg/L. Finally, through the optimization of fermentation conditions, D-limonene production titer reached 69.3 mg/L. CONCLUSIONS In this work, Y. lipolytica was successfully engineered to produce limonene. Our results showed that higher production of limonene was achieved when the synthesis pathway was targeted to the peroxisome, which indicates that this organelle can favor the bioproduction of terpenes in yeasts. This study opens new avenues for the efficient synthesis of valuable monoterpenes in Y. lipolytica.
Collapse
Affiliation(s)
- Young-Kyoung Park
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - Lara Sellés Vidal
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK
| | - David Bell
- SynbiCITE Innovation and Knowledge Centre, Imperial College London, London, SW7 2AZ, UK
| | - Jure Zabret
- Acies Bio d.o.o., 1000, Tehnološki Park 21Ljubljana, Slovenia
| | - Mladen Soldat
- Acies Bio d.o.o., 1000, Tehnološki Park 21Ljubljana, Slovenia
| | - Martin Kavšček
- Acies Bio d.o.o., 1000, Tehnološki Park 21Ljubljana, Slovenia
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Centre for Synthetic Biology, Imperial College London, London, SW72AZ, UK.
| |
Collapse
|
9
|
Ye C, Hong H, Gao J, Li M, Gou Y, Gao D, Dong C, Huang L, Xu Z, Lian J. Characterization and engineering of peroxisome targeting sequences for compartmentalization engineering in Pichia pastoris. Biotechnol Bioeng 2024; 121:2091-2105. [PMID: 38568751 DOI: 10.1002/bit.28706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/03/2024] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Peroxisomal compartmentalization has emerged as a highly promising strategy for reconstituting intricate metabolic pathways. In recent years, significant progress has been made in the peroxisomes through harnessing precursor pools, circumventing metabolic crosstalk, and minimizing the cytotoxicity of exogenous pathways. However, it is important to note that in methylotrophic yeasts (e.g. Pichia pastoris), the abundance and protein composition of peroxisomes are highly variable, particularly when peroxisome proliferation is induced by specific carbon sources. The intricate subcellular localization of native proteins, the variability of peroxisomal metabolic pathways, and the lack of systematic characterization of peroxisome targeting signals have limited the applications of peroxisomal compartmentalization in P. pastoris. Accordingly, this study established a high-throughput screening method based on β-carotene biosynthetic pathway to evaluate the targeting efficiency of PTS1s (Peroxisome Targeting Signal Type 1) in P. pastoris. First, 25 putative endogenous PTS1s were characterized and 3 PTS1s with high targeting efficiency were identified. Then, directed evolution of PTS1s was performed by constructing two PTS1 mutant libraries, and a total of 51 PTS1s (29 classical and 22 noncanonical PTS1s) with presumably higher peroxisomal targeting efficiency were identified, part of which were further characterized via confocal microscope. Finally, the newly identified PTS1s were employed for peroxisomal compartmentalization of the geraniol biosynthetic pathway, resulting in more than 30% increase in the titer of monoterpene compared with when the pathway was localized to the cytosol. The present study expands the synthetic biology toolkit and lays a solid foundation for peroxisomal compartmentalization in P. pastoris.
Collapse
Affiliation(s)
- Cuifang Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Haosen Hong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Jucan Gao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Mengxin Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Yuanwei Gou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Di Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Chang Dong
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Ye C, Li M, Gao J, Zuo Y, Xiao F, Jiang X, Cheng J, Huang L, Xu Z, Lian J. Metabolic engineering of Pichia pastoris for overproduction of cis-trans nepetalactol. Metab Eng 2024; 84:83-94. [PMID: 38897449 DOI: 10.1016/j.ymben.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/13/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Monoterpene indole alkaloids (MIAs) are a group of plant-derived natural products with high-value medicinal properties. However, their availability for clinical application is limited due to challenges in plant extraction. Microbial production has emerged as a promising strategy to meet the clinical demands for MIAs. The biosynthetic pathway of cis-trans nepetalactol, which serves as the universal iridoid scaffold for all MIAs, has been successfully identified and reconstituted. However, bottlenecks and challenges remain to construct a high-yielding platform strain for cis-trans nepetalactol production, which is vital for subsequent MIAs biosynthesis. In the present study, we focused on engineering of Pichia pastoris cell factories to enhance the production of geraniol, 8-hydroxygeraniol, and cis-trans nepetalactol. By targeting the biosynthetic pathway from acetyl-CoA to geraniol in both peroxisomes and cytoplasm, we achieved comparable geraniol titers in both compartments. Through protein engineering, we found that either G8H or CPR truncation increased the production of 8-hydroxygeraniol, with a 47.8-fold and 14.0-fold increase in the peroxisomal and cytosolic pathway strain, respectively. Furthermore, through a combination of dynamical control of ERG20, precursor and cofactor supply engineering, diploid engineering, and dual subcellular compartmentalization engineering, we achieved the highest ever reported production of cis-trans nepetalactol, with a titer of 4429.4 mg/L using fed-batch fermentation in a 5-L bioreactor. We anticipate our systematic metabolic engineering strategies to facilitate the development of P. pastoris cell factories for sustainable production of MIAs and other plant natural products.
Collapse
Affiliation(s)
- Cuifang Ye
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Mengxin Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jucan Gao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Yimeng Zuo
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Feng Xiao
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Xiaojing Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jintao Cheng
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & National Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
11
|
Li DX, Guo Q, Yang YX, Jiang SJ, Ji XJ, Ye C, Wang YT, Shi TQ. Recent Advances and Multiple Strategies of Monoterpenoid Overproduction in Saccharomyces cerevisiae and Yarrowia lipolytica. ACS Synth Biol 2024; 13:1647-1662. [PMID: 38860708 DOI: 10.1021/acssynbio.4c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Monoterpenoids are an important subclass of terpenoids that play important roles in the energy, cosmetics, pharmaceuticals, and fragrances fields. With the development of biotechnology, microbial synthesis of monoterpenoids has received great attention. Yeasts such Saccharomyces cerevisiae and Yarrowia lipolytica are emerging as potential hosts for monoterpenoids production because of unique advantages including rapid growth cycles, mature gene editing tools, and clear genetic background. Recently, advancements in metabolic engineering and fermentation engineering have significantly enhanced the accumulation of monoterpenoids in cell factories. First, this review introduces the biosynthetic pathway of monoterpenoids and comprehensively summarizes the latest production strategies, which encompass enhancing precursor flux, modulating the expression of rate-limited enzymes, suppressing competitive pathway flux, mitigating cytotoxicity, optimizing substrate utilization, and refining the fermentation process. Subsequently, this review introduces four representative monoterpenoids. Finally, we outline the future prospects for efficient construction cell factories tailored for the production of monoterpenoids and other terpenoids.
Collapse
Affiliation(s)
- Dong-Xun Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Yu-Xin Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Shun-Jie Jiang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing 210023, People's Republic of China
| |
Collapse
|
12
|
Dickey RM, Gopal MR, Nain P, Kunjapur AM. Recent developments in enzymatic and microbial biosynthesis of flavor and fragrance molecules. J Biotechnol 2024; 389:43-60. [PMID: 38616038 DOI: 10.1016/j.jbiotec.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/16/2024]
Abstract
Flavors and fragrances are an important class of specialty chemicals for which interest in biomanufacturing has risen during recent years. These naturally occurring compounds are often amenable to biosynthesis using purified enzyme catalysts or metabolically engineered microbial cells in fermentation processes. In this review, we provide a brief overview of the categories of molecules that have received the greatest interest, both academically and industrially, by examining scholarly publications as well as patent literature. Overall, we seek to highlight innovations in the key reaction steps and microbial hosts used in flavor and fragrance manufacturing.
Collapse
Affiliation(s)
- Roman M Dickey
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Madan R Gopal
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Priyanka Nain
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA
| | - Aditya M Kunjapur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19711, USA.
| |
Collapse
|
13
|
Bassett S, Da Silva NA. Engineering a carbon source-responsive promoter for improved biosynthesis in the non-conventional yeast Kluyveromyces marxianus. Metab Eng Commun 2024; 18:e00238. [PMID: 38845682 PMCID: PMC11153928 DOI: 10.1016/j.mec.2024.e00238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
Many desired biobased chemicals exhibit a range of toxicity to microbial cell factories, making industry-level biomanufacturing more challenging. Separating microbial growth and production phases is known to be beneficial for improving production of toxic products. Here, we developed a novel synthetic carbon-responsive promoter for use in the rapidly growing, stress-tolerant yeast Kluyveromyces marxianus, by fusing carbon-source responsive elements of the native ICL1 promoter to the strong S. cerevisiae TDH3 or native NC1 promoter cores. Two hybrids, P IT350 and P IN450 , were validated via EGFP fluorescence and demonstrated exceptional strength, partial repression during growth, and late phase activation in glucose- and lactose-based medium, respectively. Expressing the Gerbera hybrida 2-pyrone synthase (2-PS) for synthesis of the polyketide triacetic acid lactone (TAL) under the control of P IN450 increased TAL more than 50% relative to the native NC1 promoter, and additional promoter engineering further increased TAL titer to 1.39 g/L in tube culture. Expression of the Penicillium griseofulvum 6-methylsalicylic acid synthase (6-MSAS) under the control of P IN450 resulted in a 6.6-fold increase in 6-MSA titer to 1.09 g/L and a simultaneous 1.5-fold increase in cell growth. Finally, we used P IN450 to express the Pseudomonas savastanoi IaaM and IaaH proteins and the Salvia pomifera sabinene synthase protein to improve production of the auxin hormone indole-3-acetic acid and the monoterpene sabinene, respectively, both extremely toxic to yeast. The development of carbon-responsive promoters adds to the synthetic biology toolbox and available metabolic engineering strategies for K. marxianus, allowing greater control over heterologous protein expression and improved production of toxic metabolites.
Collapse
Affiliation(s)
- Shane Bassett
- Department of Chemical & Biomolecular Engineering, University of California, Irvine, CA, 92697-2580, USA
| | - Nancy A. Da Silva
- Department of Chemical & Biomolecular Engineering, University of California, Irvine, CA, 92697-2580, USA
| |
Collapse
|
14
|
Han T, Miao G. Strategies, Achievements, and Potential Challenges of Plant and Microbial Chassis in the Biosynthesis of Plant Secondary Metabolites. Molecules 2024; 29:2106. [PMID: 38731602 PMCID: PMC11085123 DOI: 10.3390/molecules29092106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/27/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Diverse secondary metabolites in plants, with their rich biological activities, have long been important sources for human medicine, food additives, pesticides, etc. However, the large-scale cultivation of host plants consumes land resources and is susceptible to pest and disease problems. Additionally, the multi-step and demanding nature of chemical synthesis adds to production costs, limiting their widespread application. In vitro cultivation and the metabolic engineering of plants have significantly enhanced the synthesis of secondary metabolites with successful industrial production cases. As synthetic biology advances, more research is focusing on heterologous synthesis using microorganisms. This review provides a comprehensive comparison between these two chassis, evaluating their performance in the synthesis of various types of secondary metabolites from the perspectives of yield and strategies. It also discusses the challenges they face and offers insights into future efforts and directions.
Collapse
Affiliation(s)
- Taotao Han
- Department of Bioengineering, Huainan Normal University, Huainan 232038, China;
| | - Guopeng Miao
- Department of Bioengineering, Huainan Normal University, Huainan 232038, China;
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan 232038, China
| |
Collapse
|
15
|
Bernard A, Cha S, Shin H, Lee D, Hahn JS. Efficient production of (S)-limonene and geraniol in Saccharomyces cerevisiae through the utilization of an Erg20 mutant with enhanced GPP accumulation capability. Metab Eng 2024; 83:183-192. [PMID: 38631459 DOI: 10.1016/j.ymben.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Monoterpenes and monoterpenoids such as (S)-limonene and geraniol are valuable chemicals with a wide range of applications, including cosmetics, pharmaceuticals, and biofuels. Saccharomyces cerevisiae has proven to be an effective host to produce various terpenes and terpenoids. (S)-limonene and geraniol are produced from geranyl pyrophosphate (GPP) through the enzymatic actions of limonene synthase (LS) and geraniol synthase (GES), respectively. However, a major hurdle in their production arises from the dual functionality of the Erg20, a farnesyl pyrophosphate (FPP) synthase, responsible for generating GPP. Erg20 not only synthesizes GPP by condensing isopentenyl pyrophosphate (IPP) with dimethylallyl pyrophosphate but also catalyzes further condensation of IPP with GPP to produce FPP. In this study, we have tackled this issue by harnessing previously developed Erg20 mutants, Erg20K197G (Erg20G) and Erg20F96W, N127W (Erg20WW), which enhance GPP accumulation. Through a combination of these mutants, we generated a novel Erg20WWG mutant with over four times higher GPP accumulating capability than Erg20WW, as observed through geraniol production levels. The Erg20WWG mutant was fused to the LS from Mentha spicata or the GES from Catharanthus roseus for efficient conversion of GPP to (S)-limonene and geraniol, respectively. Further improvements were achieved by localizing the entire mevalonate pathway and the Erg20WWG-fused enzymes in peroxisomes, while simultaneously downregulating the essential ERG20 gene using the glucose-sensing HXT1 promoter. In the case of (S)-limonene production, additional Erg20WWG-LS was expressed in the cytosol. As a result, the final strains produced 1063 mg/L of (S)-limonene and 1234 mg/L of geraniol by fed-batch biphasic fermentations with ethanol feeding. The newly identified Erg20WWG mutant opens doors for the efficient production of various other GPP-derived chemicals including monoterpene derivatives and cannabinoids.
Collapse
Affiliation(s)
- Armand Bernard
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seungwoo Cha
- Bio-MAX/N-Bio, Institute of BioEngineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyesoo Shin
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Daeyeol Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Ji-Sook Hahn
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
16
|
Hou R, Shan M, Liu X, Yao M, Yang K, Wang Y, Sui Z, Liang Z, Zhang Y, Zhang L. Proteomic analysis reveals that the co-ordination of cytosolic and mitochondrial pathways is beneficial for sabinene biosynthesis in engineered Saccharomyces cerevisiae. Biotechnol J 2024; 19:e2300710. [PMID: 38581096 DOI: 10.1002/biot.202300710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/08/2024]
Abstract
Reconstruction and optimization of biosynthetic pathways can help to overproduce target chemicals in microbial cell factories based on genetic engineering. However, the perturbation of biosynthetic pathways on cellular metabolism is not well investigated and profiling the engineered microbes remains challenging. The rapid development of omics tools has the potential to characterize the engineered microbial cell factory. Here, we performed label-free quantitative proteomic analysis and metabolomic analysis of engineered sabinene overproducing Saccharomyces cerevisiae strains. Combined metabolic analysis andproteomic analysis of targeted mevalonate (MVA) pathway showed that co-ordination of cytosolic and mitochondrial pathways had balanced metabolism, and genome integration of biosynthetic genes had higher sabinene production with less MVA enzymes. Furthermore, comparative proteomic analysis showed that compartmentalized mitochondria pathway had perturbation on central cellular metabolism. This study provided an omics analysis example for characterizing engineered cell factory, which can guide future regulation of the cellular metabolism and maintaining optimal protein expression levels for the synthesis of target products.
Collapse
Affiliation(s)
- Rui Hou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengying Shan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Xinxin Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Kaiguang Yang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Zhigang Sui
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Zhen Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yukui Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Lihua Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
17
|
Liu J, Lin M, Han P, Yao G, Jiang H. Biosynthesis Progress of High-Energy-Density Liquid Fuels Derived from Terpenes. Microorganisms 2024; 12:706. [PMID: 38674649 PMCID: PMC11052473 DOI: 10.3390/microorganisms12040706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
High-energy-density liquid fuels (HED fuels) are essential for volume-limited aerospace vehicles and could serve as energetic additives for conventional fuels. Terpene-derived HED biofuel is an important research field for green fuel synthesis. The direct extraction of terpenes from natural plants is environmentally unfriendly and costly. Designing efficient synthetic pathways in microorganisms to achieve high yields of terpenes shows great potential for the application of terpene-derived fuels. This review provides an overview of the current research progress of terpene-derived HED fuels, surveying terpene fuel properties and the current status of biosynthesis. Additionally, we systematically summarize the engineering strategies for biosynthesizing terpenes, including mining and engineering terpene synthases, optimizing metabolic pathways and cell-level optimization, such as the subcellular localization of terpene synthesis and adaptive evolution. This article will be helpful in providing insight into better developing terpene-derived HED fuels.
Collapse
Affiliation(s)
- Jiajia Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.L.)
| | - Man Lin
- College of Biological Engineering, Sichuan University of Science and Engineering, Yibin 644005, China
| | - Penggang Han
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.L.)
| | - Ge Yao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.L.)
| | - Hui Jiang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China; (J.L.)
| |
Collapse
|
18
|
Zhao C, Wang X, Lu X, Zong H, Zhuge B. Spatiotemporal Regulation and Transport Engineering for Sustainable Production of Geraniol in Candida glycerinogenes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4825-4833. [PMID: 38408332 DOI: 10.1021/acs.jafc.3c09651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Geraniol is an attractive natural monoterpene with significant industrial and commercial value in the fields of pharmaceuticals, condiments, cosmetics, and bioenergy. The biosynthesis of monoterpenes suffers from the availability of key intermediates and enzyme-to-substrate accessibility. Here, we addressed these challenges in Candida glycerinogenes by a plasma membrane-anchoring strategy and achieved sustainable biosynthesis of geraniol using bagasse hydrolysate as substrate. On this basis, a remarkable 2.4-fold improvement in geraniol titer was achieved by combining spatial and temporal modulation strategies. In addition, enhanced geraniol transport and modulation of membrane lipid-associated metabolism effectively promoted the exocytosis of toxic monoterpenes, significantly improved the resistance of the engineered strain to monoterpenes and improved the growth of the strains, resulting in geraniol yield up to 1207.4 mg L-1 at shake flask level. Finally, 1835.2 mg L-1 geraniol was obtained in a 5 L bioreactor using undetoxified bagasse hydrolysate. Overall, our study has provided valuable insights into the plasma membrane engineering of C. glycerinogenes for the sustainable and green production of valuable compounds.
Collapse
Affiliation(s)
- Cui Zhao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - XiHui Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - XinYao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
19
|
Li T, Liu X, Xiang H, Zhu H, Lu X, Feng B. Two-Phase Fermentation Systems for Microbial Production of Plant-Derived Terpenes. Molecules 2024; 29:1127. [PMID: 38474639 PMCID: PMC10934027 DOI: 10.3390/molecules29051127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Microbial cell factories, renowned for their economic and environmental benefits, have emerged as a key trend in academic and industrial areas, particularly in the fermentation of natural compounds. Among these, plant-derived terpenes stand out as a significant class of bioactive natural products. The large-scale production of such terpenes, exemplified by artemisinic acid-a crucial precursor to artemisinin-is now feasible through microbial cell factories. In the fermentation of terpenes, two-phase fermentation technology has been widely applied due to its unique advantages. It facilitates in situ product extraction or adsorption, effectively mitigating the detrimental impact of product accumulation on microbial cells, thereby significantly bolstering the efficiency of microbial production of plant-derived terpenes. This paper reviews the latest developments in two-phase fermentation system applications, focusing on microbial fermentation of plant-derived terpenes. It also discusses the mechanisms influencing microbial biosynthesis of terpenes. Moreover, we introduce some new two-phase fermentation techniques, currently unexplored in terpene fermentation, with the aim of providing more thoughts and explorations on the future applications of two-phase fermentation technology. Lastly, we discuss several challenges in the industrial application of two-phase fermentation systems, especially in downstream processing.
Collapse
Affiliation(s)
- Tuo Li
- Correspondence: (T.L.); (B.F.)
| | | | | | | | | | - Baomin Feng
- College of Life and Health, Dalian University, Dalian 116622, China; (X.L.); (H.X.); (H.Z.); (X.L.)
| |
Collapse
|
20
|
Wang S, Zhao F, Yang M, Lin Y, Han S. Metabolic engineering of Saccharomyces cerevisiae for the synthesis of valuable chemicals. Crit Rev Biotechnol 2024; 44:163-190. [PMID: 36596577 DOI: 10.1080/07388551.2022.2153008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/11/2022] [Accepted: 10/29/2022] [Indexed: 01/05/2023]
Abstract
In the twenty first century, biotechnology offers great opportunities and solutions to climate change mitigation, energy and food security and resource efficiency. The use of metabolic engineering to modify microorganisms for producing industrially significant chemicals is developing and becoming a trend. As a famous, generally recognized as a safe (GRAS) model microorganism, Saccharomyces cerevisiae is widely used due to its excellent operational convenience and high fermentation efficiency. This review summarizes recent advancements in the field of using metabolic engineering strategies to construct engineered S. cerevisiae over the past ten years. Five different types of compounds are classified by their metabolites, and the modified metabolic pathways and strategies are summarized and discussed independently. This review may provide guidance for future metabolic engineering efforts toward such compounds and analogues. Additionally, the limitations of S. cerevisiae as a cell factory and its future trends are comprehensively discussed.
Collapse
Affiliation(s)
- Shuai Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Fengguang Zhao
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, China
| | - Manli Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuangyan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
21
|
Taratynova MO, Tikhonova EE, Fedyaeva IM, Dementev DA, Yuzbashev TV, Solovyev AI, Sineoky SP, Yuzbasheva EY. Boosting Geranyl Diphosphate Synthesis for Linalool Production in Engineered Yarrowia lipolytica. Appl Biochem Biotechnol 2024; 196:1304-1315. [PMID: 37392322 DOI: 10.1007/s12010-023-04581-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/03/2023]
Abstract
Linalool is a pleasant-smelling monoterpenoid widely found in the essential oils of most flowers. Due to its biologically active properties, linalool has considerable commercial potential, especially in the food and perfume industries. In this study, the oleaginous yeast Yarrowia lipolytica was successfully engineered to produce linalool de novo. The (S)-linalool synthase (LIS) gene from Actinidia argute was overexpressed to convert geranyl diphosphate (GPP) into linalool. Flux was diverted from farnesyl diphosphate (FPP) synthesis to GPP by introducing a mutated copy of the native ERG20F88W-N119W gene, and CrGPPS gene from Catharanthus roseus on its own and as part of a fusion with LIS. Disruption of native diacylglycerol kinase enzyme, DGK1, by oligo-mediated CRISPR-Cas9 inactivation further increased linalool production. The resulting strain accumulated 109.6 mg/L of linalool during cultivation in shake flasks with sucrose as a carbon source. CrGPPS expression in Yarrowia lipolytica increased linalool accumulation more efficiently than the ERG20F88W-N119W expression, suggesting that the increase in linalool production was predominantly influenced by the level of GPP precursor supply.
Collapse
Affiliation(s)
- Maria O Taratynova
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia.
| | - Ekaterina E Tikhonova
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Iuliia M Fedyaeva
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Dmitry A Dementev
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Tigran V Yuzbashev
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, AL5 2JQ, West Common, UK
| | - Andrey I Solovyev
- Gamaleya National Research Center of Epidemiology and Microbiology, Russian Ministry of Health, Gamaleya St. 18, Moscow, 123098, Russia
| | - Sergey P Sineoky
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Evgeniya Y Yuzbasheva
- BioMediCan Inc, 40471 Encyclopedia Circle, Fremont, CA, 94538, USA
- BioKai Inc, 40471 Encyclopedia Circle, Fremont, CA, 94538, USA
| |
Collapse
|
22
|
Cheah LC, Sainsbury F, Vickers CE. Translational fusion of terpene synthases for metabolic engineering: Lessons learned and practical considerations. Methods Enzymol 2024; 699:121-161. [PMID: 38942501 DOI: 10.1016/bs.mie.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
The step catalyzed by terpene synthases is a well-recognized and significant bottleneck in engineered terpenoid bioproduction. Consequently, substantial efforts have been devoted towards increasing metabolic flux catalyzed by terpene synthases, employing strategies such as gene overexpression and protein engineering. Notably, numerous studies have demonstrated remarkable titer improvements by applying translational fusion, typically by fusing the terpene synthase with a prenyl diphosphate synthase that catalyzes the preceding step in the pathway. The main appeal of the translational fusion approach lies in its simplicity and orthogonality to other metabolic engineering tools. However, there is currently limited understanding of the underlying mechanism of flux enhancement, owing to the unpredictable and often protein-specific effects of translational fusion. In this chapter, we discuss practical considerations when engineering translationally fused terpene synthases, drawing insights from our experience and existing literature. We also provide detailed experimental workflows and protocols based on our previous work in budding yeast (Saccharomyces cerevisiae). Our intention is to encourage further research into the translational fusion of terpene synthases, anticipating that this will contribute mechanistic insights not only into the activity, behavior, and regulation of terpene synthases, but also of other enzymes.
Collapse
Affiliation(s)
- Li Chen Cheah
- Australian Centre for Disease Preparedness, East Geelong, VIC, Australia.
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia; ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, Australia
| | - Claudia E Vickers
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, Australia; School of Biological and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia; BioBuilt Solutions, Brisbane, QLD, Australia
| |
Collapse
|
23
|
Schmidt C, Aras M, Kayser O. Engineering cannabinoid production in Saccharomyces cerevisiae. Biotechnol J 2024; 19:e2300507. [PMID: 38403455 DOI: 10.1002/biot.202300507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 02/27/2024]
Abstract
Phytocannabinoids are natural products with highly interesting pharmacological properties mainly produced by plants. The production of cannabinoids in a heterologous host system has gained interest in recent years as a promising alternative to production from plant material. However, the systems reported so far do not achieve industrially relevant titers, highlighting the need for alternative systems. Here, we show the production of the cannabinoids cannabigerolic acid and cannabigerol from glucose and hexanoic acid in a heterologous yeast system using the aromatic prenyltransferase NphB from Streptomyces sp. strain CL190. The production was significantly increased by introducing a fusion protein consisting of ERG20WW and NphB. Furthermore, we improved the production of the precursor olivetolic acid to a titer of 56 mg L-1 . The implementation of the cannabinoid synthase genes enabled the production of Δ9 -tetrahydrocannabinolic acid, cannabidiolic acid as well as cannabichromenic acid, where the heterologous biosynthesis of cannabichromenic acid in a yeast system was demonstrated for the first time. In addition, we found that the product spectrum of the cannabinoid synthases localized to the vacuoles of the yeast cells was highly dependent on extracellular pH, allowing for easy manipulation. Finally, using a fed-batch approach, we showed cannabigerolic acid and olivetolic acid titers of up to 18.2 mg L-1 and 117 mg L-1 , respectively.
Collapse
Affiliation(s)
- Christina Schmidt
- Technical Biochemistry Laboratory, Faculty of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Marco Aras
- Technical Biochemistry Laboratory, Faculty of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| | - Oliver Kayser
- Technical Biochemistry Laboratory, Faculty of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
24
|
Lyu L, Chen Q, Xue H, Mustafa S, Manzoor Shah A, Huang Q, Zhang Y, Wang S, Zhao ZK. Modularly engineering Rhodotorula toruloides for α-terpineol production. Front Bioeng Biotechnol 2024; 11:1310069. [PMID: 38312511 PMCID: PMC10835275 DOI: 10.3389/fbioe.2023.1310069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/27/2023] [Indexed: 02/06/2024] Open
Abstract
α-Terpineol is a monoterpenoid alcohol that has been widely used in the flavor, fragrance, and pharmaceutical industries because of its sensory and biological properties. However, few studies have focused on the microbial production of α-terpineol. The oleaginous yeast Rhodotorula toruloides is endowed with a natural mevalonate pathway and is a promising host in synthetic biology and biorefinery. The primary objective of this work was to engineer R. toruloides for the direct biosynthesis of α-terpineol. The improvement in monoterpenoid production was achieved through the implementation of modular engineering strategies, which included the enhancement of precursor supply, blocking of downstream pathways, and disruption of competing pathways. The results of these three methods showed varying degrees of favorable outcomes in enhancing α-terpineol production. The engineered strain 5L6HE5, with competitive pathway disruption and increased substrate supply, reached the highest product titer of 1.5 mg/L, indicating that reducing lipid accumulation is an efficient method in R. toruloides engineering for terpenoid synthesis. This study reveals the potential of R. toruloides as a host platform for the synthesis of α-terpineol as well as other monoterpenoid compounds.
Collapse
Affiliation(s)
- Liting Lyu
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Dalian, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Qiongqiong Chen
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haizhao Xue
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sumayya Mustafa
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aabid Manzoor Shah
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Dalian, China
| | - Qitian Huang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Dalian, China
| | - Yue Zhang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuang Wang
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zongbao Kent Zhao
- Laboratory of Biotechnology, Dalian Institute of Chemical Physics, Dalian, China
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
25
|
Yang S, Chen R, Cao X, Wang G, Zhou YJ. De novo biosynthesis of the hops bioactive flavonoid xanthohumol in yeast. Nat Commun 2024; 15:253. [PMID: 38177132 PMCID: PMC10766616 DOI: 10.1038/s41467-023-44654-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/26/2023] [Indexed: 01/06/2024] Open
Abstract
The flavonoid xanthohumol is an important flavor substance in the brewing industry that has a wide variety of bioactivities. However, its unstable structure results in its low content in beer. Microbial biosynthesis is considered a sustainable and economically viable alternative. Here, we harness the yeast Saccharomyces cerevisiae for the de novo biosynthesis of xanthohumol from glucose by balancing the three parallel biosynthetic pathways, prenyltransferase engineering, enhancing precursor supply, constructing enzyme fusion, and peroxisomal engineering. These strategies improve the production of the key xanthohumol precursor demethylxanthohumol (DMX) by 83-fold and achieve the de novo biosynthesis of xanthohumol in yeast. We also reveal that prenylation is the key limiting step in DMX biosynthesis and develop tailored metabolic regulation strategies to enhance the DMAPP availability and prenylation efficiency. Our work provides feasible approaches for systematically engineering yeast cell factories for the de novo biosynthesis of complex natural products.
Collapse
Affiliation(s)
- Shan Yang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruibing Chen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xuan Cao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
26
|
Ding YK, Ning Y, Xin D, Fu YJ. Dual cytoplasmic-peroxisomal compartmentalization engineering and multiple metabolic engineering strategies for high yield non-psychoactive cannabinoid in Saccharomyces cerevisiae. Biotechnol J 2024; 19:e2300590. [PMID: 38375558 DOI: 10.1002/biot.202300590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 02/21/2024]
Abstract
CBG (Cannabigerol), a nonpsychoactive cannabinoid, has garnered attention due to its extensive antimicrobial and anti-inflammatory properties. However, the natural content of CBG in Cannabis sativa L. is minimal. In this study, we developed an engineered cell factory for CBG production using Saccharomyces cerevisiae. We introduced the CBGA biosynthetic pathway into S. cerevisiae and employed several strategies to enhance CBGA production. These strategies included dynamically inhibiting the competitive bypass of key metabolic pathways regulated by Erg20p. Additionally, we implemented a dual cytoplasmic-peroxisomal compartmentalization approach to further increase CBGA production. Furthermore, we ensured efficient CBGA production by optimizing NADPH and acetyl-CoA pools. Ultimately, our engineered strain achieved a CBG titer of 138 mg L-1 through fed-batch fermentation in a 5 L bioreactor, facilitated by microwave decarboxylation extraction. These findings underscore the significant potential of yeast cell factories for achieving higher yields in cannabinoid production.
Collapse
Affiliation(s)
- Yun-Kun Ding
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Yuan Ning
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Di Xin
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
| | - Yu-Jie Fu
- College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
27
|
Luckie BA, Kashyap M, Pearson AN, Chen Y, Liu Y, Valencia LE, Carrillo Romero A, Hudson GA, Tao XB, Wu B, Petzold CJ, Keasling JD. Development of Corynebacterium glutamicum as a monoterpene production platform. Metab Eng 2024; 81:110-122. [PMID: 38056688 DOI: 10.1016/j.ymben.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Monoterpenes are commonly known for their role in the flavors and fragrances industry and are also gaining attention for other uses like insect repellant and as potential renewable fuels for aviation. Corynebacterium glutamicum, a Generally Recognized as Safe microbe, has been a choice organism in industry for the annual million ton-scale bioproduction of amino acids for more than 50 years; however, efforts to produce monoterpenes in C. glutamicum have remained relatively limited. In this study, we report a further expansion of the C. glutamicum biosynthetic repertoire through the development and optimization of a mevalonate-based monoterpene platform. In the course of our plasmid design iterations, we increased flux through the mevalonate-based bypass pathway, measuring isoprenol production as a proxy for monoterpene precursor abundance and demonstrating the highest reported titers in C. glutamicum to date at 1504.6 mg/L. Our designs also evaluated the effects of backbone, promoter, and GPP synthase homolog origin on monoterpene product titers. Monoterpene production was further improved by disrupting competing pathways for isoprenoid precursor supply and by implementing a biphasic production system to prevent volatilization. With this platform, we achieved 321.1 mg/L of geranoids, 723.6 mg/L of 1,8-cineole, and 227.8 mg/L of linalool. Furthermore, we determined that C. glutamicum first oxidizes geraniol through an aldehyde intermediate before it is asymmetrically reduced to citronellol. Additionally, we demonstrate that the aldehyde reductase, AdhC, possesses additional substrate promiscuity for acyclic monoterpene aldehydes.
Collapse
Affiliation(s)
- Bridget A Luckie
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Meera Kashyap
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Allison N Pearson
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Yan Chen
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuzhong Liu
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Luis E Valencia
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Joint Program in Bioengineering, University of California, Berkeley, San Francisco, CA, 94720, USA
| | - Alexander Carrillo Romero
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Graham A Hudson
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Xavier B Tao
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bryan Wu
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA; Joint Program in Bioengineering, University of California, Berkeley, San Francisco, CA, 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark; Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China.
| |
Collapse
|
28
|
Bureau JA, Oliva ME, Dong Y, Ignea C. Engineering yeast for the production of plant terpenoids using synthetic biology approaches. Nat Prod Rep 2023; 40:1822-1848. [PMID: 37523210 DOI: 10.1039/d3np00005b] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Covering: 2011-2022The low amounts of terpenoids produced in plants and the difficulty in synthesizing these complex structures have stimulated the production of terpenoid compounds in microbial hosts by metabolic engineering and synthetic biology approaches. Advances in engineering yeast for terpenoid production will be covered in this review focusing on four directions: (1) manipulation of host metabolism, (2) rewiring and reconstructing metabolic pathways, (3) engineering the catalytic activity, substrate selectivity and product specificity of biosynthetic enzymes, and (4) localizing terpenoid production via enzymatic fusions and scaffolds, or subcellular compartmentalization.
Collapse
Affiliation(s)
| | | | - Yueming Dong
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0C3, Canada.
| | - Codruta Ignea
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0C3, Canada.
| |
Collapse
|
29
|
Zhang Y, Yuan M, Wu X, Zhang Q, Wang Y, Zheng L, Chiu T, Zhang H, Lan L, Wang F, Liao Y, Gong X, Yan S, Wang Y, Shen Y, Fu X. The construction and optimization of engineered yeast chassis for efficient biosynthesis of 8-hydroxygeraniol. MLIFE 2023; 2:438-449. [PMID: 38818263 PMCID: PMC10989129 DOI: 10.1002/mlf2.12099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/26/2023] [Accepted: 11/29/2023] [Indexed: 06/01/2024]
Abstract
Microbial production of monoterpenoid indole alkaloids (MIAs) provides a sustainable and eco-friendly means to obtain compounds with high pharmaceutical values. However, efficient biosynthesis of MIAs in heterologous microorganisms is hindered due to low supply of key precursors such as geraniol and its derivative 8-hydroxygeraniol catalyzed by geraniol 8-hydroxylase (G8H). In this study, we developed a facile evolution platform to screen strains with improved yield of geraniol by using the SCRaMbLE system embedded in the Sc2.0 synthetic yeast and confirmed the causal role of relevant genomic targets. Through genome mining, we identified several G8H enzymes that perform much better than the commonly used CrG8H for 8-hydroxygeraniol production in vivo. We further showed that the N-terminus of these G8H enzymes plays an important role in cellular activity by swapping experiments. Finally, the combination of the engineered chassis, optimized biosynthesis pathway, and utilization of G8H led to the final strain with more than 30-fold improvement in producing 8-hydroxygeraniol compared with the starting strain. Overall, this study will provide insights into the construction and optimization of yeast cells for efficient biosynthesis of 8-hydroxygeraniol and its derivatives.
Collapse
Affiliation(s)
- Yu Zhang
- BGI ResearchShenzhenChina
- BGI ResearchHangzhouChina
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI ResearchShenzhenChina
| | | | | | | | | | | | | | | | | | | | | | - Xuemei Gong
- BGI ResearchShenzhenChina
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI ResearchShenzhenChina
| | - Shirui Yan
- BGI ResearchShenzhenChina
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI ResearchShenzhenChina
- BGI ResearchChangzhouChina
| | - Yun Wang
- BGI ResearchShenzhenChina
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI ResearchShenzhenChina
- BGI ResearchChangzhouChina
| | - Yue Shen
- BGI ResearchShenzhenChina
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI ResearchShenzhenChina
- BGI ResearchChangzhouChina
| | - Xian Fu
- BGI ResearchShenzhenChina
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI ResearchShenzhenChina
- BGI ResearchChangzhouChina
| |
Collapse
|
30
|
Cheah LC, Liu L, Plan MR, Peng B, Lu Z, Schenk G, Vickers CE, Sainsbury F. Product Profiles of Promiscuous Enzymes Can be Altered by Controlling In Vivo Spatial Organization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303415. [PMID: 37750486 PMCID: PMC10646250 DOI: 10.1002/advs.202303415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/31/2023] [Indexed: 09/27/2023]
Abstract
Enzyme spatial organization is an evolved mechanism for facilitating multi-step biocatalysis and can play an important role in the regulation of promiscuous enzymes. The latter function suggests that artificial spatial organization can be an untapped avenue for controlling the specificity of bioengineered metabolic pathways. A promiscuous terpene synthase (nerolidol synthase) is co-localized and spatially organized with the preceding enzyme (farnesyl diphosphate synthase) in a heterologous production pathway, via translational protein fusion and/or co-encapsulation in a self-assembling protein cage. Spatial organization enhances nerolidol production by ≈11- to ≈62-fold relative to unorganized enzymes. More interestingly, striking differences in the ratio of end products (nerolidol and linalool) are observed with each spatial organization approach. This demonstrates that artificial spatial organization approaches can be harnessed to modulate the product profiles of promiscuous enzymes in engineered pathways in vivo. This extends the application of spatial organization beyond situations where multiple enzymes compete for a single substrate to cases where there is competition among multiple substrates for a single enzyme.
Collapse
Affiliation(s)
- Li Chen Cheah
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
- CSIRO Future Science Platform in Synthetic BiologyCommonwealth Scientific and Industrial Research Organisation (CSIRO)Dutton ParkSt LuciaQLD4102Australia
- Present address:
Australian Centre for Disease Preparedness5 Portarlington RdEast GeelongVIC3219Australia
| | - Lian Liu
- Metabolomics Australia (Queensland Node)The University of QueenslandSt LuciaQLD4072Australia
| | - Manuel R. Plan
- Metabolomics Australia (Queensland Node)The University of QueenslandSt LuciaQLD4072Australia
| | - Bingyin Peng
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
- CSIRO Future Science Platform in Synthetic BiologyCommonwealth Scientific and Industrial Research Organisation (CSIRO)Dutton ParkSt LuciaQLD4102Australia
- ARC Centre of Excellence in Synthetic BiologyQueensland University of TechnologyBrisbaneQLD4000Australia
- School of Biological and Environmental ScienceQueensland University of TechnologyBrisbaneQLD4000Australia
| | - Zeyu Lu
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
- ARC Centre of Excellence in Synthetic BiologyQueensland University of TechnologyBrisbaneQLD4000Australia
| | - Gerhard Schenk
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQLD4072Australia
| | - Claudia E. Vickers
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
- CSIRO Future Science Platform in Synthetic BiologyCommonwealth Scientific and Industrial Research Organisation (CSIRO)Dutton ParkSt LuciaQLD4102Australia
- ARC Centre of Excellence in Synthetic BiologyQueensland University of TechnologyBrisbaneQLD4000Australia
- School of Biological and Environmental ScienceQueensland University of TechnologyBrisbaneQLD4000Australia
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityNathanQLD4111Australia
| | - Frank Sainsbury
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
- CSIRO Future Science Platform in Synthetic BiologyCommonwealth Scientific and Industrial Research Organisation (CSIRO)Dutton ParkSt LuciaQLD4102Australia
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityNathanQLD4111Australia
| |
Collapse
|
31
|
Whitehead J, Leferink NGH, Johannissen LO, Hay S, Scrutton NS. Decoding Catalysis by Terpene Synthases. ACS Catal 2023; 13:12774-12802. [PMID: 37822860 PMCID: PMC10563020 DOI: 10.1021/acscatal.3c03047] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/31/2023] [Indexed: 10/13/2023]
Abstract
The review by Christianson, published in 2017 on the twentieth anniversary of the emergence of the field, summarizes the foundational discoveries and key advances in terpene synthase/cyclase (TS) biocatalysis (Christianson, D. W. Chem Rev2017, 117 (17), 11570-11648. DOI: 10.1021/acs.chemrev.7b00287). Here, we review the TS literature published since then, bringing the field up to date and looking forward to what could be the near future of TS rational design. Many revealing discoveries have been made in recent years, building on the knowledge and fundamental principles uncovered during those initial two decades of study. We use these to explore TS reaction chemistry and see how a combined experimental and computational approach helps to decipher the complexities of TS catalysis. Revealed are a suite of catalytic motifs which control product outcome in TSs, some obvious, some more subtle. We examine each in detail, using the most recent papers and insights to illustrate how exactly this fascinating class of enzymes takes a single acyclic substrate and turns it into the many thousands of complex terpenoids found in Nature. We then explore some of the recent strategies for TS engineering, including machine learning and other data-driven approaches. From this, rational and predictive engineering of TSs, "designer terpene synthases", will begin to emerge as a realistic goal.
Collapse
Affiliation(s)
- Joshua
N. Whitehead
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nicole G. H. Leferink
- Future
Biomanufacturing Research Hub (FBRH), Manchester Institute of Biotechnology,
Department of Chemistry, The University
of Manchester, Manchester, M1 7DN, United
Kingdom
| | - Linus O. Johannissen
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology, Department of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom
- Future
Biomanufacturing Research Hub (FBRH), Manchester Institute of Biotechnology,
Department of Chemistry, The University
of Manchester, Manchester, M1 7DN, United
Kingdom
| |
Collapse
|
32
|
Li J, Wang S, Miao Y, Wan Y, Li C, Wang Y. Mining and modification of Oryza sativa-derived squalene epoxidase for improved β-amyrin production in Saccharomyces cerevisiae. J Biotechnol 2023; 375:1-11. [PMID: 37597655 DOI: 10.1016/j.jbiotec.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/13/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
β-Amyrin is a pentacyclic triterpenoid and has anti-viral, anti-bacterial and anti-inflammatory activities. The synthetic pathway of β-amyrin has been analyzed and its heterogeneous synthesis has been achieved in Saccharomyces cerevisiae. Squalene epoxidase (SQE) catalyzes the oxygenation of squalene to form 2,3-oxidosqualene and is rate-limiting in the synthetic pathways of β-amyrin. The endogenous SQE in S. cerevisiae is insufficient for high production of β-amyrin. Herein, eight squalene epoxidases derived from different plants were selected and characterized in S. cerevisiae for improved biosynthesis of β-amyrin. Among them, the squalene epoxidase from Oryza sativa (OsSQE52) showed the best performance compared to other plant-derived sources. Through protein remodeling, the mutant OsSQE52L256R, obtained based on modeling analysis, increased the titer of β-amyrin by 2.43-fold compared to that in the control strain with ERG1 overexpressed under the same conditions. Moreover, the expression of OsSQE52L256R was optimized with the improvement of precursor supply to further increase the production of β-amyrin. Finally, the constructed strains produced 66.97 mg/L β-amyrin in the shake flask, which was 6.45-fold higher than the original strain. Our study provides alternative SQEs for efficient production of β-amyrin as well as other triterpenoids derived from 2,3-oxidosqualene.
Collapse
Affiliation(s)
- Jinling Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shuai Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yinan Miao
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Ya Wan
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China; Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
| | - Ying Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
33
|
Zhao C, Wang XH, Lu XY, Zong H, Zhuge B. Metabolic Engineering of Candida glycerinogenes for Sustainable Production of Geraniol. ACS Synth Biol 2023; 12:1836-1844. [PMID: 37271978 DOI: 10.1021/acssynbio.3c00195] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Geraniol is a class of natural products that are widely used in the aroma industry due to their unique aroma. Here, to achieve the synthesis of geraniol and alleviate the intense competition from the yeast ergosterol pathway, a transcription factor-mediated ergosterol feedback system was developed in this study to autonomously regulate ergosterol metabolism and redirect carbon flux to geraniol synthesis. In addition, the modification of ergosterol-responsive promoters, the optimization of transcription factor expression intensity, and stepwise metabolic engineering resulted in a geraniol titer of 531.7 mg L-1. For sustainable production of geraniol, we constructed a xylose assimilation pathway in Candida glycerinogenes (C. glycerinogenes). Then, the xylose metabolic capacity was ameliorated and the growth of the engineered strain was rescued by activating the pentose phosphate (PP) pathway. Finally, we obtained 1091.6, 862.4, and 921.8 mg L-1 of geraniol in a 5 L bioreactor by using pure glucose, simulated wheat straw hydrolysates, and simulated sugarcane bagasse hydrolysates, with yields of 47.5, 57.9, and 59.1 mg g-1 DCW, respectively. Our study demonstrated that C. glycerinogenes has the potential to produce geraniol from lignocellulosic biomass, providing a powerful tool for the sustainable synthesis of other valuable monoterpenes.
Collapse
Affiliation(s)
- Cui Zhao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xi-Hui Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xin-Yao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
34
|
Kong X, Wu Y, Yu W, Liu Y, Li J, Du G, Lv X, Liu L. Efficient Synthesis of Limonene in Saccharomyces cerevisiae Using Combinatorial Metabolic Engineering Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7752-7764. [PMID: 37189018 DOI: 10.1021/acs.jafc.3c02076] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Limonene is a volatile monoterpene compound that is widely used in food additives, pharmaceutical products, fragrances, and toiletries. We herein attempted to perform efficient biosynthesis of limonene in Saccharomyces cerevisiae using systematic metabolic engineering strategies. First, we conducted de novo synthesis of limonene in S. cerevisiae and achieved a titer of 46.96 mg/L. Next, by dynamic inhibition of the competitive bypass of key metabolic branches regulated by ERG20 and optimization of the copy number of tLimS, a greater proportion of the metabolic flow was directed toward limonene synthesis, achieving a titer of 640.87 mg/L. Subsequently, we enhanced the acetyl-CoA and NADPH supply, which increased the limonene titer to 1097.43 mg/L. Then, we reconstructed the limonene synthesis pathway in the mitochondria. Dual regulation of cytoplasmic and mitochondrial metabolism further increased the limonene titer to 1586 mg/L. After optimization of the process of fed-batch fermentation, the limonene titer reached 2.63 g/L, the highest ever reported in S. cerevisiae.
Collapse
Affiliation(s)
- Xiao Kong
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yaokang Wu
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenwen Yu
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yanfeng Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jianghua Li
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xueqin Lv
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Long Liu
- Science Center for Future Foods, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- Food Laboratory of Zhongyuan, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
35
|
Conart C, Bomzan DP, Huang XQ, Bassard JE, Paramita SN, Saint-Marcoux D, Rius-Bony A, Hivert G, Anchisi A, Schaller H, Hamama L, Magnard JL, Lipko A, Swiezewska E, Jame P, Riveill G, Hibrand-Saint Oyant L, Rohmer M, Lewinsohn E, Dudareva N, Baudino S, Caissard JC, Boachon B. A cytosolic bifunctional geranyl/farnesyl diphosphate synthase provides MVA-derived GPP for geraniol biosynthesis in rose flowers. Proc Natl Acad Sci U S A 2023; 120:e2221440120. [PMID: 37126706 PMCID: PMC10175749 DOI: 10.1073/pnas.2221440120] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023] Open
Abstract
Geraniol derived from essential oils of various plant species is widely used in the cosmetic and perfume industries. It is also an essential trait of the pleasant smell of rose flowers. In contrast to other monoterpenes which are produced in plastids via the methyl erythritol phosphate pathway, geraniol biosynthesis in roses relies on cytosolic NUDX1 hydrolase which dephosphorylates geranyl diphosphate (GPP). However, the metabolic origin of cytosolic GPP remains unknown. By feeding Rosa chinensis "Old Blush" flowers with pathway-specific precursors and inhibitors, combined with metabolic profiling and functional characterization of enzymes in vitro and in planta, we show that geraniol is synthesized through the cytosolic mevalonate (MVA) pathway by a bifunctional geranyl/farnesyl diphosphate synthase, RcG/FPPS1, producing both GPP and farnesyl diphosphate (FPP). The downregulation and overexpression of RcG/FPPS1 in rose petals affected not only geraniol and germacrene D emissions but also dihydro-β-ionol, the latter due to metabolic cross talk of RcG/FPPS1-dependent isoprenoid intermediates trafficking from the cytosol to plastids. Phylogenetic analysis together with functional characterization of G/FPPS orthologs revealed that the G/FPPS activity is conserved among Rosaceae species. Site-directed mutagenesis and molecular dynamic simulations enabled to identify two conserved amino acids that evolved from ancestral FPPSs and contribute to GPP/FPP product specificity. Overall, this study elucidates the origin of the cytosolic GPP for NUDX1-dependent geraniol production, provides insights into the emergence of the RcG/FPPS1 GPPS activity from the ancestral FPPSs, and shows that RcG/FPPS1 plays a key role in the biosynthesis of volatile terpenoid compounds in rose flowers.
Collapse
Affiliation(s)
- Corentin Conart
- Université Jean Monnet Saint-Etienne, Centre National de la Recherche Scientifique, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Unité Mixte de Recherche 5079, Saint-EtienneF-42023, France
| | - Dikki Pedenla Bomzan
- Université Jean Monnet Saint-Etienne, Centre National de la Recherche Scientifique, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Unité Mixte de Recherche 5079, Saint-EtienneF-42023, France
| | - Xing-Qi Huang
- Department of Biochemistry, Purdue University, West Lafayette, IN47907-2063
| | - Jean-Etienne Bassard
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Université de Strasbourg, Strasbourg67084, France
| | - Saretta N. Paramita
- Université Jean Monnet Saint-Etienne, Centre National de la Recherche Scientifique, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Unité Mixte de Recherche 5079, Saint-EtienneF-42023, France
| | - Denis Saint-Marcoux
- Université Jean Monnet Saint-Etienne, Centre National de la Recherche Scientifique, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Unité Mixte de Recherche 5079, Saint-EtienneF-42023, France
| | - Aurélie Rius-Bony
- Université Jean Monnet Saint-Etienne, Centre National de la Recherche Scientifique, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Unité Mixte de Recherche 5079, Saint-EtienneF-42023, France
| | - Gal Hivert
- Department of Vegetable Crops, Newe Ya’ar Research Center, Agricultural Research organization, The Volcani Center, Ramat Yishay30095, Israel
- Department of Vegetable Crops, The Robert Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot76100001, Israel
| | - Anthony Anchisi
- Université de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, VilleurbanneF-69100, France
| | - Hubert Schaller
- Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, Université de Strasbourg, Strasbourg67084, France
| | - Latifa Hamama
- Université d'Angers, Institut Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Institut de Recherche en Horticulture et Semences, Structure Fédérative de Recherche Qualité et Santé du Végétal, Angers49000, France
| | - Jean-Louis Magnard
- Université Jean Monnet Saint-Etienne, Centre National de la Recherche Scientifique, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Unité Mixte de Recherche 5079, Saint-EtienneF-42023, France
| | - Agata Lipko
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw02-109Poland
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw02-106Poland
| | - Patrick Jame
- Université de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, VilleurbanneF-69100, France
| | - Geneviève Riveill
- Université de Strasbourg, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité Mixte de Recherche 1131 Santé de la Vigne et Qualité du Vin,F-68000Colmar, France
| | - Laurence Hibrand-Saint Oyant
- Université d'Angers, Institut Agro, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Institut de Recherche en Horticulture et Semences, Structure Fédérative de Recherche Qualité et Santé du Végétal, Angers49000, France
| | - Michel Rohmer
- Institut de Chimie de Strasbourg, Université de Strasbourg/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7177, Institut Le Bel, Strasbourg67081, France
| | - Efraim Lewinsohn
- Department of Vegetable Crops, Newe Ya’ar Research Center, Agricultural Research organization, The Volcani Center, Ramat Yishay30095, Israel
- Department of Vegetable Crops, The Robert Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot76100001, Israel
| | - Natalia Dudareva
- Department of Biochemistry, Purdue University, West Lafayette, IN47907-2063
- Purdue Center for Plant Biology, Purdue University, West Lafayette, IN47907
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN47907-2010
| | - Sylvie Baudino
- Université Jean Monnet Saint-Etienne, Centre National de la Recherche Scientifique, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Unité Mixte de Recherche 5079, Saint-EtienneF-42023, France
| | - Jean-Claude Caissard
- Université Jean Monnet Saint-Etienne, Centre National de la Recherche Scientifique, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Unité Mixte de Recherche 5079, Saint-EtienneF-42023, France
| | - Benoît Boachon
- Université Jean Monnet Saint-Etienne, Centre National de la Recherche Scientifique, Laboratoire de Biotechnologies Végétales appliquées aux Plantes Aromatiques et Médicinales, Unité Mixte de Recherche 5079, Saint-EtienneF-42023, France
| |
Collapse
|
36
|
Jiang H, Wang X. Biosynthesis of monoterpenoid and sesquiterpenoid as natural flavors and fragrances. Biotechnol Adv 2023; 65:108151. [PMID: 37037288 DOI: 10.1016/j.biotechadv.2023.108151] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
Terpenoids are a large class of plant-derived compounds, that constitute the main components of essential oils and are widely used as natural flavors and fragrances. The biosynthesis approach presents a promising alternative route in terpenoid production compared to plant extraction or chemical synthesis. In the past decade, the production of terpenoids using biotechnology has attracted broad attention from both academia and the industry. With the growing market of flavor and fragrance, the production of terpenoids directed by synthetic biology shows great potential in promoting future market prospects. Here, we reviewed the latest advances in terpenoid biosynthesis. The engineering strategies for biosynthetic terpenoids were systematically summarized from the enzyme, metabolic, and cellular dimensions. Additionally, we analyzed the key challenges from laboratory production to scalable production, such as key enzyme improvement, terpenoid toxicity, and volatility loss. To provide comprehensive technical guidance, we collected milestone examples of biosynthetic mono- and sesquiterpenoids, compared the current application status of chemical synthesis and biosynthesis in terpenoid production, and discussed the cost drivers based on the data of techno-economic assessment. It is expected to provide critical insights into developing translational research of terpenoid biomanufacturing.
Collapse
Affiliation(s)
- Hui Jiang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, PR China
| | - Xi Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, PR China; College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China.
| |
Collapse
|
37
|
Park JH, Bassalo MC, Lin GM, Chen Y, Doosthosseini H, Schmitz J, Roubos JA, Voigt CA. Design of Four Small-Molecule-Inducible Systems in the Yeast Chromosome, Applied to Optimize Terpene Biosynthesis. ACS Synth Biol 2023; 12:1119-1132. [PMID: 36943773 PMCID: PMC10127285 DOI: 10.1021/acssynbio.2c00607] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The optimization of cellular functions often requires the balancing of gene expression, but the physical construction and screening of alternative designs are costly and time-consuming. Here, we construct a strain of Saccharomyces cerevisiae that contains a "sensor array" containing bacterial regulators that respond to four small-molecule inducers (vanillic acid, xylose, aTc, IPTG). Four promoters can be independently controlled with low background and a 40- to 5000-fold dynamic range. These systems can be used to study the impact of changing the level and timing of gene expression without requiring the construction of multiple strains. We apply this approach to the optimization of a four-gene heterologous pathway to the terpene linalool, which is a flavor and precursor to energetic materials. Using this approach, we identify bottlenecks in the metabolic pathway. This work can aid the rapid automated strain development of yeasts for the bio-manufacturing of diverse products, including chemicals, materials, fuels, and food ingredients.
Collapse
Affiliation(s)
- Jong Hyun Park
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Marcelo C Bassalo
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Geng-Min Lin
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Ye Chen
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Hamid Doosthosseini
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Joep Schmitz
- DSM Science & Innovation, Biodata & Translational Sciences, P.O. Box 1, 2600 MA Delft, The Netherlands
| | - Johannes A Roubos
- DSM Science & Innovation, Biodata & Translational Sciences, P.O. Box 1, 2600 MA Delft, The Netherlands
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
38
|
Cheah LC, Liu L, Stark T, Plan MR, Peng B, Lu Z, Schenk G, Sainsbury F, Vickers CE. Metabolic flux enhancement from the translational fusion of terpene synthases is linked to terpene synthase accumulation. Metab Eng 2023; 77:143-151. [PMID: 36990382 DOI: 10.1016/j.ymben.2023.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/13/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
The end-to-end fusion of enzymes that catalyse successive steps in a reaction pathway is a metabolic engineering strategy that has been successfully applied in a variety of pathways and is particularly common in terpene bioproduction. Despite its popularity, limited work has been done to interrogate the mechanism of metabolic enhancement from enzyme fusion. We observed a remarkable >110-fold improvement in nerolidol production upon translational fusion of nerolidol synthase (a sesquiterpene synthase) to farnesyl diphosphate synthase. This delivered a titre increase from 29.6 mg/L up to 4.2 g/L nerolidol in a single engineering step. Whole-cell proteomic analysis revealed that nerolidol synthase levels in the fusion strains were greatly elevated compared to the non-fusion control. Similarly, the fusion of nerolidol synthase to non-catalytic domains also produced comparable increases in titre, which coincided with improved enzyme expression. When farnesyl diphosphate synthase was fused to other terpene synthases, we observed more modest improvements in terpene titre (1.9- and 3.8-fold), corresponding with increases of a similar magnitude in terpene synthase levels. Our data demonstrate that increased in vivo enzyme levels - resulting from improved expression and/or improved protein stability - is a major driver of catalytic enhancement from enzyme fusion.
Collapse
Affiliation(s)
- Li Chen Cheah
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia; CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD, 4102, Australia
| | - Lian Liu
- Metabolomics Australia (Queensland Node), The University of Queensland, QLD, 4072, Australia
| | - Terra Stark
- Metabolomics Australia (Queensland Node), The University of Queensland, QLD, 4072, Australia
| | - Manuel R Plan
- Metabolomics Australia (Queensland Node), The University of Queensland, QLD, 4072, Australia
| | - Bingyin Peng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia; CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD, 4102, Australia; ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Zeyu Lu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia; ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Gerhard Schenk
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Frank Sainsbury
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia; CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD, 4102, Australia; Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.
| | - Claudia E Vickers
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia; CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Dutton Park, QLD, 4102, Australia; ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia; School of Biological and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia; Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
39
|
Abstract
Covering: 2015 to 2022Fungal terpenoids are of large structural diversity and often exhibit interesting biological activities. Recent work has focused on two main aspects: (1) the discovery and understanding of unknown biosynthetic genes and pathways, and (2) the usage of already known biosynthetic genes in the construction of high yielding production strains. Both aspects will be covered in this review article that aims to summarise the most important work of the past few years.
Collapse
Affiliation(s)
- Zhiyong Yin
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| | - Jeroen S Dickschat
- Kekulé-Institute for Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany.
| |
Collapse
|
40
|
Chen L, Xiao W, Yao M, Wang Y, Yuan Y. Compartmentalization engineering of yeasts to overcome precursor limitations and cytotoxicity in terpenoid production. Front Bioeng Biotechnol 2023; 11:1132244. [PMID: 36911190 PMCID: PMC9997727 DOI: 10.3389/fbioe.2023.1132244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Metabolic engineering strategies for terpenoid production have mainly focused on bottlenecks in the supply of precursor molecules and cytotoxicity to terpenoids. In recent years, the strategies involving compartmentalization in eukaryotic cells has rapidly developed and have provided several advantages in the supply of precursors, cofactors and a suitable physiochemical environment for product storage. In this review, we provide a comprehensive analysis of organelle compartmentalization for terpenoid production, which can guide the rewiring of subcellular metabolism to make full use of precursors, reduce metabolite toxicity, as well as provide suitable storage capacity and environment. Additionally, the strategies that can enhance the efficiency of a relocated pathway by increasing the number and size of organelles, expanding the cell membrane and targeting metabolic pathways in several organelles are also discussed. Finally, the challenges and future perspectives of this approach for the terpenoid biosynthesis are also discussed.
Collapse
Affiliation(s)
- Lifei Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
41
|
Mukherjee M, Wang ZQ. A well-characterized polycistronic-like gene expression system in yeast. Biotechnol Bioeng 2023; 120:260-271. [PMID: 36168285 DOI: 10.1002/bit.28247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/14/2022] [Accepted: 09/24/2022] [Indexed: 11/10/2022]
Abstract
Efficient expression of multiple genes is critical to yeast metabolic engineering for the bioproduction of bulk and fine chemicals. A yeast polycistronic expression system is of particular interest because one promoter can drive the expression of multiple genes. 2A viral peptides enable the cotranslation of multiple proteins from a single mRNA by ribosomal skipping. However, the wide adaptation of 2A viral peptides for polycistronic-like gene expression in yeast awaits in-depth characterizations. Additionally, a one-step assembly of such a polycistronic-like system is highly desirable. To this end, we have developed a modular cloning (MoClo) compatible 2A peptide-based polycistronic-like system capable of expressing multiple genes from a single promoter in yeast. Characterizing the bi-, tri-, and quad-cistronic expression of fluorescent proteins showed high cleavage efficiencies of three 2A peptides: E2A from equine rhinitis B virus, P2A from porcine teschovirus-1, and O2A from Operophtera brumata cypovirus-18. Applying the polycistronic-like system to produce geraniol, a valuable industrial compound, resulted in comparable or higher titers than using conventional monocistronic constructs. In summary, this highly-characterized polycistronic-like gene expression system is another tool to facilitate multigene expression for metabolic engineering in yeast.
Collapse
Affiliation(s)
- Minakshi Mukherjee
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Zhen Q Wang
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
42
|
Arnesen JA, Borodina I. Engineering of Yarrowia lipolytica for terpenoid production. Metab Eng Commun 2022; 15:e00213. [PMID: 36387772 PMCID: PMC9663531 DOI: 10.1016/j.mec.2022.e00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
Abstract
Terpenoids are a group of chemicals of great importance for human health and prosperity. Terpenoids can be used for human and animal nutrition, treating diseases, enhancing agricultural output, biofuels, fragrances, cosmetics, and flavouring. However, due to the rapid depletion of global natural resources and manufacturing practices relying on unsustainable petrochemical synthesis, there is a need for economic alternatives to supply the world's demand for these essential chemicals. Microbial biosynthesis offers the means to develop scalable and sustainable bioprocesses for terpenoid production. In particular, the non-conventional yeast Yarrowia lipolytica demonstrates excellent potential as a chassis for terpenoid production due to its amenability to industrial production scale-up, genetic engineering, and high accumulation of terpenoid precursors. This review aims to illustrate the scientific progress in developing Y. lipolytica terpenoid cell factories, focusing on metabolic engineering approaches for strain improvement and cultivation optimization.
Collapse
Affiliation(s)
- Jonathan Asmund Arnesen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet 220, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
43
|
Mukherjee M, Blair RH, Wang ZQ. Machine-learning guided elucidation of contribution of individual steps in the mevalonate pathway and construction of a yeast platform strain for terpenoid production. Metab Eng 2022; 74:139-149. [DOI: 10.1016/j.ymben.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/16/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
|
44
|
Engineered Saccharomyces cerevisiae for the De Novo Biosynthesis of (-)-Menthol. J Fungi (Basel) 2022; 8:jof8090982. [PMID: 36135706 PMCID: PMC9503987 DOI: 10.3390/jof8090982] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Menthol, a high-value commodity monoterpenoid chemical, holds an important market share commercially because of its distinct functions. The menthol on the market mainly originates from plant extraction, which is facing challenges such as the seasonal fluctuations and long growth cycle of plants. Therefore, this study attempted to realize the de novo synthesis of menthol through microbial fermentation. First, through heterologous expression and subcellular localization observation, a synthetic route from glucose to (-)-menthol was successfully designed and constructed in Saccharomyces cerevisiae. Then, the mevalonate (MVA) pathway was enhanced, and the expression of farnesyl diphosphate synthase (ERG20) was dynamically regulated to improve the synthesis of D-limonene, a key precursor of (-)-menthol. Shake flask fermentation results showed that the D-limonene titer of the recombinant strain reached 459.59 mg/L. Next, the synthesis pathway from D-limonene to (-)-menthol was strengthened, and the fermentation medium was optimized. The (-)-menthol titer of 6.28 mg/L was obtained, implying that the de novo synthesis of menthol was successfully realized for the first time. This study provides a good foundation for the synthesis of menthol through microbial fermentation.
Collapse
|
45
|
Expanding the terpene biosynthetic code with non-canonical 16 carbon atom building blocks. Nat Commun 2022; 13:5188. [PMID: 36057727 PMCID: PMC9440906 DOI: 10.1038/s41467-022-32921-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 08/23/2022] [Indexed: 11/08/2022] Open
Abstract
Humankind relies on specialized metabolites for medicines, flavors, fragrances, and numerous other valuable biomaterials. However, the chemical space occupied by specialized metabolites, and, thus, their application potential, is limited because their biosynthesis is based on only a handful of building blocks. Engineering organisms to synthesize alternative building blocks will bypass this limitation and enable the sustainable production of molecules with non-canonical chemical structures, expanding the possible applications. Herein, we focus on isoprenoids and combine synthetic biology with protein engineering to construct yeast cells that synthesize 10 non-canonical isoprenoid building blocks with 16 carbon atoms. We identify suitable terpene synthases to convert these building blocks into C16 scaffolds and a cytochrome P450 to decorate the terpene scaffolds and produce different oxygenated compounds. Thus, we reconstruct the modular structure of terpene biosynthesis on 16-carbon backbones, synthesizing 28 different non-canonical terpenes, some of which have interesting odorant properties.
Collapse
|
46
|
A microbial supply chain for production of the anti-cancer drug vinblastine. Nature 2022; 609:341-347. [PMID: 36045295 PMCID: PMC9452304 DOI: 10.1038/s41586-022-05157-3] [Citation(s) in RCA: 171] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/27/2022] [Indexed: 12/05/2022]
Abstract
Monoterpene indole alkaloids (MIAs) are a diverse family of complex plant secondary metabolites with many medicinal properties, including the essential anti-cancer therapeutics vinblastine and vincristine1. As MIAs are difficult to chemically synthesize, the world’s supply chain for vinblastine relies on low-yielding extraction and purification of the precursors vindoline and catharanthine from the plant Catharanthus roseus, which is then followed by simple in vitro chemical coupling and reduction to form vinblastine at an industrial scale2,3. Here, we demonstrate the de novo microbial biosynthesis of vindoline and catharanthine using a highly engineered yeast, and in vitro chemical coupling to vinblastine. The study showcases a very long biosynthetic pathway refactored into a microbial cell factory, including 30 enzymatic steps beyond the yeast native metabolites geranyl pyrophosphate and tryptophan to catharanthine and vindoline. In total, 56 genetic edits were performed, including expression of 34 heterologous genes from plants, as well as deletions, knock-downs and overexpression of ten yeast genes to improve precursor supplies towards de novo production of catharanthine and vindoline, from which semisynthesis to vinblastine occurs. As the vinblastine pathway is one of the longest MIA biosynthetic pathways, this study positions yeast as a scalable platform to produce more than 3,000 natural MIAs and a virtually infinite number of new-to-nature analogues. De novo microbial biosynthesis of vindoline and catharanthine using a highly engineered yeast and in vitro chemical coupling to vinblastine is carried out, positioning yeast as a scalable platform to produce many monoterpene indole alkaloids.
Collapse
|
47
|
Tan J, Zhang C, Pai H, Lu W. Heterologous Biosynthesis of Taraxerol by Engineered Saccharomyces cerevisiae. FEMS Microbiol Lett 2022; 369:6650882. [PMID: 35896500 DOI: 10.1093/femsle/fnac070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Taraxerol is an oleanane-type pentacyclic triterpenoid compound distributed in many plant species that has good effects on the treatment of inflammation and tumors. However, the taraxerol content in medicinal plants is low, and chemical extraction requires considerable energy and time, so taraxerol production is a problem. It is a promising strategy to produce taraxerol by applying recombinant microorganisms. In this study, a Saccharomyces cerevisiae strain WKde2 was constructed to produce taraxerol with a titer of 1.85 mg·L-1, and the taraxerol titer was further increased to 12.51 mg·L-1 through multiple metabolic engineering strategies. The endoplasmic reticulum (ER) size regulatory factor INO2, which was reported to increase squalene and cytochrome P450-mediated 2,3-oxidosqualene production, was overexpressed in this study, and the resultant strain WTK11 showed a taraxerol titer of 17.35 mg·L-1. Eventually, the highest reported titer of 59.55 mg·L-1 taraxerol was achieved in a 5 L bioreactor. These results will serve as a general strategy for the production of other triterpenoids in yeast.
Collapse
Affiliation(s)
- Jinxiu Tan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Huihui Pai
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China.,Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, 300350, PR China.,Georgia Tech Shenzhen Institute, Tianjin University, Tangxing Road 133, Nanshan District, Shenzhen, 518071, PR China
| |
Collapse
|
48
|
Muñoz-Fernández G, Martínez-Buey R, Revuelta JL, Jiménez A. Metabolic engineering of Ashbya gossypii for limonene production from xylose. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:79. [PMID: 35841062 PMCID: PMC9284773 DOI: 10.1186/s13068-022-02176-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/05/2022] [Indexed: 05/28/2023]
Abstract
BACKGROUND Limonene is a cyclic monoterpene that has applications in the food, cosmetic, and pharmaceutical industries. The industrial production of limonene and its derivatives through plant extraction presents important drawbacks such as seasonal and climate issues, feedstock limitations, low efficiency and environmental concerns. Consequently, the implementation of efficient and eco-friendly bioprocesses for the production of limonene and other terpenes constitutes an attractive goal for microbial biotechnology. In this context, novel biocatalysts with the ability to produce limonene from alternative carbon sources will help to meet the industrial demands of limonene. RESULTS Engineered strains of the industrial fungus Ashbya gossypii have been developed to produce limonene from xylose. The limonene synthase (LS) from Citrus limon was initially overexpressed together with the native HMG1 gene (coding for HMG-CoA reductase) to establish a limonene-producing platform from a xylose-utilizing A. gossypii strain. In addition, several strategies were designed to increase the production of limonene. Hence, the effect of mutant alleles of ERG20 (erg20F95W and erg20F126W) were evaluated together with a synthetic orthogonal pathway using a heterologous neryl diphosphate synthase. The lethality of the A. gossypii double mutant erg20F95W-F126W highlights the indispensability of farnesyl diphosphate for the synthesis of essential sterols. In addition, the utilization of the orthogonal pathway, bypassing the Erg20 activity through neryl diphosphate, triggered a substantial increase in limonene titer (33.6 mg/L), without critically altering the fitness of the engineered strain. Finally, the overexpression of the native ERG12 gene further enhanced limonene production, which reached 336.4 mg/L after 96 h in flask cultures using xylose as the carbon source. CONCLUSIONS The microbial production of limonene can be carried out using engineered strains of A. gossypii from xylose-based carbon sources. The utilization of a synthetic orthogonal pathway together with the overexpression of ERG12 is a highly beneficial strategy for the production of limonene in A. gossypii. The strains presented in this work constitute a proof of principle for the production of limonene and other terpenes from agro-industrial wastes such as xylose-rich hydrolysates in A. gossypii.
Collapse
Affiliation(s)
- Gloria Muñoz-Fernández
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Rubén Martínez-Buey
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - José Luis Revuelta
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Alberto Jiménez
- Metabolic Engineering Group, Department of Microbiology and Genetics, Universidad de Salamanca, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| |
Collapse
|
49
|
Peng B, Esquirol L, Lu Z, Shen Q, Cheah LC, Howard CB, Scott C, Trau M, Dumsday G, Vickers CE. An in vivo gene amplification system for high level expression in Saccharomyces cerevisiae. Nat Commun 2022; 13:2895. [PMID: 35610221 PMCID: PMC9130285 DOI: 10.1038/s41467-022-30529-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
Bottlenecks in metabolic pathways due to insufficient gene expression levels remain a significant problem for industrial bioproduction using microbial cell factories. Increasing gene dosage can overcome these bottlenecks, but current approaches suffer from numerous drawbacks. Here, we describe HapAmp, a method that uses haploinsufficiency as evolutionary force to drive in vivo gene amplification. HapAmp enables efficient, titratable, and stable integration of heterologous gene copies, delivering up to 47 copies onto the yeast genome. The method is exemplified in metabolic engineering to significantly improve production of the sesquiterpene nerolidol, the monoterpene limonene, and the tetraterpene lycopene. Limonene titre is improved by 20-fold in a single engineering step, delivering ∼1 g L-1 in the flask cultivation. We also show a significant increase in heterologous protein production in yeast. HapAmp is an efficient approach to unlock metabolic bottlenecks rapidly for development of microbial cell factories.
Collapse
Affiliation(s)
- Bingyin Peng
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia.
- CSIRO Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, 2601, Australia.
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
| | - Lygie Esquirol
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - Zeyu Lu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Qianyi Shen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Li Chen Cheah
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Colin Scott
- CSIRO Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, 2601, Australia
- Biocatalysis and Synthetic Biology Team, CSIRO Land and Water, Black Mountain Science and Innovation Park, Canberra, ACT, 2061, Australia
| | - Matt Trau
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemistry and Molecular Biosciences (SCMB), The University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Claudia E Vickers
- CSIRO Synthetic Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, 2601, Australia.
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
50
|
Zhao C, Wang XH, Lu XY, Zong H, Zhuge B. Tuning Geraniol Biosynthesis via a Novel Decane-Responsive Promoter in Candida glycerinogenes. ACS Synth Biol 2022; 11:1835-1844. [PMID: 35507528 DOI: 10.1021/acssynbio.2c00003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Geraniol is a rose-scented monoterpene with significant commercial and industrial value in medicine, condiments, cosmetics, and bioenergy. Here, we first targeted geraniol as a reporter metabolite and explored the suitability and potential of Candida glycerinogenes as a heterologous host for monoterpenoid production. Subsequently, dual-pathway engineering was employed to improve the production of geraniol with a geraniol titer of 858.4 mg/L. We then applied a synthetic hybrid promoter approach to develop a decane-responsive hybrid promoter based on the native promoter PGAP derived from C. glycerinogenes itself. The hybrid promoter was able to be induced by n-decane with 3.6 times higher transcriptional intensity than the natural promoter PGAP. In particular, the hybrid promoter effectively reduces the conflict between cell growth and product formation in the production of geraniol. Ultimately, 1194.6 mg/L geraniol was obtained at the shake flask level. The strong and tunable decane-responsive hybrid promoter developed in this study provides an important tool for fine regulation of toxic terpenoid production in cells.
Collapse
Affiliation(s)
- Cui Zhao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xi-Hui Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xin-Yao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|