1
|
Goyal N, Donahue JP, Thompson A, Zhang X, Mague JT, Foroozesh M. Ethyl 2-[(2-oxo-2 H-chromen-6-yl)-oxy]acetate. Acta Crystallogr E Crystallogr Commun 2024; 80:659-662. [PMID: 38845711 PMCID: PMC11151299 DOI: 10.1107/s2056989024004729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024]
Abstract
Ethyl 2-[(2-oxo-2H-chromen-6-yl)-oxy]acetate, C13H12O5, a member of the pharmacologically important class of coumarins, crystallizes in the monoclinic C2/c space group in the form of sheets, within which mol-ecules are related by inversion centers and 21 axes. Multiple C-H⋯O weak hydrogen-bonding inter-actions reinforce this pattern. The planes of these sheets are oriented in the approximate direction of the ac face diagonal. Inter-sheet inter-actions are a combination of coumarin system π-π stacking and additional C-H⋯O weak hydrogen bonds between ethyl acet-oxy groups.
Collapse
Affiliation(s)
- Navneet Goyal
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, Louisiana 70125, USA
| | - James P. Donahue
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118-5698, USA
| | - Anthony Thompson
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, Louisiana 70125, USA
| | - Xiaodong Zhang
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118-5698, USA
| | - Joel T. Mague
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118-5698, USA
| | - Maryam Foroozesh
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, Louisiana 70125, USA
| |
Collapse
|
2
|
Zych D, Kubis M. Bromopyrene Symphony: Synthesis and Characterisation of Isomeric Derivatives at Non-K Region and Nodal Positions for Diverse Functionalisation Strategies. Molecules 2024; 29:1131. [PMID: 38474643 DOI: 10.3390/molecules29051131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Pyrene, a renowned aromatic hydrocarbon, continues to captivate researchers due to its versatile properties and potential applications across various scientific domains. Among its derivatives, bromopyrenes stand out for their significance in synthetic chemistry, materials science, and environmental studies. The strategic functionalisation of pyrene at non-K region and nodal positions is crucial for expanding its utility, allowing for diverse functionalisation strategies. Bromo-substituted precursors serve as vital intermediates in synthetic routes; however, the substitution pattern of bromoderivatives significantly impacts their subsequent functionalisation and properties, posing challenges in synthesis and purification. Understanding the distinct electronic structure of pyrene is pivotal, dictating the preferential electrophilic aromatic substitution reactions at specific positions. Despite the wealth of literature, contradictions and complexities persist in synthesising suitably substituted bromopyrenes due to the unpredictable nature of substitution reactions. Building upon historical precedents, this study provides a comprehensive overview of bromine introduction in pyrene derivatives, offering optimised synthesis conditions based on laboratory research. Specifically, the synthesis of mono-, di-, tri-, and tetrabromopyrene isomers at non-K positions (1-, 3-, 6-, 8-) and nodal positions (2-, 7-) is systematically explored. By elucidating efficient synthetic methodologies and reaction conditions, this research contributes to advancing the synthesis and functionalisation strategies of pyrene derivatives, unlocking new possibilities for their utilisation in various fields.
Collapse
Affiliation(s)
- Dawid Zych
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
| | - Martyna Kubis
- Faculty of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland
| |
Collapse
|
3
|
Dai Z, Wu Y, Xiong Y, Wu J, Wang M, Sun X, Ding X, Yang L, Sun X, Ge G. CYP1A inhibitors: Recent progress, current challenges, and future perspectives. Med Res Rev 2024; 44:169-234. [PMID: 37337403 DOI: 10.1002/med.21982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/28/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Mammalian cytochrome P450 1A (CYP1A) are key phase I xenobiotic-metabolizing enzymes that play a distinctive role in metabolic activation or metabolic clearance of a variety of procarcinogens, drugs, and endogenous substances. Human CYP1A subfamily contains two members (hCYP1A1 and hCYP1A2), which are known to catalyze the oxidative activation of some environmental procarcinogens into carcinogenic species. Increasing evidence has demonstrated that CYP1A inhibitor therapies are promising strategies for cancer chemoprevention or overcoming CYP1A-associated drug toxicity and resistance. Herein, we reviewed recent advances in the discovery and characterization of hCYP1A inhibitors, from the discovery approaches to structural features and biomedical applications of hCYP1A inhibitors. The inhibition potentials, inhibition modes, and inhibition constants of all reported hCYP1A inhibitors are comprehensively summarized. Meanwhile, the structural features and structure-activity relationships of different classes of hCYP1A1 and hCYP1A2 inhibitors are analyzed and discussed in depth. Furthermore, the major challenges and future directions for this field are presented and highlighted. Collectively, the information and knowledge presented here will strongly facilitate the researchers to discover and develop more efficacious CYP1A inhibitors for specific purposes, such as chemo-preventive agents or as tool molecules in hCYP1A-related fundamental studies.
Collapse
Affiliation(s)
- Ziru Dai
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Wu
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Xiong
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Min Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, America
| | - Ling Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Goyal N, Do C, Sridhar J, Shaik S, Thompson A, Perry T, Carter L, Foroozesh M. Design, Synthesis, and Biological Studies of Flavone-Based Esters and Acids as Potential P450 2A6 Inhibitors. Chem Res Toxicol 2023; 36:1973-1979. [PMID: 37963190 PMCID: PMC10731637 DOI: 10.1021/acs.chemrestox.3c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023]
Abstract
As a potential means for smoking cessation and consequently prevention of smoking-related diseases and mortality, in this study, our goal was to investigate the inhibition of nicotine metabolism by P450 2A6. Smoking is the main cause of many diseases and disabilities and harms nearly every organ of the body. As reported by the Centers for Disease Control and Prevention (CDC), more than 16 million Americans are living with diseases caused by smoking. On average, the life expectancy of a smoker is about 10 years less than a nonsmoker. Smoking cessation can substantially reduce the incidence of smoking-related diseases, including cancer. At least, 70 of the more than 7000 cigarette smoke components, including polycyclic aromatic hydrocarbons, N-nitrosamines, and aromatic amines, are known carcinogens. Nicotine is the compound responsible for the addictive and psychopharmacological effects of tobacco. Cytochrome P450 enzymes are responsible for the phase I metabolism of many tobacco components, including nicotine. Nicotine is mainly metabolized by cytochrome P450s 2A6 and 2A13 to cotinine. This metabolism decreases the amount of available nicotine in the bloodstream, leading to increased smoking behavior and thus exposure to tobacco toxicants and carcinogens. Here, we report the syntheses and P450 2A6 inhibitory activities of a number of new flavone-based esters and acids. Three of the flavone derivatives studied were found to be potent competitive inhibitors of the enzyme. Docking studies were used to determine the possible mechanisms of the activity of these inhibitors.
Collapse
Affiliation(s)
- Navneet Goyal
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Camilla Do
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Jayalakshmi Sridhar
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Shahensha Shaik
- Cell
and Molecular Biology and Bioinformatic Core, College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Anthony Thompson
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Timothy Perry
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Loren Carter
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Maryam Foroozesh
- Department
of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| |
Collapse
|
5
|
Thamm S, Willwacher MK, Aspnes GE, Bretschneider T, Brown NF, Buschbom-Helmke S, Fox T, Gargano EM, Grabowski D, Hoenke C, Matera D, Mueck K, Peters S, Reindl S, Riether D, Schmid M, Tautermann CS, Teitelbaum AM, Trünkle C, Veser T, Winter M, Wortmann L. Discovery of a Novel Potent and Selective HSD17B13 Inhibitor, BI-3231, a Well-Characterized Chemical Probe Available for Open Science. J Med Chem 2023; 66:2832-2850. [PMID: 36727857 PMCID: PMC9969402 DOI: 10.1021/acs.jmedchem.2c01884] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Genome-wide association studies in patients revealed HSD17B13 as a potential new target for the treatment of nonalcoholic steatohepatitis (NASH) and other liver diseases. However, the physiological function and the disease-relevant substrate of HSD17B13 remain unknown. In addition, no suitable chemical probe for HSD17B13 has been published yet. Herein, we report the identification of the novel potent and selective HSD17B13 inhibitor BI-3231. Through high-throughput screening (HTS), using estradiol as substrate, compound 1 was identified and selected for subsequent optimization resulting in compound 45 (BI-3231). In addition to the characterization of compound 45 for its functional, physicochemical, and drug metabolism and pharmacokinetic (DMPK) properties, NAD+ dependency was investigated. To support Open Science, the chemical HSD17B13 probe BI-3231 will be available to the scientific community for free via the opnMe platform, and thus can help to elucidate the pharmacology of HSD17B13.
Collapse
Affiliation(s)
- Sven Thamm
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany,
| | | | - Gary E. Aspnes
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Tom Bretschneider
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Nicholas F. Brown
- Boehringer
Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, Connecticut 06877-0368, United States
| | | | - Thomas Fox
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Emanuele M. Gargano
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Daniel Grabowski
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Christoph Hoenke
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Damian Matera
- Boehringer
Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, PO Box 368, Ridgefield, Connecticut 06877-0368, United States
| | - Katja Mueck
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Stefan Peters
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Sophia Reindl
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Doris Riether
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Matthias Schmid
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | | | - Aaron M. Teitelbaum
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Cornelius Trünkle
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Thomas Veser
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Martin Winter
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany
| | - Lars Wortmann
- Boehringer
Ingelheim Pharma GmbH & Co. KG, 88397 Biberach an der Riß, Germany,
| |
Collapse
|
6
|
Huang R, Dai Q, Yang R, Duan Y, Zhao Q, Haybaeck J, Yang Z. A Review: PI3K/AKT/mTOR Signaling Pathway and Its Regulated Eukaryotic Translation Initiation Factors May Be a Potential Therapeutic Target in Esophageal Squamous Cell Carcinoma. Front Oncol 2022; 12:817916. [PMID: 35574327 PMCID: PMC9096244 DOI: 10.3389/fonc.2022.817916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/01/2022] [Indexed: 11/15/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant tumor developing from the esophageal squamous epithelium, and is the most common histological subtype of esophageal cancer (EC). EC ranks 10th in morbidity and sixth in mortality worldwide. The morbidity and mortality rates in China are both higher than the world average. Current treatments of ESCC are surgical treatment, radiotherapy, and chemotherapy. Neoadjuvant chemoradiotherapy plus surgical resection is recommended for advanced patients. However, it does not work in the significant promotion of overall survival (OS) after such therapy. Research on targeted therapy in ESCC mainly focus on EGFR and PD-1, but neither of the targeted drugs can significantly improve the 3-year and 5-year survival rates of disease. Phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway is an important survival pathway in tumor cells, associated with its aggressive growth and malignant progression. Specifically, proliferation, apoptosis, autophagy, and so on. Related genetic alterations of this pathway have been investigated in ESCC, such as PI3K, AKT and mTOR-rpS6K. Therefore, the PI3K/AKT/mTOR pathway seems to have the capability to serve as research hotspot in the future. Currently, various inhibitors are being tested in cells, animals, and clinical trials, which targeting at different parts of this pathway. In this work, we reviewed the research progress on the PI3K/AKT/mTOR pathway how to influence biological behaviors in ESCC, and discussed the interaction between signals downstream of this pathway, especially eukaryotic translation initiation factors (eIFs) and the development and progression of ESCC, to provide reference for the identification of new therapeutic targets in ESCC.
Collapse
Affiliation(s)
- Ran Huang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qiong Dai
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ruixue Yang
- Department of Cardiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Duan
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Qi Zhao
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Johannes Haybaeck
- Institute of Pathology, Neuropathology and Molecular Pathology, Medical University of Innsbruck, Innsbruck, Austria
- Diagnostic & Research Center for Molecular BioMedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Zhihui Yang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
7
|
Mirzaei MS, Ivanov MV, Taherpour AA, Mirzaei S. Mechanism-Based Inactivation of Cytochrome P450 Enzymes: Computational Insights. Chem Res Toxicol 2021; 34:959-987. [PMID: 33769041 DOI: 10.1021/acs.chemrestox.0c00483] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mechanism-based inactivation (MBI) refers to the metabolic bioactivation of a xenobiotic by cytochrome P450s to a highly reactive intermediate which subsequently binds to the enzyme and leads to the quasi-irreversible or irreversible inhibition. Xenobiotics, mainly drugs with specific functional units, are the major sources of MBI. Two possible consequences of MBI by medicinal compounds are drug-drug interaction and severe toxicity that are observed and highlighted by clinical experiments. Today almost all of these latent functional groups (e.g., thiophene, furan, alkylamines, etc.) are known, and their features and mechanisms of action, owing to the vast experimental and theoretical studies, are determined. In the past decade, molecular modeling techniques, mostly density functional theory, have revealed the most feasible mechanism that a drug undergoes by P450 enzymes to generate a highly reactive intermediate. In this review, we provide a comprehensive and detailed picture of computational advances toward the elucidation of the activation mechanisms of various known groups with MBI activity. To this aim, we briefly describe the computational concepts to carry out and analyze the mechanistic investigations, and then, we summarize the studies on compounds with known inhibition activity including thiophene, furan, alkylamines, terminal acetylene, etc. This study can be reference literature for both theoretical and experimental (bio)chemists in several different fields including rational drug design, the process of toxicity prevention, and the discovery of novel inhibitors and catalysts.
Collapse
Affiliation(s)
- M Saeed Mirzaei
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran 67149-67346
| | - Maxim V Ivanov
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Avat Arman Taherpour
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran 67149-67346.,Medical Biology Research Centre, University of Medical Sciences, Kermanshah, Iran 67149-67346
| | - Saber Mirzaei
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
8
|
Ortega Ugalde S, Wallraven K, Speer A, Bitter W, Grossmann TN, Commandeur JNM. Acetylene containing cyclo(L-Tyr-L-Tyr)-analogs as mechanism-based inhibitors of CYP121A1 from Mycobacterium tuberculosis. Biochem Pharmacol 2020; 177:113938. [PMID: 32224137 DOI: 10.1016/j.bcp.2020.113938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/24/2020] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) is a globally significant infective disease that is caused by a single infectious agent, Mycobacterium tuberculosis (Mtb). Because of the rise in the number of multidrug-resistant (MDR) TB strains, identification of alternative drug targets for the development of drugs with different mechanism of actions is desired. CYP121A1, one of the twenty cytochrome P450 enzymes encoded in the Mtb genome, was previously shown to be essential for bacterial growth. This enzyme catalyzes the intramolecular C-C crosslinking reaction of the cyclopeptide cyclo(L-tyr-L-tyr) (cYY) yielding the metabolite mycocyclosin. In the present study, acetylene-substituted cYY-analogs were synthesized and evaluated as potential mechanism-based inhibitors of CYP121A1. The acetylene-substituted cYY-analogs were capable of binding to CYP121A1 with affinities comparable with cYY, and exhibited a Type I binding mode, indicative of a substrate-like binding, mandatory for metabolism. Only the cYY-analogs which contain an acetylene-substitution at one (2a) or both (3) para-positions of cYY showed mechanism-based inhibition of CYP121A1 activity. The values of KI and kinact were 236 µM and 0.045 min-1, respectively, for compound 2a, and 145 µM and 0.015 min-1, repectively, for compound 3 The inactivation could neither be reversed by dialysis nor be prevented by including glutathione. LC-MS analysis demonstrated that the inactivation results from covalent binding to the apoprotein, whereas the heme was unmodified. Interestingly, the mass increment of the CYP121A1 apoprotein was significantly smaller than was expected from the ketene formed by oxidation of the acetylene-group, indicative for a secondary cleavage reaction in the active site of CYP121A1. Although the two acetylene-containing cYY-analogs showed significant mechanism-based inhibition, growth inhibition of the Mtb strains was only observed at millimolar concentrations. This low efficacy may be due to insufficient irreversible inactivation of CYP121A1 and/or insufficient cellular uptake. Although the identified mechanism-based inhibitors have no perspective for Mtb-treatment, this study is the first proof-of-principle that mechanism-based inhibition of CYP121A1 is feasible and may provide the basis for new strategies in the design and development of compounds against this promising therapeutic target.
Collapse
Affiliation(s)
- Sandra Ortega Ugalde
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Kerstin Wallraven
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Alexander Speer
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Amsterdam, The Netherlands
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands.
| | - Jan N M Commandeur
- Division of Molecular and Computational Toxicology, Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands.
| |
Collapse
|
9
|
Yadav J, Paragas E, Korzekwa K, Nagar S. Time-dependent enzyme inactivation: Numerical analyses of in vitro data and prediction of drug-drug interactions. Pharmacol Ther 2020; 206:107449. [PMID: 31836452 PMCID: PMC6995442 DOI: 10.1016/j.pharmthera.2019.107449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cytochrome P450 (CYP) enzyme kinetics often do not conform to Michaelis-Menten assumptions, and time-dependent inactivation (TDI) of CYPs displays complexities such as multiple substrate binding, partial inactivation, quasi-irreversible inactivation, and sequential metabolism. Additionally, in vitro experimental issues such as lipid partitioning, enzyme concentrations, and inactivator depletion can further complicate the parameterization of in vitro TDI. The traditional replot method used to analyze in vitro TDI datasets is unable to handle complexities in CYP kinetics, and numerical approaches using ordinary differential equations of the kinetic schemes offer several advantages. Improvement in the parameterization of CYP in vitro kinetics has the potential to improve prediction of clinical drug-drug interactions (DDIs). This manuscript discusses various complexities in TDI kinetics of CYPs, and numerical approaches to model these complexities. The extrapolation of CYP in vitro TDI parameters to predict in vivo DDIs with static and dynamic modeling is discussed, along with a discussion on current gaps in knowledge and future directions to improve the prediction of DDI with in vitro data for CYP catalyzed drug metabolism.
Collapse
Affiliation(s)
- Jaydeep Yadav
- Amgen Inc., 360 Binney Street, Cambridge, MA 02142, United States; Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Erickson Paragas
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Ken Korzekwa
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States
| | - Swati Nagar
- Department of Pharmaceutical Sciences, Temple University, Philadelphia, PA 19140, United States.
| |
Collapse
|
10
|
Ortiz de Montellano PR. Acetylenes: cytochrome P450 oxidation and mechanism-based enzyme inactivation. Drug Metab Rev 2019; 51:162-177. [PMID: 31203694 DOI: 10.1080/03602532.2019.1632891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The oxidation of carbon-carbon triple bonds by cytochrome P450 produces ketene metabolites that are hydrolyzed to acetic acid derivatives or are trapped by nucleophiles. In the special case of 17α-ethynyl sterols, D-ring expansion and de-ethynylation have been observed as competing pathways. The oxidation of acetylenic groups is also associated with mechanism-based inactivation of cytochrome P450 enzymes. One mechanism for this inactivation is reaction of the ketene metabolite with cytochrome P450 residues essential for substrate binding or catalysis. However, in the case of monosubstituted acetylenes, inactivation can also occur by addition of the oxidized acetylenic function to a nitrogen of the heme prosthetic group. This addition reaction is not mediated by the ketene metabolite, but rather occurs during oxygen transfer to the triple bond. In some instances, a detectable intermediate is formed that is most consistent with a ketocarbene-iron heme complex. This complex can progress to the N-alkylated heme or revert back to the unmodified enzyme. The ketocarbene complex may intervene in the formation of all the N-alkyl heme adducts, but is normally too unstable to be detected.
Collapse
|
11
|
An important mechanism of herb-induced hepatotoxicity: To produce RMs based on active functional groups-containing ingredients from phytomedicine by binding CYP450s. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2019.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
12
|
Goyal N, Donahue JP, Do C, Perry T, Bongay-Williams K, Foroozesh M. A dibenzofuran derivative: 2-(pentyloxy)dibenzo[ b,d]furan. IUCRDATA 2018; 3:x181306. [PMID: 31363506 PMCID: PMC6667227 DOI: 10.1107/s2414314618013068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 09/14/2018] [Indexed: 11/28/2022] Open
Abstract
The title compound, C17H18O2, crystallizes in two-dimensional sheets, in which the 2-(pentyloxy)dibenzo[b,d]furan molecules are arranged in a head-to-head and tail-to-tail fashion that enables hydrophobic interactions between fully extended 2-pentoxy chains and π-π stacking between dibenzofuran rings in adjacent rings. Nearest intermolecular π-π stacking contacts are 3.3731 (12) Å. The molecule is nearly planar with an r.m.s. deviation of 0.0803 Å from the mean plane defined by the nineteen non-hydrogen atoms.
Collapse
Affiliation(s)
- Navneet Goyal
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, Louisiana 70125, USA
| | - James P. Donahue
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118-5698, USA
| | - Camilla Do
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, Louisiana 70125, USA
| | - Timothy Perry
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, Louisiana 70125, USA
| | - Kyla Bongay-Williams
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, Louisiana 70125, USA
| | - Maryam Foroozesh
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, Louisiana 70125, USA
| |
Collapse
|
13
|
Goyal N, Do C, Donahue JP, Mague JT, Foroozesh M. Ethyl 2-[2-(4-oxo-4 H-chromen-2-yl)phenoxy]acetate. IUCRDATA 2018; 3:x180993. [PMID: 30984887 PMCID: PMC6457468 DOI: 10.1107/s2414314618009938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/11/2018] [Indexed: 11/11/2022] Open
Abstract
In the title flavonoid derivative, C19H16O5, the chromene portion is planar (r.m.s. deviation = 0.022 Å) with the substituents lying closely to the same plane. The dihedral angle between its mean plane and that of the benzene ring is 4.9 (1)°. This planarity is due, in part, to the presence of a strong intramolecular C-H⋯O hydrogen bond and to two weak C-H⋯O contacts. In the crystal, neighboring molecules are linked by a C-H⋯O hydrogen bond and a C-H⋯π interaction, forming chains along the a-axis direction.
Collapse
Affiliation(s)
- Navneet Goyal
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, Louisiana 70125, USA
| | - Camilla Do
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, Louisiana 70125, USA
| | - James P. Donahue
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118-5698, USA
| | - Joel T. Mague
- Department of Chemistry, Tulane University, 6400 Freret Street, New Orleans, Louisiana 70118-5698, USA
| | - Maryam Foroozesh
- Department of Chemistry, Xavier University of Louisiana, 1 Drexel Dr., New Orleans, Louisiana 70125, USA
| |
Collapse
|
14
|
Boonruang S, Prakobsri K, Pouyfung P, Srisook E, Prasopthum A, Rongnoparut P, Sarapusit S. Inhibition of human cytochromes P450 2A6 and 2A13 by flavonoids, acetylenic thiophenes and sesquiterpene lactones from Pluchea indica and Vernonia cinerea. J Enzyme Inhib Med Chem 2017; 32:1136-1142. [PMID: 28856944 PMCID: PMC6009911 DOI: 10.1080/14756366.2017.1363741] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The human liver cytochrome P450 (CYP) 2A6 and the respiratory CYP2A13 enzymes play role in nicotine metabolism and activation of tobacco-specific nitrosamine carcinogens. Inhibition of both enzymes could offer a strategy for smoking abstinence and decreased risks of respiratory diseases and lung cancer. In this study, activity-guided isolation identified four flavonoids 1–4 (apigenin, luteolin, chrysoeriol, quercetin) from Vernonia cinerea and Pluchea indica, four hirsutinolide-type sesquiterpene lactones 5–8 from V. cinerea, and acetylenic thiophenes 9–11 from P. indica that inhibited CYP2A6- and CYP2A13-mediated coumarin 7-hydroxylation. Flavonoids were most effective in inhibition against CYP2A6 and CYP2A13, followed by thiophenes, and hirsutinolides. Hirsutinolides and thiophenes exhibited mechanism-based inhibition and in irreversible mode against both enzymes. The inactivation kinetic KI values of hirsutinolides against CYP2A6 and CYP2A13 were 5.32–15.4 and 0.92–8.67 µM, respectively, while those of thiophenes were 0.11–1.01 and 0.67–0.97 µM, respectively.
Collapse
Affiliation(s)
- Supattra Boonruang
- a Bioengineering Program, Faculty of Engineering , Burapha University , Muang , Chonburi , Thailand
| | - Khanistha Prakobsri
- a Bioengineering Program, Faculty of Engineering , Burapha University , Muang , Chonburi , Thailand
| | - Phisit Pouyfung
- b Department of Biochemistry, Faculty of Science , Mahidol University , Ratchathewi , Bangkok , Thailand
| | - Ekaruth Srisook
- c Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science , Burapha University , Muang , Chonburi , Thailand
| | - Aruna Prasopthum
- b Department of Biochemistry, Faculty of Science , Mahidol University , Ratchathewi , Bangkok , Thailand
| | - Pornpimol Rongnoparut
- b Department of Biochemistry, Faculty of Science , Mahidol University , Ratchathewi , Bangkok , Thailand
| | - Songklod Sarapusit
- d Department of Biochemistry and Center for Innovation in Chemistry, Faculty of Science , Burapha University , Muang , Chonburi , Thailand
| |
Collapse
|
15
|
Merz J, Fink J, Friedrich A, Krummenacher I, Al Mamari HH, Lorenzen S, Haehnel M, Eichhorn A, Moos M, Holzapfel M, Braunschweig H, Lambert C, Steffen A, Ji L, Marder TB. Pyrene Molecular Orbital Shuffle-Controlling Excited State and Redox Properties by Changing the Nature of the Frontier Orbitals. Chemistry 2017; 23:13164-13180. [PMID: 28718975 DOI: 10.1002/chem.201702594] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 01/01/2023]
Abstract
We show that by judicious choice of substituents at the 2- and 7-positions of pyrene, the frontier orbital order of pyrene can be modified, giving enhanced control over the nature and properties of the photoexcited states and the redox potentials. Specifically, we introduced a julolidine-like moiety and Bmes2 (mes=2,4,6-Me3 C6 H2 ) as very strong donor (D) and acceptor (A), respectively, giving 2,7-D-π-D- and unsymmetric 2,7-D-π-A-pyrene derivatives, in which the donor destabilizes the HOMO-1 and the acceptor stabilizes the LUMO+1 of the pyrene core. Consequently, for 2,7-substituted pyrene derivatives, unusual properties are obtained. For example, very large bathochromic shifts were observed for all of our compounds, and unprecedented green light emission occurs for the D/D system. In addition, very high radiative rate constants in solution and in the solid state were recorded for the D-π-D- and D-π-A-substituted compounds. All compounds show reversible one-electron oxidations, and Jul2 Pyr exhibits a second oxidation, with the largest potential splitting (ΔE=440 mV) thus far reported for 2,7-substituted pyrenes. Spectroelectrochemical measurements confirm an unexpectedly strong coupling between the 2,7-substituents in our pyrene derivatives.
Collapse
Affiliation(s)
- Julia Merz
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry, & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Julian Fink
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry, & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry, & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Ivo Krummenacher
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry, & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Hamad H Al Mamari
- Department of Chemistry, College of Science, Sultan Qaboos University, PO Box 36, Al Khoud, 123, Muscat, Sultanate of Oman
| | - Sabine Lorenzen
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry, & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Martin Haehnel
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry, & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Antonius Eichhorn
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry, & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Michael Moos
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Marco Holzapfel
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Holger Braunschweig
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry, & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Christoph Lambert
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Andreas Steffen
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry, & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Lei Ji
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry, & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Todd B Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry, & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
16
|
Shimada T. Inhibition of Carcinogen-Activating Cytochrome P450 Enzymes by Xenobiotic Chemicals in Relation to Antimutagenicity and Anticarcinogenicity. Toxicol Res 2017; 33:79-96. [PMID: 28443179 PMCID: PMC5402866 DOI: 10.5487/tr.2017.33.2.079] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/16/2017] [Indexed: 12/27/2022] Open
Abstract
A variety of xenobiotic chemicals, such as polycyclic aromatic hydrocarbons (PAHs), aryl- and heterocyclic amines and tobacco related nitrosamines, are ubiquitous environmental carcinogens and are required to be activated to chemically reactive metabolites by xenobiotic-metabolizing enzymes, including cytochrome P450 (P450 or CYP), in order to initiate cell transformation. Of various human P450 enzymes determined to date, CYP1A1, 1A2, 1B1, 2A13, 2A6, 2E1, and 3A4 are reported to play critical roles in the bioactivation of these carcinogenic chemicals. In vivo studies have shown that disruption of Cyp1b1 and Cyp2a5 genes in mice resulted in suppression of tumor formation caused by 7,12-dimethylbenz[a]anthracene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, respectively. In addition, specific inhibitors for CYP1 and 2A enzymes are able to suppress tumor formation caused by several carcinogens in experimental animals in vivo, when these inhibitors are applied before or just after the administration of carcinogens. In this review, we describe recent progress, including our own studies done during past decade, on the nature of inhibitors of human CYP1 and CYP2A enzymes that have been shown to activate carcinogenic PAHs and tobacco-related nitrosamines, respectively, in humans. The inhibitors considered here include a variety of carcinogenic and/or non-carcinogenic PAHs and acethylenic PAHs, many flavonoid derivatives, derivatives of naphthalene, phenanthrene, biphenyl, and pyrene and chemopreventive organoselenium compounds, such as benzyl selenocyanate and benzyl selenocyanate; o-XSC, 1,2-, 1,3-, and 1,4-phenylenebis( methylene)selenocyanate.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Graduate School of Life and Environmental Sciences, Veterinary Sciences, Osaka Prefecture University, Osaka, Japan
| |
Collapse
|
17
|
Shimada T, Takenaka S, Kakimoto K, Murayama N, Lim YR, Kim D, Foroozesh MK, Yamazaki H, Guengerich FP, Komori M. Structure-Function Studies of Naphthalene, Phenanthrene, Biphenyl, and Their Derivatives in Interaction with and Oxidation by Cytochromes P450 2A13 and 2A6. Chem Res Toxicol 2016; 29:1029-40. [PMID: 27137136 PMCID: PMC5293596 DOI: 10.1021/acs.chemrestox.6b00083] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Naphthalene, phenanthrene, biphenyl, and their derivatives having different ethynyl, propynyl, butynyl, and propargyl ether substitutions were examined for their interaction with and oxidation by cytochromes P450 (P450) 2A13 and 2A6. Spectral interaction studies suggested that most of these chemicals interacted with P450 2A13 to induce Type I binding spectra more readily than with P450 2A6. Among the various substituted derivatives examined, 2-ethynylnaphthalene, 2-naphthalene propargyl ether, 3-ethynylphenanthrene, and 4-biphenyl propargyl ether had larger ΔAmax/Ks values in inducing Type I binding spectra with P450 2A13 than their parent compounds. P450 2A13 was found to oxidize naphthalene, phenanthrene, and biphenyl to 1-naphthol, 9-hydroxyphenanthrene, and 2- and/or 4-hydroxybiphenyl, respectively, at much higher rates than P450 2A6. Other human P450 enzymes including P450s 1A1, 1A2, 1B1, 2C9, and 3A4 had lower rates of oxidation of naphthalene, phenanthrene, and biphenyl than P450s 2A13 and 2A6. Those alkynylated derivatives that strongly induced Type I binding spectra with P450s 2A13 and 2A6 were extensively oxidized by these enzymes upon analysis with HPLC. Molecular docking studies supported the hypothesis that ligand-interaction energies (U values) obtained with reported crystal structures of P450 2A13 and 2A6 bound to 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone, indole, pilocarpine, nicotine, and coumarin are of use in understanding the basis of possible molecular interactions of these xenobiotic chemicals with the active sites of P450 2A13 and 2A6 enzymes. In fact, the ligand-interaction energies with P450 2A13 4EJG bound to these chemicals were found to relate to their induction of Type I binding spectra.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Shigeo Takenaka
- Laboratory of Cellular and Molecular Biology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Kensaku Kakimoto
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Young-Ran Lim
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Maryam K. Foroozesh
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - F. Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Masayuki Komori
- Laboratory of Cellular and Molecular Biology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
18
|
Casas-Solvas JM, Howgego JD, Davis AP. Synthesis of substituted pyrenes by indirect methods. Org Biomol Chem 2014; 12:212-32. [DOI: 10.1039/c3ob41993b] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Cytochrome P450 family 1 inhibitors and structure-activity relationships. Molecules 2013; 18:14470-95. [PMID: 24287985 PMCID: PMC4216474 DOI: 10.3390/molecules181214470] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 11/15/2013] [Accepted: 11/19/2013] [Indexed: 12/28/2022] Open
Abstract
With the widespread use of O-alkoxyresorufin dealkylation assays since the 1990s, thousands of inhibitors of cytochrome P450 family 1 enzymes (P450s 1A1, 1A2, and 1B1) have been identified and studied. Generally, planar polycyclic molecules such as polycyclic aromatic hydrocarbons, stilbenoids, and flavonoids are considered to potentially be effective inhibitors of these enzymes, however, the details of the structure-activity relationships and selectivity of these inhibitors are still ambiguous. In this review, we thoroughly discuss the selectivity of many representative P450 family 1 inhibitors reported in the past 20 years through a meta-analysis.
Collapse
|
20
|
Shimada T, Kim D, Murayama N, Tanaka K, Takenaka S, Nagy LD, Folkman LM, Foroozesh MK, Komori M, Yamazaki H, Guengerich FP. Binding of diverse environmental chemicals with human cytochromes P450 2A13, 2A6, and 1B1 and enzyme inhibition. Chem Res Toxicol 2013; 26:517-28. [PMID: 23432429 DOI: 10.1021/tx300492j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
A total of 68 chemicals including derivatives of naphthalene, phenanthrene, fluoranthene, pyrene, biphenyl, and flavone were examined for their abilities to interact with human P450s 2A13 and 2A6. Fifty-one of these 68 chemicals induced stronger Type I binding spectra (iron low- to high-spin state shift) with P450 2A13 than those seen with P450 2A6, i.e., the spectral binding intensities (ΔAmax/Ks ratio) determined with these chemicals were always higher for P450 2A13. In addition, benzo[c]phenanthrene, fluoranthene, 2,3-dihydroxy-2,3-dihydrofluoranthene, pyrene, 1-hydroxypyrene, 1-nitropyrene, 1-acetylpyrene, 2-acetylpyrene, 2,5,2',5'-tetrachlorobiphenyl, 7-hydroxyflavone, chrysin, and galangin were found to induce a Type I spectral change only with P450 2A13. Coumarin 7-hydroxylation, catalyzed by P450 2A13, was strongly inhibited by 2'-methoxy-5,7-dihydroxyflavone, 2-ethynylnaphthalene, 2'-methoxyflavone, 2-naphththalene propargyl ether, acenaphthene, acenaphthylene, naphthalene, 1-acetylpyrene, flavanone, chrysin, 3-ethynylphenanthrene, flavone, and 7-hydroxyflavone; these chemicals induced Type I spectral changes with low Ks values. On the basis of the intensities of the spectral changes and inhibition of P450 2A13, we classified the 68 chemicals into eight groups based on the order of affinities for these chemicals and inhibition of P450 2A13. The metabolism of chemicals by P450 2A13 during the assays explained why some of the chemicals that bound well were poor inhibitors of P450 2A13. Finally, we compared the 68 chemicals for their abilities to induce Type I spectral changes of P450 2A13 with the Reverse Type I binding spectra observed with P450 1B1: 45 chemicals interacted with both P450s 2A13 and 1B1, indicating that the two enzymes have some similarty of structural features regarding these chemicals. Molecular docking analyses suggest similarities at the active sites of these P450 enzymes. These results indicate that P450 2A13, as well as Family 1 P450 enzymes, is able to catalyze many detoxication and activation reactions with chemicals of environmental interest.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Dereza PY, Krytchankou IS, Krupenya DV, Gurzhiy VV, Koshevoy IO, Melnikov AS, Tunik SP. Synthesis, Structural Characterization, and Photophysical Properties of AuI-CuIHeterometallic Alkynyl Cluster Complexes Containing N-Protected Amino Acid Groups. Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201200481] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
|
23
|
Bar-Even A, Flamholz A, Noor E, Milo R. Rethinking glycolysis: on the biochemical logic of metabolic pathways. Nat Chem Biol 2012; 8:509-17. [PMID: 22596202 DOI: 10.1038/nchembio.971] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Metabolic pathways may seem arbitrary and unnecessarily complex. In many cases, a chemist might devise a simpler route for the biochemical transformation, so why has nature chosen such complex solutions? In this review, we distill lessons from a century of metabolic research and introduce new observations suggesting that the intricate structure of metabolic pathways can be explained by a small set of biochemical principles. Using glycolysis as an example, we demonstrate how three key biochemical constraints--thermodynamic favorability, availability of enzymatic mechanisms and the physicochemical properties of pathway intermediates--eliminate otherwise plausible metabolic strategies. Considering these constraints, glycolysis contains no unnecessary steps and represents one of the very few pathway structures that meet cellular demands. The analysis presented here can be applied to metabolic engineering efforts for the rational design of pathways that produce a desired product while satisfying biochemical constraints.
Collapse
Affiliation(s)
- Arren Bar-Even
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
24
|
Liu J, Nguyen TT, Dupart PS, Sridhar J, Zhang X, Zhu N, Stevens CLK, Foroozesh M. 7-Ethynylcoumarins: selective inhibitors of human cytochrome P450s 1A1 and 1A2. Chem Res Toxicol 2012; 25:1047-57. [PMID: 22443586 DOI: 10.1021/tx300023p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To discover new selective mechanism-based P450 inhibitors, eight 7-ethynylcoumarin derivatives were prepared through a facile two-step synthetic route. Cytochrome P450 activity assays indicated that introduction of functional groups in the backbone of coumarin could enhance the inhibition activities toward P450s 1A1 and 1A2, providing good selectivity against P450s 2A6 and 2B1. The most potent product 7-ethynyl-3,4,8-trimethylcoumarin (7ETMC) showed IC(50) values of 0.46 μM and 0.50 μM for P450s 1A1 and 1A2 in the first six minutes, respectively, and did not show any inhibition activity for P450s 2A6 and 2B1 even at the dose of 50 μM. All of the inhibitors except 7-ethynyl-3-methyl-4-phenylcoumarin (7E3M4PC) showed mechanism-based inhibition of P450s 1A1 and 1A2. In order to explain this mechanistic difference in inhibitory activities, X-ray crystallography data were used to study the difference in conformation between 7E3M4PC and the other compounds studied. Docking simulations indicated that the binding orientations and affinities resulted in different behaviors of the inhibitors on P450 1A2. Specifically, 7E3M4PC with its two-plane structure fits into the P450 1A2's active site cavity with an orientation leading to no reactive binding, causing it to act as a competitive inhibitor.
Collapse
Affiliation(s)
- Jiawang Liu
- Department of Chemistry, Xavier University of Louisiana, New Orleans, LA 70125, United States
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Crawford AG, Liu Z, Mkhalid IAI, Thibault M, Schwarz N, Alcaraz G, Steffen A, Collings JC, Batsanov AS, Howard JAK, Marder TB. Synthesis of 2‐ and 2,7‐Functionalized Pyrene Derivatives: An Application of Selective CH Borylation. Chemistry 2012; 18:5022-35. [DOI: 10.1002/chem.201103774] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Indexed: 12/31/2022]
Affiliation(s)
- Andrew G. Crawford
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE (UK), Fax: (+44) 191‐384‐4737
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials, Shandong University, 27 Shanda South Road, Jinan, 250100 (P. R. China)
| | | | - Marie‐Hélène Thibault
- Département de Chimie, Université Laval, 1045, avenue de la Médecine, Pavillon Alexandre‐Vachon, Québec, G1V 0A6 (Canada)
| | - Nicolle Schwarz
- Leibniz‐Institut für Katalyse e. V. an der Universität Rostock, Albert‐Einstein‐Strasse 29a, 18059 Rostock (Germany)
| | - Gilles Alcaraz
- Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse, Cedex 04 (France)
| | - Andreas Steffen
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE (UK), Fax: (+44) 191‐384‐4737
| | - Jonathan C. Collings
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE (UK), Fax: (+44) 191‐384‐4737
| | - Andrei S. Batsanov
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE (UK), Fax: (+44) 191‐384‐4737
| | - Judith A. K. Howard
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE (UK), Fax: (+44) 191‐384‐4737
| | - Todd B. Marder
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE (UK), Fax: (+44) 191‐384‐4737
| |
Collapse
|
26
|
Sridhar J, Liu J, Foroozesh M, Klein Stevens CL. Inhibition of cytochrome p450 enzymes by quinones and anthraquinones. Chem Res Toxicol 2012; 25:357-65. [PMID: 22185593 DOI: 10.1021/tx2004163] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In silico docking studies and quantitative structure-activity relationship analysis of a number of in-house cytochrome P450 inhibitors have revealed important structural characteristics that are required for a molecule to function as a good inhibitor of P450 enzymes 1A1, 1A2, 2B1, and/or 2A6. These insights were incorporated into the design of pharmacophores used for a 2D search of the Chinese medicine database. Emodin, a natural anthraquinone isolated from Rheum emodi and known to be metabolized by cytochrome P450 enzymes, was one of the hits and was used as the lead compound. Emodin was found to inhibit P450s 1A1, 1A2, and 2B1 with IC(50) values of 12.25, 3.73, and 14.89 μM, respectively. On the basis of the emodin molecular structure, further similarity searches of the PubChem and ZINC chemical databases were conducted resulting in the identification of 12 emodin analogues for testing against P450s 1A1-, 1A2-, 2B1-, and 2A6-dependent activities. 1-Amino-4-chloro-2-methylanthracene-9,10-dione (compound 1) showed the best inhibition potency for P450 1A1 with an IC(50) value of 0.40 μM. 1-Amino-4-chloro-2-methylanthracene-9,10-dione (compound 1) and 1-amino-4-hydroxyanthracene-9,10-dione (compound 2) both inhibited P450 1A2 with the same IC(50) value of 0.53 μM. In addition, compound 1 acted as a mechanism-based inhibitor of cytochrome P450s 1A1 and 1A2 with K(I) and K(inactivation) values of 5.38 μM and 1.57 min(-1) for P450 1A1 and 0.50 μM and 0.08 min(-1) for P450 1A2. 2,6-Di-tert-butyl-5-hydroxynaphthalene-1,4-dione (compound 8) directly inhibited P450 2B1 with good selectivity and inhibition potency (IC(50) = 5.66 μM). Docking studies using the 3D structures of the enzymes were carried out on all of the compounds. The binding modes of these compounds revealed the structural characteristics responsible for their potency and selectivity. Compound 1, which is structurally similar to compound 2 with the presence of an amino group at position 1, showed a difference in the mechanism of inhibition toward P450s 1A1 and 1A2. The mechanism-based inhibition seen for compound 1 may be attributed to the presence of the methyl group at the 2-position, in close proximity to the amino group. Compound 2, which is otherwise similar, lacks that methyl moiety and did not show mechanism-based inhibition.
Collapse
Affiliation(s)
- Jayalakshmi Sridhar
- Department of Chemistry, Xavier University of Louisiana , One Drexel Drive, New Orleans, Louisiana 70125, United States
| | | | | | | |
Collapse
|
27
|
Sridhar J, Foroozesh M, Stevens CK. QSAR models of cytochrome P450 enzyme 1A2 inhibitors using CoMFA, CoMSIA and HQSAR. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2011; 22:681-697. [PMID: 22004550 PMCID: PMC3371641 DOI: 10.1080/1062936x.2011.623320] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Quantitative structure-activity relationship (QSAR) studies were conducted on an in-house database of cytochrome P450 enzyme 1A2 inhibitors using the comparative molecular field analysis (CoMFA), comparative molecular similarity analysis (CoMSIA) and hologram QSAR (HQSAR) approaches. The database consisted of 36 active molecules featuring varied core structures. The model based on the naphthalene substructure alignment incorporating 19 molecules yielded the best model with a CoMFA cross validation value q(2) of 0.667 and a Pearson correlation coefficient r(2) of 0.976; a CoMSIA q(2) value of 0.616 and r(2) value of 0.985; and a HQSAR q(2) value of 0.652 and r(2) value of 0.917. A second model incorporating 34 molecules aligned using the benzene substructure yielded an acceptable CoMFA model with q(2) value of 0.5 and r(2) value of 0.991. Depending on the core structure of the molecule under consideration, new CYP1A2 inhibitors will be designed based on the results from these models.
Collapse
|
28
|
Sridhar J, Jin P, Liu J, Foroozesh M, Stevens CLK. In silico studies of polyaromatic hydrocarbon inhibitors of cytochrome P450 enzymes 1A1, 1A2, 2A6, and 2B1. Chem Res Toxicol 2010; 23:600-7. [PMID: 20078084 DOI: 10.1021/tx900348v] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A computational study was undertaken to understand the nature of binding and the structural features that play a significant role in the binding of arylacetylene molecules to cytochrome P450 enzymes 1A1, 1A2, 2A6, and 2B1. Nine polycyclic arylacetylenes determined to be mechanism-based P450 enzyme inhibitors were studied. The lack of polar substituents in these compounds causes them to be incapable of hydrogen bonding to the polar protein residues. The four P450 enzymes of interest all have phenylalanine residues in the binding pocket for potential pi-pi interactions with the aromatic rings of the inhibitors. The inhibition potency of these arylacetylenes toward P450s 1A1 and 2B1 showed a dependence on the proximity of the inhibitor's triple bond to the prosthetic heme Fe of the enzyme. In P450 enzyme 1A2, the inhibitor's potency showed more dependence on the pi-pi interactions of the inhibitor's ring systems with the phenylalanine residues of the protein, with the proximity of the inhibitor triple bond to the heme Fe weighing in as the second most important factor. The results suggest that maximizing the pi-pi interactions with phenylalanine residues in the binding pocket and optimum proximity of the acetylene moiety to the heme Fe will provide for a substantial increase in the potency of the polyaromatic hydrocarbon mechanism-based inhibitors. A fine balance of these two aspects of binding coupled with attention to supplementing hydrophobic interactions could address potency and selectivity issues for these inhibitors.
Collapse
Affiliation(s)
- Jayalakshmi Sridhar
- Department of Chemistry, Xavier University of Louisiana, One Drexel Drive, New Orleans, Louisiana 70125, USA
| | | | | | | | | |
Collapse
|
29
|
Zhu N, Lightsey D, Liu J, Foroozesh M, Morgan KM, Stevens ED, Klein Stevens CL. Ethynyl and Propynylpyrene Inhibitors of Cytochrome P450. JOURNAL OF CHEMICAL CRYSTALLOGRAPHY 2010; 40:343-352. [PMID: 20473363 PMCID: PMC2869100 DOI: 10.1007/s10870-009-9659-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The single-crystal X-ray structures and in vivo activities of three aryl acetylenic inhibitors of cytochromes P450 1A1, 1A2, 2A6, and 2B1 have been determined and are reported herein. These are 1-ethynylpyrene, 1-propy-nylpyrene, and 4-propynylpyrene. To investigate electronic influences on the mechanism of enzyme inhibition, the experimental electron density distribution of 1-ethynylpy-rene has been determined using low-temperature X-ray diffraction measurements, and the resulting net atomic charges compared with various theoretical calculations. A total of 82,390 reflections were measured with Mo Kα radiation to a (sinθ/λ)(max) = 0.985 Å(-1). Averaging symmetry equivalent reflections yielded 8,889 unique reflections. A least squares refinement procedure was used in which multipole parameters were added to describe the distortions of the atomic electron distributions from spherical symmetry. A map of the model electron density distribution of 1-ethynylpyrene was obtained. Net atomic charges calculated from refined monopole population parameters yielded charges that showed that the terminal acetylenic carbon atom (C18) is more negative than the internal carbon (C17). Net atomic charges calculated by ab initio, density functional theory, and semi-empirical methods are consistent with this trend suggesting that the terminal acetylenic carbon atom is more likely to be the site of oxidation. This is consistent with the inhibition mechanism pathway that results in the formation of a reactive ketene intermediate. This is also consistent with assay results that determined that 1-ethynylpyrene acts as a mechanism-based inhibitor of P450s 1A1 and 1A2 and as a reversible inhibitor of P450 2B1. Crystallographic data: 1-ethynylpyrene, C(18)H(10), P2(1)/c, a = 14.571(2) Å, b = 3.9094(5) Å, c = 20.242(3) Å, β = 105.042(2)°, V = 1,113.5(2) Å(3); 1-propynylpyrene, C(19)H(12), P2(1)/n, a = 8.970(2) Å, b = 10.136(1) Å, c = 14.080(3) Å, β = 99.77(2)°, V = 1,261.5(4) Å(3); 4-propynylpyrene, C(19)H(12), Pbca, a = 9.904(1) Å, b = 13.174(2) Å, c = 19.401(1) Å, V = 2,531.4(5) Å(3).
Collapse
Affiliation(s)
- Naijue Zhu
- Department of Chemistry, Xavier University of Louisiana, One Drexel Drive, New Orleans, LA 70125, USA
| | - Danielle Lightsey
- Department of Chemistry, Xavier University of Louisiana, One Drexel Drive, New Orleans, LA 70125, USA
| | - Jiawang Liu
- Department of Chemistry, Xavier University of Louisiana, One Drexel Drive, New Orleans, LA 70125, USA
| | - Maryam Foroozesh
- Department of Chemistry, Xavier University of Louisiana, One Drexel Drive, New Orleans, LA 70125, USA
| | - Kathleen M. Morgan
- Department of Chemistry, Xavier University of Louisiana, One Drexel Drive, New Orleans, LA 70125, USA
| | - Edwin D. Stevens
- Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA
| | - Cheryl L. Klein Stevens
- Department of Chemistry, Xavier University of Louisiana, One Drexel Drive, New Orleans, LA 70125, USA
| |
Collapse
|
30
|
Lin HL, Zhang H, Jushchyshyn M, Hollenberg PF. Covalent modification of Thr302 in cytochrome P450 2B1 by the mechanism-based inactivator 4-tert-butylphenylacetylene. J Pharmacol Exp Ther 2010; 333:663-9. [PMID: 20200115 DOI: 10.1124/jpet.109.164350] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanism of inactivation of cytochrome P450 2B1 (CYP2B1) by 4-tert-butylphenylacetylene (BPA) has been characterized previously to be caused by the covalent binding of a reactive intermediate to the apoprotein rather than heme destruction (J Pharmacol Exp Ther 331:392-403, 2009). The identification of a BPA-glutathione conjugate and the increase in the mass of the BPA-adducted apoprotein have indicated that the mass of adduct is 174 Da, equivalent to the mass of BPA plus one oxygen atom. To identify the adducted residue, BPA-inactivated CYP2B1 was digested with trypsin, and the digest was then analyzed by using capillary liquid chromatography with a LTQ linear ion trap mass spectrometer as the detector. A mass shift of 174 Da was used for a SEQUEST database search. The tandem mass spectrometry fragmentation of the modified peptide and the identity of modified residue were determined. The results revealed a mass increase of 174 Da for the peptide sequence (296)FFAGTSSTTLR(308) in the I-helix of CYP2B1 and that the site of adduction formation is Thr302. Homology modeling and ligand docking studies showed that BPA binds in close proximity to both the heme iron and Thr302 with the distances being 2.96 and 3.42 A, respectively. The identification of Thr302 in the CYP2B1 active site as the site of covalent modification leading to inactivation by BPA supports previous hypotheses that this conserved Thr residue may play a crucial role for various functions in P450s.
Collapse
Affiliation(s)
- Hsia-lien Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan 48109-5632, USA
| | | | | | | |
Collapse
|
31
|
Shimada T, Tanaka K, Takenaka S, Foroozesh MK, Murayama N, Yamazaki H, Guengerich FP, Komori M. Reverse type I binding spectra of human cytochrome P450 1B1 induced by flavonoid, stilbene, pyrene, naphthalene, phenanthrene, and biphenyl derivatives that inhibit catalytic activity: a structure-function relationship study. Chem Res Toxicol 2009; 22:1325-33. [PMID: 19563207 DOI: 10.1021/tx900127s] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Fifty-one chemicals including derivatives of 16 flavonoids, three stilbenes, six pyrenes, seven naphthalenes, seven phenanthrenes, 10 biphenyls, 17beta-estradiol, and estrone were examined for their abilities to induce reverse type I binding spectra with human cytochrome P450 (P450) 1B1 and to inhibit 7-ethoxyresorufin O-deethylation (EROD) activities catalyzed by P450 1B1. Forty-nine chemicals showed reverse type I spectra with P450 1B1, and we found that 3,5,7-trihydroxyflavone, 3',4'-dimethoxy-5,7-dihydroxyflavone, 4'-methoxy-5,7-dihydroxyflavone, alpha- and beta-naphthoflavones, 2,4,3',5'-tetramethoxystilbene, pyrene, and several acetylenic pyrenes and phenanthrenes were strong inducers of the spectra and also potent inhibitors of EROD activities catalyzed by P450 1B1. The spectral dissociation constant (K(s)) and the magnitude of the binding (DeltaA(max)/K(s)) of 49 chemicals were correlated with the inhibition potencies of EROD activities by these chemicals [correlation coefficients (r) of 0.72 and 0.74, respectively]. The K(s) and DeltaA(max)/K(s) values were more correlated with IC(50) values when compared in a group of derivatives of flavonoids, stilbenes, and estrogens (r = 0.81 and 0.88, respectively) or a group of derivatives of pyrenes, naphthalenes, phenanthrenes, and biphenyls (r = 0.88 and 0.91, respectively). Among 14 flavonoids examined, 3,5,7-trihydroxyflavone and 4'-methoxy- and 3',4'-dimethoxy-5,7-dihydroxyflavone were more active than flavone in interacting with P450 1B1, but the respective 7,8-dihydroxyflavones were less active. Pyrene itself was highly active in interacting with P450 1B1, but its binding was slightly decreased when substituted with acetylenic groups. In contrast, substitution of naphthalene with methyl and ethyl propargyl ethers led to more interaction with P450 1B1 than with naphthalene itself. Similarly, substitution on phenanthrene or biphenyl with acetylenic groups and propargyl ethers increased affinities to P450 1B1. These results suggest that the reverse type I binding of chemicals to P450 1B1 may determine how they interact with and inhibit the catalytic activity of the enzyme. Substitutions on the compounds with various acetylenic groups and propargyl ethers cause an increase or decrease of their affinities to P450 1B1, depending on the parent compound used.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Department of Veterinary Science, Osaka Prefecture University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Wright AT, Song JD, Cravatt BF. A suite of activity-based probes for human cytochrome P450 enzymes. J Am Chem Soc 2009; 131:10692-700. [PMID: 19583257 PMCID: PMC2737065 DOI: 10.1021/ja9037609] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cytochrome P450 (P450) enzymes regulate a variety of endogenous signaling molecules and play central roles in the metabolism of xenobiotics and drugs. We recently showed that an aryl alkyne serves as an effective activity-based probe for profiling mouse liver microsomal P450s in vitro and in vivo. However, individual P450s display distinct substrate and inhibitor specificities, indicating that multiple probe structures may be required to achieve comprehensive coverage of this large and diverse enzyme family. Here, we have synthesized a suite of P450-directed, activity-based protein profiling (ABPP) probes that contain: (1) varied chemical architectures validated as mechanism-based inhibitors of the P450 enzyme family, and (2) terminal alkyne groups for click chemistry conjugation of reporter tags. This set of probes was screened against a wide cross-section of human P450s, leading to the discovery of an optimal set of probes that provide broad coverage of this enzyme family. We used these probes to profile the effects on P450 activity of aromatase inhibitors in current clinical use for the treatment of breast cancer. We describe the surprising discovery that one of these aromatase inhibitors, anastrozole, significantly increases probe-labeling of P450 1A2, indicative of a heterotypic cooperativity effect on a central P450 isozyme involved in metabolizing numerous drugs and xenobiotics. The results presented herein greatly expand the suite of ABPP probes for profiling P450s and illuminate new applications for these tools to understand P450-drug interactions.
Collapse
Affiliation(s)
- Aaron T. Wright
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Joongyu D. Song
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Benjamin F. Cravatt
- The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| |
Collapse
|
33
|
Shimada T, Murajama N, Tanaka K, Takenaka S, Imai Y, Hopkins NE, Foroozesh MK, Alworth WL, Yamazaki H, Guengerich FP, Komori M. Interaction of polycyclic aromatic hydrocarbons with human cytochrome P450 1B1 in inhibiting catalytic activity. Chem Res Toxicol 2009; 21:2313-23. [PMID: 19548353 DOI: 10.1021/tx8002998] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eleven polycyclic aromatic hydrocarbons (PAHs) and 14 acetylenic PAHs and biphenyls were used to analyze interactions with cytochrome P450 (P450) 1B1 in inhibiting catalytic activity, using 7-ethoxyresorufin O-deethylation (EROD) as a model reaction. Most of the chemicals examined were direct inhibitors of P450 1B1 except for 4-(1-propynyl)biphenyl, a mechanism-based inhibitor. In the case of direct inhibition of EROD activity {15 of 24 chemicals, e.g., benzo[a]pyrene, 1-(1-propynyl)pyrene, and 3-(1-propynyl)phenanthrene}, restoration of the EROD activity occurred with increasing incubation time, and kinetic analysis showed that EROD K(m) values were higher with these inhibitors at initial stages of incubation but became lower with increasing incubation time. With the other nine chemicals, the K(m) values for P450 1B1-mediated EROD increased during the incubations. Acetylenic inhibitors, but not the 11 PAHs, induced reverse type I spectral changes with P450 1B1, and the low dissociation constants (K(s)) suggested a role for such interaction in the inhibition of catalytic activity. Studies of quenching of P450 1B1-derived fluorescence with inhibitors demonstrated that acetylenic inhibitors and PAHs interacted rapidly with P450 1B1, with K(d) values < 10 microM. However, studies of quenching of inhibitor-derived fluorescence with P450 1B1 showed these interactions to be different, that is, B[a]P interacted with P450 1B1 more slowly. Molecular docking of P450 1B1, based on P450 1A2 crystal structure, suggested that there are clear differences in the interaction of PAH inhibitors with P450 1B1 and 1A2 and that these differences may explain why PAH inhibitors inhibit P450 1 enzymes by different mechanisms. The results suggest that P450 1B1 interacts with synthetic polycyclic aromatic acetylenes and PAHs in different ways, depending on the chemicals, and that these differences in interactions may explain how these chemicals inhibit P450 activities by different mechanisms.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Department of Veterinary Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lin HL, Zhang H, Hollenberg PF. Metabolic activation of mifepristone [RU486; 17beta-hydroxy-11beta-(4-dimethylaminophenyl)-17alpha-(1-propynyl)-estra-4,9-dien-3-one] by mammalian cytochromes P450 and the mechanism-based inactivation of human CYP2B6. J Pharmacol Exp Ther 2009; 329:26-37. [PMID: 19168709 DOI: 10.1124/jpet.108.148536] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mifepristone [RU486; 17beta-hydroxy-11beta-(4-dimethylaminophenyl)-17alpha-(1-propynyl)-estra-4,9-dien-3-one] inactivates CYP2B6 in the reconstituted system in a mechanism-based manner. The loss of 7-ethoxy-4-(trifluoromethyl)-coumarin deethylation activity of CYP2B6 is concentration- and time-dependent. The inactivation requires NADPH and is irreversible. The concentration of inactivator required to give the half-maximal rate of inactivation is 2.8 microM, and the maximal rate constant for inactivation at a saturating concentration of the inactivator is 0.07 min(-1). Incubation of CYP2B6 with 20 microM RU486 for 15 min resulted in 61% loss of catalytic activity, 60% loss of the reduced cytochrome P450 (P450)-CO complex, and a 40% loss of native heme. The partition ratio is approximately 5, and the stoichiometry of binding is approximately 0.6 mol RU486/mol P450 inactivated. SDS-polyacrylamide gel electrophoresis and high-pressure liquid chromatography analysis showed that [(3)H]RU486 was irreversibly bound to CYP2B6 apoprotein. RU486 is metabolized to form three major metabolites and bioactivated to give reactive intermediates by purified P450s in the reconstituted system. After incubation of RU486 with the purified P450s and liver microsomes from rats and humans in the presence of glutathione (GSH) and NADPH, GSH conjugates with MH(+) ions at m/z 769, 753, and 751 were detected by liquid chromatography-tandem mass spectrometry. Two GSH conjugates with MH(+) ions at m/z 753 are formed from the reaction of GSH with RU486. The adducts are formed after addition of an activated oxygen to the carbon-carbon triple bond of the propynyl moiety. This suggests that oxirene intermediates may be involved in the mechanism of inactivation. It seems that the potential for drug-drug interactions of RU486 may not be limited only to CYP3A4 and should also be evaluated for drugs metabolized primarily by CYP2B6, such as bupropion and efavirenz.
Collapse
Affiliation(s)
- Hsia-lien Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-5632, USA
| | | | | |
Collapse
|
35
|
Filichev V, Astakhova I, Malakhov A, Korshun V, Pedersen E. 1-, 2-, and 4-Ethynylpyrenes in the Structure of Twisted Intercalating Nucleic Acids: Structure, Thermal Stability, and Fluorescence Relationship. Chemistry 2008; 14:9968-80. [DOI: 10.1002/chem.200800380] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Astakhova IV, Korshun VA. 2-and 4-phenylethynylpyrenes, novel fluorescent labels for DNA. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2008; 34:570-2. [DOI: 10.1134/s1068162008040171] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
37
|
Clinically important drug interactions potentially involving mechanism-based inhibition of cytochrome P450 3A4 and the role of therapeutic drug monitoring. Ther Drug Monit 2008; 29:687-710. [PMID: 18043468 DOI: 10.1097/ftd.0b013e31815c16f5] [Citation(s) in RCA: 250] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Cytochrome P450 (CYP) 3A4 is the most abundant enzyme of CYPs in the liver and gut that metabolizes approximately 50% currently available drugs. A number of important drugs have been identified as substrates, inducers, and/or inhibitors of CYP3A4. The substrates of CYP3A4 considerably overlap with those of P-glycoprotein. Both CYP3A4 and P-glycoprotein are subject to inhibition and induction by a number of factors. Mechanism-based inhibition of CYP3A4 is characterized by NADPH-, time-, and concentration-dependent enzyme inactivation occurring when some xenobiotics or drugs are converted by CYPs to reactive metabolites. Such an inhibition of CYP3A4 is caused by chemical modification of the heme, the protein, or both as a result of covalent binding of modified heme to the protein. To date, the identified clinically important mechanism-based CYP3A4 inhibitors mainly include macrolide antibiotics (eg, clarithromycin and erythromycin), anti-HIV agents (eg, ritonavir and delavirdine), antidepressants (eg, fluoxetine and fluvoxamine), calcium channel blockers (eg, verapamil and diltiazem), steroids and their modulators (eg, gestodene and mifepristone), and several herbal and dietary components. The inactivation of CYP3A4 by drugs often causes unfavorable and long-lasting drug-drug interactions and probably fatal toxicity, depending on many factors associated with the enzyme, drugs, and the patients. Clinicians are encouraged to have a sound knowledge of drug-induced, mechanism-based CYP3A4 inhibition; take proper cautions, and perform close monitoring for possible drug interactions when using drugs that are mechanism-based CYP3A4 inhibitors. To minimize drug-drug interactions involving mechanism-based CYP3A4 inhibition, it is necessary to choose safe drug combination regimens, adjust drug dosages appropriately, and conduct therapeutic drug monitoring for drugs with narrow therapeutic indices.
Collapse
|
38
|
Jiang X, Kong W, Chen J, Ma S. Intermolecular sequential [4 + 2]-cycloaddition–aromatization reaction of aryl-substituted allenes with DMAD affording phenanthrene and naphthalene derivatives. Org Biomol Chem 2008; 6:3606-10. [DOI: 10.1039/b808767a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Cheng D, Harris D, Reed JR, Backes WL. Inhibition of CYP2B4 by 2-ethynylnaphthalene: evidence for the co-binding of substrate and inhibitor within the active site. Arch Biochem Biophys 2007; 468:174-82. [PMID: 17967439 PMCID: PMC2121586 DOI: 10.1016/j.abb.2007.07.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Revised: 07/21/2007] [Accepted: 07/25/2007] [Indexed: 10/22/2022]
Abstract
2-ethynylnaphthalene (2EN) is an effective mechanism-based inhibitor of CYP2B4. There are two inhibitory components: (1) irreversible inactivation of CYP2B4 (a typical time-dependent inactivation), and (2) a reversible component. The reversible component was unusual in that the degree of inhibition was not simply a characteristic of the enzyme-inhibitor interaction, but dependent on the size of the substrate molecule used to monitor residual activity. The effect of 2EN on the metabolism of seven CYP2B4 substrates showed that it was not an effective reversible inhibitor of substrates containing a single aromatic ring; substrates with two fused rings were competitively inhibited by 2EN; and larger substrates were non-competitively inhibited. Energy-based docking studies demonstrated that, with increasing substrate size, the energy of 2EN and substrate co-binding in the active site became unfavorable precisely at the point where 2EN became a competitive inhibitor. Hierarchical docking revealed potential allosteric inhibition sites separate from the substrate binding site.
Collapse
Affiliation(s)
- Dongmei Cheng
- Department of Pharmacology and Experimental Therapeutics, and The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, LA 70112, USA
| | - Danni Harris
- Molecular Research Institute, Mountain View, CA 94043
| | - James R. Reed
- Department of Pharmacology and Experimental Therapeutics, and The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, LA 70112, USA
| | - Wayne L. Backes
- Department of Pharmacology and Experimental Therapeutics, and The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, LA 70112, USA
| |
Collapse
|
40
|
Wright AT, Cravatt BF. Chemical proteomic probes for profiling cytochrome p450 activities and drug interactions in vivo. ACTA ACUST UNITED AC 2007; 14:1043-51. [PMID: 17884636 PMCID: PMC2044501 DOI: 10.1016/j.chembiol.2007.08.008] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 08/13/2007] [Accepted: 08/13/2007] [Indexed: 10/22/2022]
Abstract
The cytochrome P450 (P450) superfamily metabolizes many endogenous signaling molecules and drugs. P450 enzymes are regulated by posttranslational mechanisms in vivo, which hinders their functional characterization by conventional genomic or proteomic methods. Here we describe a chemical proteomic strategy to profile P450 activities directly in living systems. Derivatization of a mechanism-based inhibitor with a "clickable" handle provided an activity-based probe that labels multiple P450s both in proteomic extracts and in vivo. This probe was used to record alterations in liver P450 activities triggered by chemical agents, including inducers of P450 expression and direct P450 inhibitors. The chemical proteomic strategy described herein thus offers a versatile method to monitor P450 activities and small-molecule interactions in any biological system and, through doing so, should facilitate the functional characterization of this large and diverse enzyme class.
Collapse
Affiliation(s)
- Aaron T Wright
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
41
|
Kollock R, Meinl W, Schneider H, Batke M, Frank H, Seidel A, Glatt H. Efficient oxidation of promutagenic hydroxymethylpyrenes by cDNA-expressed human alcohol dehydrogenase ADH2 and its inhibition by various agents. Biochem Pharmacol 2007; 75:527-37. [PMID: 17920042 DOI: 10.1016/j.bcp.2007.08.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 08/28/2007] [Accepted: 08/28/2007] [Indexed: 10/22/2022]
Abstract
Alkylated polycyclic aromatic hydrocarbons can be metabolically activated via benzylic hydroxylation and sulphation to electrophilically reactive esters. However, we previously found that the predominant biotransformation route for the hepatocarcinogen 1-hydroxymethylpyrene (1-HMP) in the rat in vivo is the oxidation of the side chain by alcohol dehydrogenases (ADHs) and aldehyde dehydrogenases to the carboxylic acid. Inhibition of this pathway by ethanol (competing ADH substrate) or 4-methylpyrazole (ADH inhibitor) led to a dramatic increase in the 1-HMP-induced DNA adduct formation in rat tissues in the preceding study. In order to elucidate the role of individual ADHs in the metabolism of alkylated polycyclic aromatic hydrocarbons, we expressed the various members of the human ADH family in bacteria. Cytosolic preparations from bacteria expressing ADH2 clearly oxidized hydroxymethylpyrene isomers (1-, 2- and 4-HMP) with the highest rate. This form was purified to near homogeneity to perform detailed kinetic analyses. High catalytic efficiencies (V(max)/K(m)) were observed with HMPs. Thus, this value was 10,000-fold higher for 2-HMP than for the reference substrate, ethanol. The corresponding aldehydes were also efficiently reduced by ADH2. 4-Methylpyrazole inhibited the oxidation of the HMP isomers as well as the reverse reaction. Daidzein, cimetidine and the competing substrate ethanol were further compounds that inhibited the ADH2-mediated oxidative detoxification of 1-HMP.
Collapse
Affiliation(s)
- Ronny Kollock
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Nutritional Toxicology, 14558 Nuthetal, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Milbank JBJ, Knauer CS, Augelli-Szafran CE, Sakkab-Tan AT, Lin KK, Yamagata K, Hoffman JK, Zhuang N, Thomas J, Galatsis P, Wendt JA, Mickelson JW, Schwarz RD, Kinsora JJ, Lotarski SM, Stakich K, Gillespie KK, Lam WW, Mutlib AE. Rational design of 7-arylquinolines as non-competitive metabotropic glutamate receptor subtype 5 antagonists. Bioorg Med Chem Lett 2007; 17:4415-8. [PMID: 17590335 DOI: 10.1016/j.bmcl.2007.06.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 06/04/2007] [Accepted: 06/05/2007] [Indexed: 11/16/2022]
Abstract
Rational replacement of the alkyne linker of mGluR5 antagonist MPEP gave 7-arylquinolines. SAR optimization gave an orally active compound with high affinity for the MPEP binding site.
Collapse
Affiliation(s)
- Jared B J Milbank
- Pfizer Global Research and Development, Michigan Laboratories, 2800 Plymouth Road, Ann Arbor, MI 48105, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kramer JA, Sagartz JE, Morris DL. The application of discovery toxicology and pathology towards the design of safer pharmaceutical lead candidates. Nat Rev Drug Discov 2007; 6:636-49. [PMID: 17643090 DOI: 10.1038/nrd2378] [Citation(s) in RCA: 208] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Toxicity is a leading cause of attrition at all stages of the drug development process. The majority of safety-related attrition occurs preclinically, suggesting that approaches to identify 'predictable' preclinical safety liabilities earlier in the drug development process could lead to the design and/or selection of better drug candidates that have increased probabilities of becoming marketed drugs. In this Review, we discuss how the early application of preclinical safety assessment--both new molecular technologies as well as more established approaches such as standard repeat-dose rodent toxicology studies--can identify predictable safety issues earlier in the testing paradigm. The earlier identification of dose-limiting toxicities will provide chemists and toxicologists the opportunity to characterize the dose-limiting toxicities, determine structure-toxicity relationships and minimize or circumvent adverse safety liabilities.
Collapse
Affiliation(s)
- Jeffrey A Kramer
- Department of Drug Metabolism and Pharmacokinetics, Lexicon Pharmaceuticals Inc., 8800 Technology Forest Place, The Woodlands, Texas 77381, USA.
| | | | | |
Collapse
|
44
|
Cheng D, Reed JR, Harris D, Backes WL. Inhibition of CYP2B4 by the mechanism-based inhibitor 2-ethynylnaphthalene: inhibitory potential of 2EN is dependent on the size of the substrate. Arch Biochem Biophys 2007; 462:28-37. [PMID: 17470357 PMCID: PMC2041879 DOI: 10.1016/j.abb.2007.03.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Revised: 03/22/2007] [Accepted: 03/23/2007] [Indexed: 11/27/2022]
Abstract
2-Ethynylnaphthalene (2EN) is a mechanism-based inhibitor of CYP2B4 with two components to the inhibition, (1) enzyme inactivation, which requires covalent binding of the 2EN metabolite, and (2) reversible inhibition by 2EN itself. Both inhibitory components were examined using several different CYP2B4 substrates. Preincubation of CYP2B4 with 2EN led to a time-dependent inactivation of each of the CYP2B4-dependent activities examined; however, the ability of 2EN to reversibly inhibit CYP2B4 depended on the substrate employed, which is inconsistent with classical inhibition patterns. The degree 2EN's reversible inhibition was shown not to correlate with the substrate affinity for the active site, but with parameters related to the molecular size of the substrate. The results are consistent with 2EN and the smaller substrates simultaneously fitting in the CYP2B4 active site, leading to very little inhibition. Larger substrates exhibited greater degrees of inhibition because of their inability to co-bind with inhibitor in the active site.
Collapse
Affiliation(s)
- Dongmei Cheng
- Department of Pharmacology and Experimental Therapeutics, and The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, LA 70112, USA
| | - James R. Reed
- Department of Pharmacology and Experimental Therapeutics, and The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, LA 70112, USA
| | - Danni Harris
- Molecular Research Institute, Mountain View, CA 94043
| | - Wayne L. Backes
- Department of Pharmacology and Experimental Therapeutics, and The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar Street, New Orleans, LA 70112, USA
- Corresponding author: Wayne L. Backes, Ph.D., Department of Pharmacology & The Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, 533 Bolivar St., New Orleans, LA 70112, Tel. 504-568-6557, FAX 504-568-6888, E-mail:
| |
Collapse
|
45
|
Shimada T, Murayama N, Okada K, Funae Y, Yamazaki H, Guengerich FP. Different mechanisms for inhibition of human cytochromes P450 1A1, 1A2, and 1B1 by polycyclic aromatic inhibitors. Chem Res Toxicol 2007; 20:489-96. [PMID: 17291012 DOI: 10.1021/tx600299p] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have previously shown that several polycyclic aromatic hydrocarbons (PAHs) strongly inhibit their own and other PAH metabolism catalyzed by cytochrome P450 (P450) 1A1, 1A2, and 1B1 [Shimada, T., and Guengerich, F. P. (2006) Chem. Res. Toxicol. 19, 288-294]. In the present study, we examined mechanisms of how PAHs inhibit these P450 enzymes by using 7-ethoxyresorufin O-deethylation (EROD) as a model reaction. First, we examined mechanisms of inhibition of P450 1A1, 1A2, and 1B1 by the synthetic model inhibitors 1-(1-propynyl)pyrene (1PP), 1-ethynylpyrene (1EP), 2-ethynylpyrene (2EP), and 4-(1-propynyl)biphenyl (4Pbi). Both 1PP and 1EP inhibited P450 1A1 in a mechanism-based manner, but P450 1B1 and 1A2 were directly inhibited by 1PP and 1EP. Interestingly, P450 1B1 inactivated 1PP and 1EP to products that were not inhibitory to P450 1B1. 4Pbi was a mechanism-based inhibitor of P450 1A1 and 1B1, but 2EP directly inhibited these P450s. All four of the inhibitors directly inhibited P450 1A2. We also found that benzo[a]pyrene and seven other PAH compounds tested inhibited P450 1A2 in a mechanism-based manner, but fluoranthene directly inhibited P450 1A2. All of the nine PAHs examined were direct inhibitors of P450 1A1 and P450 1B1. These results suggest different mechanisms of inhibition of P450 1A1, 1A2, and 1B1 by PAHs and related chemicals and that interactions between P450 enzymes and PAH inhibitors are involved in differences in inhibition of the enzymes.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Department of Chemical Biology, Osaka City University Medical School, Abeno-ku, Osaka 545-8585, Japan.
| | | | | | | | | | | |
Collapse
|
46
|
Bumpus NN, Kent UM, Hollenberg PF. Metabolism of Efavirenz and 8-Hydroxyefavirenz by P450 2B6 Leads to Inactivation by Two Distinct Mechanisms. J Pharmacol Exp Ther 2006; 318:345-51. [PMID: 16611850 DOI: 10.1124/jpet.106.102525] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Efavirenz is a non-nucleoside human immunodeficiency virus (HIV)-1 reverse transcriptase inhibitor used in combination therapy to treat HIV-1. Efavirenz metabolism is catalyzed primarily by the polymorphic enzyme P450 2B6. Metabolism of efavirenz by P450 2B6 and the naturally occurring P450 2B6.4 mutant led to the formation of 8-hydroxyefavirenz. Efavirenz inactivated the 7-ethoxy-4-(trifluoromethyl)coumarin activity of the wild-type P450 2B6 enzyme in a time-, concentration-, and NADPH-dependent manner. However, the P450 2B6.4 variant was not inactivated by efavirenz. The ability of efavirenz to inactivate both enzymes was investigated using cyclophosphamide and bupropion, two structurally unrelated substrates of P450 2B6, as probes. Preincubations with efavirenz decreased the ability of the wild-type enzyme to hydroxylate both substrates to similar extents but had no effect on the activities of the mutant enzyme. Interestingly, the inactivation of the wild-type enzyme was completely reversible after 24 h of dialysis as determined by heme, reduced CO spectra, and activity loss. In contrast, 8-hydroxyefavirenz, a metabolite of efavirenz, was able to inactivate both enzymes irreversibly. These data suggest that incubations of P450 2B6 and P450 2B6.4 with either the parent compound efavirenz or the metabolite 8-hydroxyefavirenz in the reconstituted system result in the formation of two different reactive intermediates that lead to losses in enzymatic activity by two different mechanisms, one reversible and one irreversible.
Collapse
Affiliation(s)
- Namandjé N Bumpus
- Department of Pharmacology, The University of Michigan, 1150 W. Medical Center Dr., Ann Arbor, MI 48109-0632, USA
| | | | | |
Collapse
|
47
|
Fosdike WLJ, Smith TJ, Dalton H. Adventitious reactions of alkene monooxygenase reveal common reaction pathways and component interactions among bacterial hydrocarbon oxygenases. FEBS J 2005; 272:2661-9. [PMID: 15943801 DOI: 10.1111/j.1742-4658.2005.04675.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alkene monooxygenase (AMO) from Rhodococcus rhodochrous (formerly Nocardia corallina) B-276 belongs to a family of multicomponent nonheme binuclear iron-centre oxygenases that includes the soluble methane monooxygenases (sMMOs) found in some methane-oxidizing bacteria. The enzymes catalyse the insertion of oxygen into organic substrates (mostly hydrocarbons) at the expense of O2 and NAD(P)H. AMO is remarkable in its ability to oxidize low molecular-mass alkenes to their corresponding epoxides with high enantiomeric excess. sMMO and other well-characterized homologues of AMO exhibit two adventitious activities: (1) turnover-dependent inhibition by alkynes and (2) activation by hydrogen peroxide in lieu of oxygen and NAD(P)H (the peroxide shunt reaction). Previous studies of the AMO had failed to detect these activities and opened the possibility that the mechanism of AMO might be fundamentally different from that of its homologues. Thanks to improvements in the protocols for cultivation of R. rhodochrous B-276 and purification and assay of AMO, it has been possible to detect and characterize turnover-dependent inhibition of AMO by propyne and ethyne and activation of the enzyme by hydrogen peroxide. These results indicate a similar mechanism to that found in sMMO and also, unexpectedly, that the enantiomeric excess of the chiral epoxypropane product is significantly reduced during the peroxide shunt reaction. Inhibition of the oxygen/NADH-activated reaction, but not the peroxide shunt, by covalent modification of positively charged groups revealed an additional similarity to sMMO and may indicate very similar patterns of intersubunit interactions and/or electron transfer in both enzyme complexes.
Collapse
|
48
|
Phenylalkynes to treat histamine mediated conditions. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.13.11.1759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
49
|
Methylenedioxyanilino-quinazolines and -cyanoquinolines as inhibitors of MEK and/or Src. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.14.7.1095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
50
|
Gaballah ST, Netzel TL. SYNTHESIS OF 5-(2-PYREN-1-YL-ETHYLENYL)-2'-dU AS A FLUORESCENT PROBE FOR STUDYING ELECTRON TRANSFER IN DNA. HETEROCYCL COMMUN 2005. [DOI: 10.1515/hc.2005.11.3-4.241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|