1
|
Saadh MJ, Mustafa MA, Kumar A, Alamir HTA, Kumar A, Khudair SA, Faisal A, Alubiady MHS, Jalal SS, Shafik SS, Ahmad I, Khry FAF, Abosaoda MK. Stealth Nanocarriers in Cancer Therapy: a Comprehensive Review of Design, Functionality, and Clinical Applications. AAPS PharmSciTech 2024; 25:140. [PMID: 38890191 DOI: 10.1208/s12249-024-02843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Nanotechnology has significantly transformed cancer treatment by introducing innovative methods for delivering drugs effectively. This literature review provided an in-depth analysis of the role of nanocarriers in cancer therapy, with a particular focus on the critical concept of the 'stealth effect.' The stealth effect refers to the ability of nanocarriers to evade the immune system and overcome physiological barriers. The review investigated the design and composition of various nanocarriers, such as liposomes, micelles, and inorganic nanoparticles, highlighting the importance of surface modifications and functionalization. The complex interaction between the immune system, opsonization, phagocytosis, and the protein corona was examined to understand the stealth effect. The review carefully evaluated strategies to enhance the stealth effect, including surface coating with polymers, biomimetic camouflage, and targeting ligands. The in vivo behavior of stealth nanocarriers and their impact on pharmacokinetics, biodistribution, and toxicity were also systematically examined. Additionally, the review presented clinical applications, case studies of approved nanocarrier-based cancer therapies, and emerging formulations in clinical trials. Future directions and obstacles in the field, such as advancements in nanocarrier engineering, personalized nanomedicine, regulatory considerations, and ethical implications, were discussed in detail. The review concluded by summarizing key findings and emphasizing the transformative potential of stealth nanocarriers in revolutionizing cancer therapy. This review enhanced the comprehension of nanocarrier-based cancer therapies and their potential impact by providing insights into advanced studies, clinical applications, and regulatory considerations.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq
| | - Ashwani Kumar
- Department of Life Sciences, School of Sciences, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Pharmacy, Vivekananda Global University, Jaipur, Rajasthan, India
| | | | - Abhishek Kumar
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, 247341, Uttar Pradesh, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | | | - Ahmed Faisal
- Department of Pharmacy, Al-Noor University College, Nineveh, Iraq
| | | | - Sarah Salah Jalal
- College of Pharmacy, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Shafik Shaker Shafik
- Experimental Nuclear Radiation Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Faeza A F Khry
- Faculty of pharmacy, department of pharmaceutics, Al-Esraa University, Baghdad, Iraq
| | - Munther Kadhim Abosaoda
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Qadisiyyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Nautiyal G, Sharma SK, Kaushik D, Pandey P. Nano - Based Therapeutic Strategies in Management of Rheumatoid Arthritis. RECENT PATENTS ON NANOTECHNOLOGY 2024; 18:433-456. [PMID: 37904559 DOI: 10.2174/1872210517666230822100324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/23/2023] [Accepted: 07/18/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a chronic autoimmune disease, progressively distinctive via cartilage destruction, auto-antibody production, severe joint pain, and synovial inflammation. Nanotechnology represents as one of the utmost promising scientific technologies of the 21st century. It exhibits remarkable potential in the field of medicine, including imaging techniques and diagnostic tools, drug delivery systems and providing advances in treatment of several diseases with nanosized structures (less than 100 nm). OBJECTIVE Conventional drugs as a cornerstone of RA management including disease-modifying antirheumatic drugs (DMARDS), Glucocorticosteroids, etc are under clinical practice. Nevertheless, their low solubility profile, poor pharmacokinetics behaviour, and non-targeted distribution not only hamper their effectiveness, but also give rise to severe adverse effects which leads to the need for the emergence of nanoscale drug delivery systems. METHODS Several types of nano-diagnostic agents and nanocarriers have been identified; including polymeric nanoparticles (NPs), liposomes, nanogels, metallic NPs, nanofibres, carbon nanotubes, nano fullerene etc. Various patents and clinical trial data have been reported in relevance to RA treatment. RESULTS Nanocarriers, unlike standard medications, encapsulate molecules with high drug loading efficacy and avoid drug leakage and burst release before reaching the inflamed sites. Because of its enhanced targeting specificity with the ability to solubilise hydrophobic drugs, it acts as an enhanced drug delivery system. CONCLUSION This study explores nanoparticles potential role in RA as a carrier for site-specific delivery and its promising strategies to overcome the drawbacks. Hence, it concludes that nanomedicine is advantageous compared with conventional therapy to enhanced futuristic approach.
Collapse
Affiliation(s)
- Gunjan Nautiyal
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Shiv Kant Sharma
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Dhirender Kaushik
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| | - Parijat Pandey
- Department of Pharmaceutical Sciences, Gurugram University, Gurugram, 122018, India
| |
Collapse
|
3
|
Brandão F, Costa C, Bessa MJ, Valdiglesias V, Hellack B, Haase A, Fraga S, Teixeira JP. Multiparametric in vitro genotoxicity assessment of different variants of amorphous silica nanomaterials in rat alveolar epithelial cells. Nanotoxicology 2023; 17:511-528. [PMID: 37855675 DOI: 10.1080/17435390.2023.2265481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
The hazard posed to human health by inhaled amorphous silica nanomaterials (aSiO2 NM) remains uncertain. Herein, we assessed the cyto- and genotoxicity of aSiO2 NM variants covering different sizes (7, 15, and 40 nm) and surface modifications (unmodified, phosphonate-, amino- and trimethylsilyl-modified) on rat alveolar epithelial (RLE-6TN) cells. Cytotoxicity was evaluated at 24 h after exposure to the aSiO2 NM variants by the lactate dehydrogenase (LDH) release and WST-1 reduction assays, while genotoxicity was assessed using different endpoints: DNA damage (single- and double-strand breaks [SSB and DSB]) by the comet assay for all aSiO2 NM variants; cell cycle progression and γ-H2AX levels (DSB) by flow cytometry for those variants that presented higher cytotoxic and DNA damaging potential. The variants with higher surface area demonstrated a higher cytotoxic potential (SiO2_7, SiO2_15_Unmod, SiO2_15_Amino, and SiO2_15_Phospho). SiO2_40 was the only variant that induced significant DNA damage on RLE-6TN cells. On the other hand, all tested variants (SiO2_7, SiO2_15_Unmod, SiO2_15_Amino, and SiO2_40) significantly increased total γ-H2AX levels. At high concentrations (28 µg/cm2), a decrease in G0/G1 subpopulation was accompanied by a significant increase in S and G2/M sub-populations after exposure to all tested materials except for SiO2_40 which did not affect cell cycle progression. Based on the obtained data, the tested variants can be ranked for its genotoxic DNA damage potential as follows: SiO2_7 = SiO2_40 = SiO2_15_Unmod > SiO2_15_Amino. Our study supports the usefulness of multiparametric approaches to improve the understanding on NM mechanisms of action and hazard prediction.
Collapse
Affiliation(s)
- Fátima Brandão
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Carla Costa
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Maria João Bessa
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Vanessa Valdiglesias
- Departamento de Biología, Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía - CICA, A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Bryan Hellack
- Institute of Energy and Environmental Technology (IUTA) e.V, Duisburg, Germany
- German Environment Agency (UBA), Dessau, Germany
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Sónia Fraga
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - João Paulo Teixeira
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| |
Collapse
|
4
|
Kar MR, Kumar S, Acharya TK, Goswami C, Bhaumik S. Highly water-stable, luminescent, and monodisperse polymer-coated CsPbBr 3 nanocrystals for imaging in living cells with better sensitivity. RSC Adv 2023; 13:5946-5956. [PMID: 36816075 PMCID: PMC9936268 DOI: 10.1039/d2ra07019g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Recently, CsPbX3 (X= Cl, Br, I) nanocrystals (NCs) have evolved as a potential contender for various optoelectronic applications due to some of their excellent photophysical properties. Their superior non-linear optical properties enable them to take part in bioimaging applications due to their longer penetration depth and less scattering effect in living cells. However, the poor stability of perovskite NCs in aqueous media still remains a great challenge for practical usage. Comparatively stable silica-coated NCs have a tendency to agglomerate among other NCs and transform into bigger particles. Such big particles clog the inside of narrow channels during the uptake and can't effectively reach the targeted cells. To tackle such issues, we introduce a fast and reproducible synthesis process of CsPbBr3 NCs that are coated with different long-chained organic ligands/polymers and compared their photophysical properties. Among them, polyvinylpyrrolidone (PVP) encapsulated NCs are highly luminescent in the green spectral region and showed a maximum photoluminescence quantum yield (PLQY) of up to 84%. The incorporation of n-isopropyl acrylamide (NIPAM) along with PVP further improves the stability of the PVP-coated NCs against heat and moisture. These NCs exhibit higher water stability compared to silica-coated NCs and maintained their emission properties for about one week in DI water. The smaller particle size, uniform size distribution, higher structural stability, and better dispersivity of polymer-coated NCs in the aqueous media enable them to perform as fluorescent probes for live cell imaging in mammalian Chinese Hamster Ovary (CHO-K1) cells. There is no adverse affect in the cells' viability and morphology even after long incubation periods (∼72 hours). The dosage of Pb-ions contained in the polymer-coated NCs is calculated as below 5 μg mL-1, which is suitable for live cell imaging. This work provides insight for expanding the use of these NCs significantly into bioimaging applications with higher sensitivity.
Collapse
Affiliation(s)
- Manav Raj Kar
- Department of Engineering and Materials Physics, Institute of Chemical Technology-IndianOil Odisha Campus Mouza-Samantapuri Bhubaneswar 751013 Odisha India
| | - Shamit Kumar
- School of Biological Sciences, National Institute of Science Education and ResearchBhubaneswar752050OdishaIndia
| | - Tusar Kanta Acharya
- School of Biological Sciences, National Institute of Science Education and ResearchBhubaneswar752050OdishaIndia
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and ResearchBhubaneswar752050OdishaIndia
| | - Saikat Bhaumik
- Department of Engineering and Materials Physics, Institute of Chemical Technology-IndianOil Odisha Campus Mouza-Samantapuri Bhubaneswar 751013 Odisha India
| |
Collapse
|
5
|
Sachdeva A, Dhawan D, Jain GK, Yerer MB, Collignon TE, Tewari D, Bishayee A. Novel Strategies for the Bioavailability Augmentation and Efficacy Improvement of Natural Products in Oral Cancer. Cancers (Basel) 2022; 15:cancers15010268. [PMID: 36612264 PMCID: PMC9818473 DOI: 10.3390/cancers15010268] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Oral cancer is emerging as a major cause of mortality globally. Oral cancer occupies a significant proportion of the head and neck, including the cheeks, tongue, and oral cavity. Conventional methods in the treatment of cancer involve surgery, radiotherapy, and immunotherapy, and these have not proven to completely eradicate cancerous cells, may lead to the reoccurrence of oral cancer, and possess numerous adverse side effects. Advancements in novel drug delivery approaches have gained popularity in cancer management with an increase in the number of cases associated with oral cancer. Natural products are potent sources for drug discovery, especially for anticancer drugs. Natural product delivery has major challenges due to its low solubility, poor absorption, inappropriate size, instability, poor permeation, and first-pass metabolism. Therefore, it is of prime importance to investigate novel treatment approaches for the delivery of bioactive natural products. Nanotechnology is an advanced method of delivering cancer therapy with minimal damage to normal cells while targeting cancer cells. Therefore, the present review elaborates on the advancements in novel strategies for natural product delivery that lead to the significant enhancement of bioavailability, in vivo activity, and fewer adverse events for the prevention and treatment of oral cancer. Various approaches to accomplish the desired results involve size reduction, surface property modification, and polymer attachment, which collectively result in the higher stability of the formulation.
Collapse
Affiliation(s)
- Alisha Sachdeva
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Dimple Dhawan
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Gaurav K. Jain
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
- Center for Advanced Formulation Development, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Mükerrem Betül Yerer
- Department of Pharmacology, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Taylor E. Collignon
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
- Correspondence: or (D.T.); or (A.B.)
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
- Correspondence: or (D.T.); or (A.B.)
| |
Collapse
|
6
|
Afshar SS, Ziarani GM, Mohajer F, Badiei A, Iravani S, Varma RS. Synthesis of Fumed-Pr-Pi-TCT as a Fluorescent Chemosensor for the Detection of Cyanide Ions in Aqueous Media. WATER 2022; 14:4137. [DOI: 10.3390/w14244137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this research, fumed silica scaffolds modified via treatment with (3-chloropropyl)-triethoxysilane, piperazine, and trichlorotriazine groups were deployed for the specific detection of cyanide ions, thus paving the way for the detection of environmental hazards and pollutants with high specificity. Fumed-propyl -piperazine-trichlorotriazine (fumed-Pr-Pi-TCT) was synthesized in three steps starting from fume silica. It was functionalized subsequently using 3-(choloropropyl)-trimethoxysilane, piperazine, and trichlorotriazine, and then, the product was characterized through several methods including Fourier-transform infrared spectroscopy (FTIR) spectrum, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). Fumed-Pr-Pi-TCT was exposed as a nanoparticle sensor to a range of different anions in aqueous media. This novel sensor could detect cyanide ions as a hazardous material, with the limit of detection being 0.82 × 10−4 M.
Collapse
|
7
|
Fluorescent silica nanoparticles as an internal marker in fruit flies and their effects on survivorship and fertility. Sci Rep 2022; 12:19745. [PMID: 36396856 PMCID: PMC9671903 DOI: 10.1038/s41598-022-24301-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Tracking and differentiating small insects at the individual levels requires appropriate marking materials because of their small size. This study proposes and investigates the use of fluorescent silica nanoparticles (FSNPs) as an internal marker owing to their good optical properties and biocompatibility. FSNPs were prepared using the water-in-oil reverse microemulsion technique with Rubpy dye as a fluorophore. The obtained particles were spherical, monodispersed in nanosize and exhibited bright orange luminescence under ultraviolet (UV) light. Internal marking was accomplished in fruit flies (Drosophila melanogaster) through feeding. The result shows that the fruit flies exhibit bright luminescence in their abdomen when exposed to UV light. The marking persistence duration of FSNPs in the fruit fly bodies is longer than those of other fluorescent dyes. Fruit flies fed with FSNPs have a longer lifespan than those fed with Rubpy dye. There was no difference in fertility and negative geotaxis response among the treatment and control groups. These findings demonstrate that FSNPs can be used as an internal marker in fruit flies, and are possibly applied with other small insects with a translucent abdomen.
Collapse
|
8
|
Liu JY, Sayes CM. A toxicological profile of silica nanoparticles. Toxicol Res (Camb) 2022; 11:565-582. [PMID: 36051665 PMCID: PMC9424711 DOI: 10.1093/toxres/tfac038] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/16/2022] [Accepted: 05/29/2022] [Indexed: 08/02/2023] Open
Abstract
Humans are regularly exposed to silica nanoparticles in environmental and occupational contexts, and these exposures have been implicated in the onset of adverse health effects. Existing reviews on silica nanoparticle toxicity are few and not comprehensive. There are natural and synthetic sources by which crystalline and amorphous silica nanoparticles are produced. These processes influence physiochemical properties, which are factors that can dictate toxicological effects. Toxicological assessment includes exposure scenario (e.g. environmental, occupational), route of exposure, toxicokinetics, and toxicodynamics. Broader considerations include pathology, risk assessment, regulation, and treatment after injury. This review aims to consolidate the most relevant and up-to-date research in these areas to provide an exhaustive toxicological profile of silica nanoparticles.
Collapse
Affiliation(s)
- James Y Liu
- Department of Environmental Science, Baylor University, One Bear Place # 97266, Waco, TX 76798-7266, United States
| | - Christie M Sayes
- Corresponding author: Department of Environmental Science, Baylor University, One Bear Place # 97266, Waco, TX 76798-7266, United States.
| |
Collapse
|
9
|
Malaikolundhan H, Mookkan G, Krishnamoorthi G, Matheswaran N, Alsawalha M, Veeraraghavan VP, Krishna Mohan S, Di A. Anticarcinogenic effect of gold nanoparticles synthesized from Albizia lebbeck on HCT-116 colon cancer cell lines. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:1206-1213. [PMID: 33016139 DOI: 10.1080/21691401.2020.1814313] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Colon cancer is one of the major prevailing types of cancer worldwide. It has been the most important public health difficulty. Thus, we planned phytoconstituents arbitrated synthesis of gold nanoparticles (AuNPs) and examined their curative efficacy against the colon cancer (HCT-116) cells. In this current study, we formulated the AuNPs by using Albizia lebbeck (AL) aqueous leaf extract by the green method and synthesized AL-AuNPs were distinguished by UV-visible spectroscopy (UV-vis), energy dispersive X-ray diffraction (XRD), selected area (electron) diffraction (SAED) pattern, Fourier transform infrared spectroscopy (FTIR) and high-resolution transmission electron microscopy (HR-TEM). Synthesized AL-AuNPs confirmed by the UV absorption highest at 535 nm and the crystal structure of AL-AuNPs was additionally established by XRD and SAED pattern. HR-TEM images explained the size and morphology allocation of nanoparticles. FTIR analysis confirmed the presence of alkynes, aromatic compounds, and alkenes of biomolecules in AL-AuNPs. Furthermore, AL-AuNPs induced cytotoxicity at the IC50 concentration 48 µg/ml and also induced apoptosis by enhanced ROS production, decreased ΔΨm, apoptotic morphological changes by AO/EtBr and altering pro and anti-apoptotic protein expressions were analyzed in HCT-116 colon cancer cells. The findings of this investigation proved that the AL-AuNPs were revealed the potential anticancer activity against colon cancer (HCT-116) cells.
Collapse
Affiliation(s)
| | - Gowsik Mookkan
- Department of Biotechnology, Selvam College of Technology, Namakkal, India
| | | | | | - Murad Alsawalha
- Department of Chemical and Process Engineering Technology, Jubail Industrial College (JIC), Jubail Industrial City, Kingdom of Saudi Arabia
| | - Vishnu Priya Veeraraghavan
- Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Surapaneni Krishna Mohan
- Department of Medical Biochemistry, College of Applied Medical Sciences - Jubail (CAMSJ), Imam Abdulrahman Bin Faisal University, Jubail Industrial City, Kingdom of Saudi Arabia
| | - Aiting Di
- Anorectal Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Naz S, Banerjee T, Totsingan F, Woody K, Gross RA, Santra S. Therapeutic Efficacy of Lactonic Sophorolipids: Nanoceria-Assisted Combination Therapy of NSCLC using HDAC and Hsp90 Inhibitors. Nanotheranostics 2021; 5:391-404. [PMID: 33912379 PMCID: PMC8077971 DOI: 10.7150/ntno.57675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/20/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose: Non-Small-Cell Lung Cancer (NSCLC) has gained resistance to common chemo- and radiotherapy due to the oncogenic K-RAS mutations. In this work, lactonic sophorolipids (LSL), a constituent of natural sophorolipids known to inhibit histone deacetylase (HDAC) activity, is used to evaluate its potential anticancer property for the treatment of NSCLC. In addition, ganetespib (GT), a Hsp90 inhibitor, is used for its known antitumor activity in several K-RAS mutant NSCLC cells. We propose, a functional anti-oxidant nanomedicine composed of nanoceria (NC) encapsulated with two-drug cocktail LSL and GT for the assessment of therapeutic efficacy of LSL and targeted combination therapy of NSCLC. NC is an excellent redox platform specifically used to supplement the therapeutic potency of these drugs to target both HDAC inhibition and Hsp90 signaling pathways in NSCLC. Methods: Polyacrylic acid-coated nanoceria (PNC) was formulated and folic acid was conjugated on the surface of PNC using "click" chemistry to target NSCLC and to minimize adverse side effects. Solvent diffusion method was used for the encapsulation of individual drugs and co-encapsulation of drug-cocktail along with an optical dye DiI for diagnosis. We hypothesized that the therapeutic efficacy of LSL will be synergistically accelerated by the inhibition of Hsp90 mechanism of GT and redox activity of NC. Results: For the targeted therapy of NSCLC, A549 cells were used and Chinese hamster ovary (CHO) cells were used as healthy control cells. Results showed more than 40% cells were dead within 24 h when treated with LSL nanodrug. When combined with GT, enhanced ROS signals were detected and more than 80% reduction in cell viability was recorded within 24 h of incubation. Treatments with NC without any drug showed minimal toxicity. Migration assays indicate that the highly metastatic nature of NSCLC is successfully restricted by this combination approach. To validate the effectiveness of this combination therapy various cell-based assays including detection of apoptosis, necrosis and HDAC inhibition of LSL were performed. Conclusion: Functional nanoceria with drug-cocktail LSL and GT is successfully developed for the targeted treatment of undruggable NSCLC. The fluorescence modality helps monitoring the drugs delivery. Results demonstrate the potential therapeutic efficacy of LSL, which is synergistically accelerated by the Hsp90 inhibition mechanism of GT and redox activity of NC.
Collapse
Affiliation(s)
- Shuguftha Naz
- Department of Chemistry, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Tuhina Banerjee
- Department of Chemistry, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Filbert Totsingan
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Kalee Woody
- Department of Chemistry, Pittsburg State University, Pittsburg, Kansas 66762, United States
| | - Richard A. Gross
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Santimukul Santra
- Department of Chemistry, Pittsburg State University, Pittsburg, Kansas 66762, United States
| |
Collapse
|
11
|
Tian J, Li J, Yin H, Ma L, Zhang J, Zhai Q, Duan S, Zhang L. In vitro and in vivo uterine metabolic disorders induced by silica nanoparticle through the AMPK signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 762:143152. [PMID: 33139001 DOI: 10.1016/j.scitotenv.2020.143152] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/27/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Exposure to silica nanoparticles (SiNPs) has been suggested to cause physical disorders, yet the effects of SiNPs on female reproduction have not been illustrated. This study was implemented to explore the reproductive toxicity of SiNPs on female and reveal its underlying mechanisms. Methodologically, the fluorescein isothiocyanate (FITC)-SiNPs were synthesized by coupling with FITC and then used to track the biodistribution of SiNPs in vitro and in vivo. In total, 30 mice were intratracheally injected 0.25 g of FITC-SiNPs, and 6 mice injected with the same volume of saline were used as controls. The results showed that SiNPs penetrated the cellular membrane, triggering apoptosis and inhibiting proliferation, tube formation, and invasion of trophoblast. Mechanistically, SiNPs was demonstrated to dysregulate Fbp2, Cpt1a, Scd1, and Pfkl, and further induced accumulation of pyruvate and fatty acid in mitochondria through the AMPK signaling pathway, which finally activated the Caspase-3-dependent apoptosis. Consistently, the similar alterations of these genes were detected in vivo, and the uterine inflammatory infiltration aggravated with the extension of the observation duration. These results suggested that SiNPs induced trophoblast apoptosis and uterine inflammation, and ultimately caused acute reproductive toxicity on female. The underlying mechanism might be explained by the dysregulation of Fbp2/Cpt1a/Pfkl/Scd1 axis, which promoted the overload of glucose and lipid through the AMPK signaling pathway. These findings were of great significance to guide a comprehensive understanding of the reproductive toxicity of SiNPs as well as the development of environmental standards.
Collapse
Affiliation(s)
- Jiaqi Tian
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China; School of Public Health, Weifang Medical University, Weifang 261042, China
| | - Junxia Li
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China; School of Public Health, Weifang Medical University, Weifang 261042, China
| | - Haoyu Yin
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China; School of Public Health, Weifang Medical University, Weifang 261042, China
| | - Lan Ma
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China; School of Public Health, Weifang Medical University, Weifang 261042, China
| | - Jing Zhang
- School of Public Health, North China University of Science and Technology, Tangshan 063000, China
| | - Qingfeng Zhai
- School of Public Health, Weifang Medical University, Weifang 261042, China
| | - Shuyin Duan
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China; School of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China.
| |
Collapse
|
12
|
Ramalingam S, Janardhanan Sreeram K, Raghava Rao J. Green light-emitting BSA-conjugated dye supported silica nanoparticles for bio-imaging applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj03848f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BSA conjugated with amine functionalised silica nanoparticles (BSA@DSFN) proved to be an ideal material for long life fluorescent probe for cellular imaging application.
Collapse
Affiliation(s)
- Sathya Ramalingam
- Inorganic and Physical Chemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India
- Leather Process Technology Department, Central Leather Research Institute, Adyar, Chennai 600 020, India
| | | | - Jonnalagadda Raghava Rao
- Inorganic and Physical Chemistry Laboratory, Central Leather Research Institute, Adyar, Chennai 600 020, India
| |
Collapse
|
13
|
Madni A, Rehman S, Sultan H, Khan MM, Ahmad F, Raza MR, Rai N, Parveen F. Mechanistic Approaches of Internalization, Subcellular Trafficking, and Cytotoxicity of Nanoparticles for Targeting the Small Intestine. AAPS PharmSciTech 2020; 22:3. [PMID: 33221968 PMCID: PMC7680634 DOI: 10.1208/s12249-020-01873-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Targeting the small intestine employing nanotechnology has proved to be a more effective way for site-specific drug delivery. The drug targeting to the small intestine can be achieved via nanoparticles for its optimum bioavailability within the systemic circulation. The small intestine is a remarkable candidate for localized drug delivery. The intestine has its unique properties. It has a less harsh environment than the stomach, provides comparatively more retention time, and possesses a greater surface area than other parts of the gastrointestinal tract. This review focuses on elaborating the intestinal barriers and approaches to overcome these barriers for internalizing nanoparticles and adopting different cellular trafficking pathways. We have discussed various factors that contribute to nanocarriers' cellular uptake, including their surface chemistry, surface morphology, and functionalization of nanoparticles. Furthermore, the fate of nanoparticles after their uptake at cellular and subcellular levels is also briefly explained. Finally, we have delineated the strategies that are adopted to determine the cytotoxicity of nanoparticles.
Collapse
Affiliation(s)
- Asadullah Madni
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan.
| | - Sadia Rehman
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Humaira Sultan
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | | | - Faiz Ahmad
- Departments of Mechanical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
| | - M Rafi Raza
- Department of Mechanical Engineering, COMSATS University Islamabad, Sahiwal Campus, Sahiwal, Pakistan
| | - Nadia Rai
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Farzana Parveen
- Department of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| |
Collapse
|
14
|
Xue Y, Lee J, Kim HJ, Cho HJ, Zhou X, Liu Y, Tebon P, Hoffman T, Qu M, Ling H, Jiang X, Li Z, Zhang S, Sun W, Ahadian S, Dokmeci MR, Lee K, Khademhosseini A. Rhodamine Conjugated Gelatin Methacryloyl Nanoparticles for Stable Cell Imaging. ACS APPLIED BIO MATERIALS 2020; 3:6908-6918. [PMID: 35019352 DOI: 10.1021/acsabm.0c00802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fluorescent nanomaterials have been widely used in biological imaging due to their selectivity, sensitivity, and noninvasive nature. These characteristics make the materials suitable for real-time and in situ imaging. However, further development of highly biocompatible nanosystems with long-lasting fluorescent intensity and photostability is needed for advanced bioimaging. We have used electrospraying to generate gelatin methacryloyl (GelMA)-based fluorescent nanoparticles (NPs) with chemically conjugated rhodamine B (RB). The extent of conjugation can be controlled by varying the mass ratio of RB and GelMA precursors to obtain RB-conjugated GelMA (RB-GelMA) NPs with optimal fluorescent properties and particle size. These NPs exhibited superior biocompatibility when compared with pure RB in in vitro cell viability and proliferation assays using multiple cell types. Moreover, RB-GelMA NPs showed enhanced cell internalization and improved brightness compared with unconjugated RB. Our experiments demonstrate that engineered RB-GelMA NPs can be used as a biocompatible fluorescent label for bioimaging.
Collapse
Affiliation(s)
- Yumeng Xue
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States.,Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Junmin Lee
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Han-Jun Kim
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Hyun-Jong Cho
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Xingwu Zhou
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Yaowen Liu
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Peyton Tebon
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Tyler Hoffman
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Moyuan Qu
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Haonan Ling
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Xing Jiang
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States.,School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhikang Li
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States.,School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shiming Zhang
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Wujin Sun
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Samad Ahadian
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States
| | - Mehmet R Dokmeci
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States.,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - KangJu Lee
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States.,Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Ali Khademhosseini
- Department of Bioengineering and Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles , Los Angeles, California 90095, United States.,Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Chemical and Biomolecular Engineering, University of California, Los Angeles Los Angeles, California 90095, United States.,Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| |
Collapse
|
15
|
Dash SR, Kundu CN. Promising opportunities and potential risk of nanoparticle on the society. IET Nanobiotechnol 2020; 14:253-260. [PMID: 32463015 PMCID: PMC8676294 DOI: 10.1049/iet-nbt.2019.0303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 02/12/2020] [Accepted: 02/17/2020] [Indexed: 09/29/2023] Open
Abstract
The ever-promising opportunities and the uses of NP in our life are increasing but their present and future potential risks on the animals, plants and microorganisms are not well discussed elsewhere. In this review, the authors have systematically discussed the toxic effect of the uses of NP on animals, plants and microorganisms including human health. They have also discussed about the bioaccumulation of these NP in the food chain. Finally, they have provided some possible suggestions for the uses of NP to reduce the detrimental effect on the environment.
Collapse
Affiliation(s)
- Somya Ranjan Dash
- Cancer Biology Division, KIIT School of Biotechnology, KIIT (Deemed to be university), Campus-11, Patia, Bhubaneswar 751 024, Odisha, India
| | - Chanakya Nath Kundu
- Cancer Biology Division, KIIT School of Biotechnology, KIIT (Deemed to be university), Campus-11, Patia, Bhubaneswar 751 024, Odisha, India.
| |
Collapse
|
16
|
Halder AK, Melo A, Cordeiro MNDS. A unified in silico model based on perturbation theory for assessing the genotoxicity of metal oxide nanoparticles. CHEMOSPHERE 2020; 244:125489. [PMID: 31812055 DOI: 10.1016/j.chemosphere.2019.125489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/19/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
Nanomaterials (NMs) are an ever-increasing field of interest, due to their wide range of applications in science and technology. However, despite providing solutions to many societal problems and challenges, NMs are associated with adverse effects with potential severe damages towards biological species and their ecosystems. Particularly, it has been confirmed that NMs may induce serious genotoxic effects on various biological targets. Given the difficulties of experimental assays for estimating the genotoxicity of many NMs on diverse biological targets, development of alternative methodologies is crucial to establish their level of safety. In silico modelling approaches, such as Quantitative Structure-Toxicity Relationships (QSTR), are now considered a promising solution for such purpose. In this work, a perturbation theory machine learning (PTML) based QSTR approach is proposed for predicting the genotoxicity of metal oxide NMs under various experimental assay conditions. The application of such perturbation approach to 6084 NM-NM pair cases, set up from 78 unique NMs, afforded a final PTML-QSTR model with an accuracy better than 96% for both training and test sets. This model was then used to predict the genotoxicity of some NMs not included in the modelling dataset. The results for this independent data set were in excellent agreement with the experimental ones. Overall, that thus suggests that the derived PTML-QSTR model is a reliable in silico tool to rapidly and cost-efficiently assess the genotoxicity of metal oxide NMs. Finally, and most importantly, the model provides important insights regarding the mechanism of the genotoxicity triggered by these NMs.
Collapse
Affiliation(s)
- Amit Kumar Halder
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, University of Porto, 4169-007, Porto, Portugal.
| | - André Melo
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, University of Porto, 4169-007, Porto, Portugal
| | - M Natália D S Cordeiro
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, University of Porto, 4169-007, Porto, Portugal.
| |
Collapse
|
17
|
Maurya A, Singh AK, Mishra G, Kumari K, Rai A, Sharma B, Kulkarni GT, Awasthi R. Strategic use of nanotechnology in drug targeting and its consequences on human health: A focused review. Interv Med Appl Sci 2019; 11:38-54. [PMID: 32148902 PMCID: PMC7044564 DOI: 10.1556/1646.11.2019.04] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 01/03/2019] [Accepted: 01/28/2019] [Indexed: 02/06/2023] Open
Abstract
Since the development of first lipid-based nanocarrier system, about 15% of the present pharmaceutical market uses nanomedicines to achieve medical benefits. Nanotechnology is an advanced area to meliorate the delivery of compounds for improved medical diagnosis and curing disease. Nanomedicines are gaining significant interest due to the ultra small size and large surface area to mass ratio. In this review, we discuss the potential of nanotechnology in delivering of active moieties for the disease therapy including their toxicity evidences. This communication will help the formulation scientists in understanding and exploring the new aspects of nanotechnology in the field of nanomedicine.
Collapse
Affiliation(s)
- Anand Maurya
- Faculty of Ayurveda, Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Anurag Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Gaurav Mishra
- Faculty of Ayurveda, Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Komal Kumari
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| | - Arati Rai
- Department of Pharmacy, Hygia Institute of Pharmaceutical Education and Research, Lucknow, India
| | - Bhupesh Sharma
- Amity Institute of Pharmacy, Amity University, Noida, India
| | | | | |
Collapse
|
18
|
Kallu J, Banerjee T, Sulthana S, Darji S, Higginbotham R, Fletcher C, Gerasimchuk NN, Santra S. Nanomedicine-Assisted Combination Therapy of NSCLC: New Platinum-Based Anticancer Drug Synergizes the Therapeutic Efficacy of Ganetespib. Nanotheranostics 2019; 3:120-134. [PMID: 30899640 PMCID: PMC6427934 DOI: 10.7150/ntno.28468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 11/09/2018] [Indexed: 01/18/2023] Open
Abstract
Purpose: K-RAS is the most common mutated oncogene associated with Non-Small-Cell Lung Cancer (NSCLC). So far, there are no promising chemotherapies for the direct inhibition of K-RAS, and considered to be undruggable. In this work, we have introduced a new platinum-based cyanoximate complex, Pt(MCO)2, as an anti-cancer drug to enhance the therapeutic efficacy of Hsp90 inhibitor drug, ganetespib for the combination therapy of NSCLC. Methods: We have synthesized polyacrylic acid (PAA)-coated magnetic nanoparticles (MNPs) and used as drug delivery system. These MNPs were decorated with folic acid in order to target folate receptor-expressing NSCLC. The individual and combination of drugs as well as an optical dye DiI were co-encapsulated successfully inside the PAA-coating of MNPs to evaluate synergistic treatment option for NSCLC. The magnetic resonance (MR) and optical imaging modalities assisted for the monitoring drug loading and NSCLC treatment. Results: To evaluate the therapeutic efficacy of these customized MNPs, various cell-based assays including cell viability, apoptosis and necrosis, cell migration, comet and ROS experiments were performed. Results showed minimal toxicity for functional MNPs with no therapeutic drug and more than 60% cell death within 48 h of treatment, when single drug was encapsulated. Importantly, more than 90% cells were dead when both drugs were delivered. Overall, the results indicated that the Pt(MCO)2 drug enhances the therapeutic efficacy of ganetespib by more than 30% toxicity towards the targeted treatment of NSCLC, while showed minimal toxicity to the normal healthy tissues. Conclusion: We successfully developed new dual-modal magnetic nanomedicines for the rapid and controlled release of combination of drugs for the effective treatment of NSCLC. The MR and fluorescence modalities help monitoring the delivery of drugs, where the new platinum-based drug Pt(MCO)2 synergizes the therapeutic efficacy of ganetespib.
Collapse
Affiliation(s)
- Jyothi Kallu
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, Kansas 66762, United States
| | - Tuhina Banerjee
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, Kansas 66762, United States
| | - Shoukath Sulthana
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, Kansas 66762, United States
| | - Saloni Darji
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, Kansas 66762, United States
| | - Ryan Higginbotham
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, Kansas 66762, United States
| | - Christina Fletcher
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, Kansas 66762, United States
| | - Nikolay N. Gerasimchuk
- Department of Chemistry, Missouri State University, 901 S. National Ave, Springfield, Missouri 65897, United States
| | - Santimukul Santra
- Department of Chemistry, Pittsburg State University, 1701 S. Broadway Street, Pittsburg, Kansas 66762, United States
| |
Collapse
|
19
|
Yazdimamaghani M, Moos PJ, Dobrovolskaia MA, Ghandehari H. Genotoxicity of amorphous silica nanoparticles: Status and prospects. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 16:106-125. [PMID: 30529789 PMCID: PMC6455809 DOI: 10.1016/j.nano.2018.11.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/19/2018] [Accepted: 11/27/2018] [Indexed: 12/11/2022]
Abstract
Amorphous silica nanoparticles (SNPs) are widely used in biomedical applications and consumer products. Little is known, however, about their genotoxicity and potential to induce gene expression regulation. Despite recent efforts to study the underlying mechanisms of genotoxicity of SNPs, inconsistent results create a challenge. A variety of factors determine particle-cell interactions and underlying mechanisms. Further, high-throughput studies are required to carefully assess the impact of silica nanoparticle physicochemical properties on induction of genotoxic response in different cell lines and animal models. In this article, we review the strategies available for evaluation of genotoxicity of nanoparticles (NPs), survey current status of silica nanoparticle gene alteration and genotoxicity, discuss particle-mediated inflammation as a contributing factor to genotoxicity, identify existing gaps and suggest future directions for this research.
Collapse
Affiliation(s)
- Mostafa Yazdimamaghani
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, United States; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, United States
| | - Philip J Moos
- Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, United States; Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, United States
| | - Hamidreza Ghandehari
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah, United States; Utah Center for Nanomedicine, Nano Institute of Utah, University of Utah, Salt Lake City, Utah, United States; Department of Bioengineering, University of Utah, Salt Lake City, Utah, United States.
| |
Collapse
|
20
|
Tsao CJ, Pandolfi L, Wang X, Minardi S, Lupo C, Evangelopoulos M, Hendrickson T, Shi A, Storci G, Taraballi F, Tasciotti E. Electrospun Patch Functionalized with Nanoparticles Allows for Spatiotemporal Release of VEGF and PDGF-BB Promoting In Vivo Neovascularization. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44344-44353. [PMID: 30511828 DOI: 10.1021/acsami.8b19975] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The use of nanomaterials as carriers for the delivery of growth factors has been applied to a multitude of applications in tissue engineering. However, issues of toxicity, stability, and systemic effects of these platforms have yet to be fully understood, especially for cardiovascular applications. Here, we proposed a delivery system composed of poly(dl-lactide- co-glycolide) acid (PLGA) and porous silica nanoparticles (pSi) to deliver vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF). The tight spatiotemporal release of these two proteins has been proven to promote neovascularization. In order to minimize tissue toxicity, localize the release, and maintain a stable platform, we conjugated two formulations of PLGA-pSi to electrospun (ES) gelatin to create a combined ES patch releasing both PDGF and VEGF. When compared to freely dispersed particles, the ES patch cultured in vitro with neonatal cardiac cells had significantly less particle internalization (2.0 ± 1.3%) compared to free PLGA-pSi (21.5 ± 6.1) or pSi (28.7 ± 2.5) groups. Internalization was positively correlated to late-stage apoptosis with PLGA-pSi and pSi groups having increased apoptosis compared to the untreated group. When implanted subcutaneously, the ES patch was shown to have greater neovascularization than controls evidenced by increased expression of α-SMA and CD31 after 21 days. Quantitative reverse transcription-polymerase chain reaction results support increased angiogenesis by the upregulation of VEGFA, VEGFR2, vWF, and COL3A1, exhibiting a synergistic effect with the release of VEGF-A164 and PDGF-BB after 21 days in vivo. The results of this study proved that the ES patch reduced cellular toxicity and may be tailored to have a dual release of growth factors promoting localized neovascularization.
Collapse
Affiliation(s)
- Christopher J Tsao
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Laura Pandolfi
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Xin Wang
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Silvia Minardi
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Cristina Lupo
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Michael Evangelopoulos
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Troy Hendrickson
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
- MD/PhD Program , Texas A&M College of Medicine , 8441 Riverside Parkway , Bryan , Texas 77807 , United States
| | - Aaron Shi
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Gianluca Storci
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
| | - Francesca Taraballi
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
- Houston Methodist Orthopedics & Sports Medicine , Houston Methodist Hospital , 6550 Fannin Street , Houston , Texas 77030 , United States
| | - Ennio Tasciotti
- Center for Biomimetic Medicine , Houston Methodist Research Institute , 6670 Bertner Avenue , Houston , Texas 77030 , United States
- Houston Methodist Orthopedics & Sports Medicine , Houston Methodist Hospital , 6550 Fannin Street , Houston , Texas 77030 , United States
| |
Collapse
|
21
|
Zhou L, Jin Z, Fan X, Yao Y, Chen Z, Zhang W, Qian J. Synthesis of 1,8-naphthalimide-based fluorescent nano-probes and their application in pH detection. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Fokkema J, Fermie J, Liv N, van den Heuvel DJ, Konings TOM, Blab GA, Meijerink A, Klumperman J, Gerritsen HC. Fluorescently Labelled Silica Coated Gold Nanoparticles as Fiducial Markers for Correlative Light and Electron Microscopy. Sci Rep 2018; 8:13625. [PMID: 30206379 PMCID: PMC6133918 DOI: 10.1038/s41598-018-31836-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/22/2018] [Indexed: 11/09/2022] Open
Abstract
In this work, gold nanoparticles coated with a fluorescently labelled (rhodamine B) silica shell are presented as fiducial markers for correlative light and electron microscopy (CLEM). The synthesis of the particles is optimized to obtain homogeneous, spherical core-shell particles of arbitrary size. Next, particles labelled with different fluorophore densities are characterized to determine under which conditions bright and (photo)stable particles can be obtained. 2 and 3D CLEM examples are presented where optimized particles are used for correlation. In the 2D example, fiducials are added to a cryosection of cells whereas in the 3D example cells are imaged after endocytosis of the fiducials. Both examples demonstrate that the particles are clearly visible in both modalities and can be used for correlation. Additionally, the recognizable core-shell structure of the fiducials proves to be very powerful in electron microscopy: it makes it possible to irrefutably identify the particles and makes it easy to accurately determine the center of the fiducials.
Collapse
Affiliation(s)
- Jantina Fokkema
- Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Job Fermie
- Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Nalan Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Dave J van den Heuvel
- Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Tom O M Konings
- Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Gerhard A Blab
- Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Andries Meijerink
- Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands
| | - Judith Klumperman
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Hans C Gerritsen
- Soft Condensed Matter and Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
23
|
Yao J, Li P, Li L, Yang M. Biochemistry and biomedicine of quantum dots: from biodetection to bioimaging, drug discovery, diagnostics, and therapy. Acta Biomater 2018; 74:36-55. [PMID: 29734008 DOI: 10.1016/j.actbio.2018.05.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/19/2018] [Accepted: 05/02/2018] [Indexed: 12/30/2022]
Abstract
According to recent research, nanotechnology based on quantum dots (QDs) has been widely applied in the field of bioimaging, drug delivery, and drug analysis. Therefore, it has become one of the major forces driving basic and applied research. The application of nanotechnology in bioimaging has been of concern. Through in vitro labeling, it was found that luminescent QDs possess many properties such as narrow emission, broad UV excitation, bright fluorescence, and high photostability. The QDs also show great potential in whole-body imaging. The QDs can be combined with biomolecules, and hence, they can be used for targeted drug delivery and diagnosis. The characteristics of QDs make them useful for application in pharmacy and pharmacology. This review focuses on various applications of QDs, especially in imaging, drug delivery, pharmaceutical analysis, photothermal therapy, biochips, and targeted surgery. Finally, conclusions are made by providing some critical challenges and a perspective of how this field can be expected to develop in the future. STATEMENT OF SIGNIFICANCE Quantum dots (QDs) is an emerging field of interdisciplinary subject that involves physics, chemistry, materialogy, biology, medicine, and so on. In addition, nanotechnology based on QDs has been applied in depth in biochemistry and biomedicine. Some forward-looking fields emphatically reflected in some extremely vital areas that possess inspiring potential applicable prospects, such as immunoassay, DNA analysis, biological monitoring, drug discovery, in vitro labelling, in vivo imaging, and tumor target are closely connected to human life and health and has been the top and forefront in science and technology to date. Furthermore, this review has not only involved the traditional biochemical detection but also particularly emphasized its potential applications in life science and biomedicine.
Collapse
|
24
|
Younes M, Aggett P, Aguilar F, Crebelli R, Dusemund B, Filipič M, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, Kuhnle GG, Leblanc JC, Lillegaard IT, Moldeus P, Mortensen A, Oskarsson A, Stankovic I, Waalkens-Berendsen I, Woutersen RA, Wright M, Boon P, Chrysafidis D, Gürtler R, Mosesso P, Parent-Massin D, Tobback P, Kovalkovicova N, Rincon AM, Tard A, Lambré C. Re-evaluation of silicon dioxide (E 551) as a food additive. EFSA J 2018; 16:e05088. [PMID: 32625658 PMCID: PMC7009582 DOI: 10.2903/j.efsa.2018.5088] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) provides a scientific opinion re-evaluating the safety of silicon dioxide (E 551) when used as a food additive. The forms of synthetic amorphous silica (SAS) used as E 551 include fumed silica and hydrated silica (precipitated silica, silica gel and hydrous silica). The Scientific Committee on Food (SCF) established a group acceptable daily intake (ADI) 'not specified' for silicon dioxide and silicates. SAS materials used in the available biological and toxicological studies were different in their physicochemical properties; their characteristics were not always described in sufficient detail. Silicon dioxide appears to be poorly absorbed. However, silicon-containing material (in some cases presumed to be silicon dioxide) was found in some tissues. Despite the limitations in the subchronic, reproductive and developmental toxicological studies, including studies with nano silicon dioxide, there was no indication of adverse effects. E 551 does not raise a concern with respect to genotoxicity. In the absence of a long-term study with nano silicon dioxide, the Panel could not extrapolate the results from the available chronic study with a material, which does not cover the full-size range of the nanoparticles that could be present in the food additive E 551, to a material complying with the current specifications for E 551. These specifications do not exclude the presence of nanoparticles. The highest exposure estimates were at least one order of magnitude lower than the no observed adverse effect levels (NOAELs) identified (the highest doses tested). The Panel concluded that the EU specifications are insufficient to adequately characterise the food additive E 551. Clear characterisation of particle size distribution is required. Based on the available database, there was no indication for toxicity of E 551 at the reported uses and use levels. Because of the limitations in the available database, the Panel was unable to confirm the current ADI 'not specified'. The Panel recommended some modifications of the EU specifications for E 551.
Collapse
|
25
|
Abstract
This chapter presents an outline of the recent available information regarding safety, toxicity, and efficacy of nano drug delivery systems. Of particular importance is the evaluation of several key factors to design nontoxic and effective nanoformulations. Among them, we focus on nanostructure materials and synthesis methods, mechanisms of interactions with biological systems, treatment of nanoparticles, manufacture impurities, and nanostability. Emphasis is given to in silico, in vitro, and in vivo models used to assess and predict the toxicity of these new formulations. Additionally, some examples of in vitro and in vivo studies of specific nanoderivatives are also presented in this chapter.
Collapse
|
26
|
Yang H, Li W, Zhang Y, Li M, Gao Y, Lao C, Shi B. Regulatory role of miR-18a to CCN2 by TGF-β1 signaling pathway in pulmonary injury induced by nano-SiO 2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:867-876. [PMID: 29067610 DOI: 10.1007/s11356-017-0344-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
This research is designed to investigate the regulatory effect of miR-18a to the target gene connective tissue growth factor (CTGF, or CCN2), by participating in TGF-β1 signaling pathway and explore the pathogenic mechanism of miR-18a in pulmonary injury induced by nano-SiO2 based on our early study. miR-18a and expression of TGF-β1 in Chinese hamster lung (CHL) fibroblasts cells stimulated by supernatants of NR8383 cells exposed to 40 μg/ml nano-SiO2 for 24 h demonstrated 1.58 ± 0.22-fold and 1096.00 ± 2.60 pg/ml increase compared with blank control group analyzed by real-time quantitative PCR (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Expression increase of miR-18a and reduction of CCN2 mRNA expression levels and protein gray value ratio detected by Western blotting in CHL cells transfect miR-18a mimics for 48 h. The reverse of CHL cell transfection miR-18a inhibit is also true. The result of miR-18a and CCN2 binding sites tested by luciferase reporter gene assay shows that the report relative fluorescence value of miR-18a mimics wild type on CCN2 is 0.50 ± 0.02 with the control of mimics NC and mutant relative fluorescence report value 0.86 ± 0.04 (P < 0.05). Expression levels of miR-18a, CCN2 mRNA, and protein gray value ratio decreased in CHL cells treated by TGF-β1, respectively, and vice versa treated by TGF-β1corepressor. The results suggest that CCN2 is the target gene regulated by miR-18a and miR-18a participates in TGF-β1 signaling pathway by regulating the expression of CCN2 negatively through CCN2 3'UTR site, and thus may be involved in the development process of pulmonary injury.
Collapse
Affiliation(s)
- Hong Yang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China.
| | - Wenchao Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Yingjian Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Mingyue Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Ying Gao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Canshan Lao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| | - Bing Shi
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
27
|
Qiao Z, Chen Z, Zhang S, Cui Z, Xu Z, Zhang W, Qian J. Naphthalimide-based fluorescent nanoprobes for the detection of saccharides. NEW J CHEM 2018. [DOI: 10.1039/c8nj03053g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescent nano probes with different sizes were synthesized for saccharides. The particle size is a major factor that affects the performance.
Collapse
Affiliation(s)
- Zichun Qiao
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhaoyang Chen
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Shuo Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zepeng Cui
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Zhuoran Xu
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Junhong Qian
- Shanghai Key Laboratory of Functional Materials Chemistry
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
28
|
Efeoglu E, Maher MA, Casey A, Byrne HJ. Toxicological assessment of nanomaterials: the role of in vitro Raman microspectroscopic analysis. Anal Bioanal Chem 2017; 410:1631-1646. [DOI: 10.1007/s00216-017-0812-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/22/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022]
|
29
|
|
30
|
Alarcos N, Cohen B, Ziółek M, Douhal A. Photochemistry and Photophysics in Silica-Based Materials: Ultrafast and Single Molecule Spectroscopy Observation. Chem Rev 2017; 117:13639-13720. [PMID: 29068670 DOI: 10.1021/acs.chemrev.7b00422] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Silica-based materials (SBMs) are widely used in catalysis, photonics, and drug delivery. Their pores and cavities act as hosts of diverse guests ranging from classical dyes to drugs and quantum dots, allowing changes in the photochemical behavior of the confined guests. The heterogeneity of the guest populations as well as the confinement provided by these hosts affect the behavior of the formed hybrid materials. As a consequence, the observed reaction dynamics becomes significantly different and complex. Studying their photobehavior requires advanced laser-based spectroscopy and microscopy techniques as well as computational methods. Thanks to the development of ultrafast (spectroscopy and imaging) tools, we are witnessing an increasing interest of the scientific community to explore the intimate photobehavior of these composites. Here, we review the recent theoretical and ultrafast experimental studies of their photodynamics and discuss the results in comparison to those in homogeneous media. The discussion of the confined dynamics includes solvation and intra- and intermolecular proton-, electron-, and energy transfer events of the guest within the SBMs. Several examples of applications in photocatalysis, (photo)sensors, photonics, photovoltaics, and drug delivery demonstrate the vast potential of the SBMs in modern science and technology.
Collapse
Affiliation(s)
- Noemí Alarcos
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| | - Boiko Cohen
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| | - Marcin Ziółek
- Quantum Electronics Laboratory, Faculty of Physics, Adam Mickiewicz University , Umultowska 85, 61-614 Poznań, Poland
| | - Abderrazzak Douhal
- Departamento de Química Física, Facultad de Ciencias Ambientales y Bioquímica, and INAMOL, Universidad de Castilla-La Mancha , Avenida Carlos III, S.N., 45071 Toledo, Spain
| |
Collapse
|
31
|
Pandey RK, Prajapati VK. Molecular and immunological toxic effects of nanoparticles. Int J Biol Macromol 2017; 107:1278-1293. [PMID: 29017884 DOI: 10.1016/j.ijbiomac.2017.09.110] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/21/2017] [Accepted: 09/27/2017] [Indexed: 02/07/2023]
Abstract
Nanoparticles have emerged as a boon for the public health applications such as drug delivery, diagnostic, and imaging. Biodegradable and non-bio degradable nanoparticles have been used at a large scale level to increase the efficiency of the biomedical process at the cellular, animal and human level. Exponential use of nanoparticles reinforces the adverse immunological changes at the human health level. Physical and chemical properties of nanoparticles often lead to a variety of immunotoxic effects such as activation of stress-related genes, membrane disruption, and release of pro-inflammatory cytokines. Delivered nanoparticles in animal or human interact with various components of the immune system such as lymphocytes, macrophages, neutrophils etc. Nanoparticles delivered above the threshold level damages the cellular physiology by the generation of reactive oxygen and nitrogen species. This review article represents the potential of nanoparticles in the field of nanomedicine and provides the critical evidence which leads to develop immunotoxicity in living cells and organisms by altering immunological responses.
Collapse
Affiliation(s)
- Rajan Kumar Pandey
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh, 305817, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Kishangarh, 305817, Ajmer, Rajasthan, India.
| |
Collapse
|
32
|
Yao J, Li L, Li P, Yang M. Quantum dots: from fluorescence to chemiluminescence, bioluminescence, electrochemiluminescence, and electrochemistry. NANOSCALE 2017; 9:13364-13383. [PMID: 28880034 DOI: 10.1039/c7nr05233b] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
During the past decade, nanotechnology has become one of the major forces driving basic and applied research. As a novel class of inorganic fluorochromes, research into quantum dots (QDs) has become one of the fastest growing fields of nanotechnology today. QDs are made of a semiconductor material with tunable physical dimensions as well as unique optoelectronic properties, and have attracted multidisciplinary research efforts to further their potential bioanalytical applications. Recently, numerous optical properties of QDs, such as narrow emission band peaks, broad absorption spectra, intense signals, and remarkable resistance to photobleaching, have made them biocompatible and sensitive for biological assays. In this review, we give an overview of these exciting materials and describe their potential, especially in biomolecules analysis, including fluorescence detection, chemiluminescence detection, bioluminescence detection, electrochemiluminescence detection, and electrochemical detection. Finally, conclusions are made, including highlighting some critical challenges remaining and a perspective of how this field can be expected to develop in the future.
Collapse
Affiliation(s)
- Jun Yao
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500, People's Republic of China.
| | | | | | | |
Collapse
|
33
|
Yang X, Liu X, Li Y, Huang Q, He W, Zhang R, Feng Q, Benayahu D. The negative effect of silica nanoparticles on adipogenic differentiation of human mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 81:341-348. [PMID: 28887982 DOI: 10.1016/j.msec.2017.07.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 06/23/2017] [Accepted: 07/27/2017] [Indexed: 02/06/2023]
Abstract
Nanoparticles have drawn much attention for a wide variety of applications in biomedical and bioengineering fields. The combined use of nanoparticles and human mesenchymal stem cells (hMSCs) in tissue engineering and regenerative medicine requires more knowledge of the influence of nanoparticles on cell viability and differentiation potential of hMSCs. The objective of this study is to investigate the in vitro uptake of silica nanoparticles (silica NPs) and their effect on adipogenic differentiation of hMSCs. After exposure of hMSCs to silica NPs, the uptake and localization of silica NPs were assessed using transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM). The adipogenic differentiation potential of hMSCs was examined by analyzing the formation and accumulation of lipids droplets, triglyceride (TG) content and the expression of adipogenic marker genes/proteins. The results showed that silica NPs did not affect the cell viability but significantly decreased the differentiation of hMSCs to adipocytes. These findings improve the understanding of the influence of silica NPs on adipogenic differentiation of hMSCs and will provide a reference for the applications of silica NPs in biomedical and bioengineering fields.
Collapse
Affiliation(s)
- Xing Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Xujie Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
| | - Yuanyuan Li
- Department of Stomatology, Shengli Oilfield Central Hospital, Dongying 257034, China
| | - Qianli Huang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Wei He
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ranran Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Qingling Feng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; Key Laboratory of Advanced Materials of Ministry of Education of China, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Dafna Benayahu
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
34
|
Matter MT, Starsich F, Galli M, Hilber M, Schlegel AA, Bertazzo S, Pratsinis SE, Herrmann IK. Developing a tissue glue by engineering the adhesive and hemostatic properties of metal oxide nanoparticles. NANOSCALE 2017; 9:8418-8426. [PMID: 28604885 DOI: 10.1039/c7nr01176h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite decades of research, wound complications remain a major cause of postoperative mortality, especially in the face of multiple comorbidities. Addressing the issue of anastomotic leakages and impaired wound healing from a new angle is of great interest with the prospect of having direct impact on patient outcome. Recently, aqueous suspensions of silica and iron oxide nanoparticles have been employed to connect biological tissue by serving as an adhesive layer eventually leading to macroscopic gluing of tissue. In this work, we explore the prospects of this effect by introducing bioactive tissue adhesives composed of nanoparticles produced via scalable and sterile flame spray pyrolysis. We investigate six different metal oxides on cytocompatibility, hemostatic activity and adhesive properties in a small intestine lap joint model. While bioglass nanoparticles show exceptionally strong procoagulant and adhesive properties, the cell membrane integrity is impaired at high particle concentrations. Interestingly, when bioglass is combined with ceria, a material that has well-documented cytoprotective effects, the resulting hybrid particles exhibit the same beneficiary effects as bioglass while featuring superior cytocompatibility. Taken together, we demonstrate highly modular synthesis of nanoparticles expressing adhesive properties in conjunction with tailored bioactivity. Such bioactive nanoparticles as adhesion nuclei in wound healing have a wide range of potential applications in surgical wound care and regenerative medicine.
Collapse
Affiliation(s)
- Martin T Matter
- Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), Lerchenfeldstrasse 5, 9014, St Gallen, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Premshekharan G, Nguyen K, Zhang H, Forman HJ, Leppert VJ. Low dose inflammatory potential of silica particles in human-derived THP-1 macrophage cell culture studies - Mechanism and effects of particle size and iron. Chem Biol Interact 2017; 272:160-171. [PMID: 28512001 DOI: 10.1016/j.cbi.2017.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 04/22/2017] [Accepted: 05/03/2017] [Indexed: 11/16/2022]
Abstract
Silica and iron are major constituents in ambient particulate matter, and iron is a common impurity in many engineered nanomaterials. The purpose of this work was to determine the pro-inflammatory and other biological effects and mechanism of particle size and iron presence under low dose, non-cytotoxic conditions that are likely to approximate actual exposure levels, in contrast with higher dose studies in which cytotoxicity occurs. Specifically, human-derived THP-1 macrophages were exposed to 1 μg/ml of pristine and iron-coated 50 nm and 2 μm engineered silica nanoparticles. Particles were first characterized for size, size distribution, surface area, iron concentration, phase and aggregation in cell culture media. Then, biological assays were conducted to determine a non-lethal dose used in subsequent experiments. Superoxide production, lipid peroxidation, and increased pro-inflammatory cytokine (TNF-α and IL-1β) mRNA expression were measured as a function of particle size and iron presence. Smaller particle size and the presence of iron increased superoxide production, lipid peroxidation, and the induction of pro-inflammatory cytokine mRNA expression. Separate addition of an iron-chelator, a scavenger of superoxide and hydrogen peroxide, and an inhibitor of phosphatidylcholine specific phospholipase C (PC-PLC), suppressed the increase in cytokine mRNA expression. Furthermore, free iron itself showed none of the aforementioned effects. The results highlight the importance of particle size and iron in lung inflammation for both natural and engineered nanomaterials, under low dose, non-toxic conditions, and support the role of an oxidant, lipid peroxidation and PC-PLC dependent inflammatory mechanism.
Collapse
Affiliation(s)
- Gayatri Premshekharan
- School of Engineering, University of California, 5200 N. Lake Rd., Merced, CA 95343, United States
| | - Kennedy Nguyen
- School of Engineering, University of California, 5200 N. Lake Rd., Merced, CA 95343, United States
| | - Hongqiao Zhang
- School of Natural Sciences, University of California, 5200 N. Lake Rd., Merced, CA 95343, United States; Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089, United States
| | - Henry Jay Forman
- School of Natural Sciences, University of California, 5200 N. Lake Rd., Merced, CA 95343, United States; Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA 90089, United States
| | - Valerie Jean Leppert
- School of Engineering, University of California, 5200 N. Lake Rd., Merced, CA 95343, United States.
| |
Collapse
|
36
|
Di Paola M, Quarta A, Conversano F, Sbenaglia EA, Bettini S, Valli L, Gigli G, Casciaro S. Human Hepatocarcinoma Cell Targeting by Glypican-3 Ligand Peptide Functionalized Silica Nanoparticles: Implications for Ultrasound Molecular Imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:4490-4499. [PMID: 28420236 DOI: 10.1021/acs.langmuir.7b00327] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Silica nanoparticles (SiNPs) are widely studied nanomaterials for their potential employment in advanced biomedical applications, such as selective molecular imaging and targeted drug delivery. SiNPs are generally low cost and highly biocompatible, can be easily functionalized with a wide variety of functional ligands, and have been demonstrated to be effective in enhancing ultrasound contrast at clinical diagnostic frequencies. Therefore, SiNPs might be used as contrast agents in echographic imaging. In this work, we have developed a SiNPs-based system for the in vitro molecular imaging of hepatocellular carcinoma cells that express high levels of glypican-3 protein (GPC-3) on their surface. In this regard, a novel GPC-3 targeting peptide was designed and conjugated to fluorescent silica nanoparticles. The physicochemical properties, acoustic behavior, and biocompatibility profile of the functionalized SiNPs were characterized; then binding and uptake of both naked and functionalized SiNPs were analyzed by laser scanning confocal microscopy and transmission electron microscopy in GPC-3 positive HepG2 cells, a human hepatocarcinoma cell line. The results obtained showed that GPC-3-functionalized fluorescent SiNPs significantly enhanced the ultrasound contrast and were effectively bound and taken up by HepG2 cells without affecting their viability.
Collapse
Affiliation(s)
- Marco Di Paola
- Institute of Clinical Physiology, National Research Council , c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Alessandra Quarta
- Institute of Clinical Physiology, National Research Council , c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Francesco Conversano
- Institute of Clinical Physiology, National Research Council , c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Enzo Antonio Sbenaglia
- Institute of Clinical Physiology, National Research Council , c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Simona Bettini
- Institute of Clinical Physiology, National Research Council , c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Ludovico Valli
- Institute of Clinical Physiology, National Research Council , c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Giuseppe Gigli
- Institute of Clinical Physiology, National Research Council , c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Sergio Casciaro
- Institute of Clinical Physiology, National Research Council , c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
37
|
Martins Estevão B, Miletto I, Marchese L, Gianotti E. Optimized Rhodamine B labeled mesoporous silica nanoparticles as fluorescent scaffolds for the immobilization of photosensitizers: a theranostic platform for optical imaging and photodynamic therapy. Phys Chem Chem Phys 2017; 18:9042-52. [PMID: 26967375 DOI: 10.1039/c6cp00906a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A highly efficient bifunctional mesoporous silica nanodevice coupling optical imaging with photodynamic therapy (PDT) was successfully prepared by using Rhodamine B as a contrast agent and verteporfin as a photosensitizer. The precise localization and high dispersion of the contrast agent in the nanoparticles is the key point to get higher fluorescence quantum yields with respect to the fluorophore in solution. To obtain this information photoluminescence spectroscopy coupled with fluorescence lifetime measurements was used, due to its high sensitivity. The bifunctional nanodevice showed good performances both in terms of quantum yield of the anchored Rhodamine B (Φ(RhB) = 0.55) and the singlet oxygen delivery efficiency for PDT applications.
Collapse
Affiliation(s)
- B Martins Estevão
- Department of Science and Technological Innovation and Nano-SiSTeMI Centre, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy. and Nucleos Research of Photodynamic Therapy, Chemistry Department, State University of Maringá, Av. Colombo 5.790, 87020-900, Maringá, Paraná, Brazil
| | - I Miletto
- Department of Science and Technological Innovation and Nano-SiSTeMI Centre, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - L Marchese
- Department of Science and Technological Innovation and Nano-SiSTeMI Centre, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| | - E Gianotti
- Department of Science and Technological Innovation and Nano-SiSTeMI Centre, Università del Piemonte Orientale, Viale T. Michel 11, 15121 Alessandria, Italy.
| |
Collapse
|
38
|
Santha Moorthy M, Subramanian B, Panchanathan M, Mondal S, Kim H, Lee KD, Oh J. Fucoidan-coated core–shell magnetic mesoporous silica nanoparticles for chemotherapy and magnetic hyperthermia-based thermal therapy applications. NEW J CHEM 2017. [DOI: 10.1039/c7nj03211k] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fucoidan-coated FeNP@SiOH@Fuc NPs have been proposed for chemotherapy and thermal therapy applications in emerging cancer therapy.
Collapse
Affiliation(s)
- Madhappan Santha Moorthy
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus)
- Pukyong National University
- Busan-48513
- Republic of Korea
| | - Bharathiraja Subramanian
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus)
- Pukyong National University
- Busan-48513
- Republic of Korea
| | - Manivasagan Panchanathan
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus)
- Pukyong National University
- Busan-48513
- Republic of Korea
| | - Sudip Mondal
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus)
- Pukyong National University
- Busan-48513
- Republic of Korea
| | - Hyehyun Kim
- Marine-Integrated Bionics Research Center
- Pukyong National University
- Busan-48513
- Republic of Korea
| | - Kang Dae Lee
- Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine
- Busan-48513
- Republic of Korea
| | - Junghwan Oh
- Department of Biomedical Engineering and Center for Marine-Integrated Biotechnology (BK21 Plus)
- Pukyong National University
- Busan-48513
- Republic of Korea
- Marine-Integrated Bionics Research Center
| |
Collapse
|
39
|
Yang X, Li Y, Liu X, Huang Q, He W, Zhang R, Feng Q, Benayahu D. The stimulatory effect of silica nanoparticles on osteogenic differentiation of human mesenchymal stem cells. ACTA ACUST UNITED AC 2016; 12:015001. [PMID: 27910816 DOI: 10.1088/1748-605x/12/1/015001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Silica-based materials with favourable biocompatibility are generally considered as excellent candidates for applications in biomedical fields. However, previous researches mainly focused on the safety of silica-based materials, their effects on osteogenic differentiation of human mesenchymal stem cells (hMSCs) still need further investigations. In this study, core-shell fluorescent silica nanoparticles (silica NPs) with three different sizes (S1 ~ 50 nm, S2 ~ 200 nm, S3 ~ 400 nm, respectively) were prepared according to the Stöber method. The silica NPs with different sizes did not affect the cell viability (even up to a concentration of 500 µg ml-1), showing size- and dose-independent cytocompatibility of silica NPs on hMSCs. Uptake of silica NPs significantly enhanced the activity of alkaline phosphatase (ALP) and the formation of bone-like nodules of hMSCs after osteogenic induction. At the concentration of 10 µg ml-1, after treating hMSCs with larger sized silica NPs (S2 and S3), higher ALP activity of hMSCs was measured and larger sized bone-like nodules were formed by hMSCs compared with that treated with smaller sized silica NPs (S1).The enhanced osteogenic potential of hMSCs treated with silica NPs may be attributed to the Si released from silica NPs due to the lysosomal degradation inside hMSCs. These results demonstrate the stimulatory effect of silica NPs on osteogenic differentiation of hMSCs and the application potential of silica NPs in bone tissue engineering.
Collapse
Affiliation(s)
- Xing Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Demir E, Castranova V. Genotoxic effects of synthetic amorphous silica nanoparticles in the mouse lymphoma assay. Toxicol Rep 2016; 3:807-815. [PMID: 28959608 PMCID: PMC5616205 DOI: 10.1016/j.toxrep.2016.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 10/17/2016] [Accepted: 10/19/2016] [Indexed: 01/25/2023] Open
Abstract
Synthetic amorphous silica nanoparticles (SAS NPs) have been used in various industries, such as plastics, glass, paints, electronics, synthetic rubber, in pharmaceutical drug tablets, and a as food additive in many processed foods. There are few studies in the literature on NPs using gene mutation approaches in mammalian cells, which represents an important gap for genotoxic risk estimations. To fill this gap, the mouse lymphoma L5178Y/Tk+/− assay (MLA) was used to evaluate the mutagenic effect for five different concentrations (from 0.01 to 150 μg/mL) of two different sizes of SAS NPs (7.172 and 7.652 nm) and a fine collodial form of silicon dioxide (SiO2). This assay detects a broad spectrum of mutational events, from point mutations to chromosome alterations. The results obtained indicate that the two selected SAS NPs are mutagenic in the MLA assay, showing a concentration-dependent effect. The relative mutagenic potencies according to the induced mutant frequency (IMF) are as follows: SAS NPs (7.172 nm) (IMF = 705.5 × 10−6), SAS NPs (7.652 nm) (IMF = 575.5 × 10−6), and SiO2 (IMF = 57.5 × 10−6). These in vitro results, obtained from mouse lymphoma cells, support the genotoxic potential of NPs as well as focus the discussion of the benefits/risks associated with their use in different areas.
Collapse
Affiliation(s)
- Eşref Demir
- Giresun University, Faculty of Engineering, Department of Genetics and Bioengineering, 28200-Güre, Giresun, Turkey
| | - Vincent Castranova
- Department of Pharmaceutical Sciences, School of Pharmacy, RC Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
41
|
Albizia amara Roxb. Mediated Gold Nanoparticles and Evaluation of Their Antioxidant, Antibacterial and Cytotoxic Properties. J CLUST SCI 2016. [DOI: 10.1007/s10876-016-1085-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
42
|
Kazimirova A, Peikertova P, Barancokova M, Staruchova M, Tulinska J, Vaculik M, Vavra I, Kukutschova J, Filip P, Dusinska M. Automotive airborne brake wear debris nanoparticles and cytokinesis-block micronucleus assay in peripheral blood lymphocytes: A pilot study. ENVIRONMENTAL RESEARCH 2016; 148:443-449. [PMID: 27131798 DOI: 10.1016/j.envres.2016.04.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/11/2016] [Accepted: 04/18/2016] [Indexed: 06/05/2023]
Abstract
Motor vehicle exhaust and non-exhaust processes play a significant role in environmental pollution, as they are a source of the finest particulate matter. Emissions from non-exhaust processes include wear-products of brakes, tires, automotive hardware, road surface, and traffic signs, but still are paid little attention to. Automotive friction composites for brake pads are composite materials which may consist of potentially hazardous materials and there is a lack of information regarding the potential influence of the brake wear debris (BWD) on the environment, especially on human health. Thus, we focused our study on the genotoxicity of the airborne fraction of BWD using a brake pad model representing an average low-metallic formulation available in the EU market. BWD was generated in the laboratory by a full-scale brake dynamometer and characterized by Raman microspectroscopy, scanning electron microscopy, and transmission electron microscopy showing that it contains nano-sized crystalline metal-based particles. Genotoxicity tested in human lymphocytes in different testing conditions showed an increase in frequencies of micronucleated binucleated cells (MNBNCs) exposed for 48h to BWD nanoparticles (NPs) (with 10% of foetal calf serum in culture medium) compared with lymphocytes exposed to medium alone, statistically significant only at the concentration 3µg/cm(2) (p=0.032).
Collapse
Affiliation(s)
- Alena Kazimirova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia.
| | - Pavlina Peikertova
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic; IT4Innovations, VŠB - Technical University of Ostrava, 17. listopadu 15, 708 33 Ostrava-Poruba, Czech Republic
| | - Magdalena Barancokova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Marta Staruchova
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Jana Tulinska
- Department of Biology, Faculty of Medicine, Slovak Medical University, Limbova 12, 833 03 Bratislava, Slovakia
| | - Miroslav Vaculik
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Ivo Vavra
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic; Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská Cesta 9, 841 03 Bratislava, Slovakia
| | - Jana Kukutschova
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 15, 708 00 Ostrava, Czech Republic
| | - Peter Filip
- Department of Mechanical Engineering and Energy Processes, Southern Illinois University, Lincoln Drive 1263, 62901 Carbondale, USA
| | - Maria Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Instituttveien 18, 2007 Kjeller, Norway
| |
Collapse
|
43
|
Ellis MA, Grandinetti G, Fichter KM, Fichter KM. Synthesis of Cd-free InP/ZnS Quantum Dots Suitable for Biomedical Applications. J Vis Exp 2016:e53684. [PMID: 26891282 DOI: 10.3791/53684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Fluorescent nanocrystals, specifically quantum dots, have been a useful tool for many biomedical applications. For successful use in biological systems, quantum dots should be highly fluorescent and small/monodisperse in size. While commonly used cadmium-based quantum dots possess these qualities, they are potentially toxic due to the possible release of Cd(2+) ions through nanoparticle degradation. Indium-based quantum dots, specifically InP/ZnS, have recently been explored as a viable alternative to cadmium-based quantum dots due to their relatively similar fluorescence characteristics and size. The synthesis presented here uses standard hot-injection techniques for effective nanoparticle growth; however, nanoparticle properties such as size, emission wavelength, and emission intensity can drastically change due to small changes in the reaction conditions. Therefore, reaction conditions such temperature, reaction duration, and precursor concentration should be maintained precisely to yield reproducible products. Because quantum dots are not inherently soluble in aqueous solutions, they must also undergo surface modification to impart solubility in water. In this protocol, an amphiphilic polymer is used to interact with both hydrophobic ligands on the quantum dot surface and bulk solvent water molecules. Here, a detailed protocol is provided for the synthesis of highly fluorescent InP/ZnS quantum dots that are suitable for use in biomedical applications.
Collapse
Affiliation(s)
| | - Giovanna Grandinetti
- Center for Molecular Microscopy, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research
| | | | | |
Collapse
|
44
|
Ojea-Jiménez I, Urbán P, Barahona F, Pedroni M, Capomaccio R, Ceccone G, Kinsner-Ovaskainen A, Rossi F, Gilliland D. Highly Flexible Platform for Tuning Surface Properties of Silica Nanoparticles and Monitoring Their Biological Interaction. ACS APPLIED MATERIALS & INTERFACES 2016; 8:4838-4850. [PMID: 26779668 DOI: 10.1021/acsami.5b11216] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The following work presents a simple, reliable and scalable seeding-growth methodology to prepare silica nanoparticles (SiO2 NPs) (20, 30, 50 and 80 nm) directly in aqueous phase, both as plain- as well as fluorescent-labeled silica. The amount of fluorescent label per particle remained constant regardless of size, which facilitates measurements in terms of number-based concentrations. SiO2 NPs in dispersion were functionalized with an epoxysilane, thus providing a flexible platform for the covalent linkage of wide variety of molecules under mild experimental conditions. This approach was validated with ethylenediamine, two different amino acids and three akylamines to generate a variety of surface modifications. Accurate characterization of particle size, size distributions, morphology and surface chemistry is provided, both for as-synthesized particles and after incubation in cell culture medium. The impact of physicochemical properties of SiO2 NPs was investigated with human alveolar basal epithelial cells (A549) such as the effect in cytotoxicity, cell internalization and membrane interaction.
Collapse
Affiliation(s)
- Isaac Ojea-Jiménez
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection , Via E. Fermi 2749, 21027 Ispra, Varese, Italy
| | - Patricia Urbán
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection , Via E. Fermi 2749, 21027 Ispra, Varese, Italy
| | - Francisco Barahona
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection , Via E. Fermi 2749, 21027 Ispra, Varese, Italy
| | - Matteo Pedroni
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection , Via E. Fermi 2749, 21027 Ispra, Varese, Italy
| | - Robin Capomaccio
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection , Via E. Fermi 2749, 21027 Ispra, Varese, Italy
- Institut de Biologie et Chimie des Protéines, BMSSI-UMR 5086, Université Lyon 1, Université de Lyon , 69367 Lyon, France
| | - Giacomo Ceccone
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection , Via E. Fermi 2749, 21027 Ispra, Varese, Italy
| | - Agnieszka Kinsner-Ovaskainen
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection , Via E. Fermi 2749, 21027 Ispra, Varese, Italy
| | - François Rossi
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection , Via E. Fermi 2749, 21027 Ispra, Varese, Italy
| | - Douglas Gilliland
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection , Via E. Fermi 2749, 21027 Ispra, Varese, Italy
| |
Collapse
|
45
|
Solovieva AO, Vorotnikov YA, Trifonova KE, Efremova OA, Krasilnikova AA, Brylev KA, Vorontsova EV, Avrorov PA, Shestopalova LV, Poveshchenko AF, Mironov YV, Shestopalov MA. Cellular internalisation, bioimaging and dark and photodynamic cytotoxicity of silica nanoparticles doped by {Mo6I8}4+ metal clusters. J Mater Chem B 2016; 4:4839-4846. [DOI: 10.1039/c6tb00723f] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
{Mo6I8}@SiO2 nanoparticles for biomedical applications.
Collapse
Affiliation(s)
- Anastasiya O. Solovieva
- Scientific Institute of Clinical and Experimental Lymphology
- 630060 Novosibirsk
- Russian Federation
| | - Yuri A. Vorotnikov
- Nikolaev Institute of Inorganic Chemistry SB RAS
- 630090 Novosibirsk
- Russian Federation
| | - Kristina E. Trifonova
- Scientific Institute of Clinical and Experimental Lymphology
- 630060 Novosibirsk
- Russian Federation
| | | | - Anna A. Krasilnikova
- Scientific Institute of Clinical and Experimental Lymphology
- 630060 Novosibirsk
- Russian Federation
| | - Konstantin A. Brylev
- Nikolaev Institute of Inorganic Chemistry SB RAS
- 630090 Novosibirsk
- Russian Federation
- Novosibirsk State University
- 630090 Novosibirsk
| | - Elena V. Vorontsova
- The Institute of Molecular Biology and Biophysics
- 630117 Novosibirsk
- Russian Federation
| | - Pavel A. Avrorov
- Scientific Research Institute of Physiology and Basic Medicine
- 630117 Novosibirsk
- Russia Federation
| | | | | | - Yuri V. Mironov
- Nikolaev Institute of Inorganic Chemistry SB RAS
- 630090 Novosibirsk
- Russian Federation
- Novosibirsk State University
- 630090 Novosibirsk
| | - Michael A. Shestopalov
- Scientific Institute of Clinical and Experimental Lymphology
- 630060 Novosibirsk
- Russian Federation
- Nikolaev Institute of Inorganic Chemistry SB RAS
- 630090 Novosibirsk
| |
Collapse
|
46
|
Balasubramani G, Ramkumar R, Krishnaveni N, Pazhanimuthu A, Natarajan T, Sowmiya R, Perumal P. Structural characterization, antioxidant and anticancer properties of gold nanoparticles synthesized from leaf extract(decoction)of Antigonon leptopus Hook. &Arn. J Trace Elem Med Biol 2015; 30:83-9. [PMID: 25432487 DOI: 10.1016/j.jtemb.2014.11.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 11/23/2022]
Abstract
Tea is an aromatic beverage prepared by pouring boiling water over alleviated leaves of the tea plant. Tea prepared from the aerial parts of Antigonon leptopus has been traditionally used as remedy for cold, diabetes and pain in many countries. The gold nanoparticles (Au NPs) synthesized from powdered leaf extract (decoction) of A. leptopus were characterized by UV–visible spectroscopy (UV–vis), X-ray diffraction (XRD), Fourier transform-infrared (FT-IR), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED) pattern and energy dispersive X-ray (EDX) analyses to define the formation of Au NPs. Further, the synthesized Au NPs were well characterized based on their strong surface plasmon resonance (SPR), crystalline nature, functional groups, size and dispersed shapes, purity and Bragg's reflections of face centered cubic (fcc) structure of metallic gold. The Au NPs showed higher free radical scavenging property when compared to the effect of leaf extract. Cytotoxicity study of synthesized Au NPs exhibited the growth inhibitory property at the concentration (GI50) of 257.8 μg/mL in human adenocarcinoma breast cancer (MCF-7) cells after 48 h. Thus, the Au NPs synthesized from the Mexican creeper, A. leptopus revealed the important biological properties: as a free radical as well as anticancer agent. We conclude that the A. leptopus derived biological materials have promising potential as a source for the development of anticancer drug in future.
Collapse
|
47
|
Guichard Y, Maire MA, Sébillaud S, Fontana C, Langlais C, Micillino JC, Darne C, Roszak J, Stępnik M, Fessard V, Binet S, Gaté L. Genotoxicity of synthetic amorphous silica nanoparticles in rats following short-term exposure. Part 2: intratracheal instillation and intravenous injection. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:228-244. [PMID: 25451515 DOI: 10.1002/em.21928] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 11/03/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
Synthetic amorphous silica nanomaterials (SAS) are extensively used in food and tire industries. In many industrial processes, SAS may become aerosolized and lead to occupational exposure of workers through inhalation in particular. However, little is known about the in vivo genotoxicity of these particulate materials. To gain insight into the toxicological properties of four SAS (NM-200, NM-201, NM-202, and NM-203), rats are treated with three consecutive intratracheal instillations of 3, 6, or 12 mg/kg of SAS at 48, 24, and 3 hrs prior to tissue collection (cumulative doses of 9, 18, and 36 mg/kg). Deoxyribonucleic acid (DNA) damage was assessed using erythrocyte micronucleus test and the standard and Fpg-modified comet assays on cells from bronchoalveolar lavage fluid (BALF), lung, blood, spleen, liver, bone marrow, and kidney. Although all of the SAS caused increased dose-dependent changes in lung inflammation as demonstrated by BALF neutrophilia, they did not induce any significant DNA damage. As the amount of SAS reaching the blood stream and subsequently the internal organs is probably to be low following intratracheal instillation, an additional experiment was performed with NM-203. Rats received three consecutive intravenous injections of 5, 10, or 20 mg/kg of SAS at 48, 24, and 3 hrs prior to tissue collection. Despite the hepatotoxicity, thrombocytopenia, and even animal death induced by this nanomaterial, no significant increase in DNA damage or micronucleus frequency was observed in SAS-exposed animals. It was concluded that under experimental conditions, SAS induced obvious toxic effects but did cause any genotoxicity following intratracheal instillation and intravenous injection.
Collapse
Affiliation(s)
- Yves Guichard
- INRS, Institut National de Recherche et de Sécurité, Département Toxicologie et Biométrologie, Rue du Morvan, CS 60027, 54519, Vandoeuvre les Nancy Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tarantini A, Huet S, Jarry G, Lanceleur R, Poul M, Tavares A, Vital N, Louro H, João Silva M, Fessard V. Genotoxicity of synthetic amorphous silica nanoparticles in rats following short-term exposure. Part 1: oral route. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:218-227. [PMID: 25504566 DOI: 10.1002/em.21935] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 11/19/2014] [Indexed: 06/04/2023]
Abstract
Synthetic amorphous silica (SAS) in its nanosized form is now used in food applications although the potential risks for human health have not been evaluated. In this study, genotoxicity and oxidative DNA damage of two pyrogenic (NM-202 and 203) and two precipitated (NM-200 and -201) nanosized SAS were investigated in vivo in rats following oral exposure. Male Sprague Dawley rats were exposed to 5, 10, or 20 mg/kg b.w./day for three days by gavage. DNA strand breaks and oxidative DNA damage were investigated in seven tissues (blood, bone marrow from femur, liver, spleen, kidney, duodenum, and colon) with the alkaline and the (Fpg)-modified comet assays, respectively. Concomitantly, chromosomal damage was investigated in bone marrow and in colon with the micronucleus assay. Additionally, malondialdehyde (MDA), a lipid peroxidation marker, was measured in plasma. When required, a histopathological examination was also conducted. The results showed neither obvious DNA strand breaks nor oxidative damage with the comet assay, irrespective of the dose and the organ investigated. Similarly, no increases in chromosome damage in bone marrow or lipid peroxidation in plasma were detected. However, although the response was not dose-dependent, a weak increase in the percentage of micronucleated cells was observed in the colon of rats treated with the two pyrogenic SAS at the lowest dose (5 mg/kg b.w./day). Additional data are required to confirm this result, considering in particular, the role of agglomeration/aggregation of SAS NMs in their uptake by intestinal cells.
Collapse
Affiliation(s)
- Adeline Tarantini
- Agence Nationale de Sécurité Sanitaire, Unité de Toxicologie des Contaminants, 10B rue Claude Bourgelat, CS 40608, 35306, Fougères, Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Golbamaki N, Rasulev B, Cassano A, Marchese Robinson RL, Benfenati E, Leszczynski J, Cronin MTD. Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms. NANOSCALE 2015; 7:2154-98. [PMID: 25580680 DOI: 10.1039/c4nr06670g] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nanotechnology has rapidly entered into human society, revolutionized many areas, including technology, medicine and cosmetics. This progress is due to the many valuable and unique properties that nanomaterials possess. In turn, these properties might become an issue of concern when considering potentially uncontrolled release to the environment. The rapid development of new nanomaterials thus raises questions about their impact on the environment and human health. This review focuses on the potential of nanomaterials to cause genotoxicity and summarizes recent genotoxicity studies on metal oxide/silica nanomaterials. Though the number of genotoxicity studies on metal oxide/silica nanomaterials is still limited, this endpoint has recently received more attention for nanomaterials, and the number of related publications has increased. An analysis of these peer reviewed publications over nearly two decades shows that the test most employed to evaluate the genotoxicity of these nanomaterials is the comet assay, followed by micronucleus, Ames and chromosome aberration tests. Based on the data studied, we concluded that in the majority of the publications analysed in this review, the metal oxide (or silica) nanoparticles of the same core chemical composition did not show different genotoxicity study calls (i.e. positive or negative) in the same test, although some results are inconsistent and need to be confirmed by additional experiments. Where the results are conflicting, it may be due to the following reasons: (1) variation in size of the nanoparticles; (2) variations in size distribution; (3) various purities of nanomaterials; (4) variation in surface areas for nanomaterials with the same average size; (5) differences in coatings; (6) differences in crystal structures of the same types of nanomaterials; (7) differences in size of aggregates in solution/media; (8) differences in assays; (9) different concentrations of nanomaterials in assay tests. Indeed, due to the observed inconsistencies in the recent literature and the lack of adherence to appropriate, standardized test methods, reliable genotoxicity assessment of nanomaterials is still challenging.
Collapse
Affiliation(s)
- Nazanin Golbamaki
- Laboratory of Environmental Chemistry and Toxicology at the Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy.
| | | | | | | | | | | | | |
Collapse
|
50
|
Liang S, Zhao Y, Xu S, Wu X, Chen J, Wu M, Zhao JX. A silica-gold-silica nanocomposite for photothermal therapy in the near-infrared region. ACS APPLIED MATERIALS & INTERFACES 2015; 7:85-93. [PMID: 25470187 DOI: 10.1021/am507644b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The focus of this work was to study the photothermal effect of a silica-gold-silica nanocomposite in the near-infrared (NIR) region. The NIR region is considered a biological window because living cells and tissues have low light scattering and adsorption in this region. Both a laser source and a tungsten lamp source were used in this study. The critical parameters for photothermal efficiency, including nancomposite concentration and irradiation time, were evaluated. The penetration of the nanocomposites into mammalian cells was also investigated. With laser irradiation, the nanocomposite showed a significant photothermal effect in the NIR region. The maximal temperature that the nanocomposites could reach was 51.9 °C. Vybrant assays showed that 5 min of laser irradiation along with the nanocomposite caused target cell death through both apoptosis (59%) and necrosis (31%), while controls showed minimal effects. The nanocomposite may be a potential light-absorbing agent for NIR fluorescence-guided photothermal therapy.
Collapse
Affiliation(s)
- Song Liang
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, University of North Dakota , Grand Forks, North Dakota 58202, United States
| | | | | | | | | | | | | |
Collapse
|