1
|
Development and Challenges of Diclofenac-Based Novel Therapeutics: Targeting Cancer and Complex Diseases. Cancers (Basel) 2022; 14:cancers14184385. [PMID: 36139546 PMCID: PMC9496891 DOI: 10.3390/cancers14184385] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Diclofenac is a widely used drug for its anti-inflammatory and pain alleviating properties. This review summarizes the current understanding about the drug diclofenac. The potential applications of diclofenac beyond its well-known anti-inflammatory properties for other diseases such as cancer are discussed, along with existing limitations. Abstract Diclofenac is a highly prescribed non-steroidal anti-inflammatory drug (NSAID) that relieves inflammation, pain, fever, and aches, used at different doses depending on clinical conditions. This drug inhibits cyclooxygenase-1 and cyclooxygenase-2 enzymes, which are responsible for the generation of prostaglandin synthesis. To improve current diclofenac-based therapies, we require new molecular systematic therapeutic approaches to reduce complex multifactorial effects. However, the critical challenge that appears with diclofenac and other drugs of the same class is their side effects, such as signs of stomach injuries, kidney problems, cardiovascular issues, hepatic issues, and diarrhea. In this article, we discuss why defining diclofenac-based mechanisms, pharmacological features, and its medicinal properties are needed to direct future drug development against neurodegeneration and imperfect ageing and to improve cancer therapy. In addition, we describe various advance molecular mechanisms and fundamental aspects linked with diclofenac which can strengthen and enable the better designing of new derivatives of diclofenac to overcome critical challenges and improve their applications.
Collapse
|
2
|
Braeuning A, Bloch D, Karaca M, Kneuer C, Rotter S, Tralau T, Marx-Stoelting P. An approach for mixture testing and prioritization based on common kinetic groups. Arch Toxicol 2022; 96:1661-1671. [PMID: 35306572 PMCID: PMC9095521 DOI: 10.1007/s00204-022-03264-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/22/2022] [Indexed: 12/24/2022]
Abstract
In light of an ever-increasing exposure to chemicals, the topic of potential mixture toxicity has gained increased attention, particularly as the toxicological toolbox to address such questions has vastly improved. Routinely toxicological risk assessments will rely on the analysis of individual compounds with mixture effects being considered only in those specific cases where co-exposure is foreseeable, for example for pesticides or food contact materials. In the field of pesticides, active substances are summarized in so-called cumulative assessment groups (CAG) which are primarily based on their toxicodynamic properties, that is, respective target organs and mode of action (MoA). In this context, compounds causing toxicity by a similar MoA are assumed to follow a model of dose/concentration addition (DACA). However, the respective approach inherently falls short of addressing cases where there are dissimilar or independent MoAs resulting in wider toxicokinetic effects. Yet, the latter are often the underlying cause when effects deviate from the DACA model. In the present manuscript, we therefore suggest additionally to consider toxicokinetic effects (especially related to xenobiotic metabolism and transporter interaction) for the grouping of substances to predict mixture toxicity. In line with the concept of MoA-based CAGs, we propose common kinetics groups (CKGs) as an additional tool for grouping of chemicals and mixture prioritization. Fundamentals of the CKG concept are discussed, along with challenges for its implementation, and methodological approaches and examples are explored.
Collapse
Affiliation(s)
- Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Denise Bloch
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Mawien Karaca
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Carsten Kneuer
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Stefanie Rotter
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Tewes Tralau
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Philip Marx-Stoelting
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
3
|
Stereoselective Covalent Adduct Formation of Acyl Glucuronide Metabolite of Nonsteroidal Anti-Inflammatory Drugs with UDP-Glucuronosyltransferase. Int J Mol Sci 2022; 23:ijms23094724. [PMID: 35563116 PMCID: PMC9104950 DOI: 10.3390/ijms23094724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023] Open
Abstract
A reactive metabolite of nonsteroidal anti-inflammatory drugs (NSAIDs), acyl-β-D-glucuronide (AG), covalently binds to endogenous proteins. The covalent adduct formation of NSAIDs-AG may lead to the dysfunction of target proteins. Therefore, it is important to clarify the detailed characterization of the formation of covalent protein adducts of NSAID-AG. UDP-glucuronosyltransferase (UGT) catalyzes the conversion of NSAIDs to NSAIDs-AG. The aim of this study was to perform a quantitative analysis of the covalent adduct formation of NSAIDs-AG with UGT. Diclofenac-AG and ketoprofen-AG formed covalent adducts with organelle proteins. Next, the number of covalent adducts formed between NSAIDs-AG and UGT isoforms (UGT1A1, UGT1A9, UGT2B4, and UGT2B9) was determined. The capacity of diclofenac-AG to form covalent adducts with UGT1A9 or UGT2B7 was approximately 10 times higher than that of mefenamic acid-AG. The amounts of covalent adducts of AG of propionic acid derivative NSAIDs with UGT2B were higher than those with UGT1A. Stereoselectivity was observed upon covalent binding to UGT. A significant negative correlation between the half-lives of NSAIDs-AG in phosphate buffers and the amount of covalent adduct with UGT2B7 was observed, suggesting the more labile NSAID-AG forms higher irreversible bindings to UGT. This report provides comprehensive information on the covalent adduct formation of NSAIDs-AGs with UGT.
Collapse
|
4
|
Sathishkumar P, Mohan K, Meena RAA, Balasubramanian M, Chitra L, Ganesan AR, Palvannan T, Brar SK, Gu FL. Hazardous impact of diclofenac on mammalian system: Mitigation strategy through green remediation approach. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126135. [PMID: 34157463 DOI: 10.1016/j.jhazmat.2021.126135] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/24/2021] [Accepted: 05/12/2021] [Indexed: 05/22/2023]
Abstract
Diclofenac is an anti-inflammatory drug used as an analgesic. It is often detected in various environmental sources around the world and is considered as one of the emerging contaminants (ECs). This paper reviews the distribution of diclofenac at high concentrations in diverse environments and its adverse ecological impact. Recent studies observed strong evidence of the hazardous effect of diclofenac on mammals, including humans. Diclofenac could cause gastrointestinal complications, neurotoxicity, cardiotoxicity, hepatotoxicity, nephrotoxicity, hematotoxicity, genotoxicity, teratogenicity, bone fractures, and skin allergy in mammals even at a low concentration. Collectively, this comprehensive review relates the mode of toxicity, level of exposure, and route of administration as a unique approach for addressing the destructive consequence of diclofenac in mammalian systems. Finally, the mitigation strategy to eradicate the diclofenac toxicity through green remediation is critically discussed. This review will undoubtedly shed light on the toxic effects of pseudo-persistent diclofenac on mammals as well as frame stringent guidelines against its common usage.
Collapse
Affiliation(s)
- Palanivel Sathishkumar
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou 510006, PR China
| | - Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India
| | | | - Murugesan Balasubramanian
- Department of Biotechnology, K.S. Rangasamy College of Technology, Tiruchengode 637 215, Tamil Nadu, India
| | - Loganathan Chitra
- Department of Biochemistry, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Abirami Ramu Ganesan
- Group of Fermentation and Distillation, Laimburg Research Center, Vadena (BZ), Italy
| | | | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Jia YM, Zhu T, Zhou H, Ji JZ, Tai T, Xie HG. Multidrug Resistance-Associated Protein 3 Is Responsible for the Efflux Transport of Curcumin Glucuronide from Hepatocytes to the Blood. Drug Metab Dispos 2020; 48:966-971. [PMID: 31900255 DOI: 10.1124/dmd.119.089193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/18/2019] [Indexed: 01/14/2023] Open
Abstract
Curcumin, a major polyphenol present in turmeric, is predominantly converted to curcumin-O-glucuronide (COG) in enterocytes and hepatocytes via glucuronidation. COG is a principal metabolite of curcumin in plasma and feces. It appears that the efflux transport of the glucuronide conjugates of many compounds is mediated largely by multidrug resistance-associated protein (MRP) 3, the gene product of the ATP-binding cassette, subfamily C, member 3. However, it is currently unknown whether this was the case with COG. In this study, Mrp3 knockout (KO) and wild-type (WT) mice were used to evaluate the pharmacokinetics profiles of COG, the liver-to-plasma ratio of COG, and the COG-to-curcumin ratio in plasma, respectively. The ATP-dependent uptake of COG into recombinant human MRP3 inside-out membrane vesicles was measured for further identification, with estradiol-17β-d-glucuronide used in parallel as the positive control. Results showed that plasma COG concentrations were extremely low in KO mice compared with WT mice, that the liver-to-plasma ratios of COG were 8-fold greater in KO mice than in WT mice, and that the ATP-dependent uptake of COG at 1 or 10 μM was 5.0- and 3.1-fold greater in the presence of ATP than in the presence of AMP, respectively. No significant differences in the Abcc2 and Abcg2 mRNA expression levels were seen between Mrp3 KO and WT mice. We conclude that Mrp3 is identified to be the main efflux transporter responsible for the transport of COG from hepatocytes into the blood. SIGNIFICANCE STATEMENT: This study was designed to determine whether multidrug resistance-associated protein (Mrp) 3 could be responsible for the efflux transport of curcumin-O-glucuronide (COG), a major metabolite of curcumin present in plasma and feces, from hepatocytes into the blood using Mrp3 knockout mice. In this study, COG was identified as a typical Mrp3 substrate. Results suggest that herb-drug interactions would occur in patients concomitantly taking curcumin and either an MRP3 substrate/inhibitor or a drug that is predominantly glucuronidated by UDP-glucuronosyltransferases.
Collapse
Affiliation(s)
- Yu-Meng Jia
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China (Y.-M.J., J.-Z.J., T.T., H.-G.X.); Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China (Y.-M.J., T.Z., H.Z., H.-G.X.); and Department of Clinical Pharmacy, Nanjing Medical University School of Pharmacy, Nanjing, People's Republic of China (H.-G.X.)
| | - Ting Zhu
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China (Y.-M.J., J.-Z.J., T.T., H.-G.X.); Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China (Y.-M.J., T.Z., H.Z., H.-G.X.); and Department of Clinical Pharmacy, Nanjing Medical University School of Pharmacy, Nanjing, People's Republic of China (H.-G.X.)
| | - Huan Zhou
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China (Y.-M.J., J.-Z.J., T.T., H.-G.X.); Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China (Y.-M.J., T.Z., H.Z., H.-G.X.); and Department of Clinical Pharmacy, Nanjing Medical University School of Pharmacy, Nanjing, People's Republic of China (H.-G.X.)
| | - Jin-Zi Ji
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China (Y.-M.J., J.-Z.J., T.T., H.-G.X.); Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China (Y.-M.J., T.Z., H.Z., H.-G.X.); and Department of Clinical Pharmacy, Nanjing Medical University School of Pharmacy, Nanjing, People's Republic of China (H.-G.X.)
| | - Ting Tai
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China (Y.-M.J., J.-Z.J., T.T., H.-G.X.); Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China (Y.-M.J., T.Z., H.Z., H.-G.X.); and Department of Clinical Pharmacy, Nanjing Medical University School of Pharmacy, Nanjing, People's Republic of China (H.-G.X.)
| | - Hong-Guang Xie
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, People's Republic of China (Y.-M.J., J.-Z.J., T.T., H.-G.X.); Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, People's Republic of China (Y.-M.J., T.Z., H.Z., H.-G.X.); and Department of Clinical Pharmacy, Nanjing Medical University School of Pharmacy, Nanjing, People's Republic of China (H.-G.X.)
| |
Collapse
|
6
|
Scialis RJ, Aleksunes LM, Csanaky IL, Klaassen CD, Manautou JE. Identification and Characterization of Efflux Transporters That Modulate the Subtoxic Disposition of Diclofenac and Its Metabolites. Drug Metab Dispos 2019; 47:1080-1092. [PMID: 31399506 DOI: 10.1124/dmd.119.086603] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/12/2019] [Indexed: 11/22/2022] Open
Abstract
In the present work, in vivo transporter knockout (KO) mouse models were used to characterize the disposition of diclofenac (DCF) and its primary metabolites following a single subtoxic dose in mice lacking breast cancer resistance protein (Bcrp) or multidrug resistance-associated protein (Mrp)3. The results indicate that Bcrp acts as a canalicular efflux mediator for DCF, as wild-type (WT) mice had biliary excretion values that were 2.2- to 2.6-fold greater than Bcrp KO mice, although DCF plasma levels were not affected. The loss of Bcrp resulted in a 1.8- to 3.2-fold increase of diclofenac acyl glucuronide (DCF-AG) plasma concentrations in KO animals compared with WT mice, while the biliary excretion of DCF-AG increased 1.4-fold in WT versus KO mice. Furthermore, Mrp3 was found to mediate the basolateral transport of DCF-AG, but not DCF or 4'-hydroxy diclofenac. WT mice had DCF-AG plasma concentrations 7.0- to 8.6-fold higher than Mrp3 KO animals; however, there were no changes in biliary excretion of DCF-AG. Vesicular transport experiments with human MRP3 demonstrated that MRP3 is able to transport DCF-AG via low- and high-affinity binding sites. The low-affinity MRP3 transport had a V max and K m of 170 pmol/min/mg and 98.2 µM, respectively, while the high-affinity V max and K m parameters were estimated to be 71.9 pmol/min/mg and 1.78 µM, respectively. In summary, we offer evidence that the disposition of DCF-AG can be affected by both Bcrp and Mrp3, and these findings may be applicable to humans.
Collapse
Affiliation(s)
- Renato J Scialis
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (R.J.S., J.E.M.), Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (L.M.A., I.L.C., C.D.K.) and Department of Internal Medicine, University of Kansas Medical Center, Kansas City (C.D.K.)
| | - Lauren M Aleksunes
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (R.J.S., J.E.M.), Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (L.M.A., I.L.C., C.D.K.) and Department of Internal Medicine, University of Kansas Medical Center, Kansas City (C.D.K.)
| | - Iván L Csanaky
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (R.J.S., J.E.M.), Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (L.M.A., I.L.C., C.D.K.) and Department of Internal Medicine, University of Kansas Medical Center, Kansas City (C.D.K.)
| | - Curtis D Klaassen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (R.J.S., J.E.M.), Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (L.M.A., I.L.C., C.D.K.) and Department of Internal Medicine, University of Kansas Medical Center, Kansas City (C.D.K.)
| | - José E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (R.J.S., J.E.M.), Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas (L.M.A., I.L.C., C.D.K.) and Department of Internal Medicine, University of Kansas Medical Center, Kansas City (C.D.K.)
| |
Collapse
|
7
|
Little MS, Ervin SM, Walton WG, Tripathy A, Xu Y, Liu J, Redinbo MR. Active site flexibility revealed in crystal structures of Parabacteroides merdae β-glucuronidase from the human gut microbiome. Protein Sci 2018; 27:2010-2022. [PMID: 30230652 PMCID: PMC6237702 DOI: 10.1002/pro.3507] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022]
Abstract
β-Glucuronidase (GUS) enzymes in the gastrointestinal tract are involved in maintaining mammalian-microbial symbiosis and can play key roles in drug efficacy and toxicity. Parabacteroides merdae GUS was identified as an abundant mini-Loop 2 (mL2) type GUS enzyme in the Human Microbiome Project gut metagenomic database. Here, we report the crystal structure of P. merdae GUS and highlight the differences between this enzyme and extant structures of gut microbial GUS proteins. We find that P. merdae GUS exhibits a distinct tetrameric quaternary structure and that the mL2 motif traces a unique path within the active site, which also includes two arginines distinctive to this GUS. We observe two states of the P. merdae GUS active site; a loop repositions itself by more than 50 Å to place a functionally-relevant residue into the enzyme's catalytic site. Finally, we find that P. merdae GUS is able to bind to homo and heteropolymers of the polysaccharide alginic acid. Together, these data broaden our understanding of the structural and functional diversity in the GUS family of enzymes present in the human gut microbiome and point to specialization as an important feature of microbial GUS orthologs.
Collapse
Affiliation(s)
- Michael S. Little
- Department of ChemistryUniversity of North CarolinaChapel HillNorth Carolina27599‐3290
| | - Samantha M. Ervin
- Department of ChemistryUniversity of North CarolinaChapel HillNorth Carolina27599‐3290
| | - William G. Walton
- Department of ChemistryUniversity of North CarolinaChapel HillNorth Carolina27599‐3290
| | - Ashutosh Tripathy
- Department of Biochemistry & BiophysicsUniversity of North CarolinaChapel HillNorth Carolina27599‐3290
| | - Yongmei Xu
- Department of Chemical Biology and Medicinal ChemistryUniversity of North CarolinaChapel HillNorth Carolina27599‐3290
| | - Jian Liu
- Department of Chemical Biology and Medicinal ChemistryUniversity of North CarolinaChapel HillNorth Carolina27599‐3290
| | - Matthew R. Redinbo
- Department of ChemistryUniversity of North CarolinaChapel HillNorth Carolina27599‐3290
- Department of Biochemistry & BiophysicsUniversity of North CarolinaChapel HillNorth Carolina27599‐3290
- Department of Microbiology & ImmunologyUniversity of North CarolinaChapel HillNorth Carolina27599‐3290
- The Integrated Program for Biological and Genome Sciences, University of North CarolinaChapel HillNorth Carolina27599‐3290
| |
Collapse
|
8
|
Baba A, Yamada K, Satoh T, Watanabe K, Yoshioka T. Chemo-Enzymatic Synthesis, Structural and Stereochemical Characterization, and Intrinsic Degradation Kinetics of Diastereomers of 1-β- O-Acyl Glucuronides Derived from Racemic 2-{4-[(2-Methylprop-2-en-1-yl)amino]phenyl}propanoic Acid. ACS OMEGA 2018; 3:4932-4940. [PMID: 31458709 PMCID: PMC6641924 DOI: 10.1021/acsomega.8b00443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/24/2018] [Indexed: 06/10/2023]
Abstract
Alminoprofen, (RS)-2-{4-[(2-methylprop-2-en-1-yl)amino]phenyl}propanoic acid (ALP) 1, is a racemic drug categorized as a 2-arylpropanoic acid-class nonsteroidal anti-inflammatory drug. Pharmacokinetic studies of 1 in patients have revealed that the corresponding acyl glucuronide 5 is a major urinary metabolite, but little is known about the structure and stereochemistry of 5. The present work describes the synthesis of a diastereomeric mixture of 1-β-O-acyl glucuronides (2RS)-5 from 1 and methyl 2,3,4-tri-O-acetyl-1-bromo-1-deoxy-α-d-glucopyranuronate 2 using our chemo-enzymatic method that has complete specificity for the β-configuration. The structure of (2RS)-5 was characterized by 1H and 13C NMR spectroscopy and high-resolution mass spectrometry as well as by complete hydrolysis by β-glucuronidase. The absolute stereochemistry of (2RS)-5 was determined by comparison with (2R)-5 synthesized alternatively from (2R)-1 and 2. Compound (2R)-1 was prepared in two steps starting from chiral (R)-2-(4-nitrophenyl)propanoic acid (2R)-6. Chiral resolution of (2RS)-1 was achieved using a chiral high-performance liquid chromatography column, and its stereochemistry was determined by comparison with (2R)-1. The intrinsic degradation rate constant of (2R)-5 was 0.405 ± 0.002 h-1, which is approximately twice that of (2S)-5 (the k value was 0.226 ± 0.002 h-1) under physiological conditions (pH 7.40, 37 °C).
Collapse
Affiliation(s)
- Akiko Baba
- Department
of Medicinal Chemistry and Department of Pharmaceutics, Faculty
of Pharmaceutical Sciences, Hokkaido University
of Science, 7-15-4-1
Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Koki Yamada
- Department
of Medicinal Chemistry and Department of Pharmaceutics, Faculty
of Pharmaceutical Sciences, Hokkaido University
of Science, 7-15-4-1
Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Takashi Satoh
- Department
of Medicinal Chemistry and Department of Pharmaceutics, Faculty
of Pharmaceutical Sciences, Hokkaido University
of Science, 7-15-4-1
Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Kazuhiro Watanabe
- Department
of Medicinal Chemistry and Department of Pharmaceutics, Faculty
of Pharmaceutical Sciences, Hokkaido University
of Science, 7-15-4-1
Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Tadao Yoshioka
- Department
of Medicinal Chemistry and Department of Pharmaceutics, Faculty
of Pharmaceutical Sciences, Hokkaido University
of Science, 7-15-4-1
Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| |
Collapse
|
9
|
Dickie A, Wilson C, Schreiter K, Wehr R, Wilson E, Bial J, Scheer N, Wilson I, Riley R. The pharmacokinetics and metabolism of lumiracoxib in chimeric humanized and murinized FRG mice. Biochem Pharmacol 2017; 135:139-150. [DOI: 10.1016/j.bcp.2017.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/21/2017] [Indexed: 10/19/2022]
|
10
|
Van Vleet TR, Liu H, Lee A, Blomme EAG. Acyl glucuronide metabolites: Implications for drug safety assessment. Toxicol Lett 2017; 272:1-7. [PMID: 28286018 DOI: 10.1016/j.toxlet.2017.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/17/2017] [Accepted: 03/05/2017] [Indexed: 12/23/2022]
Abstract
Acyl glucuronides are important metabolites of compounds with carboxylic acid moieties and have unique properties that distinguish them from other phase 2 metabolites. In particular, in addition to being often unstable, acyl glucuronide metabolites can be chemically reactive leading to covalent binding with macromolecules and toxicity. While there is circumstantial evidence that drugs forming acyl glucuronide metabolites can be associated with rare, but severe idiosyncratic toxic reactions, many widely prescribed drugs with good safety records are also metabolized through acyl glucuronidation. Therefore, there is a need to understand the various factors that can affect the safety of acyl glucuronide-producing drugs including the rate of acyl glucuronide formation, the relative reactivity of the acyl glucuronide metabolite formed, the rate of elimination, potential proteins being targeted, and the rate of aglucuronidation. In this review, these factors are discussed and various approaches to de-risk the safety liabilities of acyl glucuronide metabolites are evaluated.
Collapse
Affiliation(s)
- Terry R Van Vleet
- Abbvie, Development Sciences, Department of Preclinical Safety, United States.
| | - Hong Liu
- Abbvie, Development Sciences, Biomeasure and Metabolism, United States
| | - Anthony Lee
- Abbvie, Development Sciences, Biomeasure and Metabolism, United States
| | - Eric A G Blomme
- Abbvie, Development Sciences, Department of Preclinical Safety, United States
| |
Collapse
|
11
|
Toxicological potential of acyl glucuronides and its assessment. Drug Metab Pharmacokinet 2017; 32:2-11. [DOI: 10.1016/j.dmpk.2016.11.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/22/2022]
|
12
|
Uraki M, Kawase A, Iwaki M. Stereoselective hepatic disposition of ibuprofen in the perfused liver of rat with adjuvant-induced arthritis. Xenobiotica 2016; 47:943-950. [DOI: 10.1080/00498254.2016.1252869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Misato Uraki
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Atsushi Kawase
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| | - Masahiro Iwaki
- Department of Pharmacy, Faculty of Pharmacy, Kindai University, Higashi-osaka, Osaka, Japan
| |
Collapse
|
13
|
Differential sensitivity of metabolically competent and non-competent HepaRG cells to apoptosis induced by diclofenac combined or not with TNF-α. Toxicol Lett 2016; 258:71-86. [DOI: 10.1016/j.toxlet.2016.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/24/2016] [Accepted: 06/10/2016] [Indexed: 01/20/2023]
|
14
|
Scialis RJ, Manautou JE. Elucidation of the Mechanisms through Which the Reactive Metabolite Diclofenac Acyl Glucuronide Can Mediate Toxicity. J Pharmacol Exp Ther 2016; 357:167-76. [PMID: 26869668 DOI: 10.1124/jpet.115.230755] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 02/10/2016] [Indexed: 01/12/2023] Open
Abstract
We have previously reported that mice lacking the efflux transporter Mrp3 had significant intestinal injury after toxic diclofenac (DCF) challenge, and proposed that diclofenac acyl glucuronide (DCF-AG), as a substrate of Mrp3, played a part in mediating injury. Since both humans and mice express the uptake transporter OATP2B1 in the intestines, OATP2B1 was characterized for DCF-AG uptake. In vitro assays using human embryonic kidney (HEK)-OATP2B1 cells demonstrated that DCF-AG was a substrate with a maximal velocity (Vmax) and Km of 17.6 ± 1.5 pmol/min per milligram and 14.3 ± 0.1 μM, respectively. Another key finding from our in vitro assays was that DCF-AG was more cytotoxic compared with DCF, and toxicity occurred within 1-3 hours of exposure. We also report that 1 mM DCF-AG caused a 6-fold increase in reactive oxygen species (ROS) by 3 hours. Investigation of oxidative stress through inhibition of superoxide dismutase (SOD) revealed that DCF-AG had 100% inhibition of SOD at the highest tested dose of 1 mM. The SOD and ROS results strongly suggest DCF-AG induced oxidative stress in vitro. Lastly, DCF-AG was screened for pharmacologic activity against COX-1 and COX-2 and was found to have IC50 values of 0.620 ± 0.105 and 2.91 ± 0.36 μM, respectively, which represents a novel finding. Since cyclooxygenase (COX) inhibition can lead to intestinal ulceration, it is plausible that DCF-AG can also contribute to enteropathy via COX inhibition. Taken in context, the work presented herein demonstrated the multifactorial pathways by which DCF-AG can act as a direct contributor to toxicity following DCF administration.
Collapse
Affiliation(s)
- Renato J Scialis
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - José E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
15
|
Zhang Y, Han YH, Putluru SP, Matta MK, Kole P, Mandlekar S, Furlong MT, Liu T, Iyer RA, Marathe P, Yang Z, Lai Y, Rodrigues AD. Diclofenac and Its Acyl Glucuronide: Determination of In Vivo Exposure in Human Subjects and Characterization as Human Drug Transporter Substrates In Vitro. ACTA ACUST UNITED AC 2015; 44:320-8. [PMID: 26714763 DOI: 10.1124/dmd.115.066944] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/28/2015] [Indexed: 01/05/2023]
Abstract
Although the metabolism and disposition of diclofenac (DF) has been studied extensively, information regarding the plasma levels of its acyl-β-d-glucuronide (DF-AG), a major metabolite, in human subjects is limited. Therefore, DF-AG concentrations were determined in plasma (acidified blood derived) of six healthy volunteers following a single oral DF dose (50 mg). Levels of DF-AG in plasma were high, as reflected by a DF-AG/DF ratio of 0.62 ± 0.21 (Cmax mean ± S.D.) and 0.84 ± 0.21 (area under the concentration-time curve mean ± S.D.). Both DF and DF-AG were also studied as substrates of different human drug transporters in vitro. DF was identified as a substrate of organic anion transporter (OAT) 2 only (Km = 46.8 µM). In contrast, DF-AG was identified as a substrate of numerous OATs (Km = 8.6, 60.2, 103.9, and 112 µM for OAT2, OAT1, OAT4, and OAT3, respectively), two organic anion-transporting polypeptides (OATP1B1, Km = 34 µM; OATP2B1, Km = 105 µM), breast cancer resistance protein (Km = 152 µM), and two multidrug resistance proteins (MRP2, Km = 145 µM; MRP3, Km = 196 µM). It is concluded that the disposition of DF-AG, once formed, can be mediated by various candidate transporters known to be expressed in the kidney (basolateral, OAT1, OAT2, and OAT3; apical, MRP2, BCRP, and OAT4) and liver (canalicular, MRP2 and BCRP; basolateral, OATP1B1, OATP2B1, OAT2, and MRP3). DF-AG is unstable in plasma and undergoes conversion to parent DF. Therefore, caution is warranted when assessing renal and hepatic transporter-mediated drug-drug interactions with DF and DF-AG.
Collapse
Affiliation(s)
- Yueping Zhang
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Yong-Hae Han
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Siva Prasad Putluru
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Murali Krishna Matta
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Prashant Kole
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Sandhya Mandlekar
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Michael T Furlong
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Tongtong Liu
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Ramaswamy A Iyer
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Punit Marathe
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Zheng Yang
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - Yurong Lai
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| | - A David Rodrigues
- Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Company, Princeton, New Jersey
| |
Collapse
|
16
|
Syed M, Skonberg C, Hansen SH. Mitochondrial toxicity of diclofenac and its metabolites via inhibition of oxidative phosphorylation (ATP synthesis) in rat liver mitochondria: Possible role in drug induced liver injury (DILI). Toxicol In Vitro 2015; 31:93-102. [PMID: 26627130 DOI: 10.1016/j.tiv.2015.11.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2015] [Revised: 11/09/2015] [Accepted: 11/24/2015] [Indexed: 11/26/2022]
Abstract
Diclofenac is a widely prescribed NSAID, which by itself and its reactive metabolites (Phase-I and Phase-II) may be involved in serious idiosyncratic hepatotoxicity. Mitochondrial injury is one of the mechanisms of drug induced liver injury (DILI). In the present work, an investigation of the inhibitory effects of diclofenac (Dic) and its phase I [4-hydroxy diclofenac (4'-OH-Dic) and 5-hydroxy diclofenac (5-OH-dic)] and Phase-II [diclofenac acyl glucuronide (DicGluA) and diclofenac glutathione thioester (DicSG)] metabolites, on ATP synthesis in rat liver mitochondria was carried out. A mechanism based inhibition of ATP synthesis is exerted by diclofenac and its metabolites. Phase-I metabolite (4'-OH-Dic) and Phase-II metabolites (DicGluA and DicSG) showed potent inhibition (2-5 fold) of ATP synthesis, where as 5-OH-Dic, one of the Phase-I metabolite, was a less potent inhibitor as compared to Dic. The calculated kinetic constants of mechanism based inhibition of ATP synthesis by Dic showed maximal rate of inactivation (Kinact) of 2.64 ± 0.15 min(-1) and half maximal rate of inactivation (KI) of 7.69 ± 2.48 μM with Kinact/KI ratio of 0.343 min(-1) μM(-1). Co-incubation of mitochondria with Dic and reduced GSH exhibited a protective effect on Dic mediated inhibition of ATP synthesis. Our data from this study strongly indicate that Dic as well as its metabolites could be involved in the hepato-toxic action through inhibition of ATP synthesis.
Collapse
Affiliation(s)
- Muzeeb Syed
- Section of Analytical Biosciences, Department of Pharmacy, School of Pharmaceutical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Christian Skonberg
- ADME Department, Discovery Biology and Technology, Novo Nordisk A/S, Måløv, Copenhagen, Denmark
| | - Steen Honoré Hansen
- Section of Analytical Biosciences, Department of Pharmacy, School of Pharmaceutical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
17
|
Niu X, de Graaf IAM, van de Vegte D, Langelaar-Makkinje M, Sekine S, Groothuis GMM. Consequences of Mrp2 deficiency for diclofenac toxicity in the rat intestine ex vivo. Toxicol In Vitro 2015; 29:168-75. [PMID: 25450747 DOI: 10.1016/j.tiv.2014.10.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
Abstract
The non-steroidal anti-inflammatory drug diclofenac (DCF) has a high prevalence of intestinal side effects in humans and rats. It has been reported that Mrp2 transporter deficient rats (Mrp2) are more resistant to DCF induced intestinal toxicity. This was explained in vivo by impaired Mrp2-dependent biliary transport of DCF-acylglucuronide (DAG), leading to decreased intestinal exposure to DAG and DCF. However, it is not known to what extent adaptive changes in the Mrp2 intestine itself influence its sensitivity to DCF toxicity without the influence of liver metabolites. To investigate this, DCF toxicity and disposition were studied ex vivo by precision-cut intestinal slices and Ussing chamber using intestines from wild type(WT) and Mrp2 rats. The results show that adaptive changes due to Mrp2 deficiency concerning Mrp2, Mrp3 and BCRP gene expression, GSH content and DAG formation were different between liver and intestine. Furthermore, Mrp2 intestine was intrinsically more resistant to DCF toxicity than its WT counterpart ex vivo. This can at least partly be explained by a reduced DCF uptake by the Mrp2 intestine, but isnot related to the other adaptive changes in the intestine. The extrapolation of this data to humans with MRP2 deficiency is uncertain due to species differences in activity and regulation of transporters.
Collapse
Affiliation(s)
- Xiaoyu Niu
- Division of Pharmacokinetics, Toxicology and Targeting, Department of Pharmacy, University of Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Scialis RJ, Csanaky IL, Goedken MJ, Manautou JE. Multidrug Resistance-Associated Protein 3 Plays an Important Role in Protection against Acute Toxicity of Diclofenac. Drug Metab Dispos 2015; 43:944-50. [PMID: 25897176 DOI: 10.1124/dmd.114.061705] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/20/2015] [Indexed: 11/22/2022] Open
Abstract
Diclofenac (DCF) is a nonsteroidal anti-inflammatory drug commonly prescribed to reduce pain in acute and chronic inflammatory diseases. One of the main DCF metabolites is a reactive diclofenac acyl glucuronide (DCF-AG) that covalently binds to biologic targets and may contribute to adverse drug reactions arising from DCF use. Cellular efflux of DCF-AG is partially mediated by multidrug resistance-associated proteins (Mrp). The importance of Mrp2 during DCF-induced toxicity has been established, yet the role of Mrp3 remains largely unexplored. In the present work, Mrp3-null (KO) mice were used to study the toxicokinetics and toxicodynamics of DCF and its metabolites. DCF-AG plasma concentrations were 90% lower in KO mice than in wild-type (WT) mice, indicating that Mrp3 mediates DCF-AG basolateral efflux. In contrast, there were no differences in DCF-AG biliary excretion between WT and KO, suggesting that only DCF-AG basolateral efflux is compromised by Mrp3 deletion. Susceptibility to toxicity was also evaluated after a single high DCF dose. No signs of injury were detected in livers and kidneys; however, ulcers were found in the small intestines. Furthermore, the observed intestinal injuries were consistently more severe in KO compared with WT. DCF covalent adducts were observed in liver and small intestines; however, staining intensity did not correlate with the severity of injuries, implying that tissues respond differently to covalent modification. Overall, the data provide strong evidence that (1) in vivo Mrp3 plays an important role in DCF-AG disposition and (2) compromised Mrp3 function can enhance injury in the gastrointestinal tract after DCF treatment.
Collapse
Affiliation(s)
- Renato J Scialis
- University of Connecticut, School of Pharmacy, Department of Pharmaceutical Sciences, Storrs, Connecticut (R.J.S., J.E.M.); University of Kansas Medical Center, Department of Internal Medicine, Kansas City, Kansas (I.L.C.); and Office of Translational Science, Rutgers University, Piscataway, New Jersey (M.J.G.)
| | - Iván L Csanaky
- University of Connecticut, School of Pharmacy, Department of Pharmaceutical Sciences, Storrs, Connecticut (R.J.S., J.E.M.); University of Kansas Medical Center, Department of Internal Medicine, Kansas City, Kansas (I.L.C.); and Office of Translational Science, Rutgers University, Piscataway, New Jersey (M.J.G.)
| | - Michael J Goedken
- University of Connecticut, School of Pharmacy, Department of Pharmaceutical Sciences, Storrs, Connecticut (R.J.S., J.E.M.); University of Kansas Medical Center, Department of Internal Medicine, Kansas City, Kansas (I.L.C.); and Office of Translational Science, Rutgers University, Piscataway, New Jersey (M.J.G.)
| | - José E Manautou
- University of Connecticut, School of Pharmacy, Department of Pharmaceutical Sciences, Storrs, Connecticut (R.J.S., J.E.M.); University of Kansas Medical Center, Department of Internal Medicine, Kansas City, Kansas (I.L.C.); and Office of Translational Science, Rutgers University, Piscataway, New Jersey (M.J.G.)
| |
Collapse
|
19
|
Effects of dose, flow rate, and bile acid on diclofenac disposition in the perfused rat liver. Eur J Drug Metab Pharmacokinet 2015; 41:301-7. [DOI: 10.1007/s13318-015-0259-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
|
20
|
van der Schoor LWE, Verkade HJ, Kuipers F, Jonker JW. New insights in the biology of ABC transporters ABCC2 and ABCC3: impact on drug disposition. Expert Opin Drug Metab Toxicol 2014; 11:273-93. [PMID: 25380746 DOI: 10.1517/17425255.2015.981152] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION For the elimination of environmental chemicals and metabolic waste products, the body is equipped with a range of broad specificity transporters that are present in excretory organs as well as in several epithelial blood-tissue barriers. AREAS COVERED ABCC2 and ABCC3 (also known as MRP2 and MRP3) mediate the transport of various conjugated organic anions, including many drugs, toxicants and endogenous compounds. This review focuses on the physiology of these transporters, their roles in drug disposition and how they affect drug sensitivity and toxicity. It also examines how ABCC2 and ABCC3 are coordinately regulated at the transcriptional level by members of the nuclear receptor (NR) family of ligand-modulated transcription factors and how this can be therapeutically exploited. EXPERT OPINION Mutations in both ABCC2 and ABCC3 have been associated with changes in drug disposition, sensitivity and toxicity. A defect in ABCC2 is associated with Dubin-Johnson syndrome, a recessively inherited disorder characterized by conjugated hyperbilirubinemia. Pharmacological manipulation of the activity of these transporters can potentially improve the pharmacokinetics and thus therapeutic activity of substrate drugs but also affect the physiological function of these transporters and consequently ameliorate associated disease states.
Collapse
Affiliation(s)
- Lori W E van der Schoor
- University of Groningen, University Medical Center Groningen, Center for Liver, Digestive and Metabolic Diseases, Department of Pediatrics , Hanzeplein 1, 9713 GZ Groningen , The Netherlands
| | | | | | | |
Collapse
|
21
|
Diclofenac toxicity in human intestine ex vivo is not related to the formation of intestinal metabolites. Arch Toxicol 2014; 89:107-19. [PMID: 24770551 DOI: 10.1007/s00204-014-1242-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 04/10/2014] [Indexed: 12/22/2022]
Abstract
The use of diclofenac (DCF), a nonsteroidal anti-inflammatory drug, is associated with a high prevalence of gastrointestinal side effects. In vivo studies in rodents suggested that reactive metabolites of DCF produced by the liver or the intestine might be responsible for this toxicity. In the present study, precision-cut intestinal slices (PCIS) prepared from the jejunum of 18 human donors were used as an ex vivo model to investigate whether DCF intestinal metabolites are responsible for its intestinal toxicity in man. PCIS were incubated with a concentration range of DCF (0-600 µM) up to 24 h. DCF (≥400 µM) caused direct toxicity to the intestine as demonstrated by ATP depletion, morphological damage, caspase 3 activation, and lactate dehydrogenase leakage. Three main metabolites produced by PCIS (4'-hydroxy DCF, 5-hydroxy DCF, and DCF acyl glucuronide) were detected by HPLC. Protein adducts were detected by immunohistochemical staining and showed correlation with the intestinal metabolites. DCF induced similar toxicity to each of the samples regardless of the variation in metabolism among them. Less metabolites were produced by slices incubated with 400 µM DCF than with 100 µM DCF. The addition of the metabolic inhibitors such as ketoconazole, cimetidine, or borneol decreased the metabolite formation but increased the toxicity. The results suggest that DCF can induce intestinal toxicity in human PCIS directly at therapeutically relevant concentrations, independent of the reactive metabolites 4'-OH DCF, 5-OH DCF, or diclofenac acylglucuronide produced by the liver or formed in the intestine.
Collapse
|
22
|
Bateman TJ, Reddy VG, Kakuni M, Morikawa Y, Kumar S. Application of Chimeric Mice with Humanized Liver for Study of Human-Specific Drug Metabolism. Drug Metab Dispos 2014; 42:1055-65. [DOI: 10.1124/dmd.114.056978] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
23
|
Ramm S, Mally A. Role of drug-independent stress factors in liver injury associated with diclofenac intake. Toxicology 2013; 312:83-96. [PMID: 23939143 DOI: 10.1016/j.tox.2013.08.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/26/2013] [Accepted: 08/01/2013] [Indexed: 01/08/2023]
Abstract
Although a basic understanding of the chemical and biological events leading to idiosyncratic drug toxicity is still lacking, it appears that drug-independent risk factors that increase reactive metabolite formation or alter cellular stress and immune response may be critical determinants in the response to an otherwise non-toxic drug. Thus, we were interested to determine the impact of various drug-independent stress factors - lipopolysaccharide (LPS), poly I:C (PIC) or glutathione depletion via buthionine sulfoximine (BSO) - on the toxicity of diclofenac (Dcl), a model drug associated with rare but significant cases of serious hepatotoxicity, and to understand if enhanced toxicity occurs through alterations of drug metabolism and/or modulation of stress response pathways. Co-treatment of rats repeatedly given therapeutic doses of Dcl for 7 days with a single dose of LPS 2h before the last Dcl dose resulted in severe liver toxicity. Neither LPS nor diclofenac alone or in combination with PIC or BSO had such an effect. While it is thought that bioactivation to reactive Dcl acyl glucuronides (AG) and subsequent protein adduct formation contribute to Dcl induced liver injury, LC-MS/MS analyses did not reveal increased formation of 4'- and 5-hydroxy-Dcl, Dcl-AG or Dcl-AG dependent protein adducts in animals treated with LPS/Dcl. Hepatic gene expression analysis suggested enhanced activation of NFκB and MAPK pathways and up-regulation of co-stimulatory molecules (IL-1β, TNF-α, CINC-1) by LPS/Dcl and PIC/Dcl, while protective factors (HSPs, SOD2) were down-regulated. LPS/Dcl led to extensive release of pro-inflammatory cytokines (IL-1β, IL-6, IFN-γ, TNF-α) and factors thought to constitute danger signals (HMGB1, CINC-1) into plasma. Taken together, our results show that Dcl enhanced the inflammatory response induced by LPS - and to a lesser extent by PIC - through up-regulation of pro-inflammatory molecules and down-regulation of protective factors. This suggests sensitization of cells to cellular stress mediated by non-drug-related risk factors by therapeutic doses of Dcl, rather than potentiation of Dcl toxicity by the stress factors.
Collapse
Affiliation(s)
- Susanne Ramm
- Department of Toxicology, University of Würzburg, Germany
| | | |
Collapse
|
24
|
Saitta KS, Zhang C, Lee KK, Fujimoto K, Redinbo MR, Boelsterli UA. Bacterial β-glucuronidase inhibition protects mice against enteropathy induced by indomethacin, ketoprofen or diclofenac: mode of action and pharmacokinetics. Xenobiotica 2013; 44:28-35. [PMID: 23829165 DOI: 10.3109/00498254.2013.811314] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1. We have previously demonstrated that a small molecule inhibitor of bacterial β-glucuronidase (Inh-1; [1-((6,8-dimethyl-2-oxo-1,2-dihydroquinolin-3-yl)-3-(4-ethoxyphenyl)-1-(2-hydroxyethyl)thiourea]) protected mice against diclofenac (DCF)-induced enteropathy. Here we report that Inh-1 was equally protective against small intestinal injury induced by other carboxylic acid-containing non-steroidal anti-inflammatory drugs (NSAIDs), indomethacin (10 mg/kg, ip) and ketoprofen (100 mg/kg, ip). 2. Inh-1 provided complete protection if given prior to DCF (60 mg/kg, ip), and partial protection if administered 3-h post-DCF, suggesting that the temporal window of mucosal protection can be extended for drugs undergoing extensive enterohepatic circulation. 3. Pharmacokinetic analysis of Inh-1 revealed an absolute bioavailability (F) of 21% and a short t1/2 of <1 h. This low F was shown to be due to hepatic first-pass metabolism, as confirmed with the pan-CYP inhibitor, 1-aminobenzotriazole. 4. Using the fluorescent probe 5 (and 6)-carboxy-2',7'-dichlorofluorescein, we demonstrated that Inh-1 did not interfere with hepatobiliary export of glucuronides in gall bladder-cannulated mice. 5. These data are compatible with the hypothesis that pharmacological inhibition of bacterial β-glucuronidase-mediated cleavage of NSAID glucuronides in the small intestinal lumen can protect against NSAID-induced enteropathy caused by locally high concentrations of NSAID aglycones.
Collapse
Affiliation(s)
- Kyle S Saitta
- Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy , Storrs, Connecticut , USA and
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Given the high prevalence of the use of medications in daily practice and the large number of people taking antirheumatic agents, the risk of drug-drug interactions and of hepatotoxicity is of concern. Both old and new compounds show such a risk. Nonsteroidal antinflammatory drugs are widely used drugs with potential adverse hepatic reactions. Nonsteroidal antinflammatory drugs are responsible for an important aliquot of transaminase elevation in the general population. Genetic susceptibility to diclofenac hepatotoxicity has promoted the knowledge about drug-specific, class-specific reactions. Some drugs (sulfasalazine, azathioprine, and leflunomide) may cause acute liver injury, whereas other compounds (methotrexate) may cause chronic liver damage as the result of the interaction among drug, host and environmental factors. The tumor necrosis factor-alpha inhibitor, infliximab, is associated with typical drug-induced autoimmune hepatitis. Also, the other biological disease-modifying antirheumatic drugs are not free of potential hepatotoxicity. The diagnosis of drug-induced liver injury follows the exclusion of other causes, involves a temporal relationship between drug exposure and adverse event, and should consider the potential participation of the underlying rheumatic disease to event occurrence. This article also includes data regarding hepatotoxicity from our outclinic patients receiving biological disease-modifying antirheumatic drugs.
Collapse
|
26
|
Abstract
Detailed knowledge regarding the influence of hepatic transport proteins on drug disposition has advanced at a rapid pace over the past decade. Efflux transport proteins located in the basolateral and apical (canalicular) membranes of hepatocytes play an important role in the hepatic elimination of many endogenous and exogenous compounds, including drugs and metabolites. This review focuses on the role of these efflux transporters in hepatic drug excretion. The impact of these proteins as underlying factors for disease is highlighted, and the importance of hepatic efflux proteins in the efficacy and toxicity of drugs is discussed. In addition, a brief overview of methodology to evaluate the function of hepatic efflux transport proteins is provided. Current challenges in predicting the impact of altered efflux protein function on systemic, intestinal, and hepatocyte exposure to drugs and metabolites are highlighted.
Collapse
|
27
|
Hoffmann SA, Müller-Vieira U, Biemel K, Knobeloch D, Heydel S, Lübberstedt M, Nüssler AK, Andersson TB, Gerlach JC, Zeilinger K. Analysis of drug metabolism activities in a miniaturized liver cell bioreactor for use in pharmacological studies. Biotechnol Bioeng 2012; 109:3172-81. [PMID: 22688505 DOI: 10.1002/bit.24573] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/01/2012] [Accepted: 05/30/2012] [Indexed: 11/11/2022]
Abstract
Based on a hollow fiber perfusion technology with internal oxygenation, a miniaturized bioreactor with a volume of 0.5 mL for in vitro studies was recently developed. Here, the suitability of this novel culture system for pharmacological studies was investigated, focusing on the model drug diclofenac. Primary human liver cells were cultivated in bioreactors and in conventional monolayer cultures in parallel over 10 days. From day 3 on, diclofenac was continuously applied at a therapeutic concentration (6.4 µM) for analysis of its metabolism. In addition, the activity and gene expression of the cytochrome P450 (CYP) isoforms CYP1A2, CYP2B6, CYP2C9, CYP2D6, and CYP3A4 were assessed. Diclofenac was metabolized in bioreactor cultures with an initial conversion rate of 230 ± 57 pmol/h/10(6) cells followed by a period of stable conversion of about 100 pmol/h/10(6) cells. All CYP activities tested were maintained until day 10 of bioreactor culture. The expression of corresponding mRNAs correlated well with the degree of preservation. Immunohistochemical characterization showed the formation of neo-tissue with expression of CYP2C9 and CYP3A4 and the drug transporters breast cancer resistance protein (BCRP) and multidrug resistance protein 2 (MRP2) in the bioreactor. In contrast, monolayer cultures showed a rapid decline of diclofenac conversion and cells had largely lost activity and mRNA expression of the assessed CYP isoforms at the end of the culture period. In conclusion, diclofenac metabolism, CYP activities and gene expression levels were considerably more stable in bioreactor cultures, making the novel bioreactor a useful tool for pharmacological or toxicological investigations requiring a highly physiological in vitro representation of the liver.
Collapse
Affiliation(s)
- Stefan A Hoffmann
- Division of Experimental Surgery, Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
LoGuidice A, Wallace BD, Bendel L, Redinbo MR, Boelsterli UA. Pharmacologic targeting of bacterial β-glucuronidase alleviates nonsteroidal anti-inflammatory drug-induced enteropathy in mice. J Pharmacol Exp Ther 2012; 341:447-54. [PMID: 22328575 DOI: 10.1124/jpet.111.191122] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Small intestinal mucosal injury is a frequent adverse effect caused by nonsteroidal anti-inflammatory drugs (NSAIDs). The underlying mechanisms are not completely understood, but topical (luminal) effects have been implicated. Many carboxylic acid-containing NSAIDs, including diclofenac (DCF), are metabolized to acyl glucuronides (AGs), and/or ether glucuronides after ring hydroxylation, and exported into the biliary tree. In the gut, these conjugates are cleaved by bacterial β-glucuronidase, releasing the potentially harmful aglycone. We first confirmed that DCF-AG was an excellent substrate for purified Escherichia coli β-D-glucuronidase. Using a previously characterized novel bacteria-specific β-glucuronidase inhibitor (Inhibitor-1), we then found that the enzymatic hydrolysis of DCF-AG in vitro was inhibited concentration dependently (IC₅₀ ∼164 nM). We next hypothesized that pharmacologic inhibition of bacterial β-glucuronidase would reduce exposure of enterocytes to the aglycone and, as a result, alleviate enteropathy. C57BL/6J mice were administered an ulcerogenic dose of DCF (60 mg/kg i.p.) with or without oral pretreatment with Inhibitor-1 (10 μg per mouse, b.i.d.). Whereas DCF alone caused the formation of numerous large ulcers in the distal parts of the small intestine and increased (2-fold) the intestinal permeability to fluorescein isothiocyanate-dextran, Inhibitor-1 cotreatment significantly alleviated mucosal injury and reduced all parameters of enteropathy. Pharmacokinetic profiling of DCF plasma levels in mice revealed that Inhibitor-1 coadministration did not significantly alter the C(max), half-life, or area under the plasma concentration versus time curve of DCF. Thus, highly selective pharmacologic targeting of luminal bacterial β-D-glucuronidase by a novel class of small-molecule inhibitors protects against DCF-induced enteropathy without altering systemic drug exposure.
Collapse
Affiliation(s)
- Amanda LoGuidice
- Department of Pharmaceutical Sciences, University of Connecticut School of Pharmacy, Storrs, Connecticut, USA
| | | | | | | | | |
Collapse
|
29
|
Colombo F, Armstrong C, Duan J, Rioux N. A high throughput in vitro mrp2 assay to predict in vivo biliary excretion. Xenobiotica 2011; 42:157-63. [PMID: 21961530 DOI: 10.3109/00498254.2011.614021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Prediction of biliary excretion is a challenge for drug discovery scientists due to the lack of in vitro assays. This study explores the possibility of establishing a simple assay to predict in vivo biliary excretion via the mrp2 transport system. In vitro mrp2 activity was determined by measuring the ATP-dependent uptake of 5(6)-carboxy-2',7'-dichlorofluorescein (CDCF) in canalicular plasma membrane vesicles (cLPM) from rat livers. The CDCF uptake was time- and concentration-dependent (K(m) of 2.2 ± 0.3 µM and V(max) of 115 ± 26 pmol/mg/min) and strongly inhibited by the mrp2 inhibitors, benzbromarone, MK-571, and cyclosporine A, with IC(50) values ≤ 1.1 µM. Low inhibition of CDCF uptake by taurocholate (BSEP inhibitor; 57 µM) and digoxin (P-gp inhibitor; 101 µM) demonstrated assay specificity towards mrp2. A highly significant correlation (r(2) = 0.959) between the in vitro IC(50) values from the described mrp2 assay and in vivo biliary excretion in rats was observed using 10 literature compounds. This study demonstrated, for the first time, that a high throughput assay could be established with the capability of predicting biliary excretion in the rat using CDCF as a substrate.
Collapse
Affiliation(s)
- Federico Colombo
- Biological Sciences, Boehringer Ingelheim (Canada) Ltd., Laval, Québec, Canada
| | | | | | | |
Collapse
|
30
|
Roth RA, Ganey PE. Animal models of idiosyncratic drug-induced liver injury—Current status. Crit Rev Toxicol 2011; 41:723-39. [DOI: 10.3109/10408444.2011.575765] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Regan SL, Maggs JL, Hammond TG, Lambert C, Williams DP, Park BK. Acyl glucuronides: the good, the bad and the ugly. Biopharm Drug Dispos 2011; 31:367-95. [PMID: 20830700 DOI: 10.1002/bdd.720] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Acyl glucuronidation is the major metabolic conjugation reaction of most carboxylic acid drugs in mammals. The physiological consequences of this biotransformation have been investigated incompletely but include effects on drug metabolism, protein binding, distribution and clearance that impact upon pharmacological and toxicological outcomes. In marked contrast, the exceptional but widely disparate chemical reactivity of acyl glucuronides has attracted far greater attention. Specifically, the complex transacylation and glycation reactions with proteins have provoked much inconclusive debate over the safety of drugs metabolised to acyl glucuronides. It has been hypothesised that these covalent modifications could initiate idiosyncratic adverse drug reactions. However, despite a large body of in vitro data on the reactions of acyl glucuronides with protein, evidence for adduct formation from acyl glucuronides in vivo is limited and potentially ambiguous. The causal connection of protein adduction to adverse drug reactions remains uncertain. This review has assessed the intrinsic reactivity, metabolic stability and pharmacokinetic properties of acyl glucuronides in the context of physiological, pharmacological and toxicological perspectives. Although numerous experiments have characterised the reactions of acyl glucuronides with proteins, these might be attenuated substantially in vivo by rapid clearance of the conjugates. Consequently, to delineate a relationship between acyl glucuronide formation and toxicological phenomena, detailed pharmacokinetic analysis of systemic exposure to the acyl glucuronide should be undertaken adjacent to determining protein adduct concentrations in vivo. Further investigation is required to ascertain whether acyl glucuronide clearance is sufficient to prevent covalent modification of endogenous proteins and consequentially a potential immunological response.
Collapse
Affiliation(s)
- Sophie L Regan
- MRC Centre for Drug Safety Science, Institute of Translational Medicine, The University of Liverpool, Liverpool L69 3GE, UK.
| | | | | | | | | | | |
Collapse
|
32
|
Jemnitz K, Heredi-Szabo K, Janossy J, Ioja E, Vereczkey L, Krajcsi P. ABCC2/Abcc2: a multispecific transporter with dominant excretory functions. Drug Metab Rev 2010; 42:402-36. [PMID: 20082599 DOI: 10.3109/03602530903491741] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ABCC2/Abcc2 (MRP2/Mrp2) is expressed at major physiological barriers, such as the canalicular membrane of liver cells, kidney proximal tubule epithelial cells, enterocytes of the small and large intestine, and syncytiotrophoblast of the placenta. ABCC2/Abcc2 always localizes in the apical membranes. Although ABCC2/Abcc2 transports a variety of amphiphilic anions that belong to different classes of molecules, such as endogenous compounds (e.g., bilirubin-glucuronides), drugs, toxic chemicals, nutraceuticals, and their conjugates, it displays a preference for phase II conjugates. Phenotypically, the most obvious consequence of mutations in ABCC2 that lead to Dubin-Johnson syndrome is conjugate hyperbilirubinemia. ABCC2/Abcc2 harbors multiple binding sites and displays complex transport kinetics.
Collapse
Affiliation(s)
- Katalin Jemnitz
- Chemical Research Center, Institute of Biomolecular Chemistry, HAS, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
33
|
Sawamura R, Okudaira N, Watanabe K, Murai T, Kobayashi Y, Tachibana M, Ohnuki T, Masuda K, Honma H, Kurihara A, Okazaki O. Predictability of Idiosyncratic Drug Toxicity Risk for Carboxylic Acid-Containing Drugs Based on the Chemical Stability of Acyl Glucuronide. Drug Metab Dispos 2010; 38:1857-64. [DOI: 10.1124/dmd.110.034173] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
34
|
Lagas JS, Sparidans RW, Wagenaar E, Beijnen JH, Schinkel AH. Hepatic clearance of reactive glucuronide metabolites of diclofenac in the mouse is dependent on multiple ATP-binding cassette efflux transporters. Mol Pharmacol 2010; 77:687-94. [PMID: 20086033 DOI: 10.1124/mol.109.062364] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Diclofenac is an important analgesic and anti-inflammatory drug that is widely used for the treatment of postoperative pain, rheumatoid arthritis, and chronic pain associated with cancer. Diclofenac is extensively metabolized in the liver, and the main metabolites are hydroxylated and/or glucuronidated conjugates. We show here that loss of multidrug resistance protein 2 (MRP2/ABCC2) and breast cancer resistance protein (BCRP/ABCG2) in mice results in highly increased plasma levels of diclofenac acyl glucuronide, after both oral and intravenous administration. The absence of Mrp2 and Bcrp1, localized at the canalicular membrane of hepatocytes, leads to impaired biliary excretion of acyl glucuronides and consequently to elevated liver and plasma levels. Mrp2 also mediates the biliary excretion of two hydroxylated diclofenac metabolites, 4'-hydroxydiclofenac and 5-hydroxydiclofenac. We further show that the sinusoidal efflux of diclofenac acyl glucuronide, from liver to blood, is largely dependent on multidrug resistance protein 3 (MRP3/ABCC3). Diclofenac acyl glucuronides are chemically instable and reactive, and in patients, these metabolites are associated with rare but serious idiosyncratic liver toxicity. This might explain why Mrp2/Mrp3/Bcrp1(-/-) mice, which have markedly elevated levels of diclofenac acyl glucuronides in their liver, display acute, albeit very mild, hepatotoxicity. We believe that the handling of diclofenac acyl glucuronides by ATP binding cassette transporters may be representative for the handling of acyl glucuronide metabolites of many other clinically relevant drugs.
Collapse
Affiliation(s)
- Jurjen S Lagas
- Division Molecular Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
35
|
Deng X, Luyendyk JP, Ganey PE, Roth RA. Inflammatory stress and idiosyncratic hepatotoxicity: hints from animal models. Pharmacol Rev 2010; 61:262-82. [PMID: 19805476 DOI: 10.1124/pr.109.001727] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Adverse drug reactions (ADRs) present a serious human health problem. They are major contributors to hospitalization and mortality throughout the world (Lazarou et al., 1998; Pirmohamed et al., 2004). A small fraction (less than 5%) of ADRs can be classified as "idiosyncratic." Idiosyncratic ADRs (IADRs) are caused by drugs with diverse pharmacological effects and occur at various times during drug therapy. Although IADRs affect a number of organs, liver toxicity occurs frequently and is the primary focus of this review. Because of the inconsistency of clinical data and the lack of experimental animal models, how IADRs arise is largely undefined. Generation of toxic drug metabolites and induction of specific immunity are frequently cited as causes of IADRs, but definitive evidence supporting either mechanism is lacking for most drugs. Among the more recent hypotheses for causation of IADRs is that inflammatory stress induced by exogenous or endogenous inflammagens is a susceptibility factor. In this review, we give a brief overview of idiosyncratic hepatotoxicity and the inflammatory response induced by bacterial lipopolysaccharide. We discuss the inflammatory stress hypothesis and use as examples two drugs that have caused IADRs in human patients: ranitidine and diclofenac. The review focuses on experimental animal models that support the inflammatory stress hypothesis and on the mechanisms of hepatotoxic response in these models. The need for design of epidemiological studies and the potential for implementation of inflammation interaction studies in preclinical toxicity screening are also discussed briefly.
Collapse
Affiliation(s)
- Xiaomin Deng
- Department of Biochemistry and Molecular Biology, Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | |
Collapse
|
36
|
Dong JQ, Smith PC. Glucuronidation and covalent protein binding of benoxaprofen and flunoxaprofen in sandwich-cultured rat and human hepatocytes. Drug Metab Dispos 2009; 37:2314-22. [PMID: 19773537 DOI: 10.1124/dmd.109.028944] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Benoxaprofen (BNX), a nonsteroidal anti-inflammatory drug (NSAID) that was withdrawn because of hepatotoxicity, is more toxic than its structural analog flunoxaprofen (FLX) in humans and rats. Acyl glucuronides have been hypothesized to be reactive metabolites and may be associated with toxicity. Both time- and concentration-dependent glucuronidation and covalent binding of BNX, FLX, and ibuprofen (IBP) were determined by exposing sandwich-cultured rat hepatocytes to each NSAID. The levels of glucuronide and covalent protein adduct measured in cells followed the order BNX > FLX > IBP. These results indicate that 1) BNX-glucuronide (G) is more reactive than FLX-G, and 2) IBP-G is the least reactive metabolite, which support previous in vivo studies in rats. The proportional increases of protein adduct formation for BNX, FLX, and IBP as acyl glucuronidation increased also support the hypothesis that part of the covalent binding of all three NSAIDs to hepatic proteins is acyl glucuronide-dependent. Moreover, theses studies confirmed the feasibility of using sandwich-cultured rat hepatocytes for studying glucuronidation and covalent binding to hepatocellular proteins. These studies also showed that these in vitro methods can be applied using human tissues for the study of acyl glucuronide reactivity. More BNX-protein adduct was formed in sandwich-cultured human hepatocytes than FLX-protein adduct, which not only agreed with its relative toxicity in humans but also was consistent with the in vitro findings using rat hepatocyte cultures. These data support the use of sandwich-cultured human hepatocytes as an in vitro screening model of acyl glucuronide exposure and reactivity.
Collapse
Affiliation(s)
- Jennifer Q Dong
- Department of Pharmacokinetics and Drug Metabolism, Amgen Inc., Seattle, Washington, USA
| | | |
Collapse
|
37
|
Parolini M, Binelli A, Cogni D, Riva C, Provini A. An in vitro biomarker approach for the evaluation of the ecotoxicity of non-steroidal anti-inflammatory drugs (NSAIDs). Toxicol In Vitro 2009; 23:935-42. [DOI: 10.1016/j.tiv.2009.04.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 04/15/2009] [Accepted: 04/28/2009] [Indexed: 10/20/2022]
|
38
|
Shaffer CL, Ryder TF, Venkatakrishnan K, Henne IK, O'Connell TN. Biotransformation of an α4β2 Nicotinic Acetylcholine Receptor Partial Agonist in Sprague-Dawley Rats and the Dispositional Characterization of Its N-Carbamoyl Glucuronide Metabolite. Drug Metab Dispos 2009; 37:1480-9. [DOI: 10.1124/dmd.109.027037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
39
|
A Caco-2 cell based screening method for compounds interacting with MRP2 efflux protein. Eur J Pharm Biopharm 2009; 71:332-8. [DOI: 10.1016/j.ejpb.2008.08.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 07/11/2008] [Accepted: 08/07/2008] [Indexed: 11/24/2022]
|
40
|
Walgren JL, Mitchell MD, Thompson DC. Role of Metabolism in Drug-Induced Idiosyncratic Hepatotoxicity. Crit Rev Toxicol 2008; 35:325-61. [PMID: 15989140 DOI: 10.1080/10408440590935620] [Citation(s) in RCA: 200] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Rare adverse reactions to drugs that are of unknown etiology, or idiosyncratic reactions, can produce severe medical complications or even death in patients. Current hypotheses suggest that metabolic activation of a drug to a reactive intermediate is a necessary, yet insufficient, step in the generation of an idiosyncratic reaction. We review evidence for this hypothesis with drugs that are associated with hepatotoxicity, one of the most common types of idiosyncratic reactions in humans. We identified 21 drugs that have either been withdrawn from the U.S. market due to hepatotoxicity or have a black box warning for hepatotoxicity. Evidence for the formation of reactive metabolites was found for 5 out of 6 drugs that were withdrawn, and 8 out of 15 drugs that have black box warnings. For the other drugs, either evidence was not available or suitable studies have not been carried out. We also review evidence for reactive intermediate formation from a number of additional drugs that have been associated with idiosyncratic hepatotoxicity but do not have black box warnings. Finally, we consider the potential role that high dosages may play in these adverse reactions.
Collapse
Affiliation(s)
- Jennie L Walgren
- Pfizer Global Research and Development, Worldwide Safety Sciences, Chesterfield, Missouri 63017, USA
| | | | | |
Collapse
|
41
|
Deng X, Liguori MJ, Sparkenbaugh EM, Waring JF, Blomme EAG, Ganey PE, Roth RA. Gene Expression Profiles in Livers from Diclofenac-Treated Rats Reveal Intestinal Bacteria-Dependent and -Independent Pathways Associated with Liver Injury. J Pharmacol Exp Ther 2008; 327:634-44. [DOI: 10.1124/jpet.108.140335] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
42
|
Sparidans RW, Lagas JS, Schinkel AH, Schellens JH, Beijnen JH. Liquid chromatography–tandem mass spectrometric assay for diclofenac and three primary metabolites in mouse plasma. J Chromatogr B Analyt Technol Biomed Life Sci 2008; 872:77-82. [DOI: 10.1016/j.jchromb.2008.07.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 07/08/2008] [Accepted: 07/10/2008] [Indexed: 10/21/2022]
|
43
|
Haap T, Triebskorn R, Köhler HR. Acute effects of diclofenac and DMSO to Daphnia magna: immobilisation and hsp70-induction. CHEMOSPHERE 2008; 73:353-359. [PMID: 18649920 DOI: 10.1016/j.chemosphere.2008.05.062] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2007] [Revised: 05/19/2008] [Accepted: 05/27/2008] [Indexed: 05/26/2023]
Abstract
To determine the toxicity of the anti-rheumatic drug diclofenac to Daphnia magna, acute toxicity tests according to the OECD guideline 202 were combined with biochemical investigations of the hsp70 level as a biomarker for proteotoxicity. Particular attention was paid to the impact of the solvent DMSO as a confounding factor to diclofenac toxicity by means of testing different variations of producing stock solutions. In the acute immobilisation tests, diclofenac was most toxic as a singular test substance, with indication of a slight antagonistic interaction between the two substances. The highest EC50 values were obtained in those approaches using diclofenac pre-dissolved in DMSO. Thus, the observed antagonism seems to be intensified by pre-dissolution. Hsp70 levels of 12- to 19-days-old D. magna were determined after 48h exposure using a highly reproducible immunological protocol. Hsp70 induction occurred at a LOEC of 30mgl(-1) diclofenac plus 0.6mll(-1) DMSO, and at a LOEC of 40mgl(-1) for diclofenac alone. In summary, DMSO showed only slight confounding effects on diclofenac action in the applied range of concentrations.
Collapse
Affiliation(s)
- Timo Haap
- Animal Physiological Ecology, University of Tübingen, Konrad-Adenauer-Street 20, D-72072 Tübingen, Germany.
| | | | | |
Collapse
|
44
|
Grillo MP, Hua F, March KL, Benet LZ, Knutson CG, Ware JA. γ-Glutamyltranspeptidase-Mediated Degradation of Diclofenac-S-acyl-glutathione in Vitro and in Vivo in Rat. Chem Res Toxicol 2008; 21:1933-8. [DOI: 10.1021/tx800073p] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mark P. Grillo
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer, Inc., Kalamazoo, Michigan 49007-4940, and Department of Biopharmaceutical Sciences, University of California, San Francisco, California 94143-0446
| | - Fengmei Hua
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer, Inc., Kalamazoo, Michigan 49007-4940, and Department of Biopharmaceutical Sciences, University of California, San Francisco, California 94143-0446
| | - Kristi L. March
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer, Inc., Kalamazoo, Michigan 49007-4940, and Department of Biopharmaceutical Sciences, University of California, San Francisco, California 94143-0446
| | - Leslie Z. Benet
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer, Inc., Kalamazoo, Michigan 49007-4940, and Department of Biopharmaceutical Sciences, University of California, San Francisco, California 94143-0446
| | - Charles G. Knutson
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer, Inc., Kalamazoo, Michigan 49007-4940, and Department of Biopharmaceutical Sciences, University of California, San Francisco, California 94143-0446
| | - Joseph A. Ware
- Pharmacokinetics, Dynamics, and Metabolism, Pfizer, Inc., Kalamazoo, Michigan 49007-4940, and Department of Biopharmaceutical Sciences, University of California, San Francisco, California 94143-0446
| |
Collapse
|
45
|
Skonberg C, Olsen J, Madsen KG, Hansen SH, Grillo MP. Metabolic activation of carboxylic acids. Expert Opin Drug Metab Toxicol 2008; 4:425-38. [PMID: 18433345 DOI: 10.1517/17425255.4.4.425] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Carboxylic acids constitute a large and heterogeneous class of both endogenous and xenobiotic compounds. A number of carboxylic acid drugs have been associated with adverse reactions, linked to the metabolic activation of the carboxylic acid moiety of the compounds, i.e., formation of acyl-glucuronides and acyl-CoA thioesters. OBJECTIVE The objective is to give an overview of the current knowledge on metabolic activation of carboxylic acids and how such metabolites may play a role in adverse reactions and toxicity. METHODS Literature concerning the formation and disposition of acyl glucuronides and acyl-CoA thioesters was searched. Also included were papers on the chemical reactivity of acyl glutathione-thioesters, and literature concerning possible links between metabolic activation of carboxylic acids and reported cellular and clinical effects. RESULTS/CONCLUSION This review demonstrates that metabolites of carboxylic acid drugs must be considered chemically reactive, and that the current knowledge about metabolic activation of this compound class can be a good starting-point for further studies on the consequences of chemically reactive metabolites.
Collapse
Affiliation(s)
- Christian Skonberg
- University of Copenhagen, Department of Pharmaceutics and Analytical Chemistry, Faculty of Pharmaceutical Sciences, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
46
|
Chapter 3 Glucuronidation-Dependent Toxicity and Bioactivation. ACTA ACUST UNITED AC 2008. [DOI: 10.1016/s1872-0854(07)02003-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
47
|
Tang W. Drug metabolite profiling and elucidation of drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 2007; 3:407-20. [PMID: 17539747 DOI: 10.1517/17425255.3.3.407] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Drug metabolism studies, together with pathologic and histologic evaluation, provide critical data sets to help understand mechanisms underlying drug-related hepatotoxicity. A common practice is to trace morphologic changes resulting from liver injury back to perturbation of biochemical processes and to identify drug metabolites that affect those processes as possible culprits. This strategy can be illustrated in efforts of elucidating the cause of acetaminophen-, troglitazone- and valproic acid-induced hepatic necrosis, microvesicular steatosis and cholestasis with the aid of information from qualitative and quantitative analysis of metabolites. From a pharmaceutical research perspective, metabolite profiling represents an important function because a structure-activity relationship is essential to rational drug design. In addition, drugs are known to induce idiosyncratic hepatotoxicity, which usually escapes the detection by preclinical safety assessment and clinical trials. This issue is addressed, at present, by eliminating those molecules that are prone to metabolic bioactivation, based on the concept that formation of electrophilic metabolites triggers covalent protein modification and subsequent organ toxicity. Although pragmatic, such an approach has its limitations as a linear correlation does not exist between toxicity and the extent of bioactivation. It may be possible in the future that the advance of proteomics, metabonomics and genomics would pave the way leading to personalized medication in which beneficial effect of a drug is maximized, whereas toxicity risk is minimized.
Collapse
Affiliation(s)
- Wei Tang
- Merck Research Laboratories, Department of Drug Metabolism, Rahway, NJ 07065-0900, USA.
| |
Collapse
|
48
|
Abstract
Nonsteroidal anti-inflammatory drugs are among the most common drugs associated with drug-induced liver injury, with an estimated incidence of between 3 and 23 per 100,000 patient years. Nimesulide, sulindac, and diclofenac seem to be associated with the highest risk and the only risk factor consistently identified is the concomitant use of other hepatotoxic drugs. Diclofenac-induced liver injury is a paradigm for drug-related hepatotoxicity. Recent studies suggest that genetic factors favoring the formation and accumulation of the reactive acylglucuronide metabolite of diclofenac and an enhanced immune response to the metabolite-protein adducts are associated with increased susceptibility to hepatotoxicity.
Collapse
Affiliation(s)
- Guruprasad P Aithal
- Queen's Medical Centre, University Hospital, D Floor, South Block, Nottingham, NG7 2UH, UK.
| | | |
Collapse
|
49
|
Heller T, van Gelder T, Budde K, de Fijter JW, Kuypers D, Arns W, Schmidt J, Rostaing L, Powis SH, Claesson K, Macphee IAM, Pohanka E, Engelmayer J, Brandhorst G, Oellerich M, Armstrong VW. Plasma concentrations of mycophenolic acid acyl glucuronide are not associated with diarrhea in renal transplant recipients. Am J Transplant 2007; 7:1822-31. [PMID: 17532750 DOI: 10.1111/j.1600-6143.2007.01859.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aim of this study was to determine whether plasma concentrations of the acyl (AcMPAG) and phenolic (MPAG) glucuronide metabolites of mycophenolic acid (MPA) were related to diarrhoea in renal transplant patients on mycophenolate mofetil (MMF) with cyclosporine (CsA) or tacrolimus (TCL). Blood samples (0, 30, 120 min) were taken at days 3, 10, week 4, months 3, 6 and 12 for determination of MPA, MPAG and AcMPAG. MPA-AUC was estimated using validated algorithms. Two hour AUCs were calculated for MPAG and AcMPAG. Immunosuppressive therapy consisted of CsA/MMF (n= 110) and of TCL/MMF (n= 180). In 70/290 (24%) patients 86 episodes of diarrhoea were recorded during 12 months. Significantly more patients on TCL (31.1%) suffered from diarrhea compared to CsA (12.7%). MMF dose, MPA-AUC and the 2 h AUCs of MPAG and AcMPAG did not differ between patients with and without diarrhoea. Plasma AcMPAG and MPAG concentrations were substantially higher in patients on CsA compared with TCL, while MPA-AUC was lower in the former group. These data support the concept that CsA inhibits the biliary excretion of MPAG and AcMPAG, thereby potentially reducing the risk of intestinal injury through enterohepatic recycling of MPA and its metabolites.
Collapse
Affiliation(s)
- T Heller
- Department of Clinical Chemistry, Georg-August-Universität Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Hewitt NJ, Lechón MJG, Houston JB, Hallifax D, Brown HS, Maurel P, Kenna JG, Gustavsson L, Lohmann C, Skonberg C, Guillouzo A, Tuschl G, Li AP, LeCluyse E, Groothuis GMM, Hengstler JG. Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev 2007; 39:159-234. [PMID: 17364884 DOI: 10.1080/03602530601093489] [Citation(s) in RCA: 523] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review brings you up-to-date with the hepatocyte research on: 1) in vitro-in vivo correlations of metabolism and clearance; 2) CYP enzyme induction, regulation, and cross-talk using human hepatocytes and hepatocyte-like cell lines; 3) the function and regulation of hepatic transporters and models used to elucidate their role in drug clearance; 4) mechanisms and examples of idiosyncratic and intrinsic hepatotoxicity; and 5) alternative cell systems to primary human hepatocytes. We also report pharmaceutical perspectives of these topics and compare methods and interpretations for the drug development process.
Collapse
Affiliation(s)
- Nicola J Hewitt
- Scientific Writing Services, Wingertstrasse, Erzhausen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|