1
|
Andrés CMC, de la Lastra JMP, Juan CA, Plou FJ, Pérez-Lebeña E. Chemical Insights into Oxidative and Nitrative Modifications of DNA. Int J Mol Sci 2023; 24:15240. [PMID: 37894920 PMCID: PMC10607741 DOI: 10.3390/ijms242015240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
This review focuses on DNA damage caused by a variety of oxidizing, alkylating, and nitrating species, and it may play an important role in the pathophysiology of inflammation, cancer, and degenerative diseases. Infection and chronic inflammation have been recognized as important factors in carcinogenesis. Under inflammatory conditions, reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from inflammatory and epithelial cells, and result in the formation of oxidative and nitrative DNA lesions, such as 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8-nitroguanine. Cellular DNA is continuously exposed to a very high level of genotoxic stress caused by physical, chemical, and biological agents, with an estimated 10,000 modifications occurring every hour in the genetic material of each of our cells. This review highlights recent developments in the chemical biology and toxicology of 2'-deoxyribose oxidation products in DNA.
Collapse
Affiliation(s)
| | - José Manuel Pérez de la Lastra
- Institute of Natural Products and Agrobiology, CSIC-Spanish Research Council, Avda. AstrofísicoFco. Sánchez, 3, 38206 La Laguna, Spain
| | - Celia Andrés Juan
- Cinquima Institute and Department of Organic Chemistry, Faculty of Sciences, Valladolid University, Paseo de Belén, 7, 47011 Valladolid, Spain;
| | - Francisco J. Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, 28049 Madrid, Spain;
| | | |
Collapse
|
2
|
Benny J, Liu J. Spin-orbit charge transfer from guanine and 9-methylguanine radical cations to nitric oxide radicals and the induced triplet-to-singlet intersystem crossing. J Chem Phys 2023; 159:085102. [PMID: 37638623 DOI: 10.1063/5.0160921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Nitric oxide (●NO) participates in many biological activities, including enhancing DNA radiosensitivity in ionizing radiation-based radiotherapy. To help understand the radiosensitization of ●NO, we report reaction dynamics between ●NO and the radical cations of guanine (a 9HG●+ conformer) and 9-methylguanine (9MG●+). On the basis of the formation of 9HG●+ and 9MG●+ in the gas phase and the collisions of the radical cations with ●NO in a guided-ion beam mass spectrometer, the charge transfer reactions of 9HG●+ and 9MG●+ with ●NO were examined. For both reactions, the kinetic energy-dependent product ion cross sections revealed a threshold energy that is 0.24 (or 0.37) eV above the 0 K product 9HG (or 9MG) + NO+ asymptote. To interrogate this abnormal threshold behavior, the reaction potential energy surface for [9MG + NO]+ was mapped out at closed-shell singlet, open-shell singlet, and triplet states using density functional and coupled cluster theories. The results showed that the charge transfer reaction requires the interaction of a triplet-state surface originating from a reactant-like precursor complex 3[9MG●+(↑)⋅(↑)●NO] with a closed-shell singlet-state surface evolving from a charge-transferred complex 1[9MG⋅NO+]. During the reaction, an electron is transferred from π∗(NO) to perpendicular π∗(9MG), which introduces a change in orbital angular momentum. The latter offsets the change in electron spin angular momentum and facilitates intersystem crossing. The reaction threshold in excess of the 0 K thermochemistry and the low charge-transfer efficiency are rationalized by the vibrational excitation in the product ion NO+ and the kinetic shift arising from a long-lived triplet intermediate.
Collapse
Affiliation(s)
- Jonathan Benny
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, USA
- The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, New York 10016, USA
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, USA
- The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, New York 10016, USA
| |
Collapse
|
3
|
Merrifield JL, Pimentel EB, Peters-Clarke TM, Nesbitt DJ, Coon JJ, Martell JD. DNA-Compatible Copper/TEMPO Oxidation for DNA-Encoded Libraries. Bioconjug Chem 2023; 34:1380-1386. [PMID: 37540561 PMCID: PMC10831869 DOI: 10.1021/acs.bioconjchem.3c00254] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Aldehydes are important synthons for DNA-encoded library (DEL) construction, but the development of a DNA-compatible method for the oxidation of alcohols to aldehydes remains a significant challenge in the field of DEL chemistry. We report that a copper/TEMPO catalyst system enables the solution-phase DNA-compatible oxidation of DNA-linked primary activated alcohols to aldehydes. The semiaqueous, room-temperature reaction conditions afford oxidation of benzylic, heterobenzylic, and allylic alcohols in high yield, with DNA compatibility verified by mass spectrometry, qPCR, Sanger sequencing, and ligation assays. Subsequent transformations of the resulting aldehydes demonstrate the potential of this method for robust library diversification.
Collapse
Affiliation(s)
- Justice L. Merrifield
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Edward B. Pimentel
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Trenton M. Peters-Clarke
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Nesbitt
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- National Center for Quantitative Biology of Complex Systems, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53515, United States
| | - Jeffrey D. Martell
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705, United States
| |
Collapse
|
4
|
Izadi ME, Sabzyan H. Reactive Molecular Dynamics Simulation of the Structural Damages of the B-DNA Induced by the Oxidation/Nitration of Guanine. J Phys Chem B 2022; 126:10347-10359. [PMID: 36448964 DOI: 10.1021/acs.jpcb.2c05151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Reactive molecular dynamics simulations (RMD) have been carried out to investigate structural alterations of the dodecamer double-strand B-DNA due to the oxidation/nitration modifications introduced to its guanine bases, including 8-oxoguanine, 8-nitroguanine, and 5-guanidino-4-nitroimidazole, considering two distribution patterns. These modifications may arise in the case of cancer treatment using oxidative/nitrosative reactive nitrogen species as anticancer agents. Results show that these mutations affect structural characteristics of the B-DNA dodecamer in the order 8-nitroguanine > 5-guanidino-4-nitroimidazole ≫ 8-oxoguanine. For instance, the base-pair per turn for these modified B-DNA are changed respectively to 9.79, 10.88 and 10.58 from 10.51 in the native defect-free B-DNA, which is compatible with the experimental value of 10.10. In addition, these mutations allow more water molecules to diffuse into the dodecamer structure and consequently increase the possibility of the penetration of reactive and nonreactive species toward constituting nucleic base-pairs. The largest variation of the B-DNA structure is observed for the mutated B-DNA with 8-nitroguanine modifications applied to its separated CG base-pairs along the dodecamer chain. The structural changes introduced by these nitro-/oxo-modified guanine bases can be considered as a critical step in the damage of the DNA structure and alterations of its function.
Collapse
Affiliation(s)
| | - Hassan Sabzyan
- Department of Chemistry, University of Isfahan, Isfahan81746-873441, I. R. Iran
| |
Collapse
|
5
|
Elsakrmy N, Aouida M, Hindi N, Moovarkumudalvan B, Mohanty A, Ali R, Ramotar D. C. elegans ribosomal protein S3 protects against H2O2-induced DNA damage and suppresses spontaneous mutations in yeast. DNA Repair (Amst) 2022; 117:103359. [DOI: 10.1016/j.dnarep.2022.103359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
|
6
|
Boadi WY, Stevenson C, Johnson D, Mohamed MA. Flavonoids Reduce Lipid Peroxides and Increase Glutathione Levels in Pooled Human Liver Microsomes (HLMs). ADVANCES IN BIOLOGICAL CHEMISTRY 2021; 11:283-295. [PMID: 36340955 PMCID: PMC9634994 DOI: 10.4236/abc.2021.116019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The effects of each of the flavonoids; genistein (G), quercetin (Q) and kaempferol (K) at several doses on lipid peroxides (LP) and reduced glutathione (GSH) in pooled human liver microsomes (HLMs) were investigated following the oxidative damage for 4, 6, 18 and 24 hr. HLMs (1 mg/ml) were exposed to each of the above flavonoids at 0, 5, 10, 15, 20 or 25 μM and incubated for the respective times as previously stated. Our hypothesis was that HLMs exposed to the flavonoids for the respective exposure times can decrease LP and increase GSH in HLMs to better cope with the oxidative stress. The results of our studies indicate that each of the flavonoids significantly (p < 0.01) decreased LP compared to their respective controls. The highest decrease in LP was observed for K followed by Q and G. Significant increases (p < 0.01) in GSH were observed for the flavonoid doses tested with the highest levels observed for Q for the 24-hr. incubation. The findings suggest that the flavonoids modulate oxidative stress in HLMs by decreasing LP and such decreases in LPs may be due to the increasing and or the replenished levels of GSH in the said cells to better cope with the oxidative stress.
Collapse
Affiliation(s)
- William Yaw Boadi
- Departments of Biological Sciences, Tennessee State University, Nashville, USA
| | - Camille Stevenson
- Departments of Chemistry, Tennessee State University, Nashville, USA
| | - Dontrez Johnson
- Departments of Chemistry, Tennessee State University, Nashville, USA
| | | |
Collapse
|
7
|
Ngo LP, Kaushal S, Chaim IA, Mazzucato P, Ricciardi C, Samson LD, Nagel ZD, Engelward BP. CometChip analysis of human primary lymphocytes enables quantification of inter-individual differences in the kinetics of repair of oxidative DNA damage. Free Radic Biol Med 2021; 174:89-99. [PMID: 34324980 PMCID: PMC8477454 DOI: 10.1016/j.freeradbiomed.2021.07.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 01/15/2023]
Abstract
Although DNA repair is known to impact susceptibility to cancer and other diseases, relatively few population studies have been performed to evaluate DNA repair kinetics in people due to the difficulty of assessing DNA repair in a high-throughput manner. Here we use the CometChip, a high-throughput comet assay, to explore inter-individual variation in repair of oxidative damage to DNA, a known risk factor for aging, cancer and other diseases. DNA repair capacity after H2O2-induced DNA oxidation damage was quantified in peripheral blood mononuclear cells (PBMCs). For 10 individuals, blood was drawn at several times over the course of 4-6 weeks. In addition, blood was drawn once from each of 56 individuals. DNA damage levels were quantified prior to exposure to H2O2 and at 0, 15, 30, 60, and 120-min post exposure. We found that there is significant variability in DNA repair efficiency among individuals. When subdivided into quartiles by DNA repair efficiency, we found that the average t1/2 is 81 min for the slowest group and 24 min for the fastest group. This work shows that the CometChip can be used to uncover significant differences in repair kinetics among people, pointing to its utility in future epidemiological and clinical studies.
Collapse
Affiliation(s)
- Le P Ngo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; MIT Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Simran Kaushal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; MIT Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Isaac A Chaim
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; MIT Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Patrizia Mazzucato
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; MIT Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Catherine Ricciardi
- MIT Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; MIT Clinical Research Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Leona D Samson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; MIT Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| | - Zachary D Nagel
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Bevin P Engelward
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA; MIT Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
8
|
Wang S, Yang S, Quispe E, Yang H, Sanfiorenzo C, Rogers SW, Wang K, Yang Y, Hoffmann MR. Removal of Antibiotic Resistant Bacteria and Genes by UV-Assisted Electrochemical Oxidation on Degenerative TiO 2 Nanotube Arrays. ACS ES&T ENGINEERING 2021; 1:612-622. [PMID: 39605952 PMCID: PMC11601983 DOI: 10.1021/acsestengg.1c00011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Antibiotic resistance has become a global crisis in recent years, while wastewater treatment plants (WWTPs) have been identified as a significant source of both antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, commonly used disinfectants have been shown to be ineffective for the elimination of ARGs. With the goal of upgrading the conventional UV disinfection unit with stronger capability to combat ARB and ARGs, we developed a UV-assisted electrochemical oxidation (UV-EO) process that employs blue TiO2 nanotube arrays (BNTAs) as photoanodes. Inactivation of tetracycline- and sulfamethoxazole-resistant E. coli along with degradation of the corresponding plasmid coded genes (tetA and sul1) is measured by plate counting on selective agar and qPCR, respectively. In comparison with UV254 irradiation alone, enhanced ARB inactivation and ARG degradation is achieved by UV-EO. Chloride significantly promotes the inactivation efficiency due to the electrochemical production of free chlorine and the subsequent UV/chlorine photoreactions. The fluence-based first-order kinetic rate coefficients of UV-EO in Cl- are larger than those of UV254 irradiation alone by a factor of 2.1-2.3 and 1.3-1.8 for the long and short target genes, respectively. The mechanism of plasmid DNA damage by different radical species is further explored using gel electrophoresis and computational kinetic modeling. The process can effectively eliminate ARB and ARGs in latrine wastewater, though the kinetics were retarded.
Collapse
Affiliation(s)
- Siwen Wang
- Linde+Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, United States
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Shasha Yang
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Estefanny Quispe
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Hannah Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Charles Sanfiorenzo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Shane W Rogers
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Kaihang Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yang Yang
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Michael R Hoffmann
- Linde+Robinson Laboratories, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
9
|
Tsubone TM, Martins WK, Franco MSF, Silva MN, Itri R, Baptista MS. Cellular compartments challenged by membrane photo-oxidation. Arch Biochem Biophys 2020; 697:108665. [PMID: 33159891 DOI: 10.1016/j.abb.2020.108665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022]
Abstract
The lipid composition impacts directly on the structure and function of the cytoplasmic as well as organelle membranes. Depending on the type of membrane, specific lipids are required to accommodate, intercalate, or pack membrane proteins to the proper functioning of the cells/organelles. Rather than being only a physical barrier that separates the inner from the outer spaces, membranes are responsible for many biochemical events such as cell-to-cell communication, protein-lipid interaction, intracellular signaling, and energy storage. Photochemical reactions occur naturally in many biological membranes and are responsible for diverse processes such as photosynthesis and vision/phototaxis. However, excessive exposure to light in the presence of absorbing molecules produces excited states and other oxidant species that may cause cell aging/death, mutations and innumerable diseases including cancer. At the same time, targeting key compartments of diseased cells with light can be a promising strategy to treat many diseases in a clinical procedure called Photodynamic Therapy. Here we analyze the relationships between membrane alterations induced by photo-oxidation and the biochemical responses in mammalian cells. We specifically address the impact of photosensitization reactions in membranes of different organelles such as mitochondria, lysosome, endoplasmic reticulum, and plasma membrane, and the subsequent responses of eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Marcia S F Franco
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | | | - Rosangela Itri
- Department of Applied Physics, Institute of Physics, University of São Paulo, SP, Brazil
| | - Mauricio S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil.
| |
Collapse
|
10
|
Cao Y, Li R, Li W, Liu H, Cai Y. Melatonin Attenuates Peroxynitrite-Induced Meiosis Dysfunction in Porcine Oocytes. Reprod Sci 2020; 28:1281-1289. [PMID: 33006115 DOI: 10.1007/s43032-020-00331-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/20/2020] [Indexed: 11/30/2022]
Abstract
A high level of reactive oxygen species (ROS) is widely considered one of the major causes of oocyte quality decline. Peroxynitrite is known as a powerful oxidant, which could induce multiple physical diseases. Recently, emerging pieces of evidences indicate that melatonin effectively promotes the development of oocytes, although the specific work mechanism remains to be further clarified. In this study, it was shown that peroxynitrite increased the level of ROS in porcine oocytes, which induced the apoptosis of oocytes, thereby leading to the obstruction of spindle assembly, depolymerization of actin, and decrease of polar body expulsion. These negative effects contributed to the failure of meiosis and ultimately blocked the maturation of porcine oocytes. As expected, it was found that melatonin effectively removed the accumulated ROS in oocytes, preventing oocytes from peroxynitrite-induced oocyte maturation failure, which might provide a novel approach to improve female livestock reproduction and cure female infertility in clinical practice.
Collapse
Affiliation(s)
- Yan Cao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rongyang Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weijian Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yafei Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
11
|
Mycoplasma infection of cultured cells induces oxidative stress and attenuates cellular base excision repair activity. Mutat Res 2019; 845:403054. [PMID: 31561888 DOI: 10.1016/j.mrgentox.2019.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 04/11/2019] [Accepted: 05/19/2019] [Indexed: 11/23/2022]
Abstract
Mycoplasma contamination is a major concern for in vitro cell culture models as its resistance to most antibiotics, which makes the prevention and treatment of infection challenging. Furthermore, numerous studies show that Mycoplasma infection alters a variety of cellular processes, in a wide range of cell lines. However, there is a lack of information pertaining to the effects of Mycoplasma infection on genomic stability. In this study, a dopaminergic neuronal cell line (BE-M17), a popular in vitro model for Parkinson's disease, was used to evaluate the effect of Mycoplasma infection on genomic instability, and base excision repair (BER) activity, using single cell gel electrophoresis (the comet assay). The results showed that Mycoplasma infection induced oxidative stress in the absence of an inflammatory response, with markedly increased levels of DNA damage [strand breaks/alkali-labile sites (SB/ALS), and oxidised purines], compared to uninfected cells. The source of the oxidative stress may have been increased ROS generation, or attenuation of cellular antioxidant capacity (or a combination of both). Uninfected cells initially repaired SB/ALS more rapidly than infected cells, although SB/ALS were fully repaired in both uninfected and infected cells 2 h after H2O2 challenge. However, while uninfected cells showed complete repair of oxidised purines within 24 h, for the infected cells, these were not fully repaired even after 30 h. In conclusion, this study showed that not only does Mycoplasma infection induce oxidative stress and DNA damage, but it also decreases the efficiency of the main pathway responsible for the repair of oxidatively damaged DNA i.e. BER. In this in vitro model, there is no mechanism for infection-induced inflammation, which could be a source of increased ROS production. Therefore, further studies are needed to evaluate how Mycoplasma infection causes oxidatively damaged DNA, and how it modulates cellular DNA repair.
Collapse
|
12
|
An P, Wang Y, Li S, Zhou L. Repair of Oxidizing Hydroxyl Adduct Radicals of DNA Bases by Hydroxyl‐
trans
‐Stilbenes via Single Electron Transfer. ChemistrySelect 2019. [DOI: 10.1002/slct.201803802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ping An
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R.China
| | - Yuyue Wang
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R.China
| | - Shujin Li
- College of ChemistryChemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R.China
| | - Liping Zhou
- College of PhysicsOptoelectronics and EnergySoochow University Suzhou 215006 P.R.China
| |
Collapse
|
13
|
Poetsch AR, Boulton SJ, Luscombe NM. Genomic landscape of oxidative DNA damage and repair reveals regioselective protection from mutagenesis. Genome Biol 2018; 19:215. [PMID: 30526646 PMCID: PMC6284305 DOI: 10.1186/s13059-018-1582-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/08/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND DNA is subject to constant chemical modification and damage, which eventually results in variable mutation rates throughout the genome. Although detailed molecular mechanisms of DNA damage and repair are well understood, damage impact and execution of repair across a genome remain poorly defined. RESULTS To bridge the gap between our understanding of DNA repair and mutation distributions, we developed a novel method, AP-seq, capable of mapping apurinic sites and 8-oxo-7,8-dihydroguanine bases at approximately 250-bp resolution on a genome-wide scale. We directly demonstrate that the accumulation rate of apurinic sites varies widely across the genome, with hot spots acquiring many times more damage than cold spots. Unlike single nucleotide variants (SNVs) in cancers, damage burden correlates with marks for open chromatin notably H3K9ac and H3K4me2. Apurinic sites and oxidative damage are also highly enriched in transposable elements and other repetitive sequences. In contrast, we observe a reduction at chromatin loop anchors with increased damage load towards inactive compartments. Less damage is found at promoters, exons, and termination sites, but not introns, in a seemingly transcription-independent but GC content-dependent manner. Leveraging cancer genomic data, we also find locally reduced SNV rates in promoters, coding sequence, and other functional elements. CONCLUSIONS Our study reveals that oxidative DNA damage accumulation and repair differ strongly across the genome, but culminate in a previously unappreciated mechanism that safeguards the regulatory and coding regions of genes from mutations.
Collapse
Affiliation(s)
- Anna R Poetsch
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
- Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan.
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Simon J Boulton
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Nicholas M Luscombe
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
- UCL Genetics Institute, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
14
|
Matter B, Seiler CL, Murphy K, Ming X, Zhao J, Lindgren B, Jones R, Tretyakova N. Mapping three guanine oxidation products along DNA following exposure to three types of reactive oxygen species. Free Radic Biol Med 2018; 121:180-189. [PMID: 29702150 PMCID: PMC6858621 DOI: 10.1016/j.freeradbiomed.2018.04.561] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/18/2022]
Abstract
Reactive oxygen and nitrogen species generated during respiration, inflammation, and immune response can damage cellular DNA, contributing to aging, cancer, and neurodegeneration. The ability of oxidized DNA bases to interfere with DNA replication and transcription is strongly influenced by their chemical structures and locations within the genome. In the present work, we examined the influence of local DNA sequence context, DNA secondary structure, and oxidant identity on the efficiency and the chemistry of guanine oxidation in the context of the Kras protooncogene. A novel isotope labeling strategy developed in our laboratory was used to accurately map the formation of 2,2-diamino-4-[(2-deoxy-β-D-erythropentofuranosyl)amino]- 5(2 H)-oxazolone (Z), 8-oxo-7,8-dihydro-2'-deoxyguanosine (OG), and 8-nitroguanine (8-NO2-G) lesions along DNA duplexes following photooxidation in the presence of riboflavin, treatment with nitrosoperoxycarbonate, and oxidation in the presence of hydroxyl radicals. Riboflavin-mediated photooxidation preferentially induced OG lesions at 5' guanines within GG repeats, while treatment with nitrosoperoxycarbonate targeted 3'-guanines within GG and AG dinucleotides. Little sequence selectivity was observed following hydroxyl radical-mediated oxidation. However, Z and 8-NO2-G adducts were overproduced at duplex ends, irrespective of oxidant identity. Overall, our results indicate that the patterns of Z, OG, and 8-NO2-G adduct formation in the genome are distinct and are influenced by oxidant identity and the secondary structure of DNA.
Collapse
Affiliation(s)
- Brock Matter
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher L Seiler
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kristopher Murphy
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xun Ming
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jianwei Zhao
- Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Bruce Lindgren
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Roger Jones
- Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Natalia Tretyakova
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
15
|
Bartesaghi S, Radi R. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox Biol 2018; 14:618-625. [PMID: 29154193 PMCID: PMC5694970 DOI: 10.1016/j.redox.2017.09.009] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/06/2017] [Accepted: 09/15/2017] [Indexed: 12/26/2022] Open
Abstract
In this review we provide an analysis of the biochemistry of peroxynitrite and tyrosine nitration. Peroxynitrite is the product of the diffusion-controlled reaction between superoxide (O2•-) and nitric oxide (•NO). This process is in competition with the enzymatic dismutation of O2•- and the diffusion of •NO across cells and tissues and its reaction with molecular targets (e.g. guanylate cyclase). Understanding the kinetics and compartmentalization of the O2•- / •NO interplay is critical to rationalize the shift of •NO from a physiological mediator to a cytotoxic intermediate. Once formed, peroxynitrite (ONOO- and ONOOH; pKa = 6,8) behaves as a strong one and two-electron oxidant towards a series of biomolecules including transition metal centers and thiols. In addition, peroxynitrite anion can secondarily evolve to secondary radicals either via its fast reaction with CO2 or through proton-catalyzed homolysis. Thus, peroxynitrite can participate in direct (bimolecular) and indirect (through secondary radical intermediates) oxidation reactions; through these processes peroxynitrite can participate as cytotoxic effector molecule against invading pathogens and/or as an endogenous pathogenic mediator. Peroxynitrite can cause protein tyrosine nitration in vitro and in vivo. Indeed, tyrosine nitration is a hallmark of the reactions of •NO-derived oxidants in cells and tissues and serves as a biomarker of oxidative damage. Protein tyrosine nitration can mediate changes in protein structure and function that affect cell homeostasis. Tyrosine nitration in biological systems is a free radical process that can be promoted either by peroxynitrite-derived radicals or by other related •NO-dependent oxidative processes. Recently, mechanisms responsible of tyrosine nitration in hydrophobic biostructures such as membranes and lipoproteins have been assessed and involve the parallel occurrence and connection with lipid peroxidation. Experimental strategies to reveal the proximal oxidizing mechanism during tyrosine nitration in given pathophysiologically-relevant conditions include mapping and identification of the tyrosine nitration sites in specific proteins.
Collapse
Affiliation(s)
- Silvina Bartesaghi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, Montevideo 11800, Uruguay.
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, Montevideo 11800, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Avda. General Flores 2125, Montevideo 11800, Uruguay.
| |
Collapse
|
16
|
Islam BU, Habib S, Ali SA, Moinuddin, Ali A. Role of Peroxynitrite-Induced Activation of Poly(ADP-Ribose) Polymerase (PARP) in Circulatory Shock and Related Pathological Conditions. Cardiovasc Toxicol 2017; 17:373-383. [PMID: 27990620 DOI: 10.1007/s12012-016-9394-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Peroxynitrite is a powerful oxidant, formed from the reaction of nitric oxide and superoxide. It is known to interact and modify different biological molecules such as DNA, lipids and proteins leading to alterations in their structure and functions. These events elicit various cellular responses, including cell signaling, causing oxidative damage and committing cells to apoptosis or necrosis. This review discusses nitrosative stress-induced modification in the DNA molecule that results in the formation of 8-nitroguanine and 8-oxoguanine, and its role in disease conditions. Different approaches of cell death, such as necrosis and apoptosis, are modulated by cellular high-energy species, such as ATP and NAD+. High concentrations of peroxynitrite are known to cause necrosis, whereas low concentrations lead to apoptosis. Any damage to DNA activates cellular DNA repair machinery, like poly(ADP-ribose) polymerase (PARP). PARP-1, an isoform of PARP, is a DNA nick-sensing enzyme that becomes activated upon sensing DNA breakage and triggers the cleavage of NAD+ into nicotinamide and ADP-ribose and polymerizes the latter on nuclear acceptor proteins. Peroxynitrite-induced hyperactivation of PARP causes depletion of NAD+ and ATP culminating cell dysfunction, necrosis or apoptosis. This mechanistic pathway is implicated in the pathogenesis of a variety of diseases, including circulatory shock (which is characterized by cellular hypoxia triggered by systemic altered perfusion and tissue oxygen utilization leading end-organ dysfunction), sepsis and inflammation, injuries of the lung and the intestine. The cytotoxic effects of peroxynitrite centering on the participation of PARP-1 and ADP-ribose in previously stated diseases have also been discussed in this review.
Collapse
Affiliation(s)
- Badar Ul Islam
- Department of Biochemistry, J. N. Medical College, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Safia Habib
- Department of Biochemistry, J. N. Medical College, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Syed Amaan Ali
- Kothiwal Dental College and Research Center, Moradabad, UP, India
| | - Moinuddin
- Department of Biochemistry, J. N. Medical College, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Asif Ali
- Department of Biochemistry, J. N. Medical College, Aligarh Muslim University, Aligarh, UP, 202002, India.
| |
Collapse
|
17
|
Rastad JL, Green WR. Myeloid-derived suppressor cells in murine AIDS inhibit B-cell responses in part via soluble mediators including reactive oxygen and nitrogen species, and TGF-β. Virology 2016; 499:9-22. [PMID: 27632561 DOI: 10.1016/j.virol.2016.08.031] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/28/2016] [Accepted: 08/29/2016] [Indexed: 12/17/2022]
Abstract
Monocytic myeloid-derived suppressor cells (M-MDSCs) were increased during LP-BM5 retroviral infection, and were capable of suppressing not only T-cell, but also B-cell responses. In addition to previously demonstrating iNOS- and VISTA-dependent M-MDSC mechanisms, in this paper, we detail how M-MDSCs utilized soluble mediators, including the reactive oxygen and nitrogen species superoxide, peroxynitrite, and nitric oxide, and TGF-β, to suppress B cells in a predominantly contact-independent manner. Suppression was independent of cysteine-depletion and hydrogen peroxide production. When two major mechanisms of suppression (iNOS and VISTA) were eliminated in double knockout mice, M-MDSCs from LP-BM5-infected mice were able to compensate using other, soluble mechanisms in order to maintain suppression of B cells. The IL-10 producing regulatory B-cell compartment was among the targets of M-MDSC-mediated suppression.
Collapse
Affiliation(s)
- Jessica L Rastad
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States
| | - William R Green
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States; Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States.
| |
Collapse
|
18
|
Geng J, Xu D, Zhao XL, Feng YN, Qian HF, Dai Y, Huang W. N-Acylamino-pyridine-2,6-dione based heterocyclic dyes and their oxidative ring-degradation under alkaline conditions. RSC Adv 2016. [DOI: 10.1039/c6ra21019h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Three newN-acylamino-pyridine-2,6-dione based heterocyclic dyes in the same hydrazone form and their oxidative ring-degradation under alkaline conditions have been described, together with a two-step ring-opening and subsequent oxidative cleavage mechanism.
Collapse
Affiliation(s)
- Jiao Geng
- State Key Laboratory of Coordination Chemistry
- Nanjing National Laboratory of Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Dan Xu
- State Key Laboratory of Coordination Chemistry
- Nanjing National Laboratory of Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Xiao-Lei Zhao
- State Key Laboratory of Coordination Chemistry
- Nanjing National Laboratory of Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Ya-Nan Feng
- College of Sciences
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Hui-Fen Qian
- College of Sciences
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Yuan Dai
- State Key Laboratory of Coordination Chemistry
- Nanjing National Laboratory of Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| | - Wei Huang
- State Key Laboratory of Coordination Chemistry
- Nanjing National Laboratory of Microstructures
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing
| |
Collapse
|
19
|
Islam BU, Habib S, Ahmad P, Allarakha S, Moinuddin, Ali A. Pathophysiological Role of Peroxynitrite Induced DNA Damage in Human Diseases: A Special Focus on Poly(ADP-ribose) Polymerase (PARP). Indian J Clin Biochem 2015; 30:368-385. [PMID: 26788021 PMCID: PMC4712174 DOI: 10.1007/s12291-014-0475-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 12/22/2014] [Indexed: 12/17/2022]
Abstract
Peroxynitrite is formed in biological systems when nitric oxide and superoxide rapidly interact at near equimolar ratio. Peroxynitrite, though not a free radical by chemical nature, is a powerful oxidant which reacts with proteins, DNA and lipids. These reactions trigger a wide array of cellular responses ranging from subtle modulations of cell signaling to overwhelming oxidative injury, committing cells to necrosis or apoptosis. The present review outlines the various peroxynitrite-induced DNA modifications with special mention to the formation of 8-nitroguanine and 8-oxoguanine as well as the induction of DNA single strand breakage. Low concentrations of peroxynitrite cause apoptotic death, whereas higher concentrations cause necrosis with cellular energetics (ATP and NAD(+)) serving as control between the two modes of cell death. DNA damage induced by peroxynitrite triggers the activation of DNA repair systems. A DNA nick sensing enzyme, poly(ADP-ribose) polymerase-1 (PARP-1) becomes activated upon detecting DNA breakage and it cleaves NAD(+) into nicotinamide and ADP-ribose and polymerizes the latter on nuclear acceptor proteins. Over-activation of PARP induced by peroxynitrite consumes NAD(+) and consequently ATP decreases, culminating in cell dysfunction, apoptosis or necrosis. This mechanism has been implicated in the pathogenesis of various diseases like diabetes, cardiovascular diseases and neurodegenerative diseases. In this review, we have discussed the cytotoxic effects (apoptosis and necrosis) of peroxynitrite in the etiology of the mentioned diseases, focusing on the role of PARP in DNA repair in presence of peroxynitrite.
Collapse
Affiliation(s)
- Badar ul Islam
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Safia Habib
- />Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Parvez Ahmad
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Shaziya Allarakha
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Moinuddin
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| | - Asif Ali
- />Department of Biochemistry, Faculty of Medicine, J. N. Medical College, Aligarh Muslim University, Aligarh, 202002 UP India
| |
Collapse
|
20
|
Boadi WY, Amartey PK, Lo A. Effect of quercetin, genistein and kaempferol on glutathione and glutathione-redox cycle enzymes in 3T3-L1 preadipocytes. Drug Chem Toxicol 2015; 39:239-47. [PMID: 27063963 DOI: 10.3109/01480545.2015.1082135] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
CONTEXT AND OBJECTIVE Many studies have shown that cellular redox potential is largely determined by glutathione (GSH), which accounts for more than 90% of cellular nonprotein thiols. The aim of this study was to delineate the effect of three flavonoids - namely, quercetin, kaempferol and genistein - and exogenous GSH on oxidative damage by the Fenton's pathway through the GSH and GSH-redox cycle enzymes in 3T3-L1 cells. MATERIALS AND METHODS 3T3-L1 preadipocytes were exposed to each flavonoid and GSH at concentrations of 0, 5, 10, 15, 20 and 25 µM and then GSH levels and activities of glutathione peroxidase (GSH-Px), glutathione reductase (GSH-Rx) and superoxide dismutase (SOD) were measured. RESULTS Exogenous GSH did not have significant effect on intracellular GSH although slight decrease was observed at 15-25 µM doses. However, each of the three flavonoids sustained intracellular GSH levels in the cells as compared to the respective controls. Quercetin had the most profound effect, followed by kaempferol and genistein in that order. GSH-Px, GSH-Rx and SOD activities increased for all the doses tested compared to their respective controls. Again, quercetin had the maximum increase in enzyme activities followed by kaempferol and genistein for the enzymes tested. DISCUSSION AND CONCLUSION These findings suggest that the flavonoids play an important role in diminishing oxidation-induced biochemical damages. The enhancement of these enzymes may increase the resistance of the organism against oxidative damage by the Fenton's pathway.
Collapse
Affiliation(s)
- William Y Boadi
- a Department of Chemistry , Tennessee State University , Nashville , TN , USA
| | - Paul K Amartey
- a Department of Chemistry , Tennessee State University , Nashville , TN , USA
| | - Andrew Lo
- a Department of Chemistry , Tennessee State University , Nashville , TN , USA
| |
Collapse
|
21
|
Effect and Potential Mechanism of Electroacupuncture Add-On Treatment in Patients with Parkinson's Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:692795. [PMID: 26351515 PMCID: PMC4550783 DOI: 10.1155/2015/692795] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 07/28/2015] [Indexed: 11/23/2022]
Abstract
Objectives. To explore effectiveness and mechanisms of electroacupuncture (EA) add-on treatment in Parkinson's disease (PD) patients. Methods. Fifty PD patients were randomly assigned to drug plus EA (D + EA) group and drug alone (D) group. Subjects in D + EA group received stimulation in points of bilateral fengfu, fengchi, hegu, and central dazhui. Participants were evaluated by scales for motor and nonmotor symptoms. Levels of neuroinflammatory factors and neurotransmitters in serum were detected. Results. EA add-on treatment remarkably reduced scores of Unified Parkinson's Disease Rating Scale (UPDRS) III and its subitems of tremor, rigidity, and bradykinesia and conspicuously decreased UPDRS III scores in patients with bradykinesia-rigidity and mixed types and mild severity. Depression and sleep disturbances were eased, which were reflected by decreased scores of Hamilton Depression Rating Scale, Pittsburgh Sleep Quality Index, and elevated noradrenaline level. Effects of EA add-on treatment on motor symptoms and sleep disturbances were superior to drug alone treatment, markedly improving life quality of PD patients. EA add-on treatment decreased nitric oxide level in serum. Conclusions. EA add-on treatment is effective on most motor symptoms and some nonmotor symptoms and is particularly efficacious in PD patients at early stage. Antineuroinflammation may be a mechanism of EA add-on treatment.
Collapse
|
22
|
Ben Chaaben A, Mariaselvam C, Salah S, Busson M, Dulphy N, Douik H, Ghanem A, Boukaouci W, Al Daccak R, Mamoghli T, Harzallah L, Bouassida J, Fortier C, Gritli S, Ben Hamida J, Charron D, Krishnamoorthy R, Guemira F, Tamouza R. Polymorphisms in oxidative stress-related genes are associated with nasopharyngeal carcinoma susceptibility. Immunobiology 2015; 220:20-5. [PMID: 25446398 DOI: 10.1016/j.imbio.2014.09.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 09/26/2014] [Indexed: 11/18/2022]
Abstract
Nasopharyngeal carcinoma (NPC) is a complex multifactorial disorder involving both genetic and environmental factors. Polymorphisms of genes encoding nitric oxide synthase (NOS) and antioxidant glutathione-S transferases (GSTs) have been associated with various tumors. We examined the combined role of NOS3, NOS2 and GST polymorphisms in NPC risk in Tunisians. We found that NOS3−786C allele and −786 CC genotype, NOS3+894T allele and +894 GT+TT genotypes, NOS2−277 G allele and −277 GG genotype, and GSTT1 del/del genotype, are more prevalent in NPC patients as compared to healthy controls. Our results suggest that genetically driven dysfunction in red–ox stress pathway could augment the risk in NPC-susceptible individuals.
Collapse
Affiliation(s)
- Arij Ben Chaaben
- Department of Clinical Biology, Salah Azaiz Institut of Cancer, Tunis, Tunisia; INSERM, U940, Saint-Louis Hospital, Paris, France; Biochemistry Department, ISBAT, Science University of Tunis, Tunisia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wang JX, Gao J, Ding SL, Wang K, Jiao JQ, Wang Y, Sun T, Zhou LY, Long B, Zhang XJ, Li Q, Liu JP, Feng C, Liu J, Gong Y, Zhou Z, Li PF. Oxidative Modification of miR-184 Enables It to Target Bcl-xL and Bcl-w. Mol Cell 2015; 59:50-61. [PMID: 26028536 DOI: 10.1016/j.molcel.2015.05.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 03/20/2015] [Accepted: 04/24/2015] [Indexed: 01/06/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs, and they bind to complementary sequences in the three prime untranslated regions (3' UTRs) of target mRNA transcripts, thereby inhibiting mRNA translation or promoting mRNA degradation. Excessive reactive oxygen species (ROS) can cause cell-damaging effects through oxidative modification of macromolecules leading to their inappropriate functions. Such oxidative modification is related to cancers, aging, and neurodegenerative and cardiovascular diseases. Here we report that miRNAs can be oxidatively modified by ROS. We identified that miR-184 upon oxidative modification associates with the 3' UTRs of Bcl-xL and Bcl-w that are not its native targets. The mismatch of oxidized miR-184 with Bcl-xL and Bcl-w is involved in the initiation of apoptosis in the study with rat heart cell line H9c2 and mouse models. Our results reveal a model of ROS in regulating cellular events by oxidatively modifying miRNA.
Collapse
Affiliation(s)
- Jian-Xun Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Jie Gao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Su-Ling Ding
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Kun Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Jian-Qin Jiao
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Yin Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Teng Sun
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Lu-Yu Zhou
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Bo Long
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Xiao-Jie Zhang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Qian Li
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Jin-Ping Liu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Chang Feng
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Jia Liu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Ying Gong
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Zhixia Zhou
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Pei-Feng Li
- Institute for Translational Medicine, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| |
Collapse
|
24
|
Arjunan KP, Sharma VK, Ptasinska S. Effects of atmospheric pressure plasmas on isolated and cellular DNA-a review. Int J Mol Sci 2015; 16:2971-3016. [PMID: 25642755 PMCID: PMC4346876 DOI: 10.3390/ijms16022971] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/14/2015] [Accepted: 01/15/2015] [Indexed: 01/02/2023] Open
Abstract
Atmospheric Pressure Plasma (APP) is being used widely in a variety of biomedical applications. Extensive research in the field of plasma medicine has shown the induction of DNA damage by APP in a dose-dependent manner in both prokaryotic and eukaryotic systems. Recent evidence suggests that APP-induced DNA damage shows potential benefits in many applications, such as sterilization and cancer therapy. However, in several other applications, such as wound healing and dentistry, DNA damage can be detrimental. This review reports on the extensive investigations devoted to APP interactions with DNA, with an emphasis on the critical role of reactive species in plasma-induced damage to DNA. The review consists of three main sections dedicated to fundamental knowledge of the interactions of reactive oxygen species (ROS)/reactive nitrogen species (RNS) with DNA and its components, as well as the effects of APP on isolated and cellular DNA in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
| | - Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 1266 TAMU, College Station, TX 77843, USA.
| | - Sylwia Ptasinska
- Radiation Laboratory, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
25
|
Boadi WY, Johnson D. Effects of low doses of quercetin and genistein on oxidation and carbonylation in hemoglobin and myoglobin. J Diet Suppl 2014; 11:272-87. [PMID: 25026201 DOI: 10.3109/19390211.2014.937046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Protein-bound carbonyls have been shown to increase with age as well as in numerous diseases including rheumatoid arthritis, adult respiratory syndrome pulmonary fibrosis, diabetes, Parkinson's disease, and Alzheimer's just to mention a few. The effects of the flavonoids quercetin and genistein were investigated according to their ability to inhibit the oxidation of hemoglobin and myoglobin via the Fenton's pathway. Antioxidative activity of the flavonoids were determined by oxidizing hemoglobin and myoglobin in separate experiments with 50 μM Fe(2+) and 0.01 mM hydrogen peroxide (H2O2) with and without quercetin and/or genistein. The samples were treated singly with either quercetin, genistein, or in combination at concentrations of 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 μM, respectively, dissolved in dimethyl sulfoxide (DMSO). Samples were then incubated in a water bath at 37°C for 8, 12, and 24 hr, respectively. Levels of carbonylation were assayed by the protein carbonyl assay and the carbonyl levels quantified and expressed per mg of protein. The results indicate that protein carbonyls for samples treated with quercetin or genistein decreased in a dose-dependent manner compared to the controls. That of quercetin compared to genistein was more efficient in reducing the levels of protein carbonylation in hemoglobin and myoglobin, respectively. The combination of both flavonoids did show a gradual decrease in carbonyl compounds for only hemoglobin for all the doses and times tested. The results indicate that both flavonoids at low doses inhibited carbonylation in both hemoglobin and myoglobin and the inhibition may be attributed to the prevention of protein oxidation.
Collapse
Affiliation(s)
- William Y Boadi
- Department of Chemistry, Tennessee State University , Nashville, Tennessee , USA
| | | |
Collapse
|
26
|
Muftuoglu M, Mori MP, de Souza-Pinto NC. Formation and repair of oxidative damage in the mitochondrial DNA. Mitochondrion 2014; 17:164-81. [PMID: 24704805 DOI: 10.1016/j.mito.2014.03.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 03/18/2014] [Accepted: 03/18/2014] [Indexed: 12/13/2022]
Abstract
The mitochondrial DNA (mtDNA) encodes for only 13 polypeptides, components of 4 of the 5 oxidative phosphorylation complexes. But despite this apparently small numeric contribution, all 13 subunits are essential for the proper functioning of the oxidative phosphorylation circuit. Thus, accumulation of lesions, mutations and deletions/insertions in the mtDNA could have severe functional consequences, including mitochondrial diseases, aging and age-related diseases. The DNA is a chemically unstable molecule, which can be easily oxidized, alkylated, deaminated and suffer other types of chemical modifications, throughout evolution the organisms that survived were those who developed efficient DNA repair processes. In the last two decades, it has become clear that mitochondria have DNA repair pathways, which operate, at least for some types of lesions, as efficiently as the nuclear DNA repair pathways. The mtDNA is localized in a particularly oxidizing environment, making it prone to accumulate oxidatively generated DNA modifications (ODMs). In this article, we: i) review the major types of ODMs formed in mtDNA and the known repair pathways that remove them; ii) discuss the possible involvement of other repair pathways, just recently characterized in mitochondria, in the repair of these modifications; and iii) address the role of DNA repair in mitochondrial function and a possible cross-talk with other pathways that may potentially participate in mitochondrial genomic stability, such as mitochondrial dynamics and nuclear-mitochondrial signaling. Oxidative stress and ODMs have been increasingly implicated in disease and aging, and thus we discuss how variations in DNA repair efficiency may contribute to the etiology of such conditions or even modulate their clinical outcomes.
Collapse
Affiliation(s)
- Meltem Muftuoglu
- Department of Molecular Biology and Genetics, Acibadem University, Atasehir, 34752 Istanbul, Turkey
| | - Mateus P Mori
- Depto. de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000 Brazil
| | - Nadja C de Souza-Pinto
- Depto. de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, 05508-000 Brazil.
| |
Collapse
|
27
|
Grygoryev D, Moskalenko O, Hinton TG, Zimbrick JD. DNA damage caused by chronic transgenerational exposure to low dose gamma radiation in Medaka fish ( Oryzias latipes ). Radiat Res 2013; 180:235-46. [PMID: 23919310 DOI: 10.1667/rr3190.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The effect of transgenerational exposure to low dose rate (2.4 and 21 mGy/day) gamma irradiation on the yield of DNA double-strand breaks and oxidized guanine (8-hydroxyguanine) has been studied in the muscle and liver tissue of a model organism, the Japanese medaka fish. We found the level of unrepaired 8-hydroxyguanine in muscle tissue increased nonlinearly over four generations and the pattern of this change depended on the radiation dose rate, suggesting that our treatment protocols initiated genomic instability and an adaptive response as the generations progressed. The yield of unrepaired double-strand breaks did not vary significantly among successive generations in muscle tissue in contrast to liver tissue in which it varied in a nonlinear manner. The 8-hydroxyguanine and DSB radiation yields were significantly higher at 2.4 mGy/day than at 21 mGy/day in both muscle and liver tissue in all generations. These data are consistent with the hypothesis of a threshold for radiation-induced activation of DNA repair systems below which tissue levels of DNA repair enzymes remain unchanged, leading to the accumulation of unrepaired damage at very low doses and dose rates.
Collapse
Affiliation(s)
- D Grygoryev
- a Center for Research on Occupational and Environmental Toxicology, Oregon Health & Science University, Portland, Oregon 97239
| | | | | | | |
Collapse
|
28
|
Boadi WY, Harris S, Anderson JB, Adunyah SE. Lipid peroxides and glutathione status in human progenitor mononuclear (U937) cells following exposure to low doses of nickel and copper. Drug Chem Toxicol 2013; 36:155-62. [PMID: 22632594 PMCID: PMC4175708 DOI: 10.3109/01480545.2012.660947] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Effects of Cu(2+), Ni(2+) or Cu(2+) + Ni(2+) on lipid peroxide and glutathione (GSH) levels in U937 cells were investigated. Cells were treated with 0, 5, 10, and 20 µM of Cu(2+) and/or Ni(2+) and H(2)O(2) (0.01 mM) and incubated for 24 hours at 37°C. Lipid peroxides were measured by the thiobarbituric acid assay (TBA). GSH intracellular levels were assayed by the GSH assay kit from EMD/Calbiochem (San Diego, California, USA). Cu(2+) or Ni(2+) significantly (P < 0.01) increased lipid peroxides in a dose-dependent manner, compared to controls. The effect was more pronounced for Cu(2+), compared to the Ni(2+)-treated samples. Cu(2+) + Ni(2+) increased lipid peroxides in a significant (P < 0.001), dose-dependent manner, compared to Cu(2+) or Ni(2+) alone (i.e., ratio of 2.5:1-fold for combined versus single treatments, respectively). Cu(2+) or Ni(2+) significantly decreased GSH levels in U937 cells, with the effect being pronounced for Cu(2+). Cu(2+) + Ni(2+) metal ions significantly (P < 0.001) depleted cells of GSH in a dose-dependent manner. Ethylene diamine tetraacetic acid (EDTA) at 50 or 100 µM moderately reduced the Cu(2+)- or Ni(2+)-induced effects on GSH levels. Interestingly, GSH levels generally decreased to half (except for the combined metal dose of 20 µM at 100 µM EDTA) of its level at the highest metal concentration tested for both the single or combined treatments. In conclusion, multiple exposures of cells to metal ions may be lethal to cells, compared to their single treatments.
Collapse
Affiliation(s)
- William Y Boadi
- Department of Chemistry, Tennessee State University, Nashville, Tennessee, USA.
| | | | | | | |
Collapse
|
29
|
Fleming AM, Burrows CJ. G-quadruplex folds of the human telomere sequence alter the site reactivity and reaction pathway of guanine oxidation compared to duplex DNA. Chem Res Toxicol 2013; 26:593-607. [PMID: 23438298 DOI: 10.1021/tx400028y] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Telomere shortening occurs during oxidative and inflammatory stress with guanine (G) as the major site of damage. In this work, a comprehensive profile of the sites of oxidation and structures of products observed from G-quadruplex and duplex structures of the human telomere sequence was studied in the G-quadruplex folds (hybrid (K(+)), basket (Na(+)), and propeller (K(+) + 50% CH3CN)) resulting from the sequence 5'-(TAGGGT)4T-3' and in an appropriate duplex containing one telomere repeat. Oxidations with four oxidant systems consisting of riboflavin photosensitization, carbonate radical generation, singlet oxygen, and the copper Fenton-like reaction were analyzed under conditions of low product conversion to determine relative reactivity. The one-electron oxidants damaged the 5'-G in G-quadruplexes leading to spiroiminodihydantoin (Sp) and 2,2,4-triamino-2H-oxazol-5-one (Z) as major products as well as 8-oxo-7,8-dihydroguanine (OG) and 5-guanidinohydantoin (Gh) in low relative yields, while oxidation in the duplex context produced damage at the 5'- and middle-Gs of GGG sequences and resulted in Gh being the major product. Addition of the reductant N-acetylcysteine (NAC) to the reaction did not alter the riboflavin-mediated damage sites but decreased Z by 2-fold and increased OG by 5-fold, while not altering the hydantoin ratio. However, NAC completely quenched the CO3(•-) reactions. Singlet oxygen oxidations of the G-quadruplex showed reactivity at all Gs on the exterior faces of G-quartets and furnished the product Sp, while no oxidation was observed in the duplex context under these conditions, and addition of NAC had no effect. Because a long telomere sequence would have higher-order structures of G-quadruplexes, studies were also conducted with 5'-(TAGGGT)8-T-3', and it provided oxidation profiles similar to those of the single G-quadruplex. Lastly, Cu(II)/H2O2-mediated oxidations were found to be indiscriminate in the damage patterns, and 5-carboxamido-5-formamido-2-iminohydantoin (2Ih) was found to be a major duplex product, while nearly equal yields of 2Ih and Sp were observed in G-quadruplex contexts. These findings indicate that the nature of the secondary structure of folded DNA greatly alters both the reactivity of G toward oxidative stress as well as the product outcome and suggest that recognition of damage in telomeric sequences by repair enzymes may be profoundly different from that of B-form duplex DNA.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | | |
Collapse
|
30
|
Rao VA. Iron chelators with topoisomerase-inhibitory activity and their anticancer applications. Antioxid Redox Signal 2013; 18:930-55. [PMID: 22900902 PMCID: PMC3557438 DOI: 10.1089/ars.2012.4877] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Iron and topoisomerases are abundant and essential cellular components. Iron is required for several key processes such as DNA synthesis, mitochondrial electron transport, synthesis of heme, and as a co-factor for many redox enzymes. Topoisomerases serve as critical enzymes that resolve topological problems during DNA synthesis, transcription, and repair. Neoplastic cells have higher uptake and utilization of iron, as well as elevated levels of topoisomerase family members. Separately, the chelation of iron and the cytotoxic inhibition of topoisomerase have yielded potent anticancer agents. RECENT ADVANCES The chemotherapeutic drugs doxorubicin and dexrazoxane both chelate iron and target topoisomerase 2 alpha (top2α). Newer chelators such as di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone and thiosemicarbazone -24 have recently been identified as top2α inhibitors. The growing list of agents that appear to chelate iron and inhibit topoisomerases prompts the question of whether and how these two distinct mechanisms might interplay for a cytotoxic chemotherapeutic outcome. CRITICAL ISSUES While iron chelation and topoisomerase inhibition each represent mechanistically advantageous anticancer therapeutic strategies, dual targeting agents present an attractive multi-modal opportunity for enhanced anticancer tumor killing and overcoming drug resistance. The commonalities and caveats of dual inhibition are presented in this review. FUTURE DIRECTIONS Gaps in knowledge, relevant biomarkers, and strategies for future in vivo studies with dual inhibitors are discussed.
Collapse
Affiliation(s)
- V Ashutosh Rao
- Laboratory of Biochemistry, Division of Therapeutic Proteins, Office of Biotechnology Products, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| |
Collapse
|
31
|
Costello M, Pugh TJ, Fennell TJ, Stewart C, Lichtenstein L, Meldrim JC, Fostel JL, Friedrich DC, Perrin D, Dionne D, Kim S, Gabriel SB, Lander ES, Fisher S, Getz G. Discovery and characterization of artifactual mutations in deep coverage targeted capture sequencing data due to oxidative DNA damage during sample preparation. Nucleic Acids Res 2013; 41:e67. [PMID: 23303777 PMCID: PMC3616734 DOI: 10.1093/nar/gks1443] [Citation(s) in RCA: 350] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As researchers begin probing deep coverage sequencing data for increasingly rare mutations and subclonal events, the fidelity of next generation sequencing (NGS) laboratory methods will become increasingly critical. Although error rates for sequencing and polymerase chain reaction (PCR) are well documented, the effects that DNA extraction and other library preparation steps could have on downstream sequence integrity have not been thoroughly evaluated. Here, we describe the discovery of novel C > A/G > T transversion artifacts found at low allelic fractions in targeted capture data. Characteristics such as sequencer read orientation and presence in both tumor and normal samples strongly indicated a non-biological mechanism. We identified the source as oxidation of DNA during acoustic shearing in samples containing reactive contaminants from the extraction process. We show generation of 8-oxoguanine (8-oxoG) lesions during DNA shearing, present analysis tools to detect oxidation in sequencing data and suggest methods to reduce DNA oxidation through the introduction of antioxidants. Further, informatics methods are presented to confidently filter these artifacts from sequencing data sets. Though only seen in a low percentage of reads in affected samples, such artifacts could have profoundly deleterious effects on the ability to confidently call rare mutations, and eliminating other possible sources of artifacts should become a priority for the research community.
Collapse
Affiliation(s)
- Maura Costello
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
The extracytoplasmic function sigma factor σS protects against both intracellular and extracytoplasmic stresses in Staphylococcus aureus. J Bacteriol 2012; 194:4342-54. [PMID: 22685284 DOI: 10.1128/jb.00484-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously we identified a novel component of the Staphylococcus aureus regulatory network, an extracytoplasmic function σ-factor, σ(S), involved in stress response and disease causation. Here we present additional characterization of σ(S), demonstrating a role for it in protection against DNA damage, cell wall disruption, and interaction with components of the innate immune system. Promoter mapping reveals the existence of three unique sigS start sites, one of which appears to be subject to autoregulation. Transcriptional profiling revealed that sigS expression remains low in a number of S. aureus wild types but is upregulated in the highly mutated strain RN4220. Further analysis demonstrates that sigS expression is inducible upon exposure to a variety of chemical stressors that elicit DNA damage, including methyl methanesulfonate and ciprofloxacin, as well as those that disrupt cell wall stability, such as ampicillin and oxacillin. Significantly, expression of sigS is highly induced during growth in serum and upon phagocytosis by RAW 264.7 murine macrophage-like cells. Phenotypically, σ(S) mutants display sensitivity to a broad range of DNA-damaging agents and cell wall-targeting antibiotics. Furthermore, the survivability of σ(S) mutants is strongly impacted during challenge by components of the innate immune system. Collectively, our data suggest that σ(S) likely serves dual functions within the S. aureus cell, protecting against both cytoplasmic and extracytoplasmic stresses. This further argues for its important, and perhaps novel, role in the S. aureus stress and virulence responses.
Collapse
|
33
|
Suzukawa AA, Vieira A, Winnischofer SMB, Scalfo AC, Di Mascio P, Ferreira AMDC, Ravanat JL, Martins DDL, Rocha MEM, Martinez GR. Novel properties of melanins include promotion of DNA strand breaks, impairment of repair, and reduced ability to damage DNA after quenching of singlet oxygen. Free Radic Biol Med 2012; 52:1945-53. [PMID: 22401857 DOI: 10.1016/j.freeradbiomed.2012.02.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 02/17/2012] [Accepted: 02/24/2012] [Indexed: 01/22/2023]
Abstract
Melanins have been associated with the development of melanoma and its resistance to photodynamic therapy (PDT). Singlet molecular oxygen ((1)O(2)), which is produced by ultraviolet A solar radiation and the PDT system, is also involved. Here, we investigated the effects that these factors have on DNA damage and repair. Our results show that both types of melanin (eumelanin and pheomelanin) lead to DNA breakage in the absence of light irradiation and that eumelanin is more harmful than pheomelanin. Interestingly, melanins were found to bind to the minor grooves of DNA, guaranteeing close proximity to DNA and potentially causing the observed high levels of strand breaks. We also show that the interaction of melanins with DNA can impair the access of repair enzymes to lesions, contributing to the perpetuation of DNA damage. Moreover, we found that after melanins interact with (1)O(2), they exhibit a lower ability to induce DNA breakage; we propose that these effects are due to modifications of their structure. Together, our data highlight the different modes of action of the two types of melanin. Our results may have profound implications for cellular redox homeostasis, under conditions of induced melanin synthesis and irradiation with solar light. These results may also be applied to the development of protocols to sensitize melanoma cells to PDT.
Collapse
Affiliation(s)
- Andréia Akemi Suzukawa
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, 81.531-980 Curitiba, PR, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|
35
|
Witham AA, Beach DG, Gabryelski W, Manderville RA. Hydroxyl Radical-Induced Oxidation of a Phenolic C-Linked 2′-Deoxyguanosine Adduct Yields a Reactive Catechol. Chem Res Toxicol 2012; 25:315-25. [DOI: 10.1021/tx200365r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Aaron A. Witham
- Departments
of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Daniel G. Beach
- Departments
of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Wojciech Gabryelski
- Departments
of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Richard A. Manderville
- Departments
of Chemistry and Toxicology, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
36
|
Sakihama Y, Maeda M, Hashimoto M, Tahara S, Hashidoko Y. Beetroot betalain inhibits peroxynitrite-mediated tyrosine nitration and DNA strand cleavage. Free Radic Res 2011; 46:93-9. [PMID: 22087762 DOI: 10.3109/10715762.2011.641157] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Two major betalains, red-purple betacyanins and yellow betaxanthins, were isolated from red beetroots (Beta vulgaris L.), and their peroxynitrite (ONOO(-)) scavenging capacity was investigated. Apparent colours of the betalains were bleached by the addition of ONOO(-), and the absorbance decreases were suppressed in the presence of glutathione, a ONOO(-) scavenger. After bleaching, a new absorption maximum was observed at 350 nm in the spectrum of the resulting reaction mixture. New peaks were detected from HPLC analysis of the reaction products of betanin, a representative constituent of red beetroot betacyanins, treated with ONOO(-) monitoring at 350 nm, and the intensity of the major peak was positively correlated with ONOO(-) concentration. Betanin inhibited the ONOO(-) (0.5 mM)-dependent nitration of tyrosine (0.1 mM). Additionally, the IC(50) value of betanin (19.2 μM) was lower than that of ascorbate (79.6 μM). The presence of betanin (0.05-1.0 mM) also inhibited ONOO(-) (0.5 mM)-dependent DNA strand cleavage in a concentration-dependent manner. These results suggest that betalains can protect cells from nitrosative stress in addition to protecting them from oxidative stresses.
Collapse
Affiliation(s)
- Yasuko Sakihama
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan.
| | | | | | | | | |
Collapse
|
37
|
Peroxynitrite and Nitroxidative Stress: Detection Probes and Micro-Sensors. A Case of a Nanostructured Catalytic Film. ACTA ACUST UNITED AC 2011. [DOI: 10.1021/bk-2011-1083.ch011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
38
|
Fleming AM, Kannan A, Muller JG, Liao Y, Burrows CJ. Copper/H2O2-Mediated Oxidation of 2′-Deoxyguanosine in the Presence of 2-Naphthol Leads to the Formation of Two Distinct Isomeric Adducts. J Org Chem 2011; 76:7953-63. [DOI: 10.1021/jo201423n] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aaron M. Fleming
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Arunkumar Kannan
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - James G. Muller
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Yi Liao
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J. Burrows
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
39
|
Thorsteinsdottir S, Gudjonsson T, Nielsen OH, Vainer B, Seidelin JB. Pathogenesis and biomarkers of carcinogenesis in ulcerative colitis. Nat Rev Gastroenterol Hepatol 2011; 8:395-404. [PMID: 21647200 DOI: 10.1038/nrgastro.2011.96] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
One of the most serious complications of ulcerative colitis is the development of colorectal cancer. Screening patients with ulcerative colitis by standard histological examination of random intestinal biopsy samples might be inefficient as a method of cancer surveillance. This Review focuses on the current understanding of the pathogenesis of ulcerative colitis-associated colorectal cancer and how this knowledge can be transferred into patient management to assist clinicians and pathologists in identifying patients with ulcerative colitis who have an increased risk of colorectal cancer. Inflammation-driven mechanisms of DNA damage, including the generation and effects of reactive oxygen species, microsatellite instability, telomere shortening and chromosomal instability, are reviewed, as are the molecular responses to genomic stress. We also discuss how these mechanisms can be translated into usable biomarkers. Although progress has been made in the understanding of inflammation-driven carcinogenesis, markers based on these findings possess insufficient sensitivity or specificity to be usable as reliable biomarkers for risk of colorectal cancer development in patients with ulcerative colitis. However, screening for mutations in p53 could be relevant in the surveillance of patients with ulcerative colitis. Several other new biomarkers, including senescence markers and α-methylacyl-CoA-racemase, might be future candidates for preneoplastic markers in ulcerative colitis.
Collapse
Affiliation(s)
- Sigrun Thorsteinsdottir
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, 75 Herlev Ringvej, DK-2730 Herlev, Denmark
| | | | | | | | | |
Collapse
|
40
|
Furman JL, Mok PW, Badran AH, Ghosh I. Turn-on DNA damage sensors for the direct detection of 8-oxoguanine and photoproducts in native DNA. J Am Chem Soc 2011; 133:12518-27. [PMID: 21520929 DOI: 10.1021/ja1116606] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The integrity of the genetic information in all living organisms is constantly threatened by a variety of endogenous and environmental insults. To counter this risk, the DNA-damage response is employed for repairing lesions and maintaining genomic integrity. However, an aberrant DNA-damage response can potentially lead to genetic instability and mutagenesis, carcinogenesis, or cell death. To directly monitor DNA damage events in the context of native DNA, we have designed two new sensors utilizing genetically fragmented firefly luciferase (split luciferase). The sensors are comprised of a methyl-CpG binding domain (MBD) attached to one fragment of split luciferase for localizing the sensor to DNA (50-80% of the CpG dinucleotide sites in the genome are symmetrically methylated at cytosines), while a damage-recognition domain is attached to the complementary fragment of luciferase to probe adjacent nucleotides for lesions. Specifically, we utilized oxoguanine glycosylase 1 (OGG1) to detect 8-oxoguanine caused by exposure to reactive oxygen species and employed the damaged-DNA binding protein 2 (DDB2) for detection of pyrimidine dimer photoproducts induced by UVC light. These two sensors were optimized and validated using oligonucleotides, plasmids, and mammalian genomic DNA, as well as HeLa cells that were systematically exposed to a variety of environmental insults, demonstrating that this methodology utilizing MBD-directed DNA localization provides a simple, sensitive, and potentially general approach for the rapid profiling of specific chemical modifications associated with DNA damage and repair.
Collapse
Affiliation(s)
- Jennifer L Furman
- Department of Chemistry and Biochemistry, University of Arizona, 1306 East University Boulevard, Tucson, Arizona 85721, United States
| | | | | | | |
Collapse
|
41
|
Fleming AM, Muller JG, Ji I, Burrows CJ. Characterization of 2'-deoxyguanosine oxidation products observed in the Fenton-like system Cu(II)/H2O2/reductant in nucleoside and oligodeoxynucleotide contexts. Org Biomol Chem 2011; 9:3338-48. [PMID: 21445431 DOI: 10.1039/c1ob05112a] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reactive oxygen species attack both base and sugar moieties in DNA with a preference among the bases for reaction at guanine. In the present study, 2'-deoxyguanosine (dG) was oxidized by a copper-mediated Fenton reaction with the reductants ascorbate or N-acetyl-cysteine, yielding oxidation on both the base and the sugar. The primary oxidized lesions observed in these studies include the 2'-deoxyribonucleosides of 8-oxo-7,8-dihydroguanosine (dOG), spiroiminodihydantoin (dSp), guanidinohydantoin (dGh), oxazolone (dZ), and 5-carboxamido-5-formamido-2-iminohydantoin (d2Ih), as well as the free base guanine. d2Ih was the major product observed in the nucleoside, single- and double-stranded oligodeoxynucleotide contexts and is proposed to arise from oxidation at C5 of guanine. Product distribution studies provide insight into the role of the reductant in partitioning of dG base oxidation along the C5 and C8 pathways.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 East, Salt Lake City, UT 84112-0850, USA
| | | | | | | |
Collapse
|
42
|
Marczynski B, Raulf-Heimsoth M, Spickenheuer A, Pesch B, Kendzia B, Mensing T, Engelhardt B, Lee EH, Schindler BK, Heinze E, Welge P, Bramer R, Angerer J, Breuer D, Käfferlein HU, Brüning T. DNA adducts and strand breaks in workers exposed to vapours and aerosols of bitumen: associations between exposure and effect. Arch Toxicol 2011; 85 Suppl 1:S53-64. [DOI: 10.1007/s00204-011-0682-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 02/10/2011] [Indexed: 11/24/2022]
|
43
|
Primik MF, Göschl S, Jakupec MA, Roller A, Keppler BK, Arion VB. Structure−Activity Relationships of Highly Cytotoxic Copper(II) Complexes with Modified Indolo[3,2-c]quinoline Ligands. Inorg Chem 2010; 49:11084-95. [DOI: 10.1021/ic101633z] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael F. Primik
- Institute of Inorganic Chemistry, University of Vienna, Währinger Str. 42, A-1090 Vienna, Austria
| | - Simone Göschl
- Institute of Inorganic Chemistry, University of Vienna, Währinger Str. 42, A-1090 Vienna, Austria
| | - Michael A. Jakupec
- Institute of Inorganic Chemistry, University of Vienna, Währinger Str. 42, A-1090 Vienna, Austria
| | - Alexander Roller
- Institute of Inorganic Chemistry, University of Vienna, Währinger Str. 42, A-1090 Vienna, Austria
| | - Bernhard K. Keppler
- Institute of Inorganic Chemistry, University of Vienna, Währinger Str. 42, A-1090 Vienna, Austria
| | - Vladimir B. Arion
- Institute of Inorganic Chemistry, University of Vienna, Währinger Str. 42, A-1090 Vienna, Austria
| |
Collapse
|
44
|
Radak Z, Boldogh I. 8-Oxo-7,8-dihydroguanine: links to gene expression, aging, and defense against oxidative stress. Free Radic Biol Med 2010; 49:587-96. [PMID: 20483371 PMCID: PMC2943936 DOI: 10.1016/j.freeradbiomed.2010.05.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 05/06/2010] [Accepted: 05/10/2010] [Indexed: 02/07/2023]
Abstract
The one-electron oxidation product of guanine, 8-oxo-7,8-dihydroguanine (8-oxoG), is an abundant lesion in genomic, mitochondrial, and telomeric DNA and RNA. It is considered to be a marker of oxidative stress that preferentially accumulates at the 5' end of guanine strings in the DNA helix, in guanine quadruplexes, and in RNA molecules. 8-OxoG has a lower oxidation potential compared to guanine; thus it is susceptible to oxidation/reduction and, along with its redox products, is traditionally considered to be a major mutagenic DNA base lesion. It does not change the architecture of the DNA double helix and it is specifically recognized and excised by 8-oxoguanine DNA glycosylase (OGG1) during the DNA base excision repair pathway. OGG1 null animals accumulate excess levels of 8-oxoG in their genome, yet they do not have shorter life span nor do they exhibit severe pathological symptoms including tumor formation. In fact they are increasingly resistant to inflammation. Here we address the rarely considered significance of 8-oxoG, such as its optimal levels in DNA and RNA under a given condition, essentiality for normal cellular physiology, evolutionary role, and ability to soften the effects of oxidative stress in DNA, and the harmful consequences of its repair, as well as its importance in transcriptional initiation and chromatin relaxation.
Collapse
Affiliation(s)
- Zsolt Radak
- Research Institute of Sport Science, Faculty of Physical Education and Sport Science, Semmelweis University, Budapest, Hungary.
| | | |
Collapse
|
45
|
Nakagawa SA, Lopes A, Lopes de Carvalho A, Rossi BM, Werneck da Cunha I, Soares FA, Chung WT, Alves LA. Nitric oxide synthases, cyclooxygenase-2, nitrotyrosine, and angiogenesis in chondrosarcoma and their relation to prognosis. J Bone Joint Surg Am 2010; 92:1738-46. [PMID: 20660237 DOI: 10.2106/jbjs.h.00717] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The localization in tumor tissue of various markers by immunohistochemistry can help to establish a diagnosis or predict prognosis. Nitric oxide is associated with tumors and has been studied indirectly by nitrotyrosine analysis and with use of the enzymes nitric oxide synthase (NOS)1, NOS2, and NOS3. Nitric oxide reacts with superoxide anions to yield peroxynitrite, which has toxic effects on genes. Peroxynitrite adds a nitro group to the benzene ring of tyrosine to form nitrotyrosine. The accumulation of nitrotyrosine, a stable product in cells, indicates the formation of peroxynitrite. Nitric oxide stimulates the production of cyclooxygenase-2 (COX-2), which has been associated with angiogenesis in tumors. Neovascularization influences tumor prognosis, as demonstrated by microvessel studies with use of CD34, an immunohistochemical endothelial cell marker. This study examines the expression of these markers in chondrosarcomas and their relation to histological grade and prognosis. METHODS Tissue microarrays composed of formalin-fixed tissue samples from 101 patients with chondrosarcoma were immunohistochemically stained to localize NOS1, NOS2, NOS3, COX-2, nitrotyrosine, and CD34. Five samples of normal cartilage were used as controls. Patient demographics, selected surgical variables, and tumor grade were tabulated, and the associations were analyzed. Analyses of local and overall survival rates were performed with use of the Kaplan-Meier method, and multivariable analyses were performed. RESULTS There was a significant association of nitrotyrosine, COX-2, and CD34 with histological grades (p = 0.022, p = 0.014, and p = 0.028, respectively), but not with overall prognosis (p = 0.064, p = 0.143, and p = 0.581, respectively). The presence of NOS2 was associated with a lower rate of local disease-free survival (p = 0.038), and positive expressions of NOS1 and NOS2 were associated with decreased overall survival rates (p = 0.007 and p < 0.001, respectively). On multivariable analysis, NOS2 expression demonstrated an independent prognostic impact on local disease-free survival; NOS1 and NOS2 expression was a dependent variable, and their isolated or combined expression was related to lower overall survival rates (p = 0.046 and p = 0.004) (hazard ratio, 3.17 [95% confidence interval, 1.0 to 9.8] and 5.58 [95% confidence interval, 1.7 to 18.0], respectively). CONCLUSIONS Immunohistochemical markers may have an independent value in predicting the prognosis for patients with chondrosarcoma.
Collapse
Affiliation(s)
- Suely Akiko Nakagawa
- Departamentos de Cirurgia Pélvica-Ortopedia, Hospital A.C. Camargo, Rua Prof. Antonio Prudente, 211, São Paulo - S. P., CEP 01509-010, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Sakashita E, Endo H. SR and SR-related proteins redistribute to segregated fibrillar components of nucleoli in a response to DNA damage. Nucleus 2010; 1:367-80. [PMID: 21327085 DOI: 10.4161/nucl.1.4.12683] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Revised: 06/15/2010] [Accepted: 06/16/2010] [Indexed: 11/19/2022] Open
Abstract
Pre-mRNA splicing factors are often redistributed to nucleoli in response to physiological conditions and cell stimuli. In telophase nuclei, serine-arginine rich (SR) proteins, which usually reside in nuclear speckles, localize transiently to active ribosomal DNA (rDNA) transcription sites called nucleolar organizing region-associated patches (NAPs). Here, we show that ultraviolet light and DNA damaging chemicals induce the redistribution of SR and SR-related proteins to areas around nucleolar fibrillar components in interphase nuclei that are similar to, but distinct from, NAPs, and these areas have been termed DNA damage-induced NAPs (d-NAPs). In vivo labeling of nascent RNA distinguished d-NAPs from NAPs in that d-NAPs were observed even after full rDNA transcriptional arrest as a result of DNA damage. Studies under a variety of conditions revealed that d-NAP formation requires both RNA polymerase II-dependent transcriptional arrest and nucleolar segregation, in particular, the disorganization of the granular nucleolar components. Despite the redistribution of SR proteins, splicing factor-enriched nuclear speckles were not disrupted because other nuclear speckle components, such as nuclear poly(A) RNA and the U5-116K protein, remained in DNA-damaged cells. These data suggest that the selective redistribution of splicing factors contributes to the regulation of specific genes via RNA metabolism. Finally, we demonstrate that a change in alternative splicing of apoptosis-related genes is coordinated with the occurrence of d-NAPs. Our results reveal a novel response to DNA damage that involves the dynamic redistribution of splicing factors to nucleoli.
Collapse
Affiliation(s)
- Eiji Sakashita
- Department of Biochemistry, Jichi Medical University School of Medicine, Tochigi, Japan.
| | | |
Collapse
|
47
|
Suquet C, Warren JJ, Seth N, Hurst JK. Comparative study of HOCl-inflicted damage to bacterial DNA ex vivo and within cells. Arch Biochem Biophys 2009; 493:135-42. [PMID: 19850004 DOI: 10.1016/j.abb.2009.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2009] [Revised: 10/13/2009] [Accepted: 10/14/2009] [Indexed: 12/13/2022]
Abstract
The prospects for using bacterial DNA as an intrinsic probe for HOCl and secondary oxidants/chlorinating agents associated with it has been evaluated using both in vitro and in vivo studies. Single-strand and double-strand breaks occurred in bare plasmid DNA that had been exposed to high levels of HOCl, although these reactions were very inefficient compared to polynucleotide chain cleavage caused by the OH.-generating reagent, peroxynitrite. Plasmid nicking was not increased when intact Escherichia coli were exposed to HOCl; rather, the amount of recoverable plasmid diminished in a dose-dependent manner. At concentration levels of HOCl exceeding lethal doses, genomic bacterial DNA underwent extensive fragmentation and the amount of precipitable DNA-protein complexes increased several-fold. The 5-chlorocytosine content of plasmid and genomic DNA isolated from HOCl-exposed E. coli was also slightly elevated above controls, as measured by mass spectrometry of the deaminated product, 5-chlorouracil. However, the yields were not dose-dependent over the bactericidal concentration range. Genomic DNA recovered from E. coli that had been subjected to phagocytosis by human neutrophils occasionally showed small increases in 5-chlorocytosine content when compared to analogous cellular reactions where myeloperoxidase activity was inhibited by azide ion. Overall, the amount of isolable 5-chlorouracil from the HOCl-exposed bacterial cells was far less than the damage manifested in polynucleotide bond cleavage and cross-linking.
Collapse
Affiliation(s)
- Christine Suquet
- Department of Chemistry, Washington State University, Pullman, WA 99164-4630, USA
| | | | | | | |
Collapse
|
48
|
DNA binding and oxidative DNA damage induced by a quercetin copper(II) complex: potential mechanism of its antitumor properties. J Biol Inorg Chem 2009; 14:727-39. [DOI: 10.1007/s00775-009-0486-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 01/30/2009] [Indexed: 12/23/2022]
|
49
|
Matsumoto H, Tomita M, Otsuka K, Hatashita M. A new paradigm in radioadaptive response developing from microbeam research. JOURNAL OF RADIATION RESEARCH 2009; 50 Suppl A:A67-A79. [PMID: 19346687 DOI: 10.1269/jrr.09003s] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A classic paradigm in radiation biology asserts that all radiation effects on cells, tissues and organisms are due to the direct action of radiation on living tissue. Using this model, possible risks from exposure to low dose ionizing radiation (below 100 mSv) are estimated by extrapolating from data obtained after exposure to higher doses of radiation, using a linear non-threshold model (LNT model). However, the validity of using this dose-response model is controversial because evidence accumulated over the past decade has indicated that living organisms, including humans, respond differently to low dose/low dose-rate radiation than they do to high dose/high dose-rate radiation. These important responses to low dose/low dose-rate radiation are the radiation-induced adaptive response, the bystander response, low-dose hypersensitivity, and genomic instability. The mechanisms underlying these responses often involve biochemical and molecular signals generated in response to targeted and non-targeted events. In order to define and understand the bystander response to provide a basis for the understanding of non-targeted events and to elucidate the mechanisms involved, recent sophisticated research has been conducted with X-ray microbeams and charged heavy particle microbeams, and these studies have produced many new observations. Based on these observations, associations have been suggested to exist between the radioadaptive and bystander responses. The present review focuses on these two phenomena, and summarizes observations supporting their existence, and discusses the linkage between them in light of recent results obtained from experiments utilizing microbeams.
Collapse
Affiliation(s)
- Hideki Matsumoto
- Division of Oncology, Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaitsuki, Eiheiji-cho, Fukui 910-1193, Japan.
| | | | | | | |
Collapse
|
50
|
A Review of the Antioxidant Mechanisms of Polyphenol Compounds Related to Iron Binding. Cell Biochem Biophys 2009; 53:75-100. [DOI: 10.1007/s12013-009-9043-x] [Citation(s) in RCA: 633] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|