1
|
Sokhi S, Lewis CW, Bukhari AB, Hadfield J, Xiao EJ, Fung J, Yoon YJ, Hsu WH, Gamper AM, Chan GK. Myt1 overexpression mediates resistance to cell cycle and DNA damage checkpoint kinase inhibitors. Front Cell Dev Biol 2023; 11:1270542. [PMID: 38020882 PMCID: PMC10652759 DOI: 10.3389/fcell.2023.1270542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Cell cycle checkpoint kinases serve as important therapeutic targets for various cancers. When they are inhibited by small molecules, checkpoint abrogation can induce cell death or further sensitize cancer cells to other genotoxic therapies. Particularly aberrant Cdk1 activation at the G2/M checkpoint by kinase inhibitors causing unscheduled mitotic entry and mitotic arrest was found to lead to DNA damage and cell death selectively in cancer cells. Promising drugs inhibiting kinases like Wee1 (Adavosertib), Wee1+Myt1 (PD166285), ATR (AZD6738) and Chk1 (UCN-01) have been developed, but clinical data has shown variable efficacy for them with poorly understood mechanisms of resistance. Our lab recently identified Myt1 as a predictive biomarker of acquired resistance to the Wee1 kinase inhibitor, Adavosertib. Here, we investigate the role of Myt1 overexpression in promoting resistance to inhibitors (PD166285, UCN-01 and AZD6738) of other kinases regulating cell cycle progression. We demonstrate that Myt1 confers resistance by compensating Cdk1 inhibition in the presence of these different kinase inhibitors. Myt1 overexpression leads to reduced premature mitotic entry and decreased length of mitosis eventually leading to increased survival rates in Adavosertib treated cells. Elevated Myt1 levels also conferred resistance to inhibitors of ATR or Chk1 inhibitor. Our data supports that Myt1 overexpression is a common mechanism by which cancer cells can acquire resistance to a variety of drugs entering the clinic that aim to induce mitotic catastrophe by abrogating the G2/M checkpoint.
Collapse
Affiliation(s)
- Sargun Sokhi
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Cody W. Lewis
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Amirali B. Bukhari
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Joanne Hadfield
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Edric J. Xiao
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Jeremy Fung
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
| | - Yea Jin Yoon
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
| | - Wen-Hsin Hsu
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Armin M. Gamper
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| | - Gordon K. Chan
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Experimental Oncology, Cross Cancer Institute, Edmonton, AB, Canada
- Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
2
|
Niu Y, Guo X, Han W, Han X, Li K, Tian S, Zhu Y, Bai D, Chen Q. A Combination of EGFR Inhibitors and AE-PDT Could Synergistically Suppress Breast Cancer Progression. Anticancer Agents Med Chem 2023; 23:2135-2145. [PMID: 37990592 DOI: 10.2174/1871520623666230908145748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Breast cancer is the most frequently diagnosed malignancy and the leading cause of cancerrelated deaths in women. Activation of EGFR by EC-secreted EGFR ligands promotes breast cancer progression. Current treatments provide limited benefits in triple-negative breast cancer (TNBC). Photodynamic therapy (PDT) has been proven effective for the treatment of TNBC through the EGFR pathway, but the underlying mechanism is still unclear. PURPOSE The purpose of this study was to determine the role of the EGFR pathway in the treatment of PDT on TNBC in a co-culture system. METHODS MB-231 and HUVEC were co-cultured for experiments (HU-231). Cell viability and ROS production were detected after AE-PDT, a combination of EGFR inhibitors (AEE788)with PDT to test angiogenesis, apoptosis, and pyroptosis. WB detects expression of EGFR. EGFR, P-EGFR, VEGF, caspase-1, capase-3, and GSDMD . RESULTS AE-PDT inhibited HU-231 cell proliferation and tumor angiogenesis, and induced cell apoptosis and pyroptosis by promoting ROS production. AEE788, an inhibitor of the EGFR, enhanced HU-231 cell killing after AE-PDT. CONCLUSION Our study suggested that the combination of EGFR inhibitors and AE-PDT could synergistically suppress breast cancer progression, providing a new treatment strategy.
Collapse
Affiliation(s)
- Yajuan Niu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiya Guo
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wang Han
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoyu Han
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Kaiting Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Si Tian
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ying Zhu
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - DingQun Bai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qing Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
3
|
Basu D, Pal R, Sarkar M, Barma S, Halder S, Roy H, Nandi S, Samadder A. To Investigate Growth Factor Receptor Targets and Generate Cancer Targeting Inhibitors. Curr Top Med Chem 2023; 23:2877-2972. [PMID: 38164722 DOI: 10.2174/0115680266261150231110053650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/20/2023] [Accepted: 10/02/2023] [Indexed: 01/03/2024]
Abstract
Receptor tyrosine kinase (RTK) regulates multiple pathways, including Mitogenactivated protein kinases (MAPKs), PI3/AKT, JAK/STAT pathway, etc. which has a significant role in the progression and metastasis of tumor. As RTK activation regulates numerous essential bodily processes, including cell proliferation and division, RTK dysregulation has been identified in many types of cancers. Targeting RTK is a significant challenge in cancer due to the abnormal upregulation and downregulation of RTK receptors subfamily EGFR, FGFR, PDGFR, VEGFR, and HGFR in the progression of cancer, which is governed by multiple RTK receptor signalling pathways and impacts treatment response and disease progression. In this review, an extensive focus has been carried out on the normal and abnormal signalling pathways of EGFR, FGFR, PDGFR, VEGFR, and HGFR and their association with cancer initiation and progression. These are explored as potential therapeutic cancer targets and therefore, the inhibitors were evaluated alone and merged with additional therapies in clinical trials aimed at combating global cancer.
Collapse
Affiliation(s)
- Debroop Basu
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Riya Pal
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, IndiaIndia
| | - Maitrayee Sarkar
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Soubhik Barma
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Sumit Halder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| | - Harekrishna Roy
- Nirmala College of Pharmacy, Vijayawada, Guntur, Andhra Pradesh, India
| | - Sisir Nandi
- Global Institute of Pharmaceutical Education and Research (Affiliated to Uttarakhand Technical University), Kashipur, 244713, India
| | - Asmita Samadder
- Cell and Developmental Biology Special, Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
- Cytogenetics and Molecular Biology Lab., Department of Zoology, University of Kalyani, Kalyani, Nadia, 741235, India
| |
Collapse
|
4
|
Hong JH, Tong ZJ, Wei TE, Lu YC, Huang CY, Huang CY, Chiang CH, Jaw FS, Cheng HW, Wang HT. Cigarette smoke containing acrolein contributes to cisplatin resistance in human bladder cancers through the regulation of HER2 pathway or FGFR3 pathway. Mol Cancer Ther 2022; 21:1010-1019. [PMID: 35312783 DOI: 10.1158/1535-7163.mct-21-0725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/03/2021] [Accepted: 03/11/2022] [Indexed: 11/16/2022]
Abstract
Cisplatin-based chemotherapy is the first-line therapy for bladder cancer (BC). However, cisplatin resistance has been associated with the recurrence of BC. Previous studies have shown that activation of fibroblast growth factor receptor (FGFR) and HER2 signaling are involved in BC cell proliferation and drug resistance. Smoking is the most common etiologic risk factor for BC, and there is emerging evidence that smoking is associated with cisplatin resistance. However, the underlying mechanism remains elusive. Acrolein, a highly reactive aldehyde, is abundant in tobacco smoke, cooking fumes, and automobile exhaust fumes. Our previous studies have shown that acrolein contributes to bladder carcinogenesis through the induction of DNA damage and inhibition of DNA repair. In this study, we found that acrolein induced cisplatin resistance and tumor progression in both non-muscle invasive BC (NMIBC) and muscle invasive BC (MIBC) cell lines RT4 and T24, respectively. Activation of HER2 and FGFR3 signaling contributes to acrolein-induced cisplatin resistance in RT4 and T24 cells, respectively. Furthermore, trastuzumab, an anti-HER2 antibody, and PD173074, a FGFR inhibitor, reversed cisplatin resistance in RT4 and T24 cells, respectively. Using a xenograft mouse model with acrolein-induced cisplatin-resistant T24 clones, we found that cisplatin combined with PD173074 significantly reduced tumor size compared to cisplatin alone. These results indicate that differential molecular alterations behind cisplatin resistance in NMIBC and MIBC significantly alter the effectiveness of targeted therapy combined with chemotherapy. This study provides valuable insights into therapeutic strategies for cisplatin-resistant bladder cancer.
Collapse
Affiliation(s)
- Jian-Hua Hong
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan, Taipei City, Taiwan
| | - Zhen-Jie Tong
- National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tung-En Wei
- National Yang Ming Chiao Tung University, Taiwan
| | - Yu-Chuan Lu
- National Taiwan University Hospital, Taipei City, Taiwan
| | | | | | | | - Fu-Shan Jaw
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan, Taipei, Taiwan
| | | | | |
Collapse
|
5
|
Abstract
Fibroblast growth factors (FGFs) and their receptors (FGFRs) are expressed throughout all stages of skeletal development. In the limb bud and in cranial mesenchyme, FGF signaling is important for formation of mesenchymal condensations that give rise to bone. Once skeletal elements are initiated and patterned, FGFs regulate both endochondral and intramembranous ossification programs. In this chapter, we review functions of the FGF signaling pathway during these critical stages of skeletogenesis, and explore skeletal malformations in humans that are caused by mutations in FGF signaling molecules.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, United States.
| | - Pierre J Marie
- UMR-1132 Inserm (Institut national de la Santé et de la Recherche Médicale) and University Paris Diderot, Sorbonne Paris Cité, Hôpital Lariboisière, Paris, France
| |
Collapse
|
6
|
Sase H, Nakanishi Y, Aida S, Horiguchi-Takei K, Akiyama N, Fujii T, Sakata K, Mio T, Aoki M, Ishii N. Acquired JHDM1D-BRAF Fusion Confers Resistance to FGFR Inhibition in FGFR2-Amplified Gastric Cancer. Mol Cancer Ther 2018; 17:2217-2225. [PMID: 30045926 DOI: 10.1158/1535-7163.mct-17-1022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/08/2018] [Accepted: 07/19/2018] [Indexed: 11/16/2022]
Abstract
FGFR2 gene is frequently amplified in gastric cancer. Recently, targeting FGFR2 has drawn attention as a form of gastric cancer therapy, and FGFR-selective inhibitors have shown promising efficacy in clinical studies. Because overcoming acquired resistance is a common problem with molecular targeting drugs, we investigated a resistant mechanism of FGFR inhibitors using the gastric cancer cell line SNU-16, which harbors FGFR2 amplification. We established single-cell clones of FGFR inhibitor-resistant SNU-16 (AZD-R) by continuous exposure to AZD4547, a selective FGFR inhibitor. To screen the genetic alterations acquired in AZD-R, we ran a comparative genomic hybridization assay and found an amplification of Chr7q34 region. The chromosomal breakpoints were located between the 12th and the 13th exon of jumonji C domain containing histone demethylase 1 homolog D (JHDM1D) and between the 3rd and the 4th exon of BRAF We sequenced cDNA of the AZD-R clones and found fusion kinase JHDM1D-BRAF, which has previously been identified in primary ovarian cancer. Because JHDM1D-BRAF fusion lacks a RAS-binding domain, the dimerization of JHDM1D-BRAF was enhanced. A cell growth inhibition assay using MEK inhibitors and RAF-dimer inhibitors indicated the dependence of AZD-R clones for growth on the MAPK pathway. Our data provide a clinical rationale for using a MEK or RAF dimer inhibitor to treat FGFR2-amplified gastric cancer patients who have acquired resistance through the JHDN1D-BRAF fusion. Mol Cancer Ther; 17(10); 2217-25. ©2018 AACR.
Collapse
Affiliation(s)
- Hitoshi Sase
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Yoshito Nakanishi
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan.
| | - Satoshi Aida
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | | | - Nukinori Akiyama
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Toshihiko Fujii
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Kiyoaki Sakata
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Toshiyuki Mio
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Masahiro Aoki
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| | - Nobuya Ishii
- Research Division, Chugai Pharmaceutical Co., Ltd., Kamakura, Kanagawa, Japan
| |
Collapse
|
7
|
Lang JD, Hendricks WPD, Orlando KA, Yin H, Kiefer J, Ramos P, Sharma R, Pirrotte P, Raupach EA, Sereduk C, Tang N, Liang WS, Washington M, Facista SJ, Zismann VL, Cousins EM, Major MB, Wang Y, Karnezis AN, Sekulic A, Hass R, Vanderhyden BC, Nair P, Weissman BE, Huntsman DG, Trent JM. Ponatinib Shows Potent Antitumor Activity in Small Cell Carcinoma of the Ovary Hypercalcemic Type (SCCOHT) through Multikinase Inhibition. Clin Cancer Res 2018; 24:1932-1943. [PMID: 29440177 DOI: 10.1158/1078-0432.ccr-17-1928] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/27/2017] [Accepted: 02/02/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a rare, aggressive ovarian cancer in young women that is universally driven by loss of the SWI/SNF ATPase subunits SMARCA4 and SMARCA2. A great need exists for effective targeted therapies for SCCOHT.Experimental Design: To identify underlying therapeutic vulnerabilities in SCCOHT, we conducted high-throughput siRNA and drug screens. Complementary proteomics approaches profiled kinases inhibited by ponatinib. Ponatinib was tested for efficacy in two patient-derived xenograft (PDX) models and one cell-line xenograft model of SCCOHT.Results: The receptor tyrosine kinase (RTK) family was enriched in siRNA screen hits, with FGFRs and PDGFRs being overlapping hits between drug and siRNA screens. Of multiple potent drug classes in SCCOHT cell lines, RTK inhibitors were only one of two classes with selectivity in SCCOHT relative to three SWI/SNF wild-type ovarian cancer cell lines. We further identified ponatinib as the most effective clinically approved RTK inhibitor. Reexpression of SMARCA4 was shown to confer a 1.7-fold increase in resistance to ponatinib. Subsequent proteomic assessment of ponatinib target modulation in SCCOHT cell models confirmed inhibition of nine known ponatinib target kinases alongside 77 noncanonical ponatinib targets in SCCOHT. Finally, ponatinib delayed tumor doubling time 4-fold in SCCOHT-1 xenografts while reducing final tumor volumes in SCCOHT PDX models by 58.6% and 42.5%.Conclusions: Ponatinib is an effective agent for SMARCA4-mutant SCCOHT in both in vitro and in vivo preclinical models through its inhibition of multiple kinases. Clinical investigation of this FDA-approved oncology drug in SCCOHT is warranted. Clin Cancer Res; 24(8); 1932-43. ©2018 AACR.
Collapse
Affiliation(s)
- Jessica D Lang
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - William P D Hendricks
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Krystal A Orlando
- Department of Pathology and Laboratory Medicine, Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Hongwei Yin
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Jeffrey Kiefer
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Pilar Ramos
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Ritin Sharma
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Elizabeth A Raupach
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona.,Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Chris Sereduk
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Nanyun Tang
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Winnie S Liang
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Megan Washington
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Salvatore J Facista
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Victoria L Zismann
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona
| | - Emily M Cousins
- Department of Cell Biology and Physiology, Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Michael B Major
- Department of Cell Biology and Physiology, Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Yemin Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia and Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Anthony N Karnezis
- Department of Pathology and Laboratory Medicine, University of British Columbia and Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Aleksandar Sekulic
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona.,Department of Dermatology, Mayo Clinic, Scottsdale, Arizona
| | - Ralf Hass
- Department of Obstetrics and Gynecology, Hannover Medical School, Hannover, Germany
| | - Barbara C Vanderhyden
- Department of Cellular and Molecular Medicine, University of Ottawa, and Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | | - Bernard E Weissman
- Department of Pathology and Laboratory Medicine, Lineberger Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia and Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada.,Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jeffrey M Trent
- Division of Integrated Cancer Genomics, Translational Genomics Research Institute (TGen), Phoenix, Arizona.
| |
Collapse
|
8
|
Rezzola S, Nawaz IM, Cancarini A, Ravelli C, Calza S, Semeraro F, Presta M. 3D endothelial cell spheroid/human vitreous humor assay for the characterization of anti-angiogenic inhibitors for the treatment of proliferative diabetic retinopathy. Angiogenesis 2017; 20:629-640. [PMID: 28905243 DOI: 10.1007/s10456-017-9575-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/04/2017] [Indexed: 12/27/2022]
Abstract
Proliferative diabetic retinopathy (PDR) represents a main cause of acquired blindness. Despite the recognition of the key role exerted by vascular endothelial growth factor (VEGF) in the pathogenesis of PDR, limitations to anti-VEGF therapies do exist. Thus, rapid and cost-effective angiogenesis assays are crucial for the screening of anti-angiogenic drug candidates for PDR therapy. In this context, evaluation of the angiogenic potential of PDR vitreous fluid may represent a valuable tool for preclinical assessment of angiostatic molecules. Here, vitreous fluid obtained from PDR patients after pars plana vitrectomy was used as a pro-angiogenic stimulus in a 3D endothelial cell spheroid/human vitreous assay. The results show that PDR vitreous is able to stimulate the sprouting of fibrin-embedded HUVEC spheroids in a time- and dose-dependent manner. A remarkable variability was observed among 40 individual vitreous fluid samples in terms of sprouting-inducing activity that was related, at least in part, to defined clinical features of the PDR patient. This activity was hampered by various extracellular and intracellular signaling pathway inhibitors, including the VEGF antagonist ranibizumab. When tested on 20 individual vitreous fluid samples, the inhibitory activity of ranibizumab ranged between 0 and 100% of the activity measured in the absence of the drug, reflecting a variable contribution of angiogenic mediators distinct from VEGF. In conclusion, the 3D endothelial cell spheroid/human vitreous assay represents a rapid and cost-effective experimental procedure suitable for the evaluation of the anti-angiogenic activity of novel extracellular and intracellular drug candidates, with possible implications for the therapy of PDR.
Collapse
Affiliation(s)
- Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Imtiaz M Nawaz
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Anna Cancarini
- Department of Ophthalmology, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Stefano Calza
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy
| | - Francesco Semeraro
- Department of Ophthalmology, University of Brescia, Piazzale Spedali Civili 1, 25123, Brescia, Italy.
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
9
|
Porta R, Borea R, Coelho A, Khan S, Araújo A, Reclusa P, Franchina T, Van Der Steen N, Van Dam P, Ferri J, Sirera R, Naing A, Hong D, Rolfo C. FGFR a promising druggable target in cancer: Molecular biology and new drugs. Crit Rev Oncol Hematol 2017; 113:256-267. [PMID: 28427515 DOI: 10.1016/j.critrevonc.2017.02.018] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 02/08/2017] [Accepted: 02/15/2017] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The Fibroblast Growth Factor Receptor (FGFR) family consists of Tyrosine Kinase Receptors (TKR) involved in several biological functions. Recently, alterations of FGFR have been reported to be important for progression and development of several cancers. In this setting, different studies are trying to evaluate the efficacy of different therapies targeting FGFR. AREAS COVERED This review summarizes the current status of treatments targeting FGFR, focusing on the trials that are evaluating the FGFR profile as inclusion criteria: Multi-Target, Pan-FGFR Inhibitors and anti-FGF (Fibroblast Growth Factor)/FGFR Monoclonal Antibodies. EXPERT OPINION Most of the TKR share intracellular signaling pathways; therefore, cancer cells tend to overcome the inhibition of one tyrosine kinase receptor by activating another. The future of TKI (Tyrosine Kinase Inhibitor) therapy will potentially come from multi-targeted TKIs that target different TKR simultaneously. It is crucial to understand the interaction of the FGF-FGFR axis with other known driver TKRs. Based on this, it is possible to develop therapeutic strategies targeting multiple connected TKRs at once. One correct step in this direction is the reassessment of multi target inhibitors considering the FGFR status of the tumor. Another opportunity arises from assessing the use of FGFR TKI on patients harboring FGFR alterations.
Collapse
Affiliation(s)
- Rut Porta
- Department of Medical Oncology, Catalan Institute of Oncology (ICO), Girona, Spain; Girona Biomedical Research Institute (IDIBGi), Girona, Spain; Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
| | - Roberto Borea
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Edegem, Antwerp, Belgium(2)
| | - Andreia Coelho
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Edegem, Antwerp, Belgium(2)
| | - Shahanavaj Khan
- Nanomedicine and Biotechnology Research Unit, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - António Araújo
- Department of Medical Oncology, Centro Hospitalar do Porto, Porto, Portugal
| | - Pablo Reclusa
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Edegem, Antwerp, Belgium(2)
| | - Tindara Franchina
- Medical Oncology Unit A.O. Papardo & Department of Human Pathology, University of Messina, Messina, Italy
| | - Nele Van Der Steen
- Center for Oncological Research (CORE), University of Antwerp, Wilrijk, Antwerp, Belgium; Department of Pathology, Antwerp University Hospital, Edegem, Antwerp, Belgium
| | - Peter Van Dam
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Edegem, Antwerp, Belgium(2)
| | - Jose Ferri
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Edegem, Antwerp, Belgium(2)
| | - Rafael Sirera
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Edegem, Antwerp, Belgium(2)
| | - Aung Naing
- Department of Investigational Cancer Therapeutics, MD Anderson Cancer Center, Houston, TX, USA
| | - David Hong
- Department of Investigational Cancer Therapeutics, MD Anderson Cancer Center, Houston, TX, USA
| | - Christian Rolfo
- Phase I-Early Clinical Trials Unit, Oncology Department, Antwerp University Hospital (UZA) and Center for Oncological Research (CORE) Antwerp University, Edegem, Antwerp, Belgium(2).
| |
Collapse
|
10
|
Ornitz DM, Legeai-Mallet L. Achondroplasia: Development, pathogenesis, and therapy. Dev Dyn 2017; 246:291-309. [PMID: 27987249 DOI: 10.1002/dvdy.24479] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Autosomal dominant mutations in fibroblast growth factor receptor 3 (FGFR3) cause achondroplasia (Ach), the most common form of dwarfism in humans, and related chondrodysplasia syndromes that include hypochondroplasia (Hch), severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN), and thanatophoric dysplasia (TD). FGFR3 is expressed in chondrocytes and mature osteoblasts where it functions to regulate bone growth. Analysis of the mutations in FGFR3 revealed increased signaling through a combination of mechanisms that include stabilization of the receptor, enhanced dimerization, and enhanced tyrosine kinase activity. Paradoxically, increased FGFR3 signaling profoundly suppresses proliferation and maturation of growth plate chondrocytes resulting in decreased growth plate size, reduced trabecular bone volume, and resulting decreased bone elongation. In this review, we discuss the molecular mechanisms that regulate growth plate chondrocytes, the pathogenesis of Ach, and therapeutic approaches that are being evaluated to improve endochondral bone growth in people with Ach and related conditions. Developmental Dynamics 246:291-309, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Laurence Legeai-Mallet
- Imagine Institute, Inserm U1163, Université Paris Descartes, Service de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| |
Collapse
|
11
|
Luo D, Carter KA, Miranda D, Lovell JF. Chemophototherapy: An Emerging Treatment Option for Solid Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2017; 4:1600106. [PMID: 28105389 PMCID: PMC5238751 DOI: 10.1002/advs.201600106] [Citation(s) in RCA: 285] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/21/2016] [Indexed: 05/17/2023]
Abstract
Near infrared (NIR) light penetrates human tissues with limited depth, thereby providing a method to safely deliver non-ionizing radiation to well-defined target tissue volumes. Light-based therapies including photodynamic therapy (PDT) and laser-induced thermal therapy have been validated clinically for curative and palliative treatment of solid tumors. However, these monotherapies can suffer from incomplete tumor killing and have not displaced existing ablative modalities. The combination of phototherapy and chemotherapy (chemophototherapy, CPT), when carefully planned, has been shown to be an effective tumor treatment option preclinically and clinically. Chemotherapy can enhance the efficacy of PDT by targeting surviving cancer cells or by inhibiting regrowth of damaged tumor blood vessels. Alternatively, PDT-mediated vascular permeabilization has been shown to enhance the deposition of nanoparticulate drugs into tumors for enhanced accumulation and efficacy. Integrated nanoparticles have been reported that combine photosensitizers and drugs into a single agent. More recently, light-activated nanoparticles have been developed that release their payload in response to light irradiation to achieve improved drug bioavailability with superior efficacy. CPT can potently eradicate tumors with precise spatial control, and further clinical testing is warranted.
Collapse
Affiliation(s)
- Dandan Luo
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260
| | - Kevin A. Carter
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260
| | - Dyego Miranda
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260
| | - Jonathan F. Lovell
- Department of Biomedical EngineeringUniversity at BuffaloState University of New YorkBuffaloNY14260
| |
Collapse
|
12
|
Zhang J, Li Y. Therapeutic uses of FGFs. Semin Cell Dev Biol 2016; 53:144-54. [DOI: 10.1016/j.semcdb.2015.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 09/07/2015] [Indexed: 01/23/2023]
|
13
|
Nimotuzumab increases the anti-tumor effect of photodynamic therapy in an oral tumor model. Oncotarget 2016; 6:13487-505. [PMID: 25918252 PMCID: PMC4537029 DOI: 10.18632/oncotarget.3622] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/08/2015] [Indexed: 12/23/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) represents 90% of all oral cancers and is characterized with poor prognosis and low survival rate. Epidermal growth factor receptor (EGFR) is highly expressed in oral cancer and is a target for cancer therapy and prevention. In this present work, we evaluate the efficacy of photodynamic therapy (PDT) in combination with an EGFR inhibitor, nimotuzumab in oral cancer cell lines and OSCC xenograft tumor model. PDT is a promising and minimally invasive treatment modality that involves the interaction of a photosensitizer, molecular oxygen and light to destroy tumors. We demonstrated that EGFR inhibitors nimotuzumab and cetuximab exhibits anti-angiogenic properties by inhibiting the migration and invasion of oral cancer cell lines and human endothelial cells. The EGFR inhibitors also significantly reduced tube formation of endothelial cells. Chlorin e6-PDT in combination with nimotuzumab and cetuximab reduced cell proliferation in different oral cancer and endothelial cells. Furthermore, our in vivo studies showed that the combination therapy of PDT and nimotuzumab synergistically delayed tumor growth when compared with control and PDT treated tumors. Downregulation of EGFR, Ki-67 and CD31 was observed in the tumors treated with combination therapy. Analysis of the liver and kidney function markers showed no treatment related toxicity. In conclusion, PDT outcome of oral cancer can be improved when combined with EGFR inhibitor nimotuzumab.
Collapse
|
14
|
Hojjat-Farsangi M. Small-molecule inhibitors of the receptor tyrosine kinases: promising tools for targeted cancer therapies. Int J Mol Sci 2014; 15:13768-801. [PMID: 25110867 PMCID: PMC4159824 DOI: 10.3390/ijms150813768] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 12/20/2022] Open
Abstract
Chemotherapeutic and cytotoxic drugs are widely used in the treatment of cancer. In spite of the improvements in the life quality of patients, their effectiveness is compromised by several disadvantages. This represents a demand for developing new effective strategies with focusing on tumor cells and minimum side effects. Targeted cancer therapies and personalized medicine have been defined as a new type of emerging treatments. Small molecule inhibitors (SMIs) are among the most effective drugs for targeted cancer therapy. The growing number of approved SMIs of receptor tyrosine kinases (RTKs) i.e., tyrosine kinase inhibitors (TKIs) in the clinical oncology imply the increasing attention and application of these therapeutic tools. Most of the current approved RTK-TKIs in preclinical and clinical settings are multi-targeted inhibitors with several side effects. Only a few specific/selective RTK-TKIs have been developed for the treatment of cancer patients. Specific/selective RTK-TKIs have shown less deleterious effects compared to multi-targeted inhibitors. This review intends to highlight the importance of specific/selective TKIs for future development with less side effects and more manageable agents. This article provides an overview of: (1) the characteristics and function of RTKs and TKIs; (2) the recent advances in the improvement of specific/selective RTK-TKIs in preclinical or clinical settings; and (3) emerging RTKs for targeted cancer therapies by TKIs.
Collapse
Affiliation(s)
- Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene Therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm 17176, Sweden.
| |
Collapse
|
15
|
Anreddy N, Patel A, Sodani K, Kathawala RJ, Chen EP, Wurpel JN, Chen ZS. PD173074, a selective FGFR inhibitor, reverses MRP7 (ABCC10)-mediated MDR. Acta Pharm Sin B 2014; 4:202-7. [PMID: 26579384 PMCID: PMC4629066 DOI: 10.1016/j.apsb.2014.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 01/28/2014] [Accepted: 02/14/2014] [Indexed: 01/27/2023] Open
Abstract
Multidrug resistance protein 7 (MRP7, ABCC10) is a recently identified member of the ATP-binding cassette (ABC) transporter family, which adequately confers resistance to a diverse group of antineoplastic agents, including taxanes, vinca alkaloids and nucleoside analogs among others. Clinical studies indicate an increased MRP7 expression in non-small cell lung carcinomas (NSCLC) compared to a normal healthy lung tissue. Recent studies revealed increased paclitaxel sensitivity in the Mrp7−/− mouse model compared to their wild-type counterparts. This demonstrates that MRP7 is a key contributor in developing drug resistance. Recently our group reported that PD173074, a specific fibroblast growth factor receptor (FGFR) inhibitor, could significantly reverse P-glycoprotein-mediated MDR. However, whether PD173074 can interact with and inhibit other MRP members is unknown. In the present study, we investigated the ability of PD173074 to reverse MRP7-mediated MDR. We found that PD173074, at non-toxic concentration, could significantly increase the cellular sensitivity to MRP7 substrates. Mechanistic studies indicated that PD173074 (1 μmol/L) significantly increased the intracellular accumulation and in-turn decreased the efflux of paclitaxel by inhibiting the transport activity without altering expression levels of the MRP7 protein, thereby representing a promising therapeutic agent in the clinical treatment of chemoresistant cancer patients.
Collapse
Key Words
- ABC, ATP binding cassette
- ABCC10
- EGFR, epidermal growth factor receptor
- FGFR, fibroblast growth factor receptor
- Fibroblast growth factor receptor
- HEK293, human embryonic kidney 293
- MDR, multidrug resistance
- MRP7, multidrug resistance protein 7
- MSDs, membrane-spanning domains
- Multidrug resistance
- NBDs, nucleotide-binding domains
- NSCLC, non-small cell lung carcinomas
- PD173074
- RTK, receptor tyrosine kinase
- TKI, tyrosine kinase inhibitor
- Tyrosine kinase inhibitor
Collapse
|
16
|
In vitro and in vivo effects of photodynamic therapy on metastatic breast cancer cells pre-treated with zoledronic acid. Photodiagnosis Photodyn Ther 2014; 11:426-33. [PMID: 25176573 DOI: 10.1016/j.pdpdt.2014.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 04/10/2014] [Accepted: 04/17/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT), a non-ionizing, minimally invasive drug-light treatment, has recently been shown to successfully ablate tumor within rat vertebrae with concurrent improvements in bone strength and architecture. The bisphosphonate zoledronic acid (zol), a current drug for patients with skeletal metastases, primarily works by inhibiting osteoclast activity, but direct anti-tumor effects have also been reported. However, it is unknown if or how pre-treatment with zol may alter the tumorcidal effect of PDT. The aim of this study was to evaluate the effect of PDT, both in vitro and in vivo, on zol-pretreated cancer cells. MATERIALS AND METHODS Human metastatic breast cancer cells (MT-1) were cultured in vitro and treated with zol (10μM) for 24h, followed by PDT treatment. Cell viability was assessed by fluorescence microscopy and flow cytometry. In vivo, MT-1 cells were injected (intracardiac) into athymic rats. On day 7, zol (60μg/kg) was administered subcutaneously. On day 14, PDT was applied (1mg/kg verteporfin; 75J; 690nm) to lumbar vertebrae. Histomorphometric assessment of tumor burden was evaluated on day 21. RESULTS The cell viability measured in vitro after PDT treatment decreased in cells pre-incubated with zol up to 20% compared to treatment with PDT alone. Zol alone had no influence on the MT-1 cell viability. In vivo, all treatments, either alone or combined, had a tumorcidal effect. CONCLUSIONS Pre-treatment with zol in vivo did not yield a synergistic effect on tumor ablation in contrast to the in vitro results, but neither did it abrogate the positive tumorcidal effect of PDT, so that those therapies may be applied in combination.
Collapse
|
17
|
Bedussi F, Bottini A, Memo M, Fox SB, Sigala S, Generali D. Targeting fibroblast growth factor receptor in breast cancer: a promise or a pitfall? Expert Opin Ther Targets 2014; 18:665-78. [PMID: 24833241 DOI: 10.1517/14728222.2014.898064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
INTRODUCTION Fibroblast growth factors (FGFs) along with their receptors (FGFRs) are involved in several cellular functions, from embryogenesis to metabolism. Because of the ability of FGFR signalling to induce cell proliferation, migration and survival in cancer, these have been found to become overactivated by several mechanisms, including gene amplification, chromosomal translocation and mutations. New evidences indicate that FGFs and FGFRs may act in an oncogenic fashion to promote multiple steps of cancer progression by inducing mitogenic and survival signals, as well as promoting epithelial-to-mesenchymal transition, invasion and tumour angiogenesis. This review focuses on the predictive and prognostic role of FGFRs, the role of FGFR signalling and how it may be most appropriately therapeutically targeted in breast cancer. AREAS COVERED Activation of the FGFR pathway is a common event in many cancer types and for this reason FGFR is an important potential target in cancer treatment. Relevant literature was reviewed to identify current and future role of FGFR family as a possible guide for selecting those patients who would be poor or good responders to the available or the upcoming target therapies for breast cancer treatment. EXPERT OPINION The success of a personalised medicine approach using targeted therapies ultimately depends on being capable of identifying the patients who will benefit the most from any given drug. Outlining the molecular mechanisms of FGFR signalling and discussing the role of this pathway in breast cancer, we would like to endorse the incorporation of specific patient selection biomakers with the rationale for therapeutic intervention with FGFR-targeted therapy in breast cancer.
Collapse
Affiliation(s)
- Francesca Bedussi
- University of Brescia Medical School, Department of Molecular and Translational Medicine, Section of Pharmacology , Brescia , Italy
| | | | | | | | | | | |
Collapse
|
18
|
Weiss A, van Beijnum JR, Bonvin D, Jichlinski P, Dyson PJ, Griffioen AW, Nowak-Sliwinska P. Low-dose angiostatic tyrosine kinase inhibitors improve photodynamic therapy for cancer: lack of vascular normalization. J Cell Mol Med 2014; 18:480-91. [PMID: 24450440 PMCID: PMC3955154 DOI: 10.1111/jcmm.12199] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 10/25/2013] [Indexed: 12/30/2022] Open
Abstract
Photodynamic therapy (PDT) is an effective clinical treatment for a number of different cancers. PDT can induce hypoxia and inflammation, pro-angiogenic side effects, which may counteract its angio-occlusive mechanism. The combination of PDT with anti-angiogenic drugs offers a possibility for improved anti-tumour outcome. We used two tumour models to test the effects of the clinically approved angiostatic tyrosine kinase inhibitors sunitinib, sorafenib and axitinib in combination with PDT, and compared these results with the effects of bevacizumab, the anti-VEGF antibody, for the improvement of PDT. Best results were obtained from the combination of PDT and low-dose axitinib or sorafenib. Molecular analysis by PCR revealed that PDT in combination with axitinib suppressed VEGFR-2 expression in tumour vasculature. Treatment with bevacizumab, although effective as monotherapy, did not improve PDT outcome. In order to test for tumour vessel normalization effects, axitinib was also applied prior to PDT. The absence of improved PDT outcome in these experiments, as well as the lack of increased oxygenation in axitinib-treated tumours, suggests that vascular normalization did not occur. The current data imply that there is a future for certain anti-angiogenic agents to further improve the efficacy of photodynamic anti-cancer therapy.
Collapse
Affiliation(s)
- Andrea Weiss
- Medical Photonics Group, Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland; Angiogenesis Laboratory, Department of Medical Oncology, VU Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
19
|
Ye T, Wei X, Yin T, Xia Y, Li D, Shao B, Song X, He S, Luo M, Gao X, He Z, Luo C, Xiong Y, Wang N, Zeng J, Zhao L, Shen G, Xie Y, Yu L, Wei Y. Inhibition of FGFR signaling by PD173074 improves antitumor immunity and impairs breast cancer metastasis. Breast Cancer Res Treat 2014; 143:435-46. [DOI: 10.1007/s10549-013-2829-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 12/27/2013] [Indexed: 10/25/2022]
|
20
|
Prigozhina NL, Heisel AJ, Seldeen JR, Cosford NDP, Price JH. Amphiphilic suramin dissolves Matrigel, causing an 'inhibition' artefact within in vitro angiogenesis assays. Int J Exp Pathol 2013; 94:412-7. [PMID: 23998420 DOI: 10.1111/iep.12043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 06/25/2013] [Indexed: 12/27/2022] Open
Abstract
The field of study concerning promotion and/or inhibition of angiogenesis has gathered much attention in the scientific community. A great deal of work has been invested towards defining reproducible assays to gauge for promotion or inhibition of angiogenesis in response to drug treatments or growth conditions. Two common components of these assays were noted by our group to have an unexpected and previously unreported interaction. Suramin is a commercially available compound, commonly used as a positive control for in vitro angiogenic inhibition assays. Matrigel is a popular extracellular substrate that supports angiogenic network formation when endothelial cells are cultured on its surface. However, our group demonstrated that suramin alone (without the presence of cells) will actively dissolve Matrigel, causing the extracellular matrix to transition from the gel-like physical state to a more liquid state. This causes cells on the Matrigel to congregate and sink to the bottom of the well. Therefore, previous observations of inhibition of endothelial cell angiogenesis through the incubation with suramin (including previous observations made by our group) are, largely, an artefact caused by suramin and matrix interaction rather than suramin and cells interaction, as previously reported. Our results suggest that the presence of sulphate groups and amphiphilic properties of suramin are likely responsible for the disruption of the matrix layer. We believe that this information is of prime importance to anyone using similar in vitro models, or employing suramin in any therapy or drug development assays.
Collapse
Affiliation(s)
- Natalie L Prigozhina
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA; Vala Sciences Inc., San Diego, CA, USA
| | | | | | | | | |
Collapse
|
21
|
Abstract
Fibroblast growth factors (FGFs) are involved in a variety of cellular processes, such as stemness, proliferation, anti-apoptosis, drug resistance, and angiogenesis. Here, FGF signaling network, cancer genetics/genomics of FGF receptors (FGFRs), and FGFR-targeted therapeutics will be reviewed. FGF signaling to RAS-MAPK branch and canonical WNT signaling cascade mutually regulate transcription programming. FGF signaling to PI3K-AKT branch and Hedgehog, Notch, TGFβ, and noncanonical WNT signaling cascades regulate epithelial-to-mesenchymal transition (EMT) and invasion. Gene amplification of FGFR1 occurs in lung cancer and estrogen receptor (ER)-positive breast cancer, and that of FGFR2 in diffuse-type gastric cancer and triple-negative breast cancer. Chromosomal translocation of FGFR1 occurs in the 8p11 myeloproliferative syndrome and alveolar rhabdomyosarcoma, as with FGFR3 in multiple myeloma and peripheral T-cell lymphoma. FGFR1 and FGFR3 genes are fused to neighboring TACC1 and TACC3 genes, respectively, due to interstitial deletions in glioblastoma multiforme. Missense mutations of FGFR2 are found in endometrial uterine cancer and melanoma, and similar FGFR3 mutations in invasive bladder tumors, and FGFR4 mutations in rhabdomyosarcoma. Dovitinib, Ki23057, ponatinib, and AZD4547 are orally bioavailable FGFR inhibitors, which have demonstrated striking effects in preclinical model experiments. Dovitinib, ponatinib, and AZD4547 are currently in clinical trial as anticancer drugs. Because there are multiple mechanisms of actions for FGFR inhibitors to overcome drug resistance, FGFR-targeted therapy is a promising strategy for the treatment of refractory cancer. Whole exome/transcriptome sequencing will be introduced to the clinical laboratory as the companion diagnostic platform facilitating patient selection for FGFR-targeted therapeutics in the era of personalized medicine.
Collapse
Affiliation(s)
- Masaru Katoh
- Division of Integrative Omics and Bioinformatics, National Cancer Center, 5-1-1 Tsukiji, Chuo Ward, Tokyo, 104-0045, Japan
| | | |
Collapse
|
22
|
PD173074, a selective FGFR inhibitor, reverses ABCB1-mediated drug resistance in cancer cells. Cancer Chemother Pharmacol 2013; 72:189-99. [PMID: 23673445 DOI: 10.1007/s00280-013-2184-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 05/01/2013] [Indexed: 01/17/2023]
Abstract
PURPOSE Specific tyrosine kinase inhibitors were recently reported to modulate the activity of ABC transporters, leading to an increase in the intracellular concentration of their substrate drugs. In this study, we determine whether PD173074, a specific fibroblast growth factor receptor (FGFR) inhibitor, could reverse ABC transporter-mediated multidrug resistance. METHODS 3-(4,5-Dimethylthiazol-yl)-2,5-diphenyllapatinibrazolium bromide assay was used to determine the effect of PD173074 on reversal of ABC transporter-mediated multidrug resistance (MDR). In addition, [³H]-paclitaxel accumulation/efflux assay, western blotting analysis, ATPase, and photoaffinity labeling assays were done to study the interaction of PD173074 on ABC transporters. RESULTS PD173074 significantly sensitized both ABCB1-transfected and drug-selected cell lines overexpressing this transporter to substrate anticancer drugs colchicine, paclitaxel, and vincristine. This effect of PD173074 is specific to ABCB1, as no significant interaction was detected with other ABC transporters such as ABCC1 and ABCG2. The observed reversal effect seems to be primarily due to the decreased active efflux of [³H]-paclitaxel in ABCB1 overexpressing cells observed in efflux assay. In addition, no significant change in the ABCB1 expression was observed when ABCB1 overexpressing cells were exposed to 5 μM PD173074 for up to 3 days, thereby further suggesting its role in modulating the function of the transporter. In addition, PD173074 stimulated the ATPase activity of ABCB1 in a concentration-dependent manner, indicating a direct interaction with the transporter. Interestingly, PD173074 did not inhibit photolabeling of ABCB1 with [¹²⁵I]-iodoarylazidoprazosin (IAAP), showing that it binds at a site different from that of IAAP in the drug-binding pocket. CONCLUSIONS Here, we report for the first time, PD173074, an inhibitor of the FGFR, to selectively reverse ABCB1 transporter-mediated MDR by directly blocking the efflux function of the transporter.
Collapse
|
23
|
Gallagher-Colombo SM, Maas AL, Yuan M, Busch TM. Photodynamic therapy-induced angiogenic signaling: consequences and solutions to improve therapeutic response. Isr J Chem 2012; 52:681-690. [PMID: 26109742 DOI: 10.1002/ijch.201200011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT) can be a highly effective treatment for diseases ranging from actinic keratosis to cancer. While use of this therapy shows great promise in preclinical and clinical studies, understanding the molecular consequences of PDT is critical to designing better treatment protocols. A number of publications have documented alteration in angiogenic factors and growth factor receptors following PDT, which could abrogate treatment effect by inducing angiogenesis and re-establishment of the tumor vasculature. In response to these findings, work over the past decade has examined the efficacy of combining PDT with molecular targeting drugs, such as anti-angiogenic compounds, in an effort to combat these PDT-induced molecular changes. These combinatorial approaches increase rates of apoptosis, impair pro-tumorigenic signaling, and enhance tumor response. This report will examine the current understanding of PDT-induced angiogenic signaling and address molecular-based approaches to abrogate this signaling or its consequences thereby enhancing PDT efficacy.
Collapse
Affiliation(s)
- Shannon M Gallagher-Colombo
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, B13 Anatomy Chemistry Bldg., Philadelphia, PA 19104
| | - Amanda L Maas
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, B13 Anatomy Chemistry Bldg., Philadelphia, PA 19104
| | - Min Yuan
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, B13 Anatomy Chemistry Bldg., Philadelphia, PA 19104
| | - Theresa M Busch
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, 3620 Hamilton Walk, B13 Anatomy Chemistry Bldg., Philadelphia, PA 19104
| |
Collapse
|
24
|
Norman RA, Schott AK, Andrews DM, Breed J, Foote KM, Garner AP, Ogg D, Orme JP, Pink JH, Roberts K, Rudge DA, Thomas AP, Leach AG. Protein–Ligand Crystal Structures Can Guide the Design of Selective Inhibitors of the FGFR Tyrosine Kinase. J Med Chem 2012; 55:5003-12. [DOI: 10.1021/jm3004043] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Richard A. Norman
- AstraZeneca Pharmaceuticals, Mereside, Alderley Park, Macclesfield, SK10 4TG, U.K
| | - Anne-Kathrin Schott
- AstraZeneca Pharmaceuticals, Mereside, Alderley Park, Macclesfield, SK10 4TG, U.K
| | - David M. Andrews
- AstraZeneca Pharmaceuticals, Mereside, Alderley Park, Macclesfield, SK10 4TG, U.K
| | - Jason Breed
- AstraZeneca Pharmaceuticals, Mereside, Alderley Park, Macclesfield, SK10 4TG, U.K
| | - Kevin M. Foote
- AstraZeneca Pharmaceuticals, Mereside, Alderley Park, Macclesfield, SK10 4TG, U.K
| | - Andrew P. Garner
- AstraZeneca Pharmaceuticals, Mereside, Alderley Park, Macclesfield, SK10 4TG, U.K
| | - Derek Ogg
- AstraZeneca Pharmaceuticals, Mereside, Alderley Park, Macclesfield, SK10 4TG, U.K
| | - Jonathon P. Orme
- AstraZeneca Pharmaceuticals, Mereside, Alderley Park, Macclesfield, SK10 4TG, U.K
| | - Jennifer H. Pink
- AstraZeneca Pharmaceuticals, Mereside, Alderley Park, Macclesfield, SK10 4TG, U.K
| | - Karen Roberts
- AstraZeneca Pharmaceuticals, Mereside, Alderley Park, Macclesfield, SK10 4TG, U.K
| | - David A. Rudge
- AstraZeneca Pharmaceuticals, Mereside, Alderley Park, Macclesfield, SK10 4TG, U.K
| | - Andrew P. Thomas
- AstraZeneca Pharmaceuticals, Mereside, Alderley Park, Macclesfield, SK10 4TG, U.K
| | - Andrew G. Leach
- AstraZeneca Pharmaceuticals, Mereside, Alderley Park, Macclesfield, SK10 4TG, U.K
| |
Collapse
|
25
|
Yang PW, Hung MC, Hsieh CY, Tung EC, Wang YH, Tsai JC, Lee JM. The effects of Photofrin-mediated photodynamic therapy on the modulation of EGFR in esophageal squamous cell carcinoma cells. Lasers Med Sci 2012; 28:605-14. [DOI: 10.1007/s10103-012-1119-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 05/03/2012] [Indexed: 12/31/2022]
|
26
|
Weiss A, den Bergh HV, Griffioen AW, Nowak-Sliwinska P. Angiogenesis inhibition for the improvement of photodynamic therapy: the revival of a promising idea. Biochim Biophys Acta Rev Cancer 2012; 1826:53-70. [PMID: 22465396 DOI: 10.1016/j.bbcan.2012.03.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 12/31/2022]
Abstract
Photodynamic therapy (PDT) is a minimally invasive form of treatment, which is clinically approved for the treatment of angiogenic disorders, including certain forms of cancer and neovascular eye diseases. Although the concept of PDT has existed for a long time now, it has never made a solid entrance into the clinical management of cancer. This is likely due to secondary tissue reactions, such as inflammation and neoangiogenesis. The recent development of clinically effective angiogenesis inhibitors has lead to the initiation of research on the combination of PDT with such angiostatic targeted therapies. Preclinical studies in this research field have shown promising results, causing a revival in the field of PDT. This review reports on the current research efforts on PDT and vascular targeted combination therapies. Different combination strategies with angiogenesis inhibition and vascular targeting approaches are discussed. In addition, the concept of increasing PDT selectivity by targeted delivery of photosensitizers is presented. Furthermore, the current insights on sequencing the therapy arms of such combinations will be discussed in light of vascular normalization induced by angiogenesis inhibition.
Collapse
Affiliation(s)
- Andrea Weiss
- Medical Photonics Group, Institute of Bioengineering, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | | | | | | |
Collapse
|
27
|
De Witt Hamer PC, Mir SE, Noske D, Van Noorden CJF, Würdinger T. WEE1 kinase targeting combined with DNA-damaging cancer therapy catalyzes mitotic catastrophe. Clin Cancer Res 2011; 17:4200-7. [PMID: 21562035 DOI: 10.1158/1078-0432.ccr-10-2537] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
WEE1 kinase is a key molecule in maintaining G₂-cell-cycle checkpoint arrest for premitotic DNA repair. Whereas normal cells repair damaged DNA during G₁-arrest, cancer cells often have a deficient G₁-arrest and largely depend on G₂-arrest. The molecular switch for the G₂-M transition is held by WEE1 and is pushed forward by CDC25. WEE1 is overexpressed in various cancer types, including glioblastoma and breast cancer. Preclinical studies with cancer cell lines and animal models showed decreased cancer cell viability, reduced tumor burden, and improved survival after WEE1 inhibition by siRNA or small molecule inhibitors, which is enhanced by combination with conventional DNA-damaging therapy, such as radiotherapy and/or cytostatics. Mitotic catastrophe results from premature entry into mitosis with unrepaired lethal DNA damage. As such, cancer cells become sensitized to conventional therapy by WEE1 inhibition, in particular those with insufficient G₁-arrest due to deficient p53 signaling, like glioblastoma cells. One WEE1 inhibitor has now reached clinical phase I studies. Dose-limiting toxicity consisted of hematologic events, nausea and/or vomiting, and fatigue. The combination of DNA-damaging cancer therapy with WEE1 inhibition seems to be a rational approach to push cancer cells in mitotic catastrophe. Its safety and efficacy are being evaluated in clinical studies.
Collapse
|
28
|
Synthesis and structure–activity relationship of 6-arylureido-3-pyrrol-2-ylmethylideneindolin-2-one derivatives as potent receptor tyrosine kinase inhibitors. Bioorg Med Chem 2010; 18:4674-86. [DOI: 10.1016/j.bmc.2010.05.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 05/05/2010] [Accepted: 05/06/2010] [Indexed: 01/08/2023]
|
29
|
The role of epidermal growth factor receptor in photodynamic therapy: a review of the literature and proposal for future investigation. Lasers Med Sci 2010; 25:767-71. [PMID: 20535519 DOI: 10.1007/s10103-010-0790-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 04/23/2010] [Indexed: 01/22/2023]
Abstract
The epidermal growth factor receptor (EGFR) pathway seems to be an important contributor to the antiproliferative response to photodynamic therapy (PDT), in terms of cell death, apoptosis and tumour destruction. We reviewed all preclinical investigations in the scientific literature on the role of the EGFR pathway in PDT. A systematic search of Medline-indexed references up to March 2010 using the recommended strategies for Medline information retrieval and identifying relevant studies from systematic reviews, revealed 16 full articles that were exhaustively analysed. EGFR inhibition/degradation appeared to be a major effect of PDT in all investigations. PDT was found to result in a time-dependent reduction of EGFR expression, inhibition of tyrosine phosphorylation and induction of apoptosis during the regression of tumours. Within the time period of the PDT reaction, normal and malignant cells lose their responsiveness to EGF. The ERK1/2 and EGFR-PI3K-Akt pathways seem to be involved in cellular survival after PDT. Pharmacotherapy and immunotherapy to block EGFR activity combined with PDT seem to be very effective in reducing malignant tumours in vivo. The effect of PDT is associated with inactivation of the EGFR pathway, but biochemical and cellular phenomena are important and scarcely investigated. EGFR inhibitors and PDT act synergistically, and this is highly relevant for clinical use.
Collapse
|
30
|
Olivo M, Bhuvaneswari R, Lucky SS, Dendukuri N, Soo-Ping Thong P. Targeted Therapy of Cancer Using Photodynamic Therapy in Combination with Multi-faceted Anti-Tumor Modalities. Pharmaceuticals (Basel) 2010; 3:1507-1529. [PMID: 27713315 PMCID: PMC4033994 DOI: 10.3390/ph3051507] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 04/28/2010] [Accepted: 05/11/2010] [Indexed: 01/23/2023] Open
Abstract
Photodynamic therapy (PDT) has emerged as one of the important therapeutic options in the management of cancer and other diseases. PDT involves a tumor-localized photosensitizer (PS), which when appropriately illuminated by visible light converts oxygen into cytotoxic reactive oxygen species (ROS), that attack key structural entities within the targeted cells, ultimately resulting in necrosis or apoptosis. Though PDT is a selective modality, it can be further enhanced by combining other targeted therapeutic strategies that include the use of synthetic peptides and nanoparticles for selective delivery of photosensitizers. Another potentially promising strategy is the application of targeted therapeutics that exploit a myriad of critical pathways involved in tumorigenesis and metastasis. Vascular disrupting agents that eradicate tumor vasculature during PDT and anti-angiogenic agents that targets specific molecular pathways and prevent the formation of new blood vessels are novel therapeutic approaches that have been shown to improve treatment outcome. In addition to the well-documented mechanisms of direct cell killing and damage to the tumor vasculature, PDT can also activate the body's immune response against tumors. Numerous pre-clinical studies and clinical observations have demonstrated the immuno-stimulatory capability of PDT. Herein, we aim to integrate the most important findings with regard to the combination of PDT and other novel targeted therapy approaches, detailing its potential in cancer photomedicine.
Collapse
Affiliation(s)
- Malini Olivo
- National Cancer Centre Singapore, 11 Hospital Drive, 169610, Singapore.
- Singapore Bioimaging Consortium, Biomedical Sciences Institutes, 11 Biopolis Way, #02-02 Helios, 138667, Singapore.
- School of Physics, National University of Ireland, Galway, Ireland.
- Department of Pharmacy, National University of Singapore, No. 18 Science Drive 4, Block S4, 117543, Singapore.
| | | | | | | | | |
Collapse
|
31
|
Crystal structure of 2-(6-chloro-4-P-tolylamino)pyrido[3,2-d]pyrimidin-1-ium-1-yl)acetate oxonium bromide. J STRUCT CHEM+ 2010. [DOI: 10.1007/s10947-010-0060-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Beyond bisphosphonates: photodynamic therapy structurally augments metastatically involved vertebrae and destroys tumor tissue. Breast Cancer Res Treat 2010; 124:111-9. [PMID: 20066491 DOI: 10.1007/s10549-009-0712-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 12/23/2009] [Indexed: 10/20/2022]
Abstract
Breast cancer patients commonly develop metastases in the spine, which compromises its mechanical stability and can lead to skeletal related events. The current clinical standard of treatment includes the administration of systemic bisphosphonates (BP) to reduce metastatically induced bone destruction. However, response to BPs can vary both within and between patients, which motivates the need for additional treatment options for spinal metastasis. Photodynamic therapy (PDT) has been shown to be effective at treating metastatic lesions secondary to breast cancer in an athymic rat model, and is proposed as a treatment for spinal metastasis. The objective of this study was to determine the effect of PDT, alone or in combination with previously administered systemic BPs, on the structural and mechanical integrity of both healthy and metastatically involved vertebrae. Human breast carcinoma cells (MT-1) were inoculated into athymic rats (day 0). At 14 days, a single PDT treatment was administered, with and without previous BP treatment at day 7. In addition to causing tumor necrosis in metastatically involved vertebrae, PDT significantly reduced bone loss, resulting in strengthening of the vertebrae compared to untreated controls. Combined treatment with BP + PDT further enhanced bone architecture and strength in both metastatically involved and healthy bone. Overall, the ability of PDT to both ablate malignant tissue and improve the structural integrity of vertebral bone motivates its consideration as a local minimally invasive treatment for spinal metastasis secondary to breast cancer.
Collapse
|
33
|
Pardo OE, Latigo J, Jeffery RE, Nye E, Poulsom R, Spencer-Dene B, Lemoine NR, Stamp GW, Aboagye EO, Seckl MJ. The Fibroblast Growth Factor Receptor Inhibitor PD173074 Blocks Small Cell Lung Cancer Growth In vitro and In vivo. Cancer Res 2009; 69:8645-51. [DOI: 10.1158/0008-5472.can-09-1576] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
34
|
Bhuvaneswari R, Gan YY, Soo KC, Olivo M. The effect of photodynamic therapy on tumor angiogenesis. Cell Mol Life Sci 2009; 66:2275-83. [PMID: 19333552 PMCID: PMC11115708 DOI: 10.1007/s00018-009-0016-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/01/2009] [Accepted: 03/09/2009] [Indexed: 01/17/2023]
Abstract
Photodynamic therapy (PDT), the activation of a photosensitive drug in tumor tissue with light of specific wavelength, has been used effectively to treat certain solid tumors. Though therapeutic responses are encouraging, PDT-mediated oxidative stress can act as an angiogenic switch that ultimately leads to neovascularization and tumor recurrence. This article explores the effect of PDT on angiogenesis in different tumor models. Overexpression of proangiogenic vascular endothelial growth factor, cyclooxygenase-2 and matrix metalloproteases has often been reported post-illumination. Recent clinical studies have demonstrated that inhibiting angiogenesis after chemotherapy and radiotherapy is an attractive and valuable approach to cancer treatment. In this review, we report the effective therapeutic strategy of combining angiogenesis inhibitors with PDT to control and treat tumors.
Collapse
Affiliation(s)
| | - Yik Yuen Gan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616 Singapore
| | - Khee Chee Soo
- National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610 Singapore
| | - Malini Olivo
- National Cancer Centre Singapore, 11 Hospital Drive, Singapore, 169610 Singapore
- Singapore Bioimaging Consortium, Biomedical Sciences Institutes, 11 Biopolis Way, #02-02 Helios, Singapore, 138667 Singapore
- Department of Pharmacy, National University of Singapore, No. 18 Science Drive 4, Block S4, Singapore, 117543 Singapore
| |
Collapse
|
35
|
Thomas CY, Theodorescu D. Molecular Pathogenesis of Urothelial Carcinoma and the Development of Novel Therapeutic Strategies. Bladder Cancer 2009. [DOI: 10.1007/978-1-59745-417-9_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
36
|
Lavine KJ, Schmid GJ, Smith CS, Ornitz DM. Novel tool to suppress cell proliferation in vivo demonstrates that myocardial and coronary vascular growth represent distinct developmental programs. Dev Dyn 2008; 237:713-24. [PMID: 18297725 DOI: 10.1002/dvdy.21468] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cell proliferation, differentiation, and vascular growth are coordinated processes that are essential for embryonic development, tissue repair, and disease pathogenesis. Of interest, whether these critical processes are dependent upon each other has not been thoroughly explored. We have generated mice that conditionally express the cell cycle inhibitor p27(Kip1), following Cre-mediated recombination, as a tool to separate tissue proliferation from other cellular processes. Using the embryonic heart as a model, we show that myocardial proliferation and coronary development are genetically separable processes. Forced expression of p27, in both a wild-type and in a genetically sensitized background, resulted in ventricular hypoplasia without having any substantial effects on coronary development. We further demonstrate that Hedgehog signaling, which is essential for coronary vascular growth, does not control myocardial proliferation. Together, these studies strongly suggest that myocardial cell proliferation and coronary development are genetically separable programs exemplifying one of the many potential uses of this genetic tool.
Collapse
Affiliation(s)
- Kory J Lavine
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
37
|
Peerani R, Rao BM, Bauwens C, Yin T, Wood GA, Nagy A, Kumacheva E, Zandstra PW. Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J 2007; 26:4744-55. [PMID: 17948051 DOI: 10.1038/sj.emboj.7601896] [Citation(s) in RCA: 328] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 09/26/2007] [Indexed: 01/08/2023] Open
Abstract
Complexity in the spatial organization of human embryonic stem cell (hESC) cultures creates heterogeneous microenvironments (niches) that influence hESC fate. This study demonstrates that the rate and trajectory of hESC differentiation can be controlled by engineering hESC niche properties. Niche size and composition regulate the balance between differentiation-inducing and -inhibiting factors. Mechanistically, a niche size-dependent spatial gradient of Smad1 signaling is generated as a result of antagonistic interactions between hESCs and hESC-derived extra-embryonic endoderm (ExE). These interactions are mediated by the localized secretion of bone morphogenetic protein-2 (BMP2) by ExE and its antagonist, growth differentiation factor-3 (GDF3) by hESCs. Micropatterning of hESCs treated with small interfering (si) RNA against GDF3, BMP2 and Smad1, as well treatments with a Rho-associated kinase (ROCK) inhibitor demonstrate that independent control of Smad1 activation can rescue the colony size-dependent differentiation of hESCs. Our results illustrate, for the first time, a role for Smad1 in the integration of spatial information and in the niche-size-dependent control of hESC self-renewal and differentiation.
Collapse
Affiliation(s)
- Raheem Peerani
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Zhang X, Jiang F, Kalkanis SN, Zhang Z, Hong X, Yang H, Chopp M. Post-acute response of 9L gliosarcoma to Photofrin-mediated PDT in athymic nude mice. Lasers Med Sci 2007; 22:253-9. [PMID: 17505777 DOI: 10.1007/s10103-007-0442-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Accepted: 08/29/2006] [Indexed: 10/23/2022]
Abstract
The objective of this study is to measure the chronic responses of 9L glioma and normal brain to photodynamic therapy (PDT). Tumor size, proliferation activity of glioma cells, and vascular endothelial growth factor (VEGF) expression in both the tumor area and the brain adjacent to tumor (BAT) were observed 7 days after clinically relevant doses of PDT treatment. 9L Gliosarcoma cells were implanted into the brain of 20 athymic nude mice. Fifteen mice were injected intraperitoneally with Photofrin at a dose of 2 mg/kg on day 6 after tumor implantation and were treated with laser at different optical doses of 40 J/cm(2) (n = 5), 80 J/cm(2) (n = 5), and 120 J/cm(2) (n = 5) at 24 h after Photofrin injection, respectively. The remaining five tumor-bearing mice served as a tumor-only control. All animals were killed 14 days after tumor implantation. Hematoxylin and eosin and immunostaining were performed to assess tumor volume, VEGF expression in the tumor and the BAT, as well as Ki67 expression in the tumor area. The tumor volume of the mice receiving 80 or 120 J/cm(2) group was significantly smaller than the control group (p < 0.01). VEGF immunoreactivity in the BAT was significantly increased in the 120 J/cm(2) PDT-treated mice (p < 0.001), compared with the immunoreactivity seen in untreated mice and those receiving Photofrin and lower optical doses. No significant differences were detected in the proliferation of glioma cells and VEGF expression in the tumor area between these groups. These data indicate that PDT can shrink tumor, especially at the high light dose, and that PDT induces expression of VEGF in the BAT, which is associated with tumor recurrence. Therefore, PDT combined with anti-angiogenic agents may be an effective treatment strategy for glioma.
Collapse
Affiliation(s)
- Xuepeng Zhang
- Neurology Department, Henry Ford Health Sciences Center, Detroit, MI 48202, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Thomas CY, Theodorescu D. Molecular markers of prognosis and novel therapeutic strategies for urothelial cell carcinomas. World J Urol 2006; 24:565-78. [PMID: 17063322 DOI: 10.1007/s00345-006-0119-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Christopher Y Thomas
- Department of Hematology and Oncology, UVA HSC, P.O. Box 800716, Charlottesville, VA 22908, USA
| | | |
Collapse
|
40
|
Abstract
Photodynamic therapy (PDT) is increasingly being recognized as an attractive, alternative treatment modality for superficial cancer. Treatment consists of two relatively simple procedures: the administration of a photosensitive drug and illumination of the tumor to activate the drug. Efficacy is high for small superficial tumors and, except for temporary skin photosensitization, there are no long-term side effects if appropriate protocols are followed. Healing occurs with little or no scarring and the procedure can be repeated without cumulative toxicity. Considering the efficacy and lack of long-term toxicity of PDT, and the fact that the first treatment of cancer with PDT was done more than 100 years ago, one might expect that this treatment had already become an established therapy. However, PDT is currently offered in only a few selected centers, although it is slowly gaining acceptance as an alternative to conventional cancer therapies. Here, we show the developmental steps PDT underwent and summarize the current clinical applications. The data show that, when properly used, PDT is an effective alternative treatment option in oncology.
Collapse
Affiliation(s)
- Martijn Triesscheijn
- Division of Experimental Therapy (H6), The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
41
|
Perlyn CA, Morriss-Kay G, Darvann T, Tenenbaum M, Ornitz DM. A model for the pharmacological treatment of crouzon syndrome. Neurosurgery 2006; 59:210-5; discussion 210-5. [PMID: 16823318 PMCID: PMC2267918 DOI: 10.1227/01.neu.0000224323.53866.1e] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Crouzon syndrome is caused by mutations in fibroblast growth factor receptor 2 (FGFR2) leading to constitutive activation of receptors in the absence of ligand binding. The syndrome is characterized by premature fusion of the cranial sutures that leads to abnormal cranium shape, restricted brain growth, and increased intracranial pressure. Surgical remodeling of the cranial vault is currently used to treat affected infants. The purpose of this study was to develop a pharmacological strategy using tyrosine kinase inhibition as a novel treatment for craniosynostotic syndromes caused by constitutive FGFR activation. METHODS Characterization of cranial suture fusion in Fgfr2 mutant mice, which carry the most common Crouzon mutation, was performed using micro-computed tomographic analysis from embryogenesis through maturation. Whole calvarial cultures from wild-type and Fgfr2 mice were established and cultured for 2 weeks in the presence of dimethyl sulfoxide control or PD173074, an FGFR tyrosine kinase inhibitor. Paraffin sections were prepared to show suture morphology and calcium deposition. RESULTS In untreated Fgfr2 cultures, the coronal suture fused bilaterally with loss of overlap between the frontal bone and parietal bone. Calvaria treated with PD173074 (2 micromol/L) showed patency of the coronal suture and were without evidence of any synostosis. CONCLUSION We report the successful use of PD173074 to prevent in vitro suture fusion in a model for Crouzon syndrome. Further studies are underway to develop an in vivo treatment protocol as a novel therapeutic modality for FGFR associated craniosynostotic syndromes.
Collapse
Affiliation(s)
- Chad A Perlyn
- Division of Plastic Surgery and Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|
42
|
Perlyn CA, Morriss-Kay G, Darvann T, Tenenbaum M, Ornitz DM. MODEL FOR THE PHARMACOLOGIC TREATMENT OF CROUZON SYNDROME. Neurosurgery 2006. [DOI: 10.1227/01.neu.0000243302.07308.d2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
43
|
Abstract
1. Photodynamic therapy is an established modality for the treatment of solid tumours and other accessible lesions. Although the concept and practice of combining light with a photosensitizing agent for the treatment of disease states has been around for almost a century, the understanding of the art and science therein has been tremendously enhanced over the past few years. 2. Photosensitized reactions are dependent on the generation of reactive oxygen species, in particular singlet oxygen, which accounts for the damaging effects on biological macromolecules, such as membrane lipids and proteins. Therefore, compounds that give a good yield of (1)O(2) are used as photosensitizers. 3. The main photosensitizers used in the clinical setting belong to the photofrin family; however, newer and more effective sensitizers are being evaluated for their potential clinical effectiveness. 4. Light sources have moved from the use of white light with specific filters in the old days to the more recent use of monochromatic light sources, such as lasers, to more sophisticated light-emitting diodes. However, dosimetry remains a big issue mainly because of difficulties in establishing the optimum treatment conditions for an approach that requires the fine-tuning of several variables, such as sensitizer and light doses and drug-to-light interval, as well as the issues of skin photosensitivity and low selectivity. A newer development to circumvent these and provide a broader application for this concept has been the phenomenon of photo-activation, whereby photo-exposure of chromophores to generate novel, small biologically active compounds has been demonstrated successfully. 5. The aim of the present review was to provide a general overview of the art and science of photodynamic therapy and to highlight some of the issues and recent developments in further advancing this modality of treatment.
Collapse
Affiliation(s)
- Shazib Pervaiz
- Department of Physiology, Yon Loo Lin School of Medicine, National University of Singapore, Singapore.
| | | |
Collapse
|
44
|
Luesch H, Chanda SK, Raya RM, DeJesus PD, Orth AP, Walker JR, Izpisúa Belmonte JC, Schultz PG. A functional genomics approach to the mode of action of apratoxin A. Nat Chem Biol 2006; 2:158-67. [PMID: 16474387 DOI: 10.1038/nchembio769] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 01/17/2006] [Indexed: 11/09/2022]
Abstract
The cyanobacterial metabolite apratoxin A (1) demonstrates potent cytotoxicity against tumor cell lines by a hitherto unknown mechanism. We have used functional genomics to elucidate the molecular basis for this activity. Gene expression profiling and DNA content analysis showed that apratoxin A induces G1-phase cell cycle arrest and apoptosis. Cell-based functional assays with a genome-wide collection of expression cDNAs showed that ectopic induction of fibroblast growth factor receptor (FGFR) signaling attenuates the apoptotic activity of apratoxin A. This natural product inhibited phosphorylation and activation of STAT3, a downstream effector of FGFR signaling. It also caused defects in FGF-dependent processes during zebrafish development, with concomitant reductions in expression levels of the FGF target gene mkp3. We conclude that apratoxin A mediates its antiproliferative activity through the induction of G1 cell cycle arrest and an apoptotic cascade, which is at least partially initiated through antagonism of FGF signaling via STAT3.
Collapse
Affiliation(s)
- Hendrik Luesch
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Magro CM, Abbas AE, Ross P. The application of photodynamic therapy in the treatment of metastatic endobronchial disease. Lasers Surg Med 2006; 38:376-83. [PMID: 16671103 DOI: 10.1002/lsm.20309] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVE We utilized photodynamic therapy (PDT) for palliation of metastatic endobronchial tumors employing sensitization with synthetic porphyrin, application of non-thermal light, and endoscopic debridement of necrotic tumor. STUDY DESIGN/MATERIALS AND METHODS Nine patients with symptomatic endobronchial metastasis from carcinomas of the colon(3), breast(3), kidney(2), and tongue(1) received PDT. RESULTS After two PDT treatments, patients showed substantial response, which was complete in all but one. One patient had perioperative complications and expired 2 days after developing massive hemoptysis during tumor debridement. Patient survival was 6.38 months (mean) and 4.2 months (median). Most patients died from advanced metastatic disease. One patient with metastasis limited to the airway is still alive 24 months following endobronchial presentation. CONCLUSIONS PDT ameliorates symptoms of metastatic airway obstruction, is easy to apply, has low morbidity and improves the quality of life.
Collapse
Affiliation(s)
- Cynthia M Magro
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | |
Collapse
|
46
|
Ran S, Mohamedali KA, Luster TA, Thorpe PE, Rosenblum MG. The vascular-ablative agent VEGF(121)/rGel inhibits pulmonary metastases of MDA-MB-231 breast tumors. Neoplasia 2005; 7:486-96. [PMID: 15967101 PMCID: PMC1501168 DOI: 10.1593/neo.04631] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Revised: 12/03/2004] [Accepted: 12/07/2004] [Indexed: 11/18/2022] Open
Abstract
VEGF(121)/rGel, a fusion protein composed of the growth factor VEGF(121) and the recombinant toxin gelonin (rGel), targets the tumor neovasculature and exerts impressive cytotoxic effects by inhibiting protein synthesis. We evaluated the effect of VEGF(121)/rGel on the growth of metastatic MDA-MB-231 tumor cells in SCID mice. VEGF(121)/rGel treatment reduced surface lung tumor foci by 58% compared to controls (means were 22.4 and 53.3, respectively; P < .05) and the mean area of lung colonies by 50% (210 +/- 37 m(2) vs 415 +/- 10 m(2) for VEGF(121)/rGel and control, respectively; P < .01). In addition, the vascularity of metastatic foci was significantly reduced (198 +/- 37 vs 388 +/- 21 vessels/mm(2) for treated and control, respectively). Approximately 62% of metastatic colonies from the VEGF(121)/rGel-treated group had fewer than 10 vessels per colony compared to 23% in the control group. The VEGF receptor Flk-1 was intensely detected on the metastatic vessels in the control but not in the VEGF(121)/rGel-treated group. Metastatic foci present in lungs had a three-fold lower Ki-67 labeling index compared to control tumors. Thus, the antitumor vascular-ablative effect of VEGF(121)/rGel may be utilized not only for treating primary tumors but also for inhibiting metastatic spread and vascularization of metastases.
Collapse
Affiliation(s)
- Sophia Ran
- Simmons Comprehensive Cancer Center and Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | | |
Collapse
|
47
|
Zhou Q, Olivo M, Lye KYK, Moore S, Sharma A, Chowbay B. Enhancing the therapeutic responsiveness of photodynamic therapy with the antiangiogenic agents SU5416 and SU6668 in murine nasopharyngeal carcinoma models. Cancer Chemother Pharmacol 2005; 56:569-77. [PMID: 16001166 DOI: 10.1007/s00280-005-1017-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2004] [Accepted: 12/08/2004] [Indexed: 12/27/2022]
Abstract
BACKGROUND Photodynamic therapy (PDT) is a promising therapeutic modality using a tumor localizing photosensitizer and light to destroy tumor cells. A major limitation of PDT is tumor recurrence, which is partly due to neovascularization. PURPOSE The objective of the present study was to determine whether combination therapy with PDT and antiangiogenic agents (i.e. SU5416 and SU6668) would be more effective in controlling tumor recurrence in a mouse model of human CNE2 poorly differentiated nasopharyngeal carcinoma compared with PDT or antiangiogenic agents administered alone. METHODS Athymic mice bearing CNE2 tumor xenografts received daily i.p. injections of 20 mg/kg SU5416 or 100 mg/kg SU6668 for 28 consecutive days either alone or following a single hypericin-PDT treatment. RESULTS Significant inhibition of CNE2 tumor growth was observed in all treatment groups. Differences in 4x tumor growth time, the number of mice with 4x tumor growth, tumor growth inhibition as well as the percent of mice surviving were not statistically significant among individual treatment groups. However, the number of mice with 4x tumor growth observed in SU6668 monotherapy and combined PDT and SU6668 treatment groups was significantly less than that in the control group (P<0.05 and 0.01, respectively). Moreover, compared with the control group, only the combined PDT and SU6668 treatment significantly extended survival of tumor-bearing host mice (P<0.05). The semiquantitative RT-PCR results showed that the expression of HIF-1alpha, VEGF, COX-2 and bFGF were increased in PDT-treated tumor samples collected 24 h post-PDT, suggesting that PDT-induced damage to tumor microvasculature and the resultant hypoxia upregulate the expression of certain proangiogenic factors. CONCLUSIONS The effectiveness of PDT can be enhanced by antiangiogenic treatment with the synthetic RTK inhibitors. Of the two synthetic RTK inhibitors tested, SU6668 was more effective than SU5416 in enhancing tumor responsiveness to PDT.
Collapse
Affiliation(s)
- Qingyu Zhou
- Laboratory of Clinical Pharmacology Division of Clinical Trials & Epidemiological Sciences, National Cancer Centre, 11, Hospital Drive, 169610, Singapore
| | | | | | | | | | | |
Collapse
|
48
|
Thompson AM, Delaney AM, Hamby JM, Schroeder MC, Spoon TA, Crean SM, Showalter HDH, Denny WA. Synthesis and Structure−Activity Relationships of Soluble 7-Substituted 3-(3,5-Dimethoxyphenyl)-1,6-naphthyridin-2-amines and Related Ureas as Dual Inhibitors of the Fibroblast Growth Factor Receptor-1 and Vascular Endothelial Growth Factor Receptor-2 Tyrosine Kinases. J Med Chem 2005; 48:4628-53. [PMID: 16000000 DOI: 10.1021/jm0500931] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
7-Substituted 3-aryl-1,6-naphthyridine-2,7-diamines and related 2-ureas are inhibitors of fibroblast growth factor receptor-1 (FGFR-1) and vascular endothelial growth factor receptor-2 (VEGFR-2). 3-(3,5-Dimethoxyphenyl) and 3-phenyl analogues were prepared from 7-acetamido-2-tert-butylureas by alkylation with benzyl omega-iodoalkyl ethers, debenzylation, and amination, followed by selective cleavage of the 7-N-acetamide. 3-(2,6-Dichlorophenyl) analogues were prepared from the 7-fluoro-2-amine by displacement with substituted alkylamines, followed by selective acylation of the resulting substituted naphthyridine-2,7-diamines with alkyl isocyanates. The 3-(3,5-dimethoxyphenyl) derivatives were low nanomolar inhibitors of both FGFR and VEGFR and were highly selective (>100-fold) over PDGFR and c-Src. Variations in the base strength or spatial position of the 7-side chain base had only small effects on the potency (<5-fold) or selectivity (<20-fold). The 3-(2,6-dichlorophenyl)-2-urea derivatives were slightly less active against VEGFR and less selective, being more effective against PDGFR (ca. 10-fold) and c-Src (ca. 500-fold). The 3-(3,5-dimethoxyphenyl)-1,6-naphthyridines were generally more potent than the corresponding pyrido[2,3-d]pyrimidines against both VEGFR and FGFR (2- to 20-fold), with only slightly increased PDGFR and c-Src activity. The 3-(3,5-dimethoxyphenyl)-1,6-naphthyridine 2-ureas were also low nanomolar inhibitors of the growth of human umbilical vein endothelial cells (HUVECs) stimulated by serum, FGF, or VEGF, at concentrations that did not affect the growth of representative tumor cell lines, and were more (3- to 65-fold) potent than the corresponding pyrido[2,3-d]pyrimidines.
Collapse
Affiliation(s)
- Andrew M Thompson
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Palmer BD, Smaill JB, Rewcastle GW, Dobrusin EM, Kraker A, Moore CW, Steinkampf RW, Denny WA. Structure–activity relationships for 2-anilino-6-phenylpyrido[2,3-d]pyrimidin-7(8H)-ones as inhibitors of the cellular checkpoint kinase Wee1. Bioorg Med Chem Lett 2005; 15:1931-5. [PMID: 15780636 DOI: 10.1016/j.bmcl.2005.01.079] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Revised: 01/27/2005] [Accepted: 01/28/2005] [Indexed: 11/26/2022]
Abstract
A series of 2-anilino-6-phenylpyrido[2,3-d]pyrimidin-7(8H)-ones were synthesized and evaluated for their inhibitory properties against the non-receptor kinase c-Src and the G2/M checkpoint kinase Wee1. Overall, the compounds were 10-100-fold more potent inhibitors of c-Src than Wee1, and variation of substituents on the 6-phenyl ring did not markedly alter this preference. Solubilizing substituents off the 2-anilino ring in many cases increased Wee1 activity, thus lowering this preference to about 10-fold. 5-Alkyl substituted analogs were generally Wee1 selective, but at the expense of absolute potency.
Collapse
Affiliation(s)
- Brian D Palmer
- Auckland Cancer Society Research Centre, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Wissing J, Godl K, Brehmer D, Blencke S, Weber M, Habenberger P, Stein-Gerlach M, Missio A, Cotten M, Müller S, Daub H. Chemical proteomic analysis reveals alternative modes of action for pyrido[2,3-d]pyrimidine kinase inhibitors. Mol Cell Proteomics 2004; 3:1181-93. [PMID: 15475568 DOI: 10.1074/mcp.m400124-mcp200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Small molecule inhibitors belonging to the pyrido[2,3-d]pyrimidine class of compounds were developed as antagonists of protein tyrosine kinases implicated in cancer progression. Derivatives from this compound class are effective against most of the imatinib mesylate-resistant BCR-ABL mutants isolated from advanced chronic myeloid leukemia patients. Here, we established an efficient proteomics method employing an immobilized pyrido[2,3-d]pyrimidine ligand as an affinity probe and identified more than 30 human protein kinases affected by this class of compounds. Remarkably, in vitro kinase assays revealed that the serine/threonine kinases Rip-like interacting caspase-like apoptosis-regulatory protein kinase (RICK) and p38alpha were among the most potently inhibited kinase targets. Thus, pyrido[2,3-d]pyrimidines did not discriminate between tyrosine and serine/threonine kinases. Instead, we found that these inhibitors are quite selective for protein kinases possessing a conserved small amino acid residue such as threonine at a critical site of the ATP binding pocket. We further demonstrated inhibition of both p38 and RICK kinase activities in intact cells upon pyrido[2,3-d]pyrimidine inhibitor treatment. Moreover, the established functions of these two kinases as signal transducers of inflammatory responses could be correlated with a potent in vivo inhibition of cytokine production by a pyrido[2,3-d]pyrimidine compound. Thus, our data demonstrate the utility of proteomic methods employing immobilized kinase inhibitors for identifying new targets linked to previously unrecognized therapeutic applications.
Collapse
|