1
|
Myochin H, Ohshima N, Izumi T, Hisajima T, Chaleckis R, Mori M. Capillary electrophoresis using triple layer modified capillary facilitating salivary ion analyses: Application to search for potential stress markers induced by cold pressure test. J Chromatogr A 2024; 1720:464769. [PMID: 38442499 DOI: 10.1016/j.chroma.2024.464769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 03/07/2024]
Abstract
In this study, we introduce a novel approach for the analysis of salivary ions using capillary electrophoresis (CE) with a triple-layer coated capillary. The capillary is sequentially coated with cationic silylating reagents, poly(vinylsulfonate), and polybrene to form a custom designed surface that effectively inhibits adsorption of protein matrix on the capillary inner wall and allows for reproducible ion analysis. For the CE with capacitively coupled contactless conductivity detection, we used suitable background electrolytes (BGEs) for salivary ion analysis. Anions were separated using a mixture of 2-(N-morpholino)ethanesulfonic acid and l-arginine, and cations were separated using that with 18-crown-6. This setup enabled rapid separation, within 4 min, together with sensitive detection. We quantified nine common anions and five cations typically found in saliva samples using this CE method, both before and after a cold pressure test (CPT, a standard stress test). The CE system demonstrated consistent ion separation across 30 consecutive measurements without requiring capillary replacement. Notably, the salivary ion balance remained predominantly anion-rich, regardless of the CPT. Cold water exposure induced greater variation in the total anion concentration than in the total cation concentration. Further analysis using multiple regression analysis revealed strong relationships between nitrate and nitrite, formate and phosphate, and potassium and nitrate, before and after the CPT. Notably, potassium and nitrate ions exhibited variations in response to stress. These results provided a method for assessing salivary ion composition and insights into the potential of salivary ions as biomarkers for stress.
Collapse
Affiliation(s)
- Hironori Myochin
- Department of Chemistry and Life Science, Faculty of Science and Technology, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan
| | - Noriyasu Ohshima
- Department of Biochemistry, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Takashi Izumi
- Department of Biochemistry, Graduate School of Medicine, Gunma University, Maebashi, Gunma 371-8511, Japan; Faculty of Health Care, Teikyo Heisei University, 2-51-4, Higashiikebukuro, Toshima-ku, Tokyo 170-8445, Japan
| | - Tatsuya Hisajima
- Faculty of Health Care, Teikyo Heisei University, 2-51-4, Higashiikebukuro, Toshima-ku, Tokyo 170-8445, Japan
| | - Romanas Chaleckis
- Graduate School of Medical Sciences, Nagoya City University, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya 467-8601, Japan
| | - Masanobu Mori
- Department of Chemistry and Life Science, Faculty of Science and Technology, Kochi University, 2-5-1, Akebono-cho, Kochi 780-8520, Japan.
| |
Collapse
|
2
|
Modulation of Arginase-2 mRNA Levels by ω-3 PUFAs and Aspirin in Asthmatic Human Lung Fibroblasts. J Lipids 2022; 2022:3062274. [PMID: 36061615 PMCID: PMC9436553 DOI: 10.1155/2022/3062274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/05/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Airway remodeling (AR) increases disease severity, and morbidity of asthmatic patients by contributing to irreversible airflow obstruction and progressive declines in lung function. Arginase isoenzymes and the downstream enzymes ornithine decarboxylase (ODC) and ornithine aminotransferase (OAT) have been implicated in the hyperplastic and fibrotic changes of AR, respectively. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) and resolvin metabolites have anti-AR effects, but whether they are mediated through the arginase pathway is unclear. Our study intended to determine the effects of the ω-3 PUFAs eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), resolvin D1 (RvD1), TH1 cytokines, acetylsalicylic acid (ASA), cAMP, and dexamethasone (DEX) on the expression of arginase isoenzymes arginase 1 (ARG1) and arginase 2 (ARG2), ODC, and OAT in human lung fibroblasts (HLF) from normal (NHLF) and diseased (DHLF) asthmatic donors using reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR). Our data showed that EPA and EPA+DHA downregulated ARG2 mRNA 2-fold in both types of HLF. DHA, RvD1, and DEX did not alter mRNA levels for any of the genes studied. EPA lowered the ARG2 protein levels in DHLF, but did not affect those levels in NHLF. ASA upregulated ARG2 mRNA 5-fold and 7-fold in NHLF and DHLF, respectively, TH1 cytokines downregulated ARG2, ODC, and OAT mRNA in DHLF 10-fold, 2-fold, and 2.5-fold, respectively, and cAMP downregulated ARG2 mRNA 2-fold in DHLF. These results are the first to show a direct effect of ω-3 PUFAs on ARG2 mRNA levels and provide further evidence for a role of ω-3 PUFAs in AR.
Collapse
|
3
|
Deidda M, Noto A, Cadeddu Dessalvi C, Andreini D, Andreotti F, Ferrannini E, Latini R, Maggioni AP, Magnoni M, Maseri A, Mercuro G. Metabolomic correlates of coronary atherosclerosis, cardiovascular risk, both or neither. Results of the 2 × 2 phenotypic CAPIRE study. Int J Cardiol 2021; 336:14-21. [PMID: 34022320 DOI: 10.1016/j.ijcard.2021.05.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND Traditional cardiovascular risk factors (RFs) and coronary artery disease (CAD) do not always run parallel. We investigated functional-metabolic correlations of CAD, RFs, or neither in the CAPIRE (Coronary Atherosclerosis in Outlier Subjects: Protective and Novel Individual Risk Factors Evaluation) 2 × 2 phenotypic observational study. METHODS Two hundred and fortyone subjects were included based on RF burden, presence/absence of CAD (assessed by computed tomography angiography), age and sex. Participants displayed one of four phenotypes: CAD with ≥3 RFs, no-CAD with ≥3 RFs, CAD with ≤1 RF and no-CAD with ≤1 RF. Metabolites were identified by gas chromatography-mass spectrometry and pathways by metabolite set enrichment analysis. RESULTS Characteristic patterns and specific pathways emerged for each phenotypic group: amino sugars for CAD/high-RF; urea cycle for no-CAD/high-RF; glutathione for CAD/low-RF; glycine and serine for no-CAD/low-RF. Presence of CAD correlated with ammonia recycling; absence of CAD with the transfer of acetyl groups into mitochondria; high-risk profile with alanine metabolism (all p < 0.05). The comparative case-control analyses showed a statistically significant difference for the two pathways of phenylalanine, tyrosine and tryptophan biosynthesis and phenylalanine metabolism in the CAD/Low-RF vs NoCAD/Low-RF comparison. CONCLUSIONS The present 2 × 2 observational study identified specific metabolic pathways for each of the four phenotypes, providing novel functional insights, particularly on CAD with low RF profiles and on the absence of CAD despite high-risk factor profiles.
Collapse
Affiliation(s)
- Martino Deidda
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Antonio Noto
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - Daniele Andreini
- Centro Cardiologico Monzino, IRCCS, Milan, Italy; Department of Clinical Sciences and Community Health, Cardiovascular Section, University of Milan, Italy
| | - Felicita Andreotti
- Cardiovascular Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | | | - Roberto Latini
- Mario Negri Institute of Pharmacological Research, IRCCS, Milan, Italy
| | - Aldo P Maggioni
- ANMCO Research Center, Heart Care Foundation, Florence, Italy; Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Marco Magnoni
- IRCCS Ospedale San Raffaele and Università Vita-Salute San Raffaele, Milan, Italy
| | | | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.
| | | |
Collapse
|
4
|
Irvin MR, Jones AC, Claas SA, Arnett DK. DNA Methylation and Blood Pressure Phenotypes: A Review of the Literature. Am J Hypertens 2021; 34:267-273. [PMID: 33821945 DOI: 10.1093/ajh/hpab026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 01/27/2021] [Indexed: 12/20/2022] Open
Abstract
Genetic studies of DNA have been unable to explain a significant portion of the variance of the estimated heritability of blood pressure (BP). Epigenetic mechanisms, particularly DNA methylation, have helped explain additional biological processes linked to BP phenotypes and diseases. Candidate gene methylation studies and genome-wide methylation studies of BP have highlighted impactful cytosine-phosphate-guanine (CpG) markers across different ethnicities. Furthermore, many of these BP-related CpG sites are also linked to metabolism-related phenotypes. Integrating epigenome-wide association study data with other layers of molecular data such as genotype data (from single nucleotide polymorphism arrays or sequencing), other epigenetic data, and/or transcriptome data can provide additional information about the significance and complexity of these relationships. Recent data suggest that epigenetic changes can be consequences rather than causes of BP variation. Finally, these data can give insight into downstream effects of long-standing high BP (due to target organ damage (TOD)). The current review provides a literature overview of epigenetic modifications in BP and TOD. Recent studies strongly support the importance of epigenetic modifications, such as DNA methylation, in BP and TOD for relevant biological insights, reliable biomarkers, and possible future therapeutics.
Collapse
Affiliation(s)
- Marguerite R Irvin
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alana C Jones
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Steven A Claas
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| | - Donna K Arnett
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
5
|
Javrushyan H, Avtandilyan N, Trchounian A. The effects of NO on the urea cycle pathway in short-term intermittent hypobaric hypoxia in rats. Respir Physiol Neurobiol 2020; 285:103598. [PMID: 33326865 DOI: 10.1016/j.resp.2020.103598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/09/2022]
Abstract
Short-term hypoxic states can influence the health and life activities of lowlanders who travel shortly to high altitudes, in transitory situations, such as surgical ischemia-reperfusion (to one or several organs), and in some sporting activities, such as parachuting and extreme skiing, mountain rescue teams, regular commercial flight crews, in which the subject may not even notice the hypoxia. NO is an integral part of the human physiological response to hypoxia. Until recently, the urea cycle (UC) was only considered as an important mechanism for neutralizing ammonia. We are the first to reveal an interrelation in hypoxic states between the activities of NO-synthase and UC enzymes in male rats' liver, kidney and brain. In the presented work, we have shown that during short-term intermittent hypobaric hypoxia (IHH) all enzymes of UC play an important role in the maintenance of NO quantity. The results allow thinking that kidney and brain argininosuccinate synthase (ASS) and argininosuccinate lyase (ASL) and liver ASS and ASL can be different isoenzymes. It is worth mentioning that the results have revealed new sides of l-arginine metabolism in a hypoxic state in male rats.
Collapse
Affiliation(s)
- Hayarpi Javrushyan
- Laboratory of Biochemistry, Research Institute of Biology, Yerevan State University, Yerevan, Armenia.
| | - Nikolay Avtandilyan
- Laboratory of Biochemistry, Research Institute of Biology, Yerevan State University, Yerevan, Armenia; Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Yerevan, Armenia.
| | - Armen Trchounian
- Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, Yerevan, Armenia.
| |
Collapse
|
6
|
Ammous F, Zhao W, Ratliff SM, Kho M, Shang L, Jones AC, Chaudhary NS, Tiwari HK, Irvin MR, Arnett DK, Mosley TH, Bielak LF, Kardia SLR, Zhou X, Smith J. Epigenome-wide association study identifies DNA methylation sites associated with target organ damage in older African Americans. Epigenetics 2020; 16:862-875. [PMID: 33100131 DOI: 10.1080/15592294.2020.1827717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Target organ damage (TOD) manifests as vascular injuries in the body organ systems associated with long-standing hypertension. DNA methylation in peripheral blood leukocytes can capture inflammatory processes and gene expression changes underlying TOD. We investigated the association between epigenome-wide DNA methylation and five measures of TOD (estimated glomerular filtration rate (eGFR), urinary albumin-creatinine ratio (UACR), left ventricular mass index (LVMI), relative wall thickness (RWT), and white matter hyperintensity (WMH)) in 961 African Americans from hypertensive sibships. A multivariate (multi-trait) model of eGFR, UACR, LVMI, and RWT identified seven CpGs associated with at least one of the traits (cg21134922, cg04816311 near C7orf50, cg09155024, cg10254690 near OAT, cg07660512, cg12661888 near IFT43, and cg02264946 near CATSPERD) at FDR q < 0.1. Adjusting for blood pressure, body mass index, and type 2 diabetes attenuated the association for four CpGs. DNA methylation was associated with cis-gene expression for some CpGs, but no significant mediation by gene expression was detected. Mendelian randomization analyses suggested causality between three CpGs and eGFR (cg04816311, cg10254690, and cg07660512). We also assessed whether the identified CpGs were associated with TOD in 614 African Americans in the Hypertension Genetic Epidemiology Network (HyperGEN) study. Out of three CpGs available for replication, cg04816311 was significantly associated with eGFR (p = 0.0003), LVMI (p = 0.0003), and RWT (p = 0.002). This study found evidence of an association between DNA methylation and TOD in African Americans and highlights the utility of using a multivariate-based model that leverages information across related traits in epigenome-wide association studies.
Collapse
Affiliation(s)
- Farah Ammous
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Scott M Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Minjung Kho
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Lulu Shang
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Alana C Jones
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ninad S Chaudhary
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Hemant K Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Marguerite R Irvin
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Donna K Arnett
- Dean's Office, School of Public Health, University of Kentucky, Lexington, KY, USA
| | - Thomas H Mosley
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Lawrence F Bielak
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Sharon L R Kardia
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA.,Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Garcia IS, Teixeira SA, Costa KA, Marques DBD, Rodrigues GDA, Costa TC, Guimarães JD, Otto PI, Saraiva A, Ibelli AMG, Cantão ME, de Oliveira HC, Ledur MC, Peixoto JDO, Guimarães SEF. l-Arginine supplementation of gilts during early gestation modulates energy sensitive pathways in pig conceptuses. Mol Reprod Dev 2020; 87:819-834. [PMID: 32592179 DOI: 10.1002/mrd.23397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/12/2020] [Indexed: 11/09/2022]
Abstract
Dietary l-arginine (ARG) supplementation has been studied as a nutritional strategy to improve reproductive performance of pregnant sows, since arginine is a conditionally essential amino acid. However, reports addressing the molecular mechanisms that mediate supplementation effects on embryos and fetuses development are still scarce. Therefore, we aimed to evaluate the effects of 1.0% ARG supplementation of commercial pregnant gilts on genes and proteins from energy metabolism and antioxidant defense pathways in embryos and fetuses. We also analyzed the global transcriptome profile of 25- and 35-day-old conceptuses. At Day 25, we observed a lower abundance of phospho-AMP-activated protein kinase (phospho-AMPK) protein and downregulation of oxidative phosphorylation system genes in ARG embryos. On the other hand, ARG fetuses showed greater expression of MLST8 and lower expression of MTOR genes, in addition to lower abundance of phospho-AMPK and phospho-mammalian target of rapamycin (phospho-mTOR) proteins. Transcriptome analysis at Day 35 did not present differentially expressed genes. For the antioxidant defense pathway, no differences were found between CON and ARG conceptuses, only trends. In general, supplementation of gilts with 1.0% ARG during early gestation affects energy sensitive pathways in 25- and 35-day conceptuses; however, no effects of supplementation were found on the antioxidative defense pathway in 25-day embryos.
Collapse
Affiliation(s)
- Ingrid S Garcia
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Susana A Teixeira
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Karine A Costa
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Daniele B D Marques
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Thaís C Costa
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - José D Guimarães
- Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Pamela I Otto
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Alysson Saraiva
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Adriana M G Ibelli
- Animal Genetics Laboratory, Embrapa Swine and Poultry Nacional Research Center, Concordia, Brazil
| | - Maurício E Cantão
- Animal Genetics Laboratory, Embrapa Swine and Poultry Nacional Research Center, Concordia, Brazil
| | | | - Mônica C Ledur
- Animal Genetics Laboratory, Embrapa Swine and Poultry Nacional Research Center, Concordia, Brazil
| | - Jane de O Peixoto
- Animal Genetics Laboratory, Embrapa Swine and Poultry Nacional Research Center, Concordia, Brazil
| | | |
Collapse
|
8
|
Cheng W, Duncan KE, Ghio AJ, Ward-Caviness C, Karoly ED, Diaz-Sanchez D, Conolly RB, Devlin RB. Changes in Metabolites Present in Lung-Lining Fluid Following Exposure of Humans to Ozone. Toxicol Sci 2018; 163:430-439. [PMID: 29471466 PMCID: PMC6348881 DOI: 10.1093/toxsci/kfy043] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Controlled human exposure to the oxidant air pollutant ozone causes decrements in lung function and increased inflammation as evidenced by neutrophil influx into the lung and increased levels of proinflammatory cytokines in the airways. Here we describe a targeted metabolomics evaluation of human bronchoalveolar lavage fluid (BALF) following controlled in vivo exposure to ozone to gain greater insight into its pulmonary effects. In a 2-arm cross-over study, each healthy adult human volunteer was randomly exposed to filtered air (FA) and to 0.3 ppm ozone for 2 h while undergoing intermittent exercise with a minimum of 4 weeks between exposures. Bronchoscopy was performed and BALF obtained at 1 (n = 9) or 24 (n = 23) h postexposure. Metabolites were detected using ultrahigh performance liquid chromatography-tandem mass spectroscopy. At 1-h postexposure, a total of 28 metabolites were differentially expressed (DE) (p < .05) following ozone exposure compared with FA-exposure. These changes were associated with increased glycolysis and antioxidant responses, suggesting rapid increased energy utilization as part of the cellular response to oxidative stress. At 24-h postexposure, 41 metabolites were DE. Many of the changes were in amino acids and linked with enhanced proteolysis. Changes associated with increased lipid membrane turnover were also observed. These later-stage changes were consistent with ongoing repair of airway tissues. There were 1.37 times as many metabolites were differentially expressed at 24 h compared with 1-h postexposure. The changes at 1 h reflect responses to oxidative stress while the changes at 24 h indicate a broader set of responses consistent with tissue repair. These results illustrate the ability of metabolomic analysis to identify mechanistic features of ozone toxicity and aspects of the subsequent tissue response.
Collapse
Affiliation(s)
- WanYun Cheng
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| | - Kelly E Duncan
- School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina 27599
| | - Andrew J Ghio
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| | - Cavin Ward-Caviness
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| | | | - David Diaz-Sanchez
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| | - Rory B Conolly
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| | - Robert B Devlin
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 2799
| |
Collapse
|
9
|
Gokmenoglu C, Ozmeric N, Sungur C, Sahin Bildik R, Erguder I, Elgun S. Nitric oxide and arginase levels in peri-implant tissues after delayed loading. Arch Oral Biol 2017; 85:207-211. [PMID: 29127889 DOI: 10.1016/j.archoralbio.2017.10.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 10/17/2017] [Accepted: 10/22/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Nitric oxide (NO) is synthesized from the conversion of L-arginine to L-citrulline by NO synthase (NOS). Arginase can compete with NOS for the common substrate L-arginine, and thus inhibit NO production. NO levels and arginase ezyme might affect the bone remodeling cycle around implants. The aim of this studywas to investigate NO and arginase levels in gingival crevicular fluid (GCF), peri-implant sulcular fluid (PISF), and saliva. MATERIALS AND METHODS Twenty patients with one or more implants (Straumann®; Institute Straumann AG, Basel, Switzerland) restored with fixed crown prostheses were included in the study. Plaque index (PI), gingival index (GI), probing depth (PD), and bleeding on probing (BOP) were recorded from six sites of each tooth and implant at baseline and at months 1, 3, and 6 after loading. The saliva, GCF, and PISF were collected at baseline and at months 1, 3, and 6 after loading. NO level and arginase enzyme were evaluated in GCF, PISF, and saliva. RESULTS Arginase and NO levels in saliva did not change significantly from baseline to months 1, 3, and 6. However, both PISF NO and arginase levels showed an increased pattern from baseline to month 6. NO levels were significantly higher at months 3 and 6, compared to baseline, while PISF arginase levels increased significantly from baseline to months 3 and 6. CONCLUSION NO and arginase enzyme measurements in saliva, GCF, and PISF may be beneficial in the determination of current peri-implant tissues. In particular, PISF might provide more information than saliva.
Collapse
Affiliation(s)
- Ceren Gokmenoglu
- Ordu University Faculty of Dentistry Periodontology Department Bülent Ecevit Bulvarı, 52100 Ordu, Turkey.
| | - Nurdan Ozmeric
- Gazi University Faculty of Dentistry Periodontology Department Bişkek Caddesi, 84. Sokak 06510 Ankara, Turkey.
| | - Caglar Sungur
- Sincan Oral and Dental Health Center, Ankara, Turkey.
| | | | - Imge Erguder
- Ankara University Faculty of Medicine Department of Biochemistry, 06100, Ankara, Turkey.
| | - Serenay Elgun
- Ankara University Faculty of Medicine Department of Biochemistry 06100 Ankara, Turkey.
| |
Collapse
|
10
|
Simioni PU, Fernandes LG, Tamashiro WM. Downregulation of L-arginine metabolism in dendritic cells induces tolerance to exogenous antigen. Int J Immunopathol Pharmacol 2017; 30:44-57. [PMID: 27903843 PMCID: PMC5806782 DOI: 10.1177/0394632016678873] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dendritic cells (DC) are potential tools for therapeutic applications and several strategies to generate tolerogenic DCs are under investigation. When activated by cytokines and microbial products, DCs express mediators that modulate immune responses. In this regard, the metabolites generated by the activities of inducible nitric oxide synthase (iNOS) and arginase in DCs seem to play important roles. Here, we evaluated the effects of adoptive transfer of DCs generated in vitro from bone marrow precursors (BMDC) modulated with L-NAME (Nω-nitro-L-arginine methyl ester) and NOHA (NG-Hydroxy-L-arginine), inhibitors of iNOS and arginase, respectively, upon the immune response of the wild type (BALB/c) and OVA-TCR transgenic (DO11.10) mice. The modulation with L-NAME increased CD86 expression in BMDC, whereas treatment with NOHA increased both CD80 and CD86 expression. Adoptive transfer of either L-NAME- or NOHA-modulated BMDCs to BALB/c mice reduced the plasma levels of ovalbumin-specific antibody as well as proliferation and cytokine secretion in cultures of spleen cells in comparison adoptive transfer of non-modulated DCs. Conversely, transfer of both modulated and non-modulated BMDCs had no effect on immune response of DO11.10 mice. Together, these results show that the treatment with iNOS and Arg inhibitors leads to increased expression of co-stimulatory molecules in DCs, and provides evidences that L-arginine metabolism may be an important therapeutic target for modulating immune responses in inflammatory disorders.
Collapse
Affiliation(s)
- Patricia U Simioni
- 1 Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, UNICAMP, Campinas, SP, Brazil.,2 Department of Biomedical Science, Faculty of Americana, FAM, Americana, SP, Brazil.,3 Institute of Biosciences, Universidade Estadual Paulista, UNESP, Rio Claro, SP, Brazil
| | - Luis Gr Fernandes
- 2 Department of Biomedical Science, Faculty of Americana, FAM, Americana, SP, Brazil.,4 Medical School, University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Wirla Msc Tamashiro
- 1 Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
11
|
Wijnands KAP, Castermans TMR, Hommen MPJ, Meesters DM, Poeze M. Arginine and citrulline and the immune response in sepsis. Nutrients 2015; 7:1426-63. [PMID: 25699985 PMCID: PMC4377861 DOI: 10.3390/nu7031426] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/15/2015] [Accepted: 01/26/2015] [Indexed: 01/01/2023] Open
Abstract
Arginine, a semi-essential amino acid is an important initiator of the immune response. Arginine serves as a precursor in several metabolic pathways in different organs. In the immune response, arginine metabolism and availability is determined by the nitric oxide synthases and the arginase enzymes, which convert arginine into nitric oxide (NO) and ornithine, respectively. Limitations in arginine availability during inflammatory conditions regulate macrophages and T-lymfocyte activation. Furthermore, over the past years more evidence has been gathered which showed that arginine and citrulline deficiencies may underlie the detrimental outcome of inflammatory conditions, such as sepsis and endotoxemia. Not only does the immune response contribute to the arginine deficiency, also the impaired arginine de novo synthesis in the kidney has a key role in the eventual observed arginine deficiency. The complex interplay between the immune response and the arginine-NO metabolism is further underscored by recent data of our group. In this review we give an overview of physiological arginine and citrulline metabolism and we address the experimental and clinical studies in which the arginine-citrulline NO pathway plays an essential role in the immune response, as initiator and therapeutic target.
Collapse
Affiliation(s)
- Karolina A P Wijnands
- Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands.
| | - Tessy M R Castermans
- Department of Surgery, Maastricht University Medical Center, Maastricht 6200MD, The Netherlands.
| | - Merel P J Hommen
- Department of Surgery, Maastricht University Medical Center, Maastricht 6200MD, The Netherlands.
| | - Dennis M Meesters
- Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands.
| | - Martijn Poeze
- Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands.
| |
Collapse
|
12
|
Kim JB, Lim N, Kim SJ, Heo TH. N-acetylcysteine normalizes the urea cycle and DNA repair in cells from patients with Batten disease. Cell Biochem Funct 2012; 30:677-82. [DOI: 10.1002/cbf.2849] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 05/14/2012] [Accepted: 05/16/2012] [Indexed: 12/11/2022]
Affiliation(s)
- June-Bum Kim
- Department of Pediatrics; Seoul Children's Hospital; Seoul; Korea
| | - Nary Lim
- Department of Biotechnology; Hoseo University; 165, Baebang; Asan; Chungnam; 336-795; Korea
| | - Sung-Jo Kim
- Department of Biotechnology; Hoseo University; 165, Baebang; Asan; Chungnam; 336-795; Korea
| | - Tae-Hwe Heo
- Integrated Research Institute of Pharmaceutical Sciences, College of Pharmacy; The Catholic University of Korea; Bucheon; 420-743; Korea
| |
Collapse
|
13
|
Dioguardi FS. To give or not to give? Lessons from the arginine paradox. JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS 2011; 4:90-8. [PMID: 21625171 DOI: 10.1159/000327777] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Arginine is one of the 20 amino acids (AA) found in proteins and synthesized by human cells. However, arginine is also the substrate for a series of reactions leading to the synthesis of other AA and is an obligatory substrate for two enzymes with diverging actions, arginases and nitric oxide synthases (NOS), giving origin to urea and NO, respectively. NO is a very potent vasodilator when produced by endothelial NOS (eNOS). The 'arginine paradox' is the fact that, despite intracellular physiological concentration of arginine being several hundred micromoles per liter, far exceeding the ∼5 μM K(M) of eNOS, the acute provision of exogenous arginine still increases NO production. Clinically, an additional paradox is that the largest controlled study on chronic oral arginine supplementation in patients after myocardial infarction had to be interrupted for excess mortality in treated patients. Expression and activity of arginases, which produce urea and divert arginine from NOS, are positively related to exogenous arginine supplementation. Therefore, the more arginine is introduced, the more it is destroyed, eventually leading to impaired NO production. In this review, conditions influencing the low arginine concentrations found in plasma will be reviewed, revising the paradigm that simple replenishment of what is lacking will always produce beneficial consequences.
Collapse
|
14
|
Murray PJ, Wynn TA. Obstacles and opportunities for understanding macrophage polarization. J Leukoc Biol 2011; 89:557-63. [PMID: 21248152 PMCID: PMC3058818 DOI: 10.1189/jlb.0710409] [Citation(s) in RCA: 396] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 12/09/2010] [Accepted: 12/17/2010] [Indexed: 12/15/2022] Open
Abstract
Macrophages are now routinely categorized into phenotypic subtypes based on gene expression induced in response to cytokine and pathogen-derived stimulation. In the broadest division, macrophages are described as being CAMs (M1 macrophages) or AAMs (M2 macrophages) based on their exposure to TLR and IFN signals or Th2 cytokines, respectively. Despite the prolific use of this simple classification scheme, little is known about the precise functions of effector molecules produced by AAMs, especially how representative the CAM and AAM subtypes are of tissue macrophages in homeostasis, infection, or tissue repair and how plasticity in gene expression regulates macrophage function in vivo. Furthermore, correlations between mouse and human tissue macrophages and their representative subtypes are lacking and are a major barrier to understanding human immunity. Here, we briefly summarize current features of macrophage polarization and discuss the roles of various macrophage subpopulations and macrophage-associated genes in health and disease.
Collapse
Affiliation(s)
- Peter J Murray
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Pl., Memphis, TN 38105, USA.
| | | |
Collapse
|
15
|
Bryk J, Ochoa JB, Correia MIT, Munera-Seeley V, Popovic PJ. Effect of citrulline and glutamine on nitric oxide production in RAW 264.7 cells in an arginine-depleted environment. JPEN J Parenter Enteral Nutr 2008; 32:377-83. [PMID: 18596308 DOI: 10.1177/0148607108319807] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Nitric oxide (NO) is a highly reactive free radical essential for antimicrobial and tumor immunity as well as endothelial function. Arginine is a limiting factor in NO synthesis. Citrulline can be converted to arginine and might restore NO production when arginine availability is limited, while glutamine may competitively inhibit citrulline availability. We aimed to assess how these amino acids interact to generate NO using an in vitro model. METHODS RAW 264.7 cells were exposed to various amino acid concentrations before and after lipopolysaccharide (LPS) stimulation, and NO production was assessed. RESULTS NO production directly correlated up to 200 microM with arginine available after LPS stimulation (R(2) = 0.99). Provided the same arginine concentrations following LPS stimulation, low arginine precultured cells produced significantly less NO than high arginine precultured cells (P < .01). Citrulline added to low arginine preculture significantly increased NO production compared to cells in low arginine alone (P < .01). When glutamine was withdrawn before and after LPS stimulation, cells precultured in low arginine and citrulline produced NO equivalent to that of high arginine precultured cells. Additional citrulline provided after LPS stimulation additionally improved NO production beyond that observed in cells precultured in high arginine (P < .01), and NO production became less dependent on arginine availability (R(2) = 0.78). CONCLUSION Arginine availability is a limiting factor for NO production. Citrulline is a potential substitute to restore NO production when arginine availability is limited. Glutamine appears to be an important modulator that interferes with citrulline-mediated NO production.
Collapse
Affiliation(s)
- Jodie Bryk
- School of Medicine, University of Pittsburgh Medical School, Pittsburgh, PA 15213, USA
| | | | | | | | | |
Collapse
|
16
|
Boudko DY. Bioanalytical profile of the L-arginine/nitric oxide pathway and its evaluation by capillary electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 851:186-210. [PMID: 17329176 PMCID: PMC2040328 DOI: 10.1016/j.jchromb.2007.02.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 01/30/2007] [Accepted: 02/06/2007] [Indexed: 02/07/2023]
Abstract
This review briefly summarizes recent progress in fundamental understanding and analytical profiling of the L-arginine/nitric oxide (NO) pathway. It focuses on key analytical references of NO actions and the experimental acquisition of these references in vivo, with capillary electrophoresis (CE) and high-performance capillary electrophoresis (HPCE) comprising one of the most flexible and technologically promising analytical platform for comprehensive high-resolution profiling of NO-related metabolites. Another aim of this review is to express demands and bridge efforts of experimental biologists, medical professionals and chemical analysis-oriented scientists who strive to understand evolution and physiological roles of NO and to develop analytical methods for use in biology and medicine.
Collapse
Affiliation(s)
- Dmitri Y Boudko
- The Whitney Laboratory for Marine Bioscience, 9505 Ocean Shore Blvd., St. Augustine, FL 32080, USA.
| |
Collapse
|
17
|
Gu H, Chen H, Pan Z, Jackson AU, Talaty N, Xi B, Kissinger C, Duda C, Mann D, Raftery D, Cooks RG. Monitoring Diet Effects via Biofluids and Their Implications for Metabolomics Studies. Anal Chem 2007; 79:89-97. [PMID: 17194125 DOI: 10.1021/ac060946c] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The effect of diet on metabolites found in rat urine samples has been investigated using nuclear magnetic resonance (NMR) and a new ambient ionization mass spectrometry experiment, extractive electrospray ionization mass spectrometry (EESI-MS). Urine samples from rats with three different dietary regimens were readily distinguished using multivariate statistical analysis on metabolites detected by NMR and MS. To observe the effect of diet on metabolic pathways, metabolites related to specific pathways were also investigated using multivariate statistical analysis. Discrimination is increased by making observations on restricted compound sets. Changes in diet at 24-h intervals led to predictable changes in the spectral data. Principal component analysis was used to separate the rats into groups according to their different dietary regimens using the full NMR, EESI-MS data or restricted sets of peaks in the mass spectra corresponding only to metabolites found in the urea cycle and metabolism of amino groups pathway. By contrast, multivariate analysis of variance from the score plots showed that metabolites of purine metabolism obscure the classification relative to the full metabolite set. These results suggest that it may be possible to reduce the number of statistical variables used by monitoring the biochemical variability of particular pathways. It should also be possible by this procedure to reduce the effect of diet in the biofluid samples for such purposes as disease detection.
Collapse
Affiliation(s)
- Haiwei Gu
- Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Acuña-Castroviejo D, Escames G, López LC, Hitos AB, León J. Melatonin and nitric oxide: two required antagonists for mitochondrial homeostasis. Endocrine 2005; 27:159-68. [PMID: 16217129 DOI: 10.1385/endo:27:2:159] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Accepted: 06/13/2005] [Indexed: 02/07/2023]
Abstract
The presence of nitric oxide (NO* ) in the mitochondria led to analysis of its source and functions in mitochondrial homeostasis. Studies have revealed the existence of a mtNOS isoform with similar features to nNOS, with some post-traslational modifications, although without the typical signal peptide responsible for addressing proteins to mitochondrion. This isoform may account for the physiological production of NO* related to the respiratory control. During inflammatory conditions there is an excess of NO* in the mitochondria responsible for an increase in reactive oxygen and nitrogen species in sufficient amounts to compromise mitochondrial function. These conditions led to the discovery of the presence of an inducible mtNOS isoform with kinetic properties similar to iNOS. Experiments with knockout mice lacking either nNOS or iNOS further confirmed the existence of these two mtNOS isoforms in mitochondria. Although the increase in NO* in sepsis by inducible mtNOS may have important regulatory functions including the redistribution of oxygen into other pathways under hypoxia, it causes the production of excess NO* that is deleterious for the cell. Melatonin, an endogenous antioxidant, regulates mitochondrial respiration and bioenergetics and protects mitochondria from excess NO* by controlling the activity of mtNOS.
Collapse
Affiliation(s)
- Darío Acuña-Castroviejo
- Departamento de Fisiología, Instituto de Biotecnología, Universidad de Granada, Granada, Spain.
| | | | | | | | | |
Collapse
|
19
|
Colton CA, Xu Q, Burke JR, Bae SY, Wakefield JK, Nair A, Strittmatter WJ, Vitek MP. Disrupted spermine homeostasis: a novel mechanism in polyglutamine-mediated aggregation and cell death. J Neurosci 2005; 24:7118-27. [PMID: 15306645 PMCID: PMC6729181 DOI: 10.1523/jneurosci.1233-04.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Our data suggest a novel mechanism whereby pathological-length polyglutamine (polyQ) proteins promote the spermine synthetic pathway, increasing polyQ-aggregation and cell death. As detected in a cell-free turbidity assay, spermine promotes aggregation of thio-polyQ62 in a dose-dependent manner. Using a stable neuronal cell line expressing pathological-length [polyQ57-yellow fluorescent protein (YFP) (Q57)] or non-pathological-length [polyQ19-YFP (Q19)] polyglutamine protein, we show that multiple steps in the production of polyamines are affected in Q57 cells, suggesting dysfunctional spermine homeostasis. As the building block for spermine synthesis, arginine transport is significantly increased in neuronal cell lines stably expressing Q57. Q57 lines displayed upregulated basal and inducible arginase I activities that were not seen in polyQ19-YFP lines. Normal induction of spermidine/spermine N-acetyltransferase in Q19 lines regulating back-conversion of spermine, thereby reducing spermine levels, however, was not observed in Q57 lines. Pharmacological activation of ornithine decarboxylase (ODC), a key enzyme of the polyamine synthetic pathway, increased cellular aggregates and increased cell death in Q57 cells not observed in Q19 cells. Inhibition of ODC by difluoromethylornithine prevented basal and induced cell death in Q57 cells, demonstrating a central role for polyamines in this process.
Collapse
Affiliation(s)
- C A Colton
- Deane Laboratory, Division of Neurology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Pauleau AL, Rutschman R, Lang R, Pernis A, Watowich SS, Murray PJ. Enhancer-mediated control of macrophage-specific arginase I expression. THE JOURNAL OF IMMUNOLOGY 2004; 172:7565-73. [PMID: 15187136 DOI: 10.4049/jimmunol.172.12.7565] [Citation(s) in RCA: 186] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Arginase I expression in the liver must remain constant throughout life to eliminate excess nitrogen via the urea cycle. In contrast, arginase I expression in macrophages is silent until signals from Th2 cytokines such as IL-4 and IL-13 are received and the mRNA is then induced four to five orders of magnitude. Arginase I is hypothesized to play a regulatory and potentially pathogenic role in diseases such as asthma, parasitic, bacterial, and worm infections by modulating NO levels and promoting fibrosis. We show that Th2-inducible arginase I expression in mouse macrophages is controlled by an enhancer that lies -3 kb from the basal promoter. PU.1, IL-4-induced STAT6, and C/EBPbeta assemble at the enhancer and await the effect of another STAT6-regulated protein(s) that must be synthesized de novo. Identification of a powerful extrahepatic regulatory enhancer for arginase I provides potential to manipulate arginase I activity in immune cells while sparing liver urea cycle function.
Collapse
Affiliation(s)
- Anne-Laure Pauleau
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
21
|
Vissers YLJ, Hallemeesch MM, Soeters PB, Lamers WH, Deutz NEP. NOS2 deficiency increases intestinal metabolism both in nonstimulated and endotoxemic mice. Am J Physiol Gastrointest Liver Physiol 2004; 286:G747-51. [PMID: 14656712 DOI: 10.1152/ajpgi.00375.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Animal studies have suggested that nitric oxide (NO) synthases (NOS) play a role in the regulation of protein metabolism in endotoxemia. We therefore investigated the role of inducible NOS (NOS2) on intestinal protein and neuronal NOS (NOS1) and endothelial NOS (NOS3) on amino acid metabolism. Three groups of mice were studied: 1) wild-type (WT), 2) NOS2 knockout (NOS2-KO), and 3) NOS2-KO + N(omega)-nitro-l-arginine methyl ester (NOS2-KO + l-NAME), both in nonstimulated and LPS-treated conditions. By infusion of the stable isotopes l-[phenyl-(2)H(5)]Phe, l-[phenyl-(2)H(2)]Tyr, l-[guanidino-(15)N(2)]Arg, and l-[ureido-(13)C; (2)H(2)]citrulline (Cit), intestinal protein, amino acid, and Arg/NO metabolism were studied on the whole body level and across intestine. In nonstimulated situations, NOS2 deficiency increased whole body protein turnover and intestinal Gln uptake and Cit production. In NOS2-KO + l-NAME, the above-mentioned changes were reversed. After LPS in WT, whole body NO and Cit production increased. In contrast to this, LPS decreased net intestinal Gln uptake, whole body NO, and Cit production in NOS2-KO mice. Treatment of NOS2-KO + l-NAME with LPS was lethal in eight of eleven mice (73%). The surviving mice in this group showed a major drop in intestinal protein breakdown and synthesis to almost zero. Thus both in baseline conditions and during endotoxemia, the absence of NOS2 upregulated NOS1 and/or NOS3, which increased intestinal metabolism. The drop in intestinal protein metabolism in the endotoxemic NOS2-KO + l-NAME group might play a role in mortality in that group.
Collapse
Affiliation(s)
- Yvonne L J Vissers
- Dept. of Surgery, Maastricht Univ., PO Box 616, NL-6200 MD Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
22
|
Brookes PS. Mitochondrial nitric oxide synthase. Mitochondrion 2004; 3:187-204. [PMID: 16120354 DOI: 10.1016/j.mito.2003.10.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Accepted: 10/15/2003] [Indexed: 01/07/2023]
Abstract
Nitric oxide (NO*) can bind to and inhibit the terminal enzyme of the mitochondrial respiratory chain, cytochrome c oxidase (complex IV). In vivo, NO* is made by the NO* synthase (NOS) family of enzymes, and considerable debate has recently arisen regarding a NOS inside mitochondria (termed 'mtNOS'). Such an enzyme is an intriguing proposition, since it affords unique organelle-based regulatory mechanisms for NO* synthesis, and has considerable implications for mitochondrial function. This review serves to discuss some of the current issues regarding mtNOS, such as its isoform identity, the availability of co-factors and substrates within the organelle, and potential physiological vs. pathological roles for the enzyme, all within the broader context of mitochondrial regulation by NO*.
Collapse
Affiliation(s)
- Paul S Brookes
- Department of Anesthesiology, University of Rochester Medical Center, Box 604, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
23
|
Supplementing Arginine during Sepsis: from Theory to Clinical Practice. Intensive Care Med 2003. [DOI: 10.1007/978-1-4757-5548-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Abstract
The precursor for nitric oxide (NO) synthesis is the amino acid arginine. Reduced arginine availability may limit NO production. Arginine availability for NO synthesis may be regulated by de novo arginine production from citrulline, arginine transport across the cell membrane, and arginine breakdown by arginase.
Collapse
Affiliation(s)
- M M Hallemeesch
- Department of Clinical Chemistry, Vrije Universiteit Medical Center, Amsterdam, The Netherlands
| | | | | |
Collapse
|
25
|
Farghali H, Canová N, Gaier N, Lincová D, Kmonicková E, Strestíková P, Masek K. Inhibition of endotoxemia-induced nitric oxide synthase expression by cyclosporin A enhances hepatocyte injury in rats: amelioration by NO donors. Int Immunopharmacol 2002; 2:117-27. [PMID: 11789662 DOI: 10.1016/s1567-5769(01)00159-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The goals of the present study were to provide information into the controversy about nitric oxide (NO) status of the liver during endotoxemia and to assess the role of the phosphatase inhibitor cyclosporin A (CsA) during the insult. Rats were injected with saline, lipopolysaccharide (LPS, 10 mg/kg i.p.) or cyclosporin A (CsA, 5 mg/kg. i.p.) + LPS, S-nitroso-N-acetyl penicillamine (SNAP, 0.1 mMikg) + CsA + LPS or molsidomine (molsid, 0.2 mg/kg) + CsA + LPS. Rat hepatocytes were isolated and tested for metabolic competence by the rate of urea synthesis and for lipid peroxidation. Hepatocytes were cultured under various treatments as LPS or cytokine mixture (CM, TNF-alpha 500 U/ml, INF-gamma 100 U/ml, IL-1beta 200 U/ ml) with or without CsA and iNOS expression was evaluated by NO productivity and by RT-PCR. Twenty-four hours after LPS dosing in vivo, the mortality rate was 15%, while CsA pretreatment increased mortality rate to 30% and reduced hepatocyte viability, increased ALT leakage and reduced urea synthesis. SNAP and Molsid resulted in complete survival of rats, increased urea synthesis, increased cell viability and reduced alanine aminotransferase leakage. LPS or CM increased iNOS expression while CsA pretreatment reduced iNOS expression. There was no correlation between lipid peroxide levels in hepatocytes and functional status of hepatocytes under various treatments. This study demonstrates that NO produced during endotoxemia and under the present conditions is protective to the liver and may function as an adaptive mechanism and that the inhibition of iNOS by compounds like CsA produce unfavorable effects.
Collapse
Affiliation(s)
- Hassan Farghali
- Institute of Pharmacology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
26
|
Kang ES, Cates TB, Harper DN, Chiang TM, Myers LK, Acchiardo SR, Kimoto M. An enzyme hydrolyzing methylated inhibitors of nitric oxide synthase is present in circulating human red blood cells. Free Radic Res 2001; 35:693-707. [PMID: 11811522 DOI: 10.1080/10715760100301211] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
N(G),N(G)-dimethyl-L-arginine (asymmetric dimethylarginine or ADMA) and N(G)-monomethyl-L-arginine (L-NMMA) are post-translationally synthesized amino acids of nuclear proteins. Upon release during protein turnover, they are not used in protein synthesis, but are excreted or metabolized by dimethylarginine dimethylaminohydrolase (DDAH) found in many tissues. DDAH is present in monocytic and polynuclear cells of blood, but no report has appeared of its presence in red blood cells (RBCs). Because methylated arginines can inhibit nitric oxide synthase (NOS) and elevations are reported in several diseases, we explored whether RBCs express this enzyme. DDAH is present in RBCs as supported by hydrolysis of both ADMA and L-NMMA, but not symmetric dimethylarginine, and by immunoprecipitation/Westem blot using a specific monoclonal antibody to human DDAH. In a pilot study of end-stage renal disease (ESRD) patients, RBC DDAH activity with ADMA as substrate correlated inversely with age (p = 0.005) and enzyme activities were higher in patients with greater diastolic blood pressure drops during hemodialysis (p = 0.02). Similar correlations were found with white cell DDAH activity. Thus, human RBCs can hydrolyze methylated arginines. These findings indicate the RBC could be used to assess the status of DDAH in various disease states.
Collapse
Affiliation(s)
- E S Kang
- Department of Pediatrics, University of Tennessee, Memphis, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Hsu BY, Iacobazzi V, Wang Z, Harvie H, Chalmers RA, Saudubray JM, Palmieri F, Ganguly A, Stanley CA. Aberrant mRNA splicing associated with coding region mutations in children with carnitine-acylcarnitine translocase deficiency. Mol Genet Metab 2001; 74:248-55. [PMID: 11592821 DOI: 10.1006/mgme.2001.3235] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This report describes three infants with genetic defects of carnitine-acylcarnitine translocase (CACT), an inner mitochondrial membrane carrier that is essential for long-chain fatty acid oxidation. Two of the patients were of European and Chinese origin; the third was from consanguineous Turkish parents. CACT activity was totally deficient in cultured skin fibroblasts from all three patients. Patient 1 was heterozygous for a paternal frameshift mutation (120 del T in exon 1) and a maternal lariat branch point mutation (-10 T --> G in intron 2). Patient 2 was heterozygous for the same lariat branch point (-10T --> G intron 2) mutation, derived from the father, and a maternal frameshift mutation (362 del G in exon 3). Patient 3 was homozygous for a frameshift mutation (306 del C in exon 3). All of the three frameshift mutations give rise to the same stop codon at amino acid residue 127 which is predicted to cause premature protein truncation. In addition, cDNA transcript analysis showed that these coding sequence mutations also increase the amount of aberrant mRNA splicing and exon skipping at distances up to 7.7 kb nucleotides from mutation sites. The data suggest that the stability of mRNA transcripts is decreased or the frequency of aberrant splicing is increased in the presence of CACT coding sequence mutations. These results confirm that CACT is the genetic locus of the recessive mutations responsible for the fatal defects of fatty acid metabolism previously associated with deficiency of translocase activity in these three cases.
Collapse
Affiliation(s)
- B Y Hsu
- Division of Endocrinology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Calabrese V, Bates TE, Stella AM. NO synthase and NO-dependent signal pathways in brain aging and neurodegenerative disorders: the role of oxidant/antioxidant balance. Neurochem Res 2000; 25:1315-41. [PMID: 11059804 DOI: 10.1023/a:1007604414773] [Citation(s) in RCA: 227] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nitric oxide and other reactive nitrogen species appear to play several crucial roles in the brain. These include physiological processes such as neuromodulation, neurotransmission and synaptic plasticity, and pathological processes such as neurodegeneration and neuroinflammation. There is increasing evidence that glial cells in the central nervous system can produce nitric oxide in vivo in response to stimulation by cytokines and that this production is mediated by the inducible isoform of nitric oxide synthase. Although the etiology and pathogenesis of the major neurodegenerative and neuroinflammatory disorders (Alzheimer's disease, amyothrophic lateral sclerosis, Parkinson's disease, Huntington's disease and multiple sclerosis) are unknown, numerous recent studies strongly suggest that reactive nitrogen species play an important role. Furthermore, these species are probably involved in brain damage following ischemia and reperfusion, Down's syndrome and mitochondrial encephalopathies. Recent evidence also indicates the importance of cytoprotective proteins such as heat shock proteins (HSPs) which appear to be critically involved in protection from nitrosative and oxidative stress. In this review, evidence for the involvement of nitrosative stress in the pathogenesis of the major neurodegenerative/ neuroinflammatory diseases and the mechanisms operating in brain as a response to imbalance in the oxidant/antioxidant status are discussed.
Collapse
Affiliation(s)
- V Calabrese
- Department of Chemistry, Faculty of Medicine, University of Catania, Italy
| | | | | |
Collapse
|
29
|
Satarug S, Baker JR, Reilly PE, Esumi H, Moore MR. Evidence for a synergistic interaction between cadmium and endotoxin toxicity and for nitric oxide and cadmium displacement of metals in the kidney. Nitric Oxide 2000; 4:431-40. [PMID: 10944428 DOI: 10.1006/niox.2000.0295] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was undertaken to examine changes in Zn and Cu homeostasis in the liver and kidney of rats caused by cadmium (Cd) or lipopolysaccharide (LPS) administration. Twenty-five male, 7- to 8-week-old Wistar rats were divided into five groups: saline only treatment, saline treatment and food deprivation, exposure to a single dose of Cd, exposure to LPS alone, and exposure to Cd + LPS. Changes in plasma nitrate concentrations and hepatic and renal Zn and Cu contents were measured together with urinary excretion rates for the metals and nitrate on 3 consecutive days: 24 h before treatment and 24 and 48 h after treatments. Cd exposure alone for 48 h caused a nearly 2-fold increase in plasma nitrate levels with no changes in urinary nitrate excretion whereas LPS treatment caused plasma nitrate levels to increase by 10-fold and urinary nitrate excretion to increase by 4-fold. Administration of LPS 24 h after Cd exposure caused a 10-fold increase in plasma nitrate concentrations and a 100-fold increase in urinary nitrate excretion compared to the rates prior to LPS administration. These results indicate a synergistic interaction between Cd and LPS toxicity. Cd exposure also caused a marked increase in hepatic Zn levels, but LPS did not cause any changes in hepatic Zn or Cu content. In sharp contrast, both Zn and Cu contents were decreased in the kidneys by 16 and 36% in animals exposed to Cd or LPS. A correlation analysis of measured variables reveals that renal Cu contents were inversely associated with plasma nitrate concentrations while urinary Cu excretion on day 3 showed a strong positive correlation with both urinary nitrate and Cd excretions on the same day. A linear regression analysis shows 20% of the variation in urinary Cu excretion was associated with urinary Cd excretion on the same day. It is concluded that reductions in renal Cu contents caused by Cd or LPS administration may be a result of Cd and NO displacement of Cu previously bound to metallothionein.
Collapse
Affiliation(s)
- S Satarug
- National Research Centre for Environmental Toxicology, Brisbane, Queensland, 4108, Australia.
| | | | | | | | | |
Collapse
|
30
|
Lortie MJ, Ishizuka S, Schwartz D, Blantz RC. Bioactive products of arginine in sepsis: tissue and plasma composition after LPS and iNOS blockade. Am J Physiol Cell Physiol 2000; 278:C1191-9. [PMID: 10837347 DOI: 10.1152/ajpcell.2000.278.6.c1191] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blockade or gene deletion of inducible nitric oxide synthase (iNOS) fails to fully abrogate all the sequelae leading to the high morbidity of septicemia. An increase in substrate uptake may be necessary for the increased production of nitric oxide (NO), but arginine is also a precursor for other bioactive products. Herein, we demonstrate an increase in alternate arginine products via arginine and ornithine decarboxylase in rats given lipopolysaccharide (LPS). The expression of iNOS mRNA in renal tissue was evident 60 but not 30 min post-LPS, yet a rapid decrease in blood pressure was obtained within 30 min that was completely inhibited by selective iNOS blockade. Plasma levels of arginine and ornithine decreased by at least 30% within 60 min of LPS administration, an effect not inhibited by the iNOS blocker L-N(6)(1-iminoethyl)lysine (L-NIL). Significant increases in plasma nitrates and citrulline occurred only 3-4 h post-LPS, an effect blocked by L-NIL pretreatment. The intracellular composition of organs harvested 6 h post-LPS reflected tissue-specific profiles of arginine and related metabolites. Tissue arginine concentration, normally an order of magnitude higher than in plasma, did not decrease after LPS. Pretreatment with L-NIL had a significant impact on the disposition of tissue arginine that was organ specific. These data demonstrate changes in arginine metabolism before and after de novo iNOS activity. Selective blockade of iNOS did not prevent uptake and can deregulate the production of other bioactive arginine metabolites.
Collapse
Affiliation(s)
- M J Lortie
- Division of Nephrology/Hypertension, University of California San Diego School of Medicine and Veterans Affairs Health Care System, San Diego 92161, USA.
| | | | | | | |
Collapse
|
31
|
Abstract
1. Arginase, an important part of the arginine-regulating system modulates nitric oxide generation; a neuroregulatory agent, which has been implicated in various neuropathological conditions. 2. In this regard, the authors investigated the arginine-nitric oxide pathway by measuring serum arginase activity in drug free major (n=18) and minor depressed outpatients (n=12) and healthy control subjects (n=30) in order to make a contribution to the understanding of disease mechanism. 3. Major depressed patients were found to have significantly higher serum arginase activity compared to controls (p<0.001) and minor depressives (p=0.001). Moreover, there was significant positive correlation between arginase activity and severity of depression in patients (p<0.001). 4. Results suggest that the arginine-nitric oxide pathway is involved in depression. Enhanced arginase activity in major depressed patients possibly leading to a decrease in nitric oxide synthesis may contribute to the symptomatology of depression.
Collapse
Affiliation(s)
- S Elgün
- University of Ankara, Faculty of Medicine, Department of Biochemistry, Turkey
| | | |
Collapse
|
32
|
Roe DS, Roe CR, Brivet M, Sweetman L. Evidence for a short-chain carnitine-acylcarnitine translocase in mitochondria specifically related to the metabolism of branched-chain amino acids. Mol Genet Metab 2000; 69:69-75. [PMID: 10655160 DOI: 10.1006/mgme.1999.2950] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carnitine-acylcarnitine translocase (CATR) deficiency is a severe defect in fatty acid oxidation which presents early in life most frequently with hypoglycemia, hyperammonemia, and severe cardiac abnormalities. CATR exchanges acylcarnitines of various chain lengths for free carnitine across the mitochondrial membrane. In vitro studies in intact fibroblasts from patients with documented deficiency of CATR were probed with stable-isotope-labeled precursors and the resulting acylcarnitines were analyzed by tandem mass spectrometry. After a 72-h incubation with l-[(2)H(3)]carnitine the translocase-deficient cells produced acylcarnitines in which the deuterium was incorporated into short-chain acylcarnitines, C2-C5. Experiments with simultaneous incubation of l-[(2)H(3)]carnitine and l-[(13)C(6)]isoleucine produced [(13)C(5)]2-methylbutyryl-[(2)H(3)]carnitine and [(13)C(3)]propionyl-[(2)H(3)]carnitine indicating exchange of labeled acylcarnitine from inside the mitochondrial matrix with labeled free carnitine. These studies support the possible existence of a "branched-chain" carnitine-acylcarnitine translocator in mitochondria.
Collapse
Affiliation(s)
- D S Roe
- Kimberly H. Courtwright & Joseph W. Summers, Institute of Metabolic Disease, Dallas, Texas, 75226, USA
| | | | | | | |
Collapse
|
33
|
Tenu JP, Lepoivre M, Moali C, Brollo M, Mansuy D, Boucher JL. Effects of the new arginase inhibitor N(omega)-hydroxy-nor-L-arginine on NO synthase activity in murine macrophages. Nitric Oxide 1999; 3:427-38. [PMID: 10637120 DOI: 10.1006/niox.1999.0255] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In stimulated murine macrophage, arginase and nitric oxide synthase (NOS) compete for their common substrate, l-arginine. The objectives of this study were (i) to test the new alpha-amino acid N(omega)-hydroxy-nor-l-arginine (nor-NOHA) as a new selective arginase inhibitor and (ii) to elucidate the effects of arginase inhibition on l-arginine utilization by an inducible NOS. Nor-NOHA is about 40-fold more potent than N(omega)-hydroxy-l-arginine (NOHA), an intermediate in the l-arginine/NO pathway, to inhibit the hydrolysis of l-arginine to l-ornithine catalyzed by unstimulated murine macrophages (IC(50) values 12 +/- 5 and 400 +/- 50 microM, respectively). Stimulation of murine macrophages with interferon-gamma and lipopolysaccharide (IFN-gamma + LPS) results in clear expression of an inducible NOS (iNOS) and to an increase in arginase activity. Nor-NOHA is also a potent inhibitor of arginase in IFN-gamma + LPS-stimulated macrophage (IC(50) value 10 +/- 3 microM). In contrast to NOHA, nor-NOHA is neither a substrate nor an inhibitor for iNOS and it appears as a useful tool to study the interplays between arginase and NOS. Inhibition of arginase by nor-NOHA increases nitrite and l-citrulline accumulation for incubation times higher than 12 h, under our conditions. Our results allow the determination of the kinetic parameters of the two competitive pathways and the proposal of a simple model which readily explains the differences observed between experiments. This model readily accounts for the observed effects and should be useful to predict the consequences of arginase inhibition in the presence of an active NOS on l-arginine availability.
Collapse
Affiliation(s)
- J P Tenu
- UMR 8619 CNRS, Batiment 430, Universite Paris-Sud XI, Orsay Cedex, F-91405, France
| | | | | | | | | | | |
Collapse
|
34
|
Iacobazzi V, Naglieri MA, Stanley CA, Wanders RJ, Palmieri F. The structure and organization of the human carnitine/acylcarnitine translocase (CACT1) gene2. Biochem Biophys Res Commun 1998; 252:770-4. [PMID: 9837782 DOI: 10.1006/bbrc.1998.9738] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The carnitine/acylcarnitine translocase (CACT) transports acylcarnitines into mitochondria in exchange for free carnitine and it is, therefore, essential for the fatty acid beta-oxidation pathway. We have determined the exon-intron structure of the human CACT gene, which is responsible for a genetic disorder of fatty acid oxidation called CACT deficiency. The gene spans about 16.5 kb and consists of nine exons with the translation start site in exon 1. All the splice acceptor and donor sites conform to the AG/GT rules. All the introns except one are located at the level of the sequences coding for the extramembranous loops of CACT. We have designed a series of intronic oligonucleotide primers for amplifying each of the CACT exons together with their flanking intronic sequences, in segments well suited to detect mutations that would affect splicing of mRNA as well as the coding sequence itself.
Collapse
Affiliation(s)
- V Iacobazzi
- Department of Pharmaco-Biology, Laboratory of Biochemistry and Molecular Biology, University of Bari, Italy
| | | | | | | | | |
Collapse
|
35
|
Iyer R, Jenkinson CP, Vockley JG, Kern RM, Grody WW, Cederbaum S. The human arginases and arginase deficiency. J Inherit Metab Dis 1998; 21 Suppl 1:86-100. [PMID: 9686347 DOI: 10.1023/a:1005313809037] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Arginase is the final enzyme in the urea cycle. Its deficiency is the least frequently described disorder of this cycle. It results primarily in elevated blood arginine, and less frequently in either persistent or acute elevations in blood ammonia. This appears to be due to a second arginase locus, expressed primarily in the kidney, which can be recruited to compensate, in part, for the deficiency of liver arginase. The liver arginase gene structure permitted study of the molecular pathology of patients with the disorder and the results of these studies and the inferences about the protein structure are presented. The conserved regions among all arginases allowed the cloning of AII, the second arginase isoform. It has been localized to the mitochondrion and is thought to be involved in ornithine biosynthesis. It shares the major conserved protein sequences, and structural features of liver arginase gene are also conserved. When AI and AII from various species are compared, it appears that the two diverged some time prior to the evolution of amphibians. The evidence for the role of AII in nitric oxide and polyamine metabolism is presented and this appears consonant with the data on the tissue distribution.
Collapse
Affiliation(s)
- R Iyer
- Department of Pathology, University of California, Los Angeles, USA
| | | | | | | | | | | |
Collapse
|