1
|
Rudrapal M, Rakshit G, Singh RP, Garse S, Khan J, Chakraborty S. Dietary Polyphenols: Review on Chemistry/Sources, Bioavailability/Metabolism, Antioxidant Effects, and Their Role in Disease Management. Antioxidants (Basel) 2024; 13:429. [PMID: 38671877 PMCID: PMC11047380 DOI: 10.3390/antiox13040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Polyphenols, as secondary metabolites ubiquitous in plant sources, have emerged as pivotal bioactive compounds with far-reaching implications for human health. Plant polyphenols exhibit direct or indirect associations with biomolecules capable of modulating diverse physiological pathways. Due to their inherent abundance and structural diversity, polyphenols have garnered substantial attention from both the scientific and clinical communities. The review begins by providing an in-depth analysis of the chemical intricacies of polyphenols, shedding light on their structural diversity and the implications of such diversity on their biological activities. Subsequently, an exploration of the dietary origins of polyphenols elucidates the natural plant-based sources that contribute to their global availability. The discussion extends to the bioavailability and metabolism of polyphenols within the human body, unraveling the complex journey from ingestion to systemic effects. A central focus of the review is dedicated to unravelling the antioxidant effects of polyphenols, highlighting their role in combating oxidative stress and associated health conditions. The comprehensive analysis encompasses their impact on diverse health concerns such as hypertension, allergies, aging, and chronic diseases like heart stroke and diabetes. Insights into the global beneficial effects of polyphenols further underscore their potential as preventive and therapeutic agents. This review article critically examines the multifaceted aspects of dietary polyphenols, encompassing their chemistry, dietary origins, bioavailability/metabolism dynamics, and profound antioxidant effects. The synthesis of information presented herein aims to provide a valuable resource for researchers, clinicians, and health enthusiasts, fostering a deeper understanding of the intricate relationship between polyphenols and human health.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Sciences, School of Biotechnology and Pharmaceutical Sciences, Vignan’s Foundation for Science, Technology & Research (Deemed to be University), Guntur 522213, India
| | - Gourav Rakshit
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| | - Ravi Pratap Singh
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| | - Samiksha Garse
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai 400614, India;
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia;
| | - Soumi Chakraborty
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Ranchi 835215, India; (G.R.); (R.P.S.); (S.C.)
| |
Collapse
|
2
|
Paasela T, Lim KJ, Pavicic M, Harju A, Venäläinen M, Paulin L, Auvinen P, Kärkkäinen K, Teeri TH. Transcriptomic Analysis Reveals Novel Regulators of the Scots Pine Stilbene Pathway. PLANT & CELL PHYSIOLOGY 2023; 64:1204-1219. [PMID: 37674261 PMCID: PMC10579783 DOI: 10.1093/pcp/pcad089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
Stilbenes accumulate in Scots pine heartwood where they have important roles in protecting wood from decaying fungi. They are also part of active defense responses, and their production is induced by different (a)biotic stressors. The specific transcriptional regulators as well as the enzyme responsible for activating the stilbene precursor cinnamate in the pathway are still unknown. UV-C radiation was the first discovered artificial stress activator of the pathway. Here, we describe a large-scale transcriptomic analysis of pine needles in response to UV-C and treatment with translational inhibitors, both activating the transcription of stilbene pathway genes. We used the data to identify putative candidates for the missing CoA ligase and for pathway regulators. We further showed that the pathway is transcriptionally activated by phosphatase inhibitor, ethylene and jasmonate treatments, as in grapevine, and that the stilbene synthase promoter retains its inducibility in some of the tested conditions in Arabidopsis, a species that normally does not synthesize stilbenes. Shared features between gymnosperm and angiosperm regulation and partially retained inducibility in Arabidopsis suggest that pathway regulation occurs not only via ancient stress-response pathway(s) but also via species-specific regulators. Understanding which genes control the biosynthesis of stilbenes in Scots pine aids breeding of more resistant trees.
Collapse
Affiliation(s)
| | - Kean-Jin Lim
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki 00014, Finland
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Lin’an District, Hangzhou, Zhejiang 311300, China
| | - Mirko Pavicic
- Oak Ridge National Laboratory, Biosciences Division, 1 Bethel Valley Rd, Oak Ridge, TN 37830, USA
| | - Anni Harju
- Production Systems Unit, Natural Resources Institute Finland (Luke), Vipusenkuja 5, Savonlinna 57200, Finland
| | - Martti Venäläinen
- Production Systems Unit, Natural Resources Institute Finland (Luke), Vipusenkuja 5, Savonlinna 57200, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, PO Box 56, Helsinki 00014, Finland
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, PO Box 56, Helsinki 00014, Finland
| | - Katri Kärkkäinen
- Production Systems Unit, Natural Resources Institute Finland (Luke), Paavo Havaksentie 3, Oulu 90570, Finland
| | - Teemu H Teeri
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki 00014, Finland
| |
Collapse
|
3
|
Mu H, Li Y, Yuan L, Jiang J, Wei Y, Duan W, Fan P, Li S, Liang Z, Wang L. MYB30 and MYB14 form a repressor-activator module with WRKY8 that controls stilbene biosynthesis in grapevine. THE PLANT CELL 2023; 35:552-573. [PMID: 36255259 PMCID: PMC9806661 DOI: 10.1093/plcell/koac308] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/13/2022] [Indexed: 05/12/2023]
Abstract
When exposed to pathogen infection or ultraviolet (UV) radiation, grapevine (Vitis vinifera) plants rapidly accumulate the stilbenoid resveratrol (Res) with concomitant increase of stilbene synthase (STS), the key enzyme in stilbene biosynthesis. Although a few transcription factors have been shown to regulate STSs, the molecular mechanism governing the regulation of STSs is not well elucidated. Our previous work showed that a VvMYB14-VvWRKY8 regulatory loop fine-tunes stilbene biosynthesis in grapevine through protein-protein interaction; overexpression of VvWRKY8 down-regulates VvMYB14 and VvSTS15/21; and application of exogenous Res up-regulates WRKY8 expression. Here, we identified an R2R3-MYB repressor, VvMYB30, which competes with the activator VvMYB14 for binding to the common binding sites in the VvSTS15/21 promoter. Similar to VvMYB14, VvMYB30 physically interacts with VvWRKY8 through their N-termini, forming a complex that does not bind DNA. Exposure to UV-B/C stress induces VvMYB14, VvWRKY8, and VvSTS15/21, but represses VvMYB30 in grapevine leaves. In addition, MYB30 expression is up-regulated by VvWRKY8-overexpression or exogenous Res. These findings suggest that the VvMYB14-VvWRKY8-VvMYB30 regulatory circuit allows grapevine to respond to UV stress by producing Res and prevents over-accumulation of Res to balance metabolic costs. Our work highlights the stress-mediated induction and feedback inhibition of stilbene biosynthesis through a complex regulatory network involving multiple positive and negative transcriptional regulators.
Collapse
Affiliation(s)
- Huayuan Mu
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Chinese National Botany Garden, Beijing 100093, China
- LIA INNOGRAPE International Associated Laboratory, Beijing 100093, China
| | - Yang Li
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Chinese National Botany Garden, Beijing 100093, China
- LIA INNOGRAPE International Associated Laboratory, Beijing 100093, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, USA
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Jinzhu Jiang
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yongzan Wei
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Wei Duan
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Chinese National Botany Garden, Beijing 100093, China
- LIA INNOGRAPE International Associated Laboratory, Beijing 100093, China
| | - Peige Fan
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Chinese National Botany Garden, Beijing 100093, China
- LIA INNOGRAPE International Associated Laboratory, Beijing 100093, China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Chinese National Botany Garden, Beijing 100093, China
- LIA INNOGRAPE International Associated Laboratory, Beijing 100093, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Chinese National Botany Garden, Beijing 100093, China
- LIA INNOGRAPE International Associated Laboratory, Beijing 100093, China
| | - Lijun Wang
- Beijing Key Laboratory of Grape Sciences and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- Chinese National Botany Garden, Beijing 100093, China
- LIA INNOGRAPE International Associated Laboratory, Beijing 100093, China
| |
Collapse
|
4
|
Identification and Expression Analysis of Stilbene Synthase Genes in Arachis hypogaea in Response to Methyl Jasmonate and Salicylic Acid Induction. PLANTS 2022; 11:plants11131776. [PMID: 35807728 PMCID: PMC9268999 DOI: 10.3390/plants11131776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 11/17/2022]
Abstract
Stilbene synthase is an important enzyme of the phenylpropanoid pathway, regulating the production of several biologically active stilbenoids. These compounds have antioxidant, anti-inflammatory, and anti-cancer properties. However, the detailed characterization of stilbene synthase genes in Arachis hypogaea has not yet been performed. In this study, the comprehensive characterization of stilbene synthase genes in A. hypogaea was conducted, commencing with identification, phylogenetic analysis, and study of their expression in response to exogenous hormonal treatment. We identified and isolated five AhSTSs genes and recorded their expression pattern in peanut (BARD-479) in response to methyl jasmonate (MeJA) and salicylic acid (SA) treatment. The presence of Chal_sti_synt, ACP_syn_III, and FAE1_CUT1_rppA domains in all AhSTSs indicated their role in the biosynthesis of stilbene and lipid metabolism. Cis-regulatory element analysis indicated their role in light responsiveness, defense responses, regulation of seed development, plant growth, and development. Despite close structural and functional similarities, expression and correlational analysis suggested that these genes may have a specific role in peanut, as individual AhSTS exhibited differential expression upon hormonal treatment in a genotype dependent manner. Further studies on functional characterization involving the transcriptional regulation of AhSTSs can clearly explain the differential expression of stilbene synthase genes to hormonal treatment.
Collapse
|
5
|
Valletta A, Iozia LM, Leonelli F. Impact of Environmental Factors on Stilbene Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2021; 10:E90. [PMID: 33406721 PMCID: PMC7823792 DOI: 10.3390/plants10010090] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 01/01/2023]
Abstract
Stilbenes are a small family of polyphenolic secondary metabolites that can be found in several distantly related plant species. These compounds act as phytoalexins, playing a crucial role in plant defense against phytopathogens, as well as being involved in the adaptation of plants to abiotic environmental factors. Among stilbenes, trans-resveratrol is certainly the most popular and extensively studied for its health properties. In recent years, an increasing number of stilbene compounds were subjected to investigations concerning their bioactivity. This review presents the most updated knowledge of the stilbene biosynthetic pathway, also focusing on the role of several environmental factors in eliciting stilbenes biosynthesis. The effects of ultraviolet radiation, visible light, ultrasonication, mechanical stress, salt stress, drought, temperature, ozone, and biotic stress are reviewed in the context of enhancing stilbene biosynthesis, both in planta and in plant cell and organ cultures. This knowledge may shed some light on stilbene biological roles and represents a useful tool to increase the accumulation of these valuable compounds.
Collapse
Affiliation(s)
- Alessio Valletta
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Lorenzo Maria Iozia
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Francesca Leonelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| |
Collapse
|
6
|
Jeandet P, Vannozzi A, Sobarzo-Sánchez E, Uddin MS, Bru R, Martínez-Márquez A, Clément C, Cordelier S, Manayi A, Nabavi SF, Rasekhian M, El-Saber Batiha G, Khan H, Morkunas I, Belwal T, Jiang J, Koffas M, Nabavi SM. Phytostilbenes as agrochemicals: biosynthesis, bioactivity, metabolic engineering and biotechnology. Nat Prod Rep 2021; 38:1282-1329. [PMID: 33351014 DOI: 10.1039/d0np00030b] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 1976 to 2020. Although constituting a limited chemical family, phytostilbenes represent an emblematic group of molecules among natural compounds. Ever since their discovery as antifungal compounds in plants and their ascribed role in human health and disease, phytostilbenes have never ceased to arouse interest for researchers, leading to a huge development of the literature in this field. Owing to this, the number of references to this class of compounds has reached the tens of thousands. The objective of this article is thus to offer an overview of the different aspects of these compounds through a large bibliography analysis of more than 500 articles. All the aspects regarding phytostilbenes will be covered including their chemistry and biochemistry, regulation of their biosynthesis, biological activities in plants, molecular engineering of stilbene pathways in plants and microbes as well as their biotechnological production by plant cell systems.
Collapse
Affiliation(s)
- Philippe Jeandet
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals, and Environment (DAFNAE), University of Padova, 35020 Legnaro, PD, Italy
| | - Eduardo Sobarzo-Sánchez
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Campus Vida, 15782 Santiago de Compostela, Spain and Instituto de Investigación e Innovación en Salud, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile
| | - Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh and Neuroscience Research Network, Dhaka, Bangladesh
| | - Roque Bru
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante, Spain
| | - Ascension Martínez-Márquez
- Plant Proteomics and Functional Genomics Group, Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, Alicante, Spain
| | - Christophe Clément
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Sylvain Cordelier
- Research Unit "Induced Resistance and Plant Bioprotection", EA 4707, SFR Condorcet FR CNRS 3417, Faculty of Sciences, University of Reims Champagne-Ardenne, PO Box 1039, 51687 Reims Cedex 2, France.
| | - Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, 1417614411 Tehran, Iran
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| | - Mahsa Rasekhian
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, AlBeheira, Egypt
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Iwona Morkunas
- Department of Plant Physiology, Poznań University of Life Sciences, Wołyńska 35, 60-637 Poznań, Poland
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Hangzhou 310058, The People's Republic of China
| | - Jingjie Jiang
- Dorothy and Fred Chau '71 Constellation Professor, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Room 4005D, 110 8th Street, Troy, NY 12180, USA
| | - Mattheos Koffas
- Dorothy and Fred Chau '71 Constellation Professor, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Room 4005D, 110 8th Street, Troy, NY 12180, USA
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 14359-16471, Iran
| |
Collapse
|
7
|
Wang C, Wu J, Zhang Y, Lu J. Muscadinia rotundifolia 'Noble' defense response to Plasmopara viticola inoculation by inducing phytohormone-mediated stilbene accumulation. PROTOPLASMA 2018; 255:95-107. [PMID: 28653245 DOI: 10.1007/s00709-017-1118-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/02/2017] [Indexed: 05/20/2023]
Abstract
Downy mildew (DM), one of the most devastating grape diseases worldwide, is caused by the biotrophic oomycete Plasmopara viticola (Pv). In general, grapevine responds to Pv infection with the accumulation of phytoalexins as part of the innate immune system, and diverse phytoalexins are induced on grapevines with different DM-resistance levels in response to Pv invasion. However, the regulation of phytoalexin biosynthesis during grapevine against Pv is still unclear. Herein, we detected stilbenes by UPLC-ESI-MS/MS and found that resveratrol was accumulated to higher level and earlier in the DM-immune Muscadinia rotundifolia 'Noble' than that in the DM-susceptible Vitis vinifera 'Thompson Seedless' after Pv inoculation. Additionally, a considerable amount of pterostilbene and ε-viniferin was found in 'Noble', while a little was detected in 'Thompson Seedless'. Resveratrol was glycosylated into piceid both in 'Noble' and 'Thompson Seedless' after Pv inoculation. The qPCR analysis of gene expression indicated that the resveratrol-synthesis gene (STS) was induced by Pv inoculation earlier in 'Noble' than that in 'Thompson Seedless', while the pterostilbene-synthesis gene (ROMT) was induced in 'Noble' but not in 'Thompson Seedless' at all. The piceid-synthesis gene (GT) was generally up-regulated in both cultivars. Sequence analysis of STS, ROMT, and GT promoters revealed that they contained cis-regulatory elements responsive to phytohormones and pathogens. Following Pv inoculation, the level of SA, MeJA, and ABA was found to be consistently higher in 'Noble' than those in 'Thompson Seedless'. The results of exogenous hormone elicitation further demonstrated that the accumulation of stilbenes was regulated by phytohormones. The earlier and higher accumulation of phytohormones and consequent induction of stilbene synthesis may play an important role in grapevine defense against downy mildew disease.
Collapse
Affiliation(s)
- Chaoxia Wang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 10008, People's Republic of China
| | - Jiao Wu
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 10008, People's Republic of China
| | - Yali Zhang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 10008, People's Republic of China
| | - Jiang Lu
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 10008, People's Republic of China.
- Center for Viticulture and Enology, School of Agriculture Biology, Shanghai Jiao Tong University, Shanghai, 200024, People's Republic of China.
| |
Collapse
|
8
|
Dubrovina AS, Kiselev KV. Regulation of stilbene biosynthesis in plants. PLANTA 2017; 246:597-623. [PMID: 28685295 DOI: 10.1007/s00425-017-2730-8] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 06/28/2017] [Indexed: 05/18/2023]
Abstract
This review analyzes the advances in understanding the natural signaling pathways and environmental factors regulating stilbene biosynthesis. We also discuss the studies reporting on stilbene content and repertoire in plants. Stilbenes, including the most-studied stilbene resveratrol, are a family of phenolic plant secondary metabolites that have been the subject of intensive research due to their valuable pharmaceutical effects and contribution to plant disease resistance. Understanding the natural mechanisms regulating stilbene biosynthesis in plants could be useful for both the development of new plant protection strategies and for commercial stilbene production. In this review, we focus on the environmental factors and cell signaling pathways regulating stilbene biosynthesis in plants and make a comparison with the regulation of flavonoid biosynthesis. This review also analyzes the recent data on stilbene biosynthetic genes and summarizes the available studies reporting on both stilbene content and stilbene composition in different plant families.
Collapse
Affiliation(s)
- A S Dubrovina
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia.
| | - K V Kiselev
- Laboratory of Biotechnology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia.
- Department of Biotechnology and Microbiology, The School of Natural Sciences, Far Eastern Federal University, Vladivostok, 690090, Russia.
| |
Collapse
|
9
|
Expression Profiling in Pinus pinaster in Response to Infection with the Pine Wood Nematode Bursaphelenchus xylophilus. FORESTS 2017. [DOI: 10.3390/f8080279] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Paasela T, Lim KJ, Pietiäinen M, Teeri TH. The O-methyltransferase PMT2 mediates methylation of pinosylvin in Scots pine. THE NEW PHYTOLOGIST 2017; 214:1537-1550. [PMID: 28248427 DOI: 10.1111/nph.14480] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/13/2017] [Indexed: 06/06/2023]
Abstract
Heartwood extractives are important determinants of the natural durability of pine heartwood. The most important phenolic compounds affecting durability are the stilbenes pinosylvin and its monomethylether, which in addition have important functions as phytoalexins in active defense. A substantial portion of the synthesized pinosylvin is 3-methoxylated but the O-methyltransferase responsible for this modification has not been correctly identified. We studied the expression of the stilbene pathway during heartwood development as well as in response to wounding of xylem and UV-C treatment of needles. We isolated and enzymatically characterized a novel O-methyltransferase, PMT2. The methylated product was verified as pinosylvin monomethylether using ultra performance liquid chromatography-tandem mass spectrometry and high performance liquid chromatography analyses. The PMT2 enzyme was highly specific for stilbenes as substrate, in contrast to caffeoyl-CoA O-methyltransferase (CCoAOMT) and PMT1 that were multifunctional. Expression profile and multifunctional activity of CCoAOMT suggest that it might have additional roles outside lignin biosynthesis. PMT1 is not involved in the stilbene pathway and its biological function remains an open question. We isolated a new specific O-methyltransferase responsible for 3-methoxylation of pinosylvin. Expression of PMT2 closely follows stilbene biosynthesis during developmental and stress induction. We propose that PMT2 is responsible for pinosylvin methylation in Scots pine (Pinus sylvestris), instead of the previously characterized methyltransferase, PMT1.
Collapse
Affiliation(s)
- Tanja Paasela
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki, 00014, Finland
| | - Kean-Jin Lim
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki, 00014, Finland
| | - Milla Pietiäinen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki, 00014, Finland
| | - Teemu H Teeri
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki, 00014, Finland
| |
Collapse
|
11
|
Deng N, Chang E, Li M, Ji J, Yao X, Bartish IV, Liu J, Ma J, Chen L, Jiang Z, Shi S. Transcriptome Characterization of Gnetum parvifolium Reveals Candidate Genes Involved in Important Secondary Metabolic Pathways of Flavonoids and Stilbenoids. FRONTIERS IN PLANT SCIENCE 2016; 7:174. [PMID: 26973657 PMCID: PMC4778121 DOI: 10.3389/fpls.2016.00174] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 02/01/2016] [Indexed: 05/05/2023]
Abstract
Gnetum is a small, unique group of Gnetophyta with a controversial phylogenetic position. Gnetum parvifolium is an important Chinese traditional medicinal plant, which is rich in bioactive compounds such as flavonoids and stilbenoids. These compounds provide significant medicinal effects, mostly as antioxidant, anticancer, and antibacterial agents. However, the mechanisms involved in the biosynthesis and regulation of these compounds in G. parvifolium are still unknown. In this study, we found that flavonoids and stilbene compounds accumulated at different levels in various tissues of G. parvifolium. We further obtained and analyzed massive sequence information from pooled samples of G. parvifolium by transcriptome sequencing, which generated 94,816 unigenes with an average length of 724 bp. Functional annotation of all these unigenes revealed that many of them were associated with several important secondary metabolism pathways including flavonoids and stilbenoids. In particular, several candidate unigenes (PAL-, C4H-, 4CL-, and STS-like genes) involved in stilbenoids biosynthesis were highly expressed in leaves and mature fruits. Furthermore, high temperature and UV-C strongly induced the expression of these genes and enhanced stilbene production (i.e., resveratrol and piceatannol) in leaves of young seedlings. Our present transcriptomic and biochemical data on secondary metabolites in G. parvifolium should encourage further investigation on evolution, ecology, functional genomics, and breeding of this plant with strong pharmaceutical potential.
Collapse
Affiliation(s)
- Nan Deng
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Ermei Chang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Minghe Li
- College of Landscape Architecture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Jing Ji
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Xiamei Yao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Igor V. Bartish
- Department of Genetic Ecology, Institute of Botany, Academy of Sciences of the Czech RepublicPraha, Czech Republic
| | - Jianfeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Jing Ma
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
| | - Lanzhen Chen
- Institute of Apicultural Research, Chinese Academy of Agricultural SciencesBeijing, China
- Risk Assessment Laboratory for Bee Products, Quality and Safety of Ministry of AgricultureBeijing, China
| | - Zeping Jiang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- *Correspondence: Zeping Jiang
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of ForestryBeijing, China
- Shengqing Shi
| |
Collapse
|
12
|
Polyphenol Stilbenes: Molecular Mechanisms of Defence against Oxidative Stress and Aging-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:340520. [PMID: 26180583 PMCID: PMC4477219 DOI: 10.1155/2015/340520] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 01/21/2015] [Indexed: 12/13/2022]
Abstract
Numerous studies have highlighted the key roles of oxidative stress and inflammation in aging-related diseases such as obesity, type 2 diabetes, age-related macular degeneration (AMD), and Alzheimer's disease (AD). In aging cells, the natural antioxidant capacity decreases and the overall efficiency of reparative systems against cell damage becomes impaired. There is convincing data that stilbene compounds, a diverse group of natural defence phenolics, abundant in grapes, berries, and conifer bark waste, may confer a protective effect against aging-related diseases. This review highlights recent data helping to clarify the molecular mechanisms involved in the stilbene-mediated protection against oxidative stress. The impact of stilbenes on the nuclear factor-erythroid-2-related factor-2 (Nrf2) mediated cellular defence against oxidative stress as well as the potential roles of SQSTM1/p62 protein in Nrf2/Keap1 signaling and autophagy will be summarized. The therapeutic potential of stilbene compounds against the most common aging-related diseases is discussed.
Collapse
|
13
|
Resmi MS, Vivek PJ, Soniya EV. Over-expression of bael quinolone synthase in tobacco improves plant vigor under favorable conditions, drought, or salt stress. FEBS Lett 2015; 589:332-41. [PMID: 25555382 DOI: 10.1016/j.febslet.2014.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/04/2014] [Accepted: 12/04/2014] [Indexed: 12/19/2022]
Abstract
Type III polyketide synthases (PKSs) catalyze the biosynthesis of various medicinally important secondary metabolites in plants, but their role in growth and stress response is unclear. Here, we overexpressed quinolone synthase (QNS) from bael in tobacco. QNS-overexpressing plants showed an overall increase in growth, photosynthetic efficiency and chlorophyll content compared to wild type plants. Second-generation (T2) transgenic plants grew to maturity, flowered early and set viable seeds under favorable conditions without yield penalty. An increased accumulation of flavonoids, phenols and alkaloids was associated with higher tolerance to drought and salinity stress in transgenic plants. Thus, bael QNS seems to function as a positive regulator of plant growth and stress response, and could be potentially used for engineering plants tolerant to abiotic stress.
Collapse
Affiliation(s)
- Mohankumar Saraladevi Resmi
- Plant Molecular Biology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud (P.O.), Thiruvananthapuram 695 014, Kerala, India.
| | - Padmanabhan Jayanthi Vivek
- Plant Molecular Biology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud (P.O.), Thiruvananthapuram 695 014, Kerala, India.
| | - Eppurathu Vasudevan Soniya
- Plant Molecular Biology Division, Rajiv Gandhi Centre for Biotechnology, Thycaud (P.O.), Thiruvananthapuram 695 014, Kerala, India.
| |
Collapse
|
14
|
Chen HY, Babst BA, Nyamdari B, Hu H, Sykes R, Davis MF, Harding SA, Tsai CJ. Ectopic expression of a loblolly pine class II 4-coumarate:CoA ligase alters soluble phenylpropanoid metabolism but not lignin biosynthesis in Populus. PLANT & CELL PHYSIOLOGY 2014; 55:1669-78. [PMID: 25016610 DOI: 10.1093/pcp/pcu098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
4-Coumarate:CoA ligase (4CL) catalyzes the formation of hydroxycinnamoyl-CoA esters for phenylpropanoid biosynthesis. Phylogenetically distinct Class I and Class II 4CL isoforms occur in angiosperms, and support lignin and non-lignin phenylpropanoid biosynthesis, respectively. In contrast, the few experimentally characterized gymnosperm 4CLs are associated with lignin biosynthesis and belong to the conifer-specific Class III. Here we report a new Pinus taeda isoform Pinta4CL3 that is phylogenetically more closely related to Class II angiosperm 4CLs than to Class III Pinta4CL1. Like angiosperm Class II 4CLs, Pinta4CL3 transcript levels were detected in foliar and root tissues but were absent in xylem, and recombinant Pinta4CL3 exhibited a substrate preference for 4-coumaric acid. Constitutive expression of Pinta4CL3 in transgenic Populus led to significant increases of hydroxycinnamoyl-quinate esters at the expense of hydroxycinnamoyl-glucose esters in green tissues. In particular, large increases of cinnamoyl-quinate in transgenic leaves suggested in vivo utilization of cinnamic acid by Pinta4CL3. Lignin was unaffected in transgenic Populus, consistent with Pinta4CL3 involvement in biosynthesis of non-structural phenylpropanoids. We discuss the in vivo cinnamic acid utilization activity of Pinta4CL3 and its adaptive significance in conifer defense. Together with phylogenetic inference, our data support an ancient origin of Class II 4CLs that pre-dates the angiosperm-gymnosperm split.
Collapse
Affiliation(s)
- Han-Yi Chen
- School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | - Benjamin A Babst
- School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Present address: Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Batbayar Nyamdari
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Hao Hu
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Robert Sykes
- National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Mark F Davis
- National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Scott A Harding
- School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Chung-Jui Tsai
- School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
15
|
Zhu F, Han J, Liu S, Chen X, Varshney RK, Liang X. Cloning, Expression Pattern Analysis and Subcellular Localization of Resveratrol Synthase Gene in Peanut (<i>Arachis hypogaea</i> L.). ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajps.2014.524378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Gambini J, López-Grueso R, Olaso-González G, Inglés M, Abdelazid K, El Alami M, Bonet-Costa V, Borrás C, Viña J. [Resveratrol: distribution, properties and perspectives]. Rev Esp Geriatr Gerontol 2013; 48:79-88. [PMID: 23332579 DOI: 10.1016/j.regg.2012.04.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 02/02/2012] [Accepted: 04/02/2012] [Indexed: 02/02/2023]
Abstract
Resveratrol is a natural polyphenol which can be found in many plants and fruits, such as peanuts, mulberries, blueberries and, above all, in grapes and red wine. Its synthesis is regulated by the presence of stressful factors, such as fungal contamination and ultra-violet radiation. In plants, it plays a role as a phytoalexin, showing a capacity to inhibit the development of certain infections. Plant extracts which contain resveratrol have been employed by traditional medicine for more than 2000 years. Resveratrol was first isolated, and its properties were initially studied with scientific methods, thirty years ago. Its in vitro properties have been extensively studied and demonstrated. It is worth highlighting its activity as an anti-cancer agent, platelet anti-aggregation agent, anti-inflammatory, antiallergenic, etc. The activity of its in vivo properties are not so clear. There are many studies that report benefits on the cardiovascular system, illnesses such as diabetes, and in longevity. However, other authors did not find any agreement between in vitro and in vivo studies. This discrepancy is due to the bioavailability of resveratrol. After an oral dose, it has been demonstrated that the absorption is very high, but the metabolic pathways leave just a little free resveratrol in blood, therefore the bioavailability in the target tissues is very low and the concentrations used in in vitro studies are not found in these tissues. Thus, resveratrol is a very active molecule for maintaining health, but due to the low bioavailability not all the in vitro effects can be translated to in vivo. This opens a new potential approach, seeking derivatives of resveratrol that can be measured in the desired tissues.
Collapse
Affiliation(s)
- Juan Gambini
- Departamento de Fisiología, Facultad de Medicina, Universidad de Valencia, INCLIVA, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Greger H. The diversity of Stemona stilbenoids as a result of storage and fungal infection. JOURNAL OF NATURAL PRODUCTS 2012; 75:2261-2268. [PMID: 23245693 DOI: 10.1021/np300690c] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In relation to their biogenetic origin, 68 Stemona stilbenoids have been grouped into four structural types and are listed in order of increasing substitution pattern. Besides different hydroxylations and methoxylations, the rare C-methylations of the aromatic rings represent a typical chemical feature of these compounds. The formation of phenylbenzofurans constitutes another important chemical character separating Stemona species into two groups consistent with morphological and DNA data. Fungal infection leads to an increasing accumulation of stilbenes, dihydrostilbenes, and phenylbenzofurans with unsubstituted A-rings, suggesting the ecological role of these compounds as phytoalexins. Further oxygenations and methylations of both rings are interpreted as a result of aging or the drying processes. Bioautographic tests on TLC plates and germ-tube inhibition assays in microwells against four different fungi exhibited antifungal activities for almost all stilbenoids tested. Some derivatives also showed effects against yeasts and bacteria. Further activities may also be seen as dormancy-inducing factors of Stemona species occurring in periodically dry habitats. A leucotriene biosynthesis inhibition assay using 15 stilbenoids showed interesting structure-activity relationships, with more potent effects of some compounds than the commercial 5-lipoxygenase inhibitor zileuton being observed. Potential neuroprotective activities have been reported for three dihydrostilbene glucosides against 6-hydroxydopamine-induced neurotoxicity in human neuroblastoma SH-SY5Y cells.
Collapse
Affiliation(s)
- Harald Greger
- Chemodiversity Research Group, Faculty Center of Biodiversity, University of Vienna, Rennweg 14, A-1030 Wien, Austria.
| |
Collapse
|
19
|
Parage C, Tavares R, Réty S, Baltenweck-Guyot R, Poutaraud A, Renault L, Heintz D, Lugan R, Marais GA, Aubourg S, Hugueney P. Structural, functional, and evolutionary analysis of the unusually large stilbene synthase gene family in grapevine. PLANT PHYSIOLOGY 2012; 160:1407-19. [PMID: 22961129 PMCID: PMC3490603 DOI: 10.1104/pp.112.202705] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/30/2012] [Indexed: 05/04/2023]
Abstract
Stilbenes are a small family of phenylpropanoids produced in a number of unrelated plant species, including grapevine (Vitis vinifera). In addition to their participation in defense mechanisms in plants, stilbenes, such as resveratrol, display important pharmacological properties and are postulated to be involved in the health benefits associated with a moderate consumption of red wine. Stilbene synthases (STSs), which catalyze the biosynthesis of the stilbene backbone, seem to have evolved from chalcone synthases (CHSs) several times independently in stilbene-producing plants. STS genes usually form small families of two to five closely related paralogs. By contrast, the sequence of grapevine reference genome (cv PN40024) has revealed an unusually large STS gene family. Here, we combine molecular evolution and structural and functional analyses to investigate further the high number of STS genes in grapevine. Our reannotation of the STS and CHS gene families yielded 48 STS genes, including at least 32 potentially functional ones. Functional characterization of nine genes representing most of the STS gene family diversity clearly indicated that these genes do encode for proteins with STS activity. Evolutionary analysis of the STS gene family revealed that both STS and CHS evolution are dominated by purifying selection, with no evidence for strong selection for new functions among STS genes. However, we found a few sites under different selection pressures in CHS and STS sequences, whose potential functional consequences are discussed using a structural model of a typical STS from grapevine that we developed.
Collapse
Affiliation(s)
| | | | - Stéphane Réty
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1131 Santé de la Vigne et Qualité du Vin, F–68021 Colmar, France (C.P., R.B.-G., A.P., L.R., P.H.); Centre National de la Recherche Scientifique, Université Lyon 1, Unité Mixte de Recherche 5558 Laboratoire de Biométrie et Biologie Evolutive, F–69622 Villeurbanne, France (R.T., G.A.B.M.); Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1165 Unité de Recherche en Génomique Végétale, Université d’Evry-Val-d’Essonne, Equipe de Recherche Labellisée 8196 Centre National de la Recherche Scientifique, F–91057 Evry, France (S.A.); Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357 Institut de Biologie Moléculaire des Plantes, F–67084 Strasbourg, France (D.H., R.L.); Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8015 Laboratoire de Cristallographie et Résonance Magnétique Nucléaire Biologiques, Faculte de Pharmacie, Université Paris Descartes, F–75270 Paris, France (S.R.); Université de Strasbourg, F–67081 Strasbourg, France (C.P., R.B.-G., A.P., L.R., D.H., R.L., P.H.); Instituto Gulbenkian de Ciência, P–2780–156 Oeiras, Portugal (R.T., G.A.B.M.)
| | - Raymonde Baltenweck-Guyot
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1131 Santé de la Vigne et Qualité du Vin, F–68021 Colmar, France (C.P., R.B.-G., A.P., L.R., P.H.); Centre National de la Recherche Scientifique, Université Lyon 1, Unité Mixte de Recherche 5558 Laboratoire de Biométrie et Biologie Evolutive, F–69622 Villeurbanne, France (R.T., G.A.B.M.); Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1165 Unité de Recherche en Génomique Végétale, Université d’Evry-Val-d’Essonne, Equipe de Recherche Labellisée 8196 Centre National de la Recherche Scientifique, F–91057 Evry, France (S.A.); Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357 Institut de Biologie Moléculaire des Plantes, F–67084 Strasbourg, France (D.H., R.L.); Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8015 Laboratoire de Cristallographie et Résonance Magnétique Nucléaire Biologiques, Faculte de Pharmacie, Université Paris Descartes, F–75270 Paris, France (S.R.); Université de Strasbourg, F–67081 Strasbourg, France (C.P., R.B.-G., A.P., L.R., D.H., R.L., P.H.); Instituto Gulbenkian de Ciência, P–2780–156 Oeiras, Portugal (R.T., G.A.B.M.)
| | - Anne Poutaraud
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1131 Santé de la Vigne et Qualité du Vin, F–68021 Colmar, France (C.P., R.B.-G., A.P., L.R., P.H.); Centre National de la Recherche Scientifique, Université Lyon 1, Unité Mixte de Recherche 5558 Laboratoire de Biométrie et Biologie Evolutive, F–69622 Villeurbanne, France (R.T., G.A.B.M.); Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1165 Unité de Recherche en Génomique Végétale, Université d’Evry-Val-d’Essonne, Equipe de Recherche Labellisée 8196 Centre National de la Recherche Scientifique, F–91057 Evry, France (S.A.); Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357 Institut de Biologie Moléculaire des Plantes, F–67084 Strasbourg, France (D.H., R.L.); Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8015 Laboratoire de Cristallographie et Résonance Magnétique Nucléaire Biologiques, Faculte de Pharmacie, Université Paris Descartes, F–75270 Paris, France (S.R.); Université de Strasbourg, F–67081 Strasbourg, France (C.P., R.B.-G., A.P., L.R., D.H., R.L., P.H.); Instituto Gulbenkian de Ciência, P–2780–156 Oeiras, Portugal (R.T., G.A.B.M.)
| | - Lauriane Renault
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1131 Santé de la Vigne et Qualité du Vin, F–68021 Colmar, France (C.P., R.B.-G., A.P., L.R., P.H.); Centre National de la Recherche Scientifique, Université Lyon 1, Unité Mixte de Recherche 5558 Laboratoire de Biométrie et Biologie Evolutive, F–69622 Villeurbanne, France (R.T., G.A.B.M.); Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1165 Unité de Recherche en Génomique Végétale, Université d’Evry-Val-d’Essonne, Equipe de Recherche Labellisée 8196 Centre National de la Recherche Scientifique, F–91057 Evry, France (S.A.); Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357 Institut de Biologie Moléculaire des Plantes, F–67084 Strasbourg, France (D.H., R.L.); Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8015 Laboratoire de Cristallographie et Résonance Magnétique Nucléaire Biologiques, Faculte de Pharmacie, Université Paris Descartes, F–75270 Paris, France (S.R.); Université de Strasbourg, F–67081 Strasbourg, France (C.P., R.B.-G., A.P., L.R., D.H., R.L., P.H.); Instituto Gulbenkian de Ciência, P–2780–156 Oeiras, Portugal (R.T., G.A.B.M.)
| | - Dimitri Heintz
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1131 Santé de la Vigne et Qualité du Vin, F–68021 Colmar, France (C.P., R.B.-G., A.P., L.R., P.H.); Centre National de la Recherche Scientifique, Université Lyon 1, Unité Mixte de Recherche 5558 Laboratoire de Biométrie et Biologie Evolutive, F–69622 Villeurbanne, France (R.T., G.A.B.M.); Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1165 Unité de Recherche en Génomique Végétale, Université d’Evry-Val-d’Essonne, Equipe de Recherche Labellisée 8196 Centre National de la Recherche Scientifique, F–91057 Evry, France (S.A.); Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357 Institut de Biologie Moléculaire des Plantes, F–67084 Strasbourg, France (D.H., R.L.); Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8015 Laboratoire de Cristallographie et Résonance Magnétique Nucléaire Biologiques, Faculte de Pharmacie, Université Paris Descartes, F–75270 Paris, France (S.R.); Université de Strasbourg, F–67081 Strasbourg, France (C.P., R.B.-G., A.P., L.R., D.H., R.L., P.H.); Instituto Gulbenkian de Ciência, P–2780–156 Oeiras, Portugal (R.T., G.A.B.M.)
| | - Raphaël Lugan
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1131 Santé de la Vigne et Qualité du Vin, F–68021 Colmar, France (C.P., R.B.-G., A.P., L.R., P.H.); Centre National de la Recherche Scientifique, Université Lyon 1, Unité Mixte de Recherche 5558 Laboratoire de Biométrie et Biologie Evolutive, F–69622 Villeurbanne, France (R.T., G.A.B.M.); Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1165 Unité de Recherche en Génomique Végétale, Université d’Evry-Val-d’Essonne, Equipe de Recherche Labellisée 8196 Centre National de la Recherche Scientifique, F–91057 Evry, France (S.A.); Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357 Institut de Biologie Moléculaire des Plantes, F–67084 Strasbourg, France (D.H., R.L.); Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8015 Laboratoire de Cristallographie et Résonance Magnétique Nucléaire Biologiques, Faculte de Pharmacie, Université Paris Descartes, F–75270 Paris, France (S.R.); Université de Strasbourg, F–67081 Strasbourg, France (C.P., R.B.-G., A.P., L.R., D.H., R.L., P.H.); Instituto Gulbenkian de Ciência, P–2780–156 Oeiras, Portugal (R.T., G.A.B.M.)
| | - Gabriel A.B. Marais
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1131 Santé de la Vigne et Qualité du Vin, F–68021 Colmar, France (C.P., R.B.-G., A.P., L.R., P.H.); Centre National de la Recherche Scientifique, Université Lyon 1, Unité Mixte de Recherche 5558 Laboratoire de Biométrie et Biologie Evolutive, F–69622 Villeurbanne, France (R.T., G.A.B.M.); Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1165 Unité de Recherche en Génomique Végétale, Université d’Evry-Val-d’Essonne, Equipe de Recherche Labellisée 8196 Centre National de la Recherche Scientifique, F–91057 Evry, France (S.A.); Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357 Institut de Biologie Moléculaire des Plantes, F–67084 Strasbourg, France (D.H., R.L.); Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8015 Laboratoire de Cristallographie et Résonance Magnétique Nucléaire Biologiques, Faculte de Pharmacie, Université Paris Descartes, F–75270 Paris, France (S.R.); Université de Strasbourg, F–67081 Strasbourg, France (C.P., R.B.-G., A.P., L.R., D.H., R.L., P.H.); Instituto Gulbenkian de Ciência, P–2780–156 Oeiras, Portugal (R.T., G.A.B.M.)
| | - Sébastien Aubourg
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1131 Santé de la Vigne et Qualité du Vin, F–68021 Colmar, France (C.P., R.B.-G., A.P., L.R., P.H.); Centre National de la Recherche Scientifique, Université Lyon 1, Unité Mixte de Recherche 5558 Laboratoire de Biométrie et Biologie Evolutive, F–69622 Villeurbanne, France (R.T., G.A.B.M.); Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1165 Unité de Recherche en Génomique Végétale, Université d’Evry-Val-d’Essonne, Equipe de Recherche Labellisée 8196 Centre National de la Recherche Scientifique, F–91057 Evry, France (S.A.); Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357 Institut de Biologie Moléculaire des Plantes, F–67084 Strasbourg, France (D.H., R.L.); Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8015 Laboratoire de Cristallographie et Résonance Magnétique Nucléaire Biologiques, Faculte de Pharmacie, Université Paris Descartes, F–75270 Paris, France (S.R.); Université de Strasbourg, F–67081 Strasbourg, France (C.P., R.B.-G., A.P., L.R., D.H., R.L., P.H.); Instituto Gulbenkian de Ciência, P–2780–156 Oeiras, Portugal (R.T., G.A.B.M.)
| | - Philippe Hugueney
- Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1131 Santé de la Vigne et Qualité du Vin, F–68021 Colmar, France (C.P., R.B.-G., A.P., L.R., P.H.); Centre National de la Recherche Scientifique, Université Lyon 1, Unité Mixte de Recherche 5558 Laboratoire de Biométrie et Biologie Evolutive, F–69622 Villeurbanne, France (R.T., G.A.B.M.); Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1165 Unité de Recherche en Génomique Végétale, Université d’Evry-Val-d’Essonne, Equipe de Recherche Labellisée 8196 Centre National de la Recherche Scientifique, F–91057 Evry, France (S.A.); Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357 Institut de Biologie Moléculaire des Plantes, F–67084 Strasbourg, France (D.H., R.L.); Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8015 Laboratoire de Cristallographie et Résonance Magnétique Nucléaire Biologiques, Faculte de Pharmacie, Université Paris Descartes, F–75270 Paris, France (S.R.); Université de Strasbourg, F–67081 Strasbourg, France (C.P., R.B.-G., A.P., L.R., D.H., R.L., P.H.); Instituto Gulbenkian de Ciência, P–2780–156 Oeiras, Portugal (R.T., G.A.B.M.)
| |
Collapse
|
20
|
Großkinsky DK, van der Graaff E, Roitsch T. Phytoalexin transgenics in crop protection--fairy tale with a happy end? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 195:54-70. [PMID: 22920999 DOI: 10.1016/j.plantsci.2012.06.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Revised: 06/14/2012] [Accepted: 06/14/2012] [Indexed: 05/19/2023]
Abstract
Phytoalexins are pathogen induced low molecular weight compounds with antimicrobial activities derived from secondary metabolism. Following their identification, phytoalexins were directly incorporated into the network of plant defense responses. Due to their heterogeneity, the metabolic pathways involved in phytoalexin formation and in particular the regulatory mechanisms remained elusive. Consequently, research focus shifted to the characterization of other components of plant immunity such as defense signaling and resistance mechanisms, including components of systemic acquired and induced systemic resistance, effector and pathogen-associated molecular pattern triggered immunity as well as R-gene resistance. Despite the obtained knowledge on these immunity mechanisms, genetic engineering employing these mechanisms and classical breeding reached too low improvements in crop protection, probably because classical breeding focused on yield performance and taste, rather than pathogen resistance. The increasing demand for disease resistant crop species and the aim to reduce pesticide application therefore requires alternative approaches. Recent advances in the understanding of phytoalexin function, biosynthesis and regulation, in combination with novel methods of molecular engineering and advances in instrumental analysis, returned attention to phytoalexins as a potent target for improving crop protection. Based on this, the advantages as well as potential bottlenecks for molecular approaches of modulating inducible phytoalexins to improve crop protection are discussed.
Collapse
Affiliation(s)
- Dominik K Großkinsky
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, Schubertstraße 51, 8010 Graz, Austria.
| | | | | |
Collapse
|
21
|
Metabolic engineering of yeast and plants for the production of the biologically active hydroxystilbene, resveratrol. J Biomed Biotechnol 2012; 2012:579089. [PMID: 22654481 PMCID: PMC3359829 DOI: 10.1155/2012/579089] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Accepted: 03/04/2012] [Indexed: 02/06/2023] Open
Abstract
Resveratrol, a stilbenic compound deriving from the phenyalanine/polymalonate route, being stilbene synthase the last and key enzyme of this pathway, recently has become the focus of a number of studies in medicine and plant physiology. Increased demand for this molecule for nutraceutical, cosmetic and possibly pharmaceutic uses, makes its production a necessity. In this context, the use of biotechnology through recombinant microorganisms and plants is particularly promising. Interesting results can indeed arise from the potential of genetically modified microorganisms as an alternative mechanism for producing resveratrol. Strategies used to tailoring yeast as they do not possess the genes that encode for the resveratrol pathway, will be described. On the other hand, most interest has centered in recent years, on STS gene transfer experiments from various origins to the genome of numerous plants. This work also presents a comprehensive review on plant molecular engineering with the STS gene, resulting in disease resistance against microorganisms and the enhancement of the antioxidant activities of several fruits in transgenic lines.
Collapse
|
22
|
Theocharis A, Bordiec S, Fernandez O, Paquis S, Dhondt-Cordelier S, Baillieul F, Clément C, Barka EA. Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low nonfreezing temperatures. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:241-9. [PMID: 21942451 DOI: 10.1094/mpmi-05-11-0124] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Several endophytic bacteria reportedly induce resistance to biotic stress and abiotic stress tolerance in several plant species. Burkholderia phytofirmans PsJN is a plant-growth-promoting rhizobacterium (PGPR) that is able to colonize grapevine tissues and induce resistance to gray mold. Further, PsJN induces physiological changes that increase grapevine tolerance to low nonfreezing temperatures. To better understand how bacteria induced the observed phenomena, stress-related gene expression and metabolite accumulation were monitored in 6-week-old Chardonnay grapevine plantlets after exposure to low nonfreezing temperatures. Under normal conditions (26°C), plantlet bacterization had no significant effect on the monitored parameters. By contrast, at 4°C, both stress-related gene transcripts and metabolite levels increased earlier and faster, and reached higher levels in PsJN-bacterized plantlets than in nonbacterized counterparts, in accordance with priming phenomena. The recorded changes may be correlated with the tolerance to cold stress conferred by the presence of PsJN. This is the first time that PGPR-induced priming has been shown to protect plants against low-temperature stress. Moreover, 1 week after cold exposure, levels of stress-related metabolites had declined more in PsJN-bacterized plants, suggesting that the endophyte is involved in the cold acclimation process via the scavenging system.
Collapse
Affiliation(s)
- Andreas Theocharis
- Universite de Reims Champagne-Ardenne, Unite de Recherche Vignes et Vins de Champagne, Reims Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
|
24
|
Hammerbacher A, Ralph SG, Bohlmann J, Fenning TM, Gershenzon J, Schmidt A. Biosynthesis of the major tetrahydroxystilbenes in spruce, astringin and isorhapontin, proceeds via resveratrol and is enhanced by fungal infection. PLANT PHYSIOLOGY 2011; 157:876-90. [PMID: 21865488 PMCID: PMC3192583 DOI: 10.1104/pp.111.181420] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Stilbenes are dibenzyl polyphenolic compounds produced in several unrelated plant families that appear to protect against various biotic and abiotic stresses. Stilbene biosynthesis has been well described in economically important plants, such as grape (Vitis vinifera), peanut (Arachis hypogaea), and pine (Pinus species). However, very little is known about the biosynthesis and ecological role of stilbenes in spruce (Picea), an important gymnosperm tree genus in temperate and boreal forests. To investigate the biosynthesis of stilbenes in spruce, we identified two similar stilbene synthase (STS) genes in Norway spruce (Picea abies), PaSTS1 and PaSTS2, which had orthologs with high sequence identity in sitka (Picea sitchensis) and white (Picea glauca) spruce. Despite the conservation of STS sequences in these three spruce species, they differed substantially from angiosperm STSs. Several types of in vitro and in vivo assays revealed that the P. abies STSs catalyze the condensation of p-coumaroyl-coenzyme A and three molecules of malonyl-coenzyme A to yield the trihydroxystilbene resveratrol but do not directly form the dominant spruce stilbenes, which are tetrahydroxylated. However, in transgenic Norway spruce overexpressing PaSTS1, significantly higher amounts of the tetrahydroxystilbene glycosides, astringin and isorhapontin, were produced. This result suggests that the first step of stilbene biosynthesis in spruce is the formation of resveratrol, which is further modified by hydroxylation, O-methylation, and O-glucosylation to yield astringin and isorhapontin. Inoculating spruce with fungal mycelium increased STS transcript abundance and tetrahydroxystilbene glycoside production. Extracts from STS-overexpressing lines significantly inhibited fungal growth in vitro compared with extracts from control lines, suggesting that spruce stilbenes have a role in antifungal defense.
Collapse
Affiliation(s)
- Almuth Hammerbacher
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Xu W, Yu Y, Zhou Q, Ding J, Dai L, Xie X, Xu Y, Zhang C, Wang Y. Expression pattern, genomic structure, and promoter analysis of the gene encoding stilbene synthase from Chinese wild Vitis pseudoreticulata. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2745-61. [PMID: 21504880 DOI: 10.1093/jxb/erq447] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The gene encoding stilbene synthase (STS) plays a central role in many biochemical and physiological actions, and its metabolite resveratrol possesses broad-spectrum resistance to pathogens, as well as diverse pharmacological properties, notably an anticancer effect. Here, we report the expression analysis of the gene encoding STS and its promoter function from a powdery mildew (PM)-resistant Chinese wild Vitis pseudoreticulata, and compare it with two PM-susceptible cultivated grapevines, Vitis vinifera cvs. Carignane and Thompson Seedless. We show an unusual expression pattern of STS in V. pseudoreticulata, which differs markedly from that of the cultivated species. Sequence comparisons reveal that the genomic DNA sequences encoding STS in the three grapevines are highly conserved, but a novel residue mutation within the key motif of STS is solely present in V. pseudoreticulata. Moreover, the STS promoter in V. pseudoreticulata displays a significantly different structure from that found in the two V. vinifera. The three promoter-driven GUS differential expression patterns in transformed tobacco plants induced with Alternaria alternata, methyl jasmonate, and wounding indicated that the structurally different STS promoter of V. pseudoreticulata is responsible for its specific regulatory function. We also demonstrate that the expression of STS genes from their native promoters are functional in transformed tobacco and retain pathogen inducibility. Importantly, the genomic DNA-2 of V. pseudoreticulata under its native promoter shows good induction and the maximum level of resveratrol content. These findings further our understanding of the regulation of STS expression in a resistant grapevine and provide a new pathogen-inducible promoter system for the genetic improvement of plant disease resistance.
Collapse
Affiliation(s)
- Weirong Xu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Flores-Sanchez IJ, Linthorst HJM, Verpoorte R. In silicio expression analysis of PKS genes isolated from Cannabis sativa L. Genet Mol Biol 2010; 33:703-13. [PMID: 21637580 PMCID: PMC3036156 DOI: 10.1590/s1415-47572010005000088] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Accepted: 04/22/2010] [Indexed: 12/21/2022] Open
Abstract
Cannabinoids, flavonoids, and stilbenoids have been identified in the annual dioecious plant Cannabis sativa L. Of these, the cannabinoids are the best known group of this plant's natural products. Polyketide synthases (PKSs) are responsible for the biosynthesis of diverse secondary metabolites, including flavonoids and stilbenoids. Biosynthetically, the cannabinoids are polyketide substituted with terpenoid moiety. Using an RT-PCR homology search, PKS cDNAs were isolated from cannabis plants. The deduced amino acid sequences showed 51%-73% identity to other CHS/STS type sequences of the PKS family. Further, phylogenetic analysis revealed that these PKS cDNAs grouped with other non-chalcone-producing PKSs. Homology modeling analysis of these cannabis PKSs predicts a 3D overall fold, similar to alfalfa CHS2, with small steric differences on the residues that shape the active site of the cannabis PKSs.
Collapse
Affiliation(s)
- Isvett J Flores-Sanchez
- Gorlaeus Laboratories, Pharmacognosy Department/Metabolomics, Institute of Biology Leiden, Leiden University, Leiden The Netherlands
| | | | | |
Collapse
|
27
|
Hooper PL, Hooper PL, Tytell M, Vígh L. Xenohormesis: health benefits from an eon of plant stress response evolution. Cell Stress Chaperones 2010; 15:761-70. [PMID: 20524162 PMCID: PMC3024065 DOI: 10.1007/s12192-010-0206-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 05/17/2010] [Accepted: 05/18/2010] [Indexed: 02/07/2023] Open
Abstract
Xenohormesis is a biological principle that explains how environmentally stressed plants produce bioactive compounds that can confer stress resistance and survival benefits to animals that consume them. Animals can piggyback off products of plants' sophisticated stress response which has evolved as a result of their stationary lifestyle. Factors eliciting the plant stress response can judiciously be employed to maximize yield of health-promoting plant compounds. The xenohormetic plant compounds can, when ingested, improve longevity and fitness by activating the animal's cellular stress response and can be applied in drug discovery, drug production, and nutritional enhancement of diet.
Collapse
Affiliation(s)
- Philip L. Hooper
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Denver, School of Medicine, Aurora, CO USA
- P.O. Box 245, Glen Haven, CO 80532 USA
| | - Paul L. Hooper
- Department of Anthropology and Program in Interdisciplinary Biological and Biomedical Sciences, University of New Mexico, Albuquerque, NM USA
| | - Michael Tytell
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC USA
| | - Lászlo Vígh
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
28
|
Jeandet P, Delaunois B, Conreux A, Donnez D, Nuzzo V, Cordelier S, Clément C, Courot E. Biosynthesis, metabolism, molecular engineering, and biological functions of stilbene phytoalexins in plants. Biofactors 2010; 36:331-41. [PMID: 20726013 DOI: 10.1002/biof.108] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Stilbenic compounds recently have become the focus of a number of studies in medicine and plant physiology as well as have emerged as promising molecules that potentially affect human health. Stilbenes are relatively simple compounds synthesized by plants and deriving from the phenyalanine/polymalonate route, the last and key enzyme of this pathway being stilbene synthase. Here, we review the biological significance of stilbenes in plants together with their biosynthesis pathway and their metabolism both by fungi and in planta. Special attention will be paid to the role of stilbenic molecules as phytoalexins.
Collapse
|
29
|
Jia Z, Sun Y, Yuan L, Tian Q, Luo K. The chitinase gene (Bbchit1) from Beauveria bassiana enhances resistance to Cytospora chrysosperma in Populus tomentosa Carr. Biotechnol Lett 2010; 32:1325-32. [PMID: 20464449 DOI: 10.1007/s10529-010-0297-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
Abstract
The Chinese white poplar (Populus tomentosa Carr.) is susceptible to infection by plant diseases which severely affect its growth and substantially decrease its economic value. A chitinase gene (Bbchit1) from Beauveria bassiana was introduced into Chinese white poplar (Populus tomentosa Carr.) by Agrobacterium-mediated transformation. The T-DNA of plant transformation vector contained the beta-glucuronidase reporter gene (GUS) under the control of CaMV 35S promoter and the neomycin phosphotransferase selection marker gene (NPTII) driven by the nos promoter. GUS activity was detected in most of the kanamycin-resistant plants tested. Stable integration of transgenes in the plant genome was confirmed using PCR. RT-PCR analysis showed that the Bbchit1 gene was transcribed in the transformed plants. When evaluated for resistance to poplar fungal pathogens with an in vitro assay, crude extracts from leaves and shoots of transgenic lines were inhibitory against the pathogenic fungus Cytospora chrysosperma (Pers.) Fr. Similarly, Bbchit1 overexpression enhanced disease resistance to C. chrysosperma in the transformed poplar plants, indicating that is gene is potentially useful to protect the trees against fungal diseases.
Collapse
Affiliation(s)
- Zhichun Jia
- State Key Laboratory of Eco-Environment and Bio-Resource of Three Gorges Reservoir Region, Key Laboratory of Eco-Environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, 1 Tiansheng Road, Beibei, Chongqing 400715, China
| | | | | | | | | |
Collapse
|
30
|
Shin H, Lee H, Woo KS, Noh EW, Koo YB, Lee KJ. Identification of genes upregulated by pinewood nematode inoculation in Japanese red pine. TREE PHYSIOLOGY 2009; 29:411-21. [PMID: 19203959 DOI: 10.1093/treephys/tpn034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pine wilt disease caused by the pinewood nematode (PWN), Bursaphelenchus xylophilus (Steiner et Buhrer) Nickle, has destroyed huge areas of pine forest in East Asia, including Japan, China and Korea. No protection against PWN has been developed, and the responses of pine trees at the molecular level are unrecorded. We isolated and analyzed upregulated or newly induced genes from PWN-inoculated Japanese red pine (Pinus densiflora Sieb. et Zucc.) by using an annealing control primer system and suppression subtractive hybridization. Significant changes occurred in the transcript abundance of genes with functions related to defense, secondary metabolism and transcription, as the disease progressed. Other gene transcripts encoding pathogenesis-related proteins, pinosylvin synthases and metallothioneins were also more abundant in PWN-inoculated trees than in non-inoculated trees. Our report provides fundamental information on the molecular mechanisms controlling the biochemical and physiological responses of Japanese red pine trees to PWN invasion.
Collapse
Affiliation(s)
- Hanna Shin
- Department of Forest Genetic Resources, Korea Forest Research Institute, Suwon 441-350, Korea.
| | | | | | | | | | | |
Collapse
|
31
|
Delaunois B, Cordelier S, Conreux A, Clément C, Jeandet P. Molecular engineering of resveratrol in plants. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:2-12. [PMID: 19021877 DOI: 10.1111/j.1467-7652.2008.00377.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The grapevine phytoalexin resveratrol, the synthesis of which is achieved by stilbene synthase (STS), displays a wide range of biological effects. Most interest has centred, in recent years, on STS gene transfer experiments from grapevine to the genome of numerous plants. This work presents a comprehensive review on plant molecular engineering with the STS gene. Gene and promoter options are discussed, namely the different promoters used to drive the transgene, as well as the enhancer elements and/or heterologous promoters used to improve transcriptional activity in the transformed lines. Factors modifying transgene expression and epigenetic modifications, for instance transgene copy number, are also presented. Resveratrol synthesis in plants, together with that of its glucoside as a result of STS expression, is described, as is the incidence of these compounds on plant metabolism and development. The ectopic production of resveratrol can lead to broad-spectrum resistance against fungi in transgenic lines, and to the enhancement of the antioxidant activities of several fruits, highlighting the potential role of this compound in health promotion and plant disease control.
Collapse
Affiliation(s)
- Bertrand Delaunois
- Laboratory of Oenology and Applied Chemistry, Research Unit 'Vines and Wines of Champagne-Stress and Environment', UPRES EA 2069, Faculty of Sciences, University of Reims, PO Box 1039, 51687 Reims cedex 02, France
| | | | | | | | | |
Collapse
|
32
|
Wang W, Wan SB, Zhang P, Wang HL, Zhan JC, Huang WD. Prokaryotic expression, polyclonal antibody preparation of the stilbene synthase gene from grape berry and its different expression in fruit development and under heat acclimation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:1085-92. [PMID: 18762429 DOI: 10.1016/j.plaphy.2008.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 07/10/2008] [Accepted: 07/14/2008] [Indexed: 05/01/2023]
Abstract
Stilbene synthase (STS, EC 2.3.1.95) leads to the production of resveratrol compounds, which are major components of the phytoalexin response against fungal pathogens of the plant and are highly bioactive substances of pharmaceutical interest. STS expression and regulation are important. Temperature is one of the main external factors affecting phytoalexin accumulation in plant tissues, the effect of temperature on resveratrol synthesis and stilbene synthase expression in grape berries has not been reported before. Here we cloned the full-length sts cDNA with 1179bp from grape berry via PCR, and then introduced into an expressed plasmid pET-30a(+) vector at the EcoRI and XhoI restriction sites. With the isopropyl-beta-d-thiogalactoside (IPTG) induced, the pET-sts was highly expressed in Escherichia coli BL21 (DE3) pLysS cells. A fusion protein with the His-Tag was purified by Ni-NTA His.Bind Resin and then used as the antigen to immunize a New Zealand rabbit. Furthermore, the antiserum was precipitated by 50% saturated ammonium sulfate and DEAE-Sephadex A-50 chromatography to obtain the immunoglobulin G (IgG) fraction. These results provide a substantial basis for the further studies of the STS in grape berry as well as in other species of plants. The sts expression in fruit development and in response to heat acclimation was then assayed. The results indicated STS was regulated in fruits depending on the developmental stage and significantly accumulation of STS mRNA and synthesis of new STS protein during the early of heat acclimation, this work offers an important basis for further investigating the mechanism of post-harvest fruit adaptation to environmental stresses.
Collapse
Affiliation(s)
- Wei Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Qinghua East Road 17th, Beijing 100083, China
| | | | | | | | | | | |
Collapse
|
33
|
Cairney J, Pullman GS. The cellular and molecular biology of conifer embryogenesis. THE NEW PHYTOLOGIST 2007; 176:511-536. [PMID: 17953539 DOI: 10.1111/j.1469-8137.2007.02239.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Gymnosperms and angiosperms are thought to have evolved from a common ancestor c. 300 million yr ago. The manner in which gymnosperms and angiosperms form seeds has diverged and, although broad similarities are evident, the anatomy and cell and molecular biology of embryogenesis in gymnosperms, such as the coniferous trees pine, spruce and fir, differ significantly from those in the most widely studied model angiosperm Arabidopsis thaliana. Molecular analysis of signaling pathways and processes such as programmed cell death and embryo maturation indicates that many developmental pathways are conserved between angiosperms and gymnosperms. Recent genomics research reveals that almost 30% of mRNAs found in developing pine embryos are absent from other conifer expressed sequence tag (EST) collections. These data show that the conifer embryo differs markedly from other gymnosperm tissues studied to date in terms of the range of genes transcribed. Approximately 72% of conifer embryo-expressed genes are found in the Arabidopsis proteome and conifer embryos contain mRNAs of very similar sequence to key genes that regulate seed development in Arabidopsis. However, 1388 loblolly pine (Pinus taeda) embryo ESTs (11.4% of the collection) are novel and, to date, have been found in no other plant. The data imply that, in gymnosperm embryogenesis, differences in structure and development are achieved by subtle molecular interactions, control of spatial and temporal gene expression and the regulating agency of a few unique proteins.
Collapse
Affiliation(s)
- John Cairney
- School of Biology and Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th Street, Atlanta GA 30318, USA
| | - Gerald S Pullman
- School of Biology and Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th Street, Atlanta GA 30318, USA
| |
Collapse
|
34
|
Jiménez JB, Orea JM, Ureña AG, Escribano P, Osa PLDL, Guadarrama A. Short anoxic treatments to enhance trans-resveratrol content in grapes and wine. Eur Food Res Technol 2006. [DOI: 10.1007/s00217-006-0329-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
35
|
Yu CKY, Springob K, Schmidt J, Nicholson RL, Chu IK, Yip WK, Lo C. A stilbene synthase gene (SbSTS1) is involved in host and nonhost defense responses in sorghum. PLANT PHYSIOLOGY 2005; 138:393-401. [PMID: 15821144 PMCID: PMC1104192 DOI: 10.1104/pp.105.059337] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Revised: 02/01/2005] [Accepted: 02/01/2005] [Indexed: 05/18/2023]
Abstract
A chalcone synthase (CHS)-like gene, SbCHS8, with high expressed sequence tag abundance in a pathogen-induced cDNA library, was identified previously in sorghum (Sorghum bicolor). Genomic Southern analysis revealed that SbCHS8 represents a single-copy gene. SbCHS8 expression was induced in sorghum mesocotyls following inoculation with Cochliobolus heterotrophus and Colletotrichum sublineolum, corresponding to nonhost and host defense responses, respectively. However, the induction was delayed by approximately 24 h when compared to the expression of at least one of the other SbCHS genes. In addition, SbCHS8 expression was not induced by light and did not occur in a tissue-specific manner. SbCHS8, together with SbCHS2, was overexpressed in transgenic Arabidopsis (Arabidopsis thaliana) tt4 (transparent testa) mutants defective in CHS activities. SbCHS2 rescued the ability of these mutants to accumulate flavonoids in seed coats and seedlings. In contrast, SbCHS8 failed to complement the mutation, suggesting that the encoded enzyme does not function as a CHS. To elucidate their biochemical functions, recombinant proteins were assayed with different phenylpropanoid-Coenzyme A esters. Flavanones and stilbenes were detected in the reaction products of SbCHS2 and SbCHS8, respectively. Taken together, our data demonstrated that SbCHS2 encodes a typical CHS that synthesizes naringenin chalcone, which is necessary for the formation of different flavonoid metabolites. On the other hand, SbCHS8, now retermed SbSTS1, encodes an enzyme with stilbene synthase activity, suggesting that sorghum accumulates stilbene-derived defense metabolites in addition to the well-characterized 3-deoxyanthocyanidin phytoalexins.
Collapse
|
36
|
Morse AM, Nelson CD, Covert SF, Holliday AG, Smith KE, Davis JM. Pine genes regulated by the necrotrophic pathogen Fusarium circinatum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2004; 109:922-32. [PMID: 15221139 DOI: 10.1007/s00122-004-1719-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A targeted genomics approach was used to construct a cDNA array of potential pathogen-regulated genes for investigating host-pathogen interactions in pine trees (Pinus species). This array, containing a nonredundant set of 311 cDNAs, was assembled by combining smaller sets of cDNAs generated by differential display or suppression subtraction hybridization using a variety of pathogen treatments and elicitors. The array was probed to identify host genes regulated by Fusarium circinatum, a necrotrophic fungus that incited pitch canker disease on pine stems. A set of 29 cDNAs were induced during the disease state. Notably, cDNAs on the array that were derived from experiments with fusiform rust, incited by Cronartium quercuum f. sp. fusiforme (a biotrophic fungus) were unregulated by Fusarium. the results imply distinct genetic responses in pine to diseases incited by necrotrophs and biotrophs. This cDNA collection expands the genomics toolkit for understanding interactions between conifers and their microbial associates in forest ecosystems.
Collapse
Affiliation(s)
- Alison M Morse
- School of Forest Resources and Conservation, University of Florida, Gainesville 32611, USA
| | | | | | | | | | | |
Collapse
|
37
|
Rimando AM, Kalt W, Magee JB, Dewey J, Ballington JR. Resveratrol, pterostilbene, and piceatannol in vaccinium berries. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2004; 52:4713-9. [PMID: 15264904 DOI: 10.1021/jf040095e] [Citation(s) in RCA: 378] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A study was conducted to determine the presence of resveratrol, pterostilbene, and piceatannol in Vaccinium berries. Samples representing selections and cultivars of 10 species from Mississippi, North Carolina, Oregon, and Canada were analyzed by gas chromatography/mass spectrometry. Resveratrol was found in Vaccinium angustifolium (lowbush blueberry), Vaccinium arboretum (sparkleberry), Vaccinium ashei (rabbiteye blueberry), Vaccinium corymbosum (highbush blueberry), Vaccinium elliottii (Elliott's blueberry), Vaccinium macrocarpon (cranberry), Vaccinium myrtillus (bilberry), Vaccinium stamineum (deerberry), Vaccinium vitis-ideae var. vitis-ideae (lingonberry), and Vaccinium vitis-ideae var. minor (partridgeberry) at levels between 7 and 5884 ng/g dry sample. Lingonberry was found to have the highest content, 5884 ng/g dry sample, comparable to that found in grapes, 6471 ng/g dry sample. Pterostilbene was found in two cultivars of V. ashei and in V. stamineum at levels of 99-520 ng/g dry sample. Piceatannol was found in V. corymbosum and V. stamineum at levels of 138-422 ng/g dry sample. These naturally occurring stilbenes, known to be strong antioxidants and to have cancer chemopreventive activities, will add to the purported health benefits derived from the consumption of these small fruits.
Collapse
Affiliation(s)
- Agnes M Rimando
- Natural Products Utilization Research Unit, ARS, U.S. Department of Agriculture, P.O. Box 8048, University, Mississippi 38677, Agriculture and Agri-Food Canada, Kentville, Nova Scotia B4N 1J5, Canada.
| | | | | | | | | |
Collapse
|
38
|
Jeandet P, Douillet-Breuil AC, Bessis R, Debord S, Sbaghi M, Adrian M. Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2002; 50:2731-41. [PMID: 11982391 DOI: 10.1021/jf011429s] [Citation(s) in RCA: 344] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Resistance of plants to infection by phytopathogenic microorganisms is the result of multiple defense reactions comprising both constitutive and inducible barriers. In grapevine, the most frequently observed and best characterized defense mechanisms are the accumulation of phytoalexins and the synthesis of PR-proteins. Particular attention has been given here to stilbene phytoalexins produced by Vitaceae, specifically, their pathway of biosynthesis (including stilbene phytoalexin gene transfer experiments to other plants) and their biological activity together with fungal metabolism.
Collapse
Affiliation(s)
- Philippe Jeandet
- Laboratoire d'Oenologie, URVVC, UPRES EA 2069, Faculté des Sciences, Université de Reims, B.P. 1039, 51687 Reims Cedex 02, France.
| | | | | | | | | | | |
Collapse
|
39
|
Davis JM, Wu H, Cooke JEK, Reed JM, Luce KS, Michler CH. Pathogen challenge, salicylic acid, and jasmonic acid regulate expression of chitinase gene homologs in pine. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:380-7. [PMID: 12026177 DOI: 10.1094/mpmi.2002.15.4.380] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To better understand the molecular regulation of defense responses in members of the genus Pinus, we tested the expression of various chitinase homologs in response to pathogen-associated signals. PSCHI4, a putative extracellular class II chitinase, was secreted into liquid medium by pine cells and was also secreted by transgenic tobacco cells that ectopically expressed pschi4. Extracellular proteins of pine were separated by isoelectric focusing; PSCHI4 was not associated with fractions containing detectable beta-N-acetylglucosaminidase or lysozyme activities. However, other fractions contained enzyme activities that increased markedly after elicitor treatment. The pschi4 transcript and protein accumulated in pine seedlings challenged with the necrotrophic pathogen Fusarium subglutinans f. sp. pini, with the protein reaching detectable levels in susceptible seedlings concomitant with the onset of visible disease symptoms. Additional chitinase transcripts, assigned to classes I and IV based on primary sequence analysis, were also induced by pathogen challenge. Jasmonic acid induced class I and class IV but not class II chitinase, whereas salicylic acid induced all three classes of chitinase. These results show that multiple chitinase homologs are induced after challenge by a necrotrophic pathogen and by potential signaling molecules identified in angiosperms. This suggests the potential importance of de novo pathogenesis-related (PR) gene expression in pathogen defense responses of pine trees.
Collapse
Affiliation(s)
- John M Davis
- School of Forest Resources and Conservation, and Plant Molecular and Cellular Biology Program, University of Florida, Gainesville 32611, USA.
| | | | | | | | | | | |
Collapse
|