1
|
Wang Y, Wang Y, Xu D. Effects of different exercise methods and intensities on the incidence and prognosis of atrial fibrillation. Trends Cardiovasc Med 2024; 34:510-515. [PMID: 38216075 DOI: 10.1016/j.tcm.2024.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/21/2023] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
Atrial fibrillation (AF), the most common sustained arrhythmia in clinical practice, exhibits a higher risk of cardiovascular adverse events. Exercise plays a crucial role in AF prevention, but the effects of different exercise types and doses are inconclusive. This review aims to comprehensively explore the most recent evidence and possible mechanisms of diverse exercise modalities concerning AF incidence and therapeutic outcomes. Multiple studies underscore the efficacy of moderate-intensity continuous training (MICT) in reducing AF incidence and symptom burden, rendering it the currently favored exercise therapy for AF patients. High-intensity interval training (HIIT) shows promise, potentially surpassing MICT, especially in reducing age-related AF susceptibility and improving symptoms and exercise capacity. Conversely, prolonged high-intensity endurance exercise exacerbates AF risk due to excessive exercise volume, with potential mechanisms encompassing irreversible atrial remodeling, heightened inflammation, and increased vagal tone. In summation, MICT is a secure strategy for populations in mitigating the risk associated with AF incidence and secondary cardiovascular events and should be encouraged. Also, it is recommended to initiate large-scale clinical intervention trials encompassing a variety of exercise types to delineate the optimal exercise prescription for cardiovascular patients, including those afflicted with AF.
Collapse
Affiliation(s)
- Yurong Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Ying Wang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Cardiovascular Medicine, Yueyang Central Hospital, China
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
2
|
Namazi M, Eftekhar SP, Mosaed R, Shiralizadeh Dini S, Hazrati E. Pulmonary Hypertension and Right Ventricle: A Pathophysiological Insight. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2024; 18:11795468241274744. [PMID: 39257563 PMCID: PMC11384539 DOI: 10.1177/11795468241274744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/21/2024] [Indexed: 09/12/2024]
Abstract
Background Pulmonary hypertension (PH) is a pulmonary vascular disease characterized by elevated pulmonary vascular pressure. Long-term PH, irrespective of its etiology, leads to increased right ventricular (RV) pressure, RV hypertrophy, and ultimately, RV failure. Main body Research indicates that RV failure secondary to hypertrophy remains the primary cause of mortality in pulmonary arterial hypertension (PAH). However, the impact of PH on RV structure and function under increased overload remains incompletely understood. Several mechanisms have been proposed, including extracellular remodeling, RV hypertrophy, metabolic disturbances, inflammation, apoptosis, autophagy, endothelial-to-mesenchymal transition, neurohormonal dysregulation, capillary rarefaction, and ischemia. Conclusions Studies have demonstrated the significant role of oxidative stress in the development of RV failure. Understanding the interplay among these mechanisms is crucial for the prevention and management of RV failure in patients with PH.
Collapse
Affiliation(s)
- Mehrshad Namazi
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
- Clinical Biomechanics and Ergonomics Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Seyed Parsa Eftekhar
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Reza Mosaed
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| | | | - Ebrahim Hazrati
- Trauma and Surgery Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Burkart V, Kowalski K, Aldag-Niebling D, Beck J, Frick DA, Holler T, Radocaj A, Piep B, Zeug A, Hilfiker-Kleiner D, dos Remedios CG, van der Velden J, Montag J, Kraft T. Transcriptional bursts and heterogeneity among cardiomyocytes in hypertrophic cardiomyopathy. Front Cardiovasc Med 2022; 9:987889. [PMID: 36082122 PMCID: PMC9445301 DOI: 10.3389/fcvm.2022.987889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022] Open
Abstract
Transcriptional bursting is a common expression mode for most genes where independent transcription of alleles leads to different ratios of allelic mRNA from cell to cell. Here we investigated burst-like transcription and its consequences in cardiac tissue from Hypertrophic Cardiomyopathy (HCM) patients with heterozygous mutations in the sarcomeric proteins cardiac myosin binding protein C (cMyBP-C, MYBPC3) and cardiac troponin I (cTnI, TNNI3). Using fluorescence in situ hybridization (RNA-FISH) we found that both, MYBPC3 and TNNI3 are transcribed burst-like. Along with that, we show unequal allelic ratios of TNNI3-mRNA among single cardiomyocytes and unequally distributed wildtype cMyBP-C protein across tissue sections from heterozygous HCM-patients. The mutations led to opposing functional alterations, namely increasing (cMyBP-Cc.927−2A>G) or decreasing (cTnIR145W) calcium sensitivity. Regardless, all patients revealed highly variable calcium-dependent force generation between individual cardiomyocytes, indicating contractile imbalance, which appears widespread in HCM-patients. Altogether, we provide strong evidence that burst-like transcription of sarcomeric genes can lead to an allelic mosaic among neighboring cardiomyocytes at mRNA and protein level. In HCM-patients, this presumably induces the observed contractile imbalance among individual cardiomyocytes and promotes HCM-development.
Collapse
Affiliation(s)
- Valentin Burkart
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
- Valentin Burkart
| | - Kathrin Kowalski
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - David Aldag-Niebling
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Julia Beck
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Dirk Alexander Frick
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Tim Holler
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Ante Radocaj
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Birgit Piep
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Andre Zeug
- Institute for Cellular Neurophysiology, Hannover Medical School, Hannover, Germany
| | | | - Cristobal G. dos Remedios
- Mechanosensory Biophysics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
| | | | - Judith Montag
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
- *Correspondence: Judith Montag
| | - Theresia Kraft
- Institute for Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
4
|
Xuan Y, Chen C, Wen Z, Wang DW. The Roles of Cardiac Fibroblasts and Endothelial Cells in Myocarditis. Front Cardiovasc Med 2022; 9:882027. [PMID: 35463742 PMCID: PMC9022788 DOI: 10.3389/fcvm.2022.882027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
In myocarditis caused by various etiologies, activated immune cells and the immune regulatory factors released by them play important roles. But in this complex microenvironment, non-immune cells and non-cardiomyocytes in the heart, such as cardiomyocytes (CMs), cardiac fibroblasts (CFs) and endothelial cells (ECs), play the role of “sentinel”, amplify inflammation, and interact with the cardiomyocytes. The complex interactions between them are rarely paid attention to. This review will re-examine the functions of CFs and ECs in the pathological conditions of myocarditis and their direct and indirect interactions with CMs, in order to have a more comprehensive understanding of the pathogenesis of myocarditis and better guide the drug development and clinical treatment of myocarditis.
Collapse
Affiliation(s)
- Yunling Xuan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
| | - Zheng Wen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- *Correspondence: Zheng Wen
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, China
- Dao Wen Wang
| |
Collapse
|
5
|
Fang Y, Sun W, Zhang T, Xiong Z. Recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps: A review. Biomaterials 2021; 280:121298. [PMID: 34864451 DOI: 10.1016/j.biomaterials.2021.121298] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
The field of cardiac tissue engineering has advanced over the past decades; however, most research progress has been limited to engineered cardiac tissues (ECTs) at the microscale with minimal geometrical complexities such as 3D strips and patches. Although microscale ECTs are advantageous for drug screening applications because of their high-throughput and standardization characteristics, they have limited translational applications in heart repair and the in vitro modeling of cardiac function and diseases. Recently, researchers have made various attempts to construct engineered cardiac pumps (ECPs) such as chambered ventricles, recapitulating the geometrical complexity of the native heart. The transition from microscale ECTs to ECPs at a translatable scale would greatly accelerate their translational applications; however, researchers are confronted with several major hurdles, including geometrical reconstruction, vascularization, and functional maturation. Therefore, the objective of this paper is to review the recent advances on bioengineering approaches for fabrication of functional engineered cardiac pumps. We first review the bioengineering approaches to fabricate ECPs, and then emphasize the unmatched potential of 3D bioprinting techniques. We highlight key advances in bioprinting strategies with high cell density as researchers have begun to realize the critical role that the cell density of non-proliferative cardiomyocytes plays in the cell-cell interaction and functional contracting performance. We summarize the current approaches to engineering vasculatures both at micro- and meso-scales, crucial for the survival of thick cardiac tissues and ECPs. We showcase a variety of strategies developed to enable the functional maturation of cardiac tissues, mimicking the in vivo environment during cardiac development. By highlighting state-of-the-art research, this review offers personal perspectives on future opportunities and trends that may bring us closer to the promise of functional ECPs.
Collapse
Affiliation(s)
- Yongcong Fang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China
| | - Wei Sun
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China; Department of Mechanical Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Ting Zhang
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China.
| | - Zhuo Xiong
- Biomanufacturing Center, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, PR China; Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Beijing, 100084, PR China; "Biomanufacturing and Engineering Living Systems" Innovation International Talents Base (111 Base), Beijing, 100084, PR China.
| |
Collapse
|
6
|
Miguel-Dos-Santos R, Moreira JBN, Loennechen JP, Wisløff U, Mesquita T. Exercising immune cells: The immunomodulatory role of exercise on atrial fibrillation. Prog Cardiovasc Dis 2021; 68:52-59. [PMID: 34274371 DOI: 10.1016/j.pcad.2021.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022]
Abstract
Exercise training is generally beneficial for cardiovascular health, improving stroke volume, cardiac output, and aerobic capacity. Despite these benefits, some evidence indicates that endurance training may increase the risk of atrial fibrillation (AF), particularly in highly trained individuals. Among multiple mechanisms, autonomic tone changes and atrial remodeling have been proposed as main contributors for exercise-induced AF. However, the contribution of local and systemic immunity is poorly understood in the development of atrial arrhythmogenic substrates. Here we aim to update the field of immunomodulation in the context of exercise and AF by compiling and reconciling the most recent evidence from preclinical and human studies and rationalize the applicability of "lone" AF terminology in athletes.
Collapse
Affiliation(s)
- Rodrigo Miguel-Dos-Santos
- Department of Physiology, Federal University of Sergipe, Sergipe, Brazil; Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - José Bianco Nascimento Moreira
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jan Pål Loennechen
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; Department of Cardiology, St. Olav's University Hospital, Trondheim, Norway
| | - Ulrik Wisløff
- Cardiac Exercise Research Group (CERG), Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway; School of Human Movement and Nutrition Science, University of Queensland, Queensland, Australia.
| | - Thássio Mesquita
- Smidt Heart Institute, Cedars-Sinai Medical Center, California, United States..
| |
Collapse
|
7
|
Stewart L, Turner NA. Channelling the Force to Reprogram the Matrix: Mechanosensitive Ion Channels in Cardiac Fibroblasts. Cells 2021; 10:990. [PMID: 33922466 PMCID: PMC8145896 DOI: 10.3390/cells10050990] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/13/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac fibroblasts (CF) play a pivotal role in preserving myocardial function and integrity of the heart tissue after injury, but also contribute to future susceptibility to heart failure. CF sense changes to the cardiac environment through chemical and mechanical cues that trigger changes in cellular function. In recent years, mechanosensitive ion channels have been implicated as key modulators of a range of CF functions that are important to fibrotic cardiac remodelling, including cell proliferation, myofibroblast differentiation, extracellular matrix turnover and paracrine signalling. To date, seven mechanosensitive ion channels are known to be functional in CF: the cation non-selective channels TRPC6, TRPM7, TRPV1, TRPV4 and Piezo1, and the potassium-selective channels TREK-1 and KATP. This review will outline current knowledge of these mechanosensitive ion channels in CF, discuss evidence of the mechanosensitivity of each channel, and detail the role that each channel plays in cardiac remodelling. By better understanding the role of mechanosensitive ion channels in CF, it is hoped that therapies may be developed for reducing pathological cardiac remodelling.
Collapse
Affiliation(s)
| | - Neil A. Turner
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK;
| |
Collapse
|
8
|
Dergilev KV, Tsokolaeva ZI, Beloglazova IB, Ratner EI, Parfenova EV. Transforming Growth Factor Beta (TGF-β1) Induces Pro-Reparative Phenotypic Changes in Epicardial Cells in Mice. Bull Exp Biol Med 2021; 170:565-570. [PMID: 33730328 DOI: 10.1007/s10517-021-05107-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Indexed: 11/24/2022]
Abstract
We evaluated the content of active form of TGF-β1 in the intact and post-infarction heart and the effect of this factor on the properties of epicardial cells. During the acute stage after myocardial infarction, the production of TGF-β1 in the heart increased, which closely correlated with activation of epicardial cells (appearance of a pool of Wt1+ epicardial cells entering the epithelial-mesenchymal transition). The role of TGF-β1 as the factor of epicardial activation was confirmed by the results of in vitro experiments: addition of recombinant TGF-β1 to cultured epicardial cells led to enhanced expression of genes of epithelial-mesenchymal transition and phenotypic transformation of these cells leading to the appearance of cells with markers of smooth muscle cells and fibroblasts. Our findings suggest that the regulatory axis "TGF-β1-epicardium cells" can be considered as an important link of the post-infarction reparative process and adaptive response during heart remodeling after myocardial infarction and as the target for therapeutic interventions.
Collapse
Affiliation(s)
- K V Dergilev
- Laboratory of Angiogenesis, Institute of Experimental Cardiology, National Medical Research Centre of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - Z I Tsokolaeva
- Laboratory of Angiogenesis, Institute of Experimental Cardiology, National Medical Research Centre of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia.,V. A. Negovsky Research Institute of General Reanimatology, Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - I B Beloglazova
- Laboratory of Angiogenesis, Institute of Experimental Cardiology, National Medical Research Centre of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E I Ratner
- Laboratory of Angiogenesis, Institute of Experimental Cardiology, National Medical Research Centre of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia
| | - E V Parfenova
- Laboratory of Angiogenesis, Institute of Experimental Cardiology, National Medical Research Centre of Cardiology, Ministry of Health of the Russian Federation, Moscow, Russia.,Laboratory of Postgenomic Technologies in Medicine, Faculty of Fundamental Medicine, M. V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
9
|
Stochastic allelic expression as trigger for contractile imbalance in hypertrophic cardiomyopathy. Biophys Rev 2020; 12:1055-1064. [PMID: 32661905 PMCID: PMC7429642 DOI: 10.1007/s12551-020-00719-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM), the most common inherited cardiac disease, is caused by several mostly heterozygous mutations in sarcomeric genes. Hallmarks of HCM are cardiomyocyte and myofibrillar disarray and hypertrophy and fibrosis of the septum and the left ventricle. To date, a pathomechanism common to all mutations remains elusive. We have proposed that contractile imbalance, an unequal force generation of neighboring cardiomyocytes, may contribute to development of HCM hallmarks. At the same calcium concentration, we found substantial differences in force generation between individual cardiomyocytes from HCM patients with mutations in β-MyHC (β-myosin heavy chain). Variability among cardiomyocytes was significantly larger in HCM patients as compared with donor controls. We assume that this heterogeneity in force generation among cardiomyocytes may lead to myocardial disarray and trigger hypertrophy and fibrosis. We provided evidence that burst-like transcription of the MYH7-gene, encoding for β-MyHC, is associated with unequal fractions of mutant per wild-type mRNA from cell to cell (cell-to-cell allelic imbalance). This will presumably lead to unequal fractions of mutant per wild-type protein from cell to cell which may underlie contractile imbalance. In this review, we discuss molecular mechanisms of burst-like transcription with regard to contractile imbalance and disease development in HCM.
Collapse
|
10
|
Djalinac N, Ljubojevic-Holzer S, Matzer I, Kolesnik E, Jandl K, Lohberger B, Rainer P, Heinemann A, Sedej S, von Lewinski D, Bisping E. The role of stretch, tachycardia and sodium-calcium exchanger in induction of early cardiac remodelling. J Cell Mol Med 2020; 24:8732-8743. [PMID: 32573098 PMCID: PMC7412684 DOI: 10.1111/jcmm.15504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022] Open
Abstract
Stretch and tachycardia are common triggers for cardiac remodelling in various conditions, but a comparative characterization of their role in the excitation‐transcription coupling (ETC) and early regulation of gene expression and structural changes is lacking. Here, we show that stretch and tachycardia directly induced hypertrophy of neonatal rat cardiac myocytes and also of non‐myocytes. Both triggers induced similar patterns of hypertrophy but had largely distinct gene expression profiles. ACTA1 served as good hypertrophy marker upon stretch, while RCAN1 was found increased in response to tachycardia in a rate‐dependent fashion. Mechanistically, several calcium‐handling proteins, including the sodium‐calcium exchanger (NCX), contributed to ETC. Phosphorylation of the calcium/calmodulin‐dependent protein kinase II (CaMKII) was elevated and occurred downstream of NCX activation upon tachycardia, but not stretch. Microarray profiling revealed that stretch and tachycardia regulated around 33% and 20% genes in a NCX‐dependent manner, respectively. In conclusion, our data show that hypertrophy induction by stretch and tachycardia is associated with different gene expression profiles with a significant contribution of the NCX.
Collapse
Affiliation(s)
- Natasa Djalinac
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | | | - Ingrid Matzer
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Ewald Kolesnik
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Katharina Jandl
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria.,Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Birgit Lohberger
- Department of Orthopedics and Trauma, Medical University of Graz, Graz, Austria
| | - Peter Rainer
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
| | | | - Egbert Bisping
- Department of Cardiology, Medical University of Graz, Graz, Austria
| |
Collapse
|
11
|
Abstract
The role of right ventricular (RV) fibrosis in pulmonary hypertension (PH) remains a subject of ongoing discussion. Alterations of the collagen network of the extracellular matrix may help prevent ventricular dilatation in the pressure-overloaded RV. At the same time, fibrosis impairs cardiac function, and a growing body of experimental data suggests that fibrosis plays a crucial role in the development of RV failure. In idiopathic pulmonary arterial hypertension and chronic thromboembolic PH, the RV is exposed to a ≈5 times increased afterload, which makes these conditions excellent models for studying the impact of pressure overload on RV structure. With this review, we present clinical evidence of RV fibrosis in idiopathic pulmonary arterial hypertension and chronic thromboembolic PH, explore the correlation between fibrosis and RV function, and discuss the clinical relevance of RV fibrosis in patients with PH. We postulate that RV fibrosis has a dual role in patients with pressure-overloaded RVs of idiopathic pulmonary arterial hypertension and chronic thromboembolic PH: as part of an adaptive response to prevent cardiomyocyte overstretch and to maintain RV shape for optimal function, and as part of a maladaptive response that increases diastolic stiffness, perturbs cardiomyocyte excitation-contraction coupling, and disrupts the coordination of myocardial contraction. Finally, we discuss potential novel therapeutic strategies and describe more sensitive techniques to quantify RV fibrosis, which may be used to clarify the causal relation between RV fibrosis and RV function in future research.
Collapse
Affiliation(s)
| | | | | | - Frances S de Man
- Amsterdam UMC, Vrije Universiteit, The Netherlands (A.V.N., F.S.d.M)
| |
Collapse
|
12
|
van der Velden J, Tocchetti CG, Varricchi G, Bianco A, Sequeira V, Hilfiker-Kleiner D, Hamdani N, Leite-Moreira AF, Mayr M, Falcão-Pires I, Thum T, Dawson DK, Balligand JL, Heymans S. Metabolic changes in hypertrophic cardiomyopathies: scientific update from the Working Group of Myocardial Function of the European Society of Cardiology. Cardiovasc Res 2019; 114:1273-1280. [PMID: 29912308 PMCID: PMC6054261 DOI: 10.1093/cvr/cvy147] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
Disturbed metabolism as a consequence of obesity and diabetes may cause cardiac diseases (recently highlighted in the cardiovascular research spotlight issue on metabolic cardiomyopathies).1 In turn, the metabolism of the heart may also be disturbed in genetic and acquired forms of hypertrophic cardiac disease. Herein, we provide an overview of recent insights on metabolic changes in genetic hypertrophic cardiomyopathy and discuss several therapies, which may be explored to target disturbed metabolism and prevent onset of cardiac hypertrophy. This article is part of the Mini Review Series from the Varenna 2017 meeting of the Working Group of Myocardial Function of the European Society of Cardiology.
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, NA, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, Federico II University, Naples, NA, Italy
| | - Anna Bianco
- Department of Translational Medical Sciences, Federico II University, Naples, NA, Italy.,Department of Cardiology, Maastricht University Medical Center & CARIM, Maastricht University, Maastricht, The Netherlands
| | - Vasco Sequeira
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Denise Hilfiker-Kleiner
- Molecular Cardiology, Department of Cardiology and Angiology, Medical School Hannover, Germany
| | - Nazha Hamdani
- Department of Systems Physiology, Ruhr University Bochum, Bochum, Germany
| | - Adelino F Leite-Moreira
- Department of Surgery and Physiology, Faculty of Medicine, Cardiovascular Research Centre, University of Porto, Porto, Portugal
| | - Manuel Mayr
- The James Black Centre & King's British Heart Foundation Centre, King's College, University of London, London, UK
| | - Ines Falcão-Pires
- Department of Surgery and Physiology, Faculty of Medicine, Cardiovascular Research Centre, University of Porto, Porto, Portugal
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,National Heart and Lung Institute, Imperial College London, London, UK.,REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany
| | - Dana K Dawson
- School of Medicine & Dentistry, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics, Institut de Recherche Experimentale et Clinique (IREC), and Clinique Universitaire Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Stephane Heymans
- Netherlands Heart Institute, Utrecht, The Netherlands.,Department of Cardiology, Maastricht University Medical Center & CARIM, Maastricht University, Maastricht, The Netherlands.,Department of Cardiovascular Sciences, Leuven University, Leuven, Belgium
| |
Collapse
|
13
|
Yotti R, Seidman CE, Seidman JG. Advances in the Genetic Basis and Pathogenesis of Sarcomere Cardiomyopathies. Annu Rev Genomics Hum Genet 2019; 20:129-153. [PMID: 30978303 DOI: 10.1146/annurev-genom-083118-015306] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) are common heart muscle disorders that are caused by pathogenic variants in sarcomere protein genes. HCM is characterized by unexplained cardiac hypertrophy (increased chamber wall thickness) that is accompanied by enhanced cardiac contractility and impaired relaxation. DCM is defined as increased ventricular chamber volume with contractile impairment. In this review, we discuss recent analyses that provide new insights into the molecular mechanisms that cause these conditions. HCM studies have uncovered the critical importance of conformational changes that occur during relaxation and enable energy conservation, which are frequently disturbed by HCM mutations. DCM studies have demonstrated the considerable prevalence of truncating variants in titin and have discerned that these variants reduce contractile function by impairing sarcomerogenesis. These new pathophysiologic mechanisms open exciting opportunities to identify new pharmacological targets and develop future cardioprotective strategies.
Collapse
Affiliation(s)
- Raquel Yotti
- Department of Cardiology, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain; .,Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; , .,Cardiovascular Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.,Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| | - Jonathan G Seidman
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA; ,
| |
Collapse
|
14
|
Kraft T, Montag J. Altered force generation and cell-to-cell contractile imbalance in hypertrophic cardiomyopathy. Pflugers Arch 2019; 471:719-733. [PMID: 30740621 PMCID: PMC6475633 DOI: 10.1007/s00424-019-02260-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/20/2019] [Indexed: 01/18/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is mainly caused by mutations in sarcomeric proteins. Thirty to forty percent of identified mutations are found in the ventricular myosin heavy chain (β-MyHC). A common mechanism explaining how numerous mutations in several different proteins induce a similar HCM-phenotype is unclear. It was proposed that HCM-mutations cause hypercontractility, which for some mutations is thought to result from mutation-induced unlocking of myosin heads from a so-called super-relaxed state (SRX). The SRX was suggested to be related to the "interacting head motif," i.e., pairs of myosin heads folded back onto their S2-region. Here, we address these structural states of myosin in context of earlier work on weak binding cross-bridges. However, not all HCM-mutations cause hypercontractility and/or are involved in the interacting head motif. But most likely, all mutations alter the force generating mechanism, yet in different ways, possibly including inhibition of SRX. Such functional-hyper- and hypocontractile-changes are the basis of our previously proposed concept stating that contractile imbalance due to unequal fractions of mutated and wildtype protein among individual cardiomyocytes over time will induce cardiomyocyte disarray and fibrosis, hallmarks of HCM. Studying β-MyHC-mutations, we found substantial contractile variability from cardiomyocyte to cardiomyocyte within a patient's myocardium, much higher than in controls. This was paralleled by a similarly variable fraction of mutant MYH7-mRNA (cell-to-cell allelic imbalance), due to random, burst-like transcription, independent for mutant and wildtype MYH7-alleles. Evidence suggests that HCM-mutations in other sarcomeric proteins follow the same disease mechanism.
Collapse
Affiliation(s)
- Theresia Kraft
- Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Judith Montag
- Molecular and Cell Physiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
15
|
Atcha H, Davis CT, Sullivan NR, Smith TD, Anis S, Dahbour WZ, Robinson ZR, Grosberg A, Liu WF. A Low-Cost Mechanical Stretching Device for Uniaxial Strain of Cells: A Platform for Pedagogy in Mechanobiology. J Biomech Eng 2018; 140:2678940. [PMID: 30003248 PMCID: PMC6056193 DOI: 10.1115/1.4039949] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/30/2018] [Indexed: 11/08/2022]
Abstract
Mechanical cues including stretch, compression, and shear stress play a critical role in regulating the behavior of many cell types, particularly those that experience substantial mechanical stress within tissues. Devices that impart mechanical stimulation to cells in vitro have been instrumental in helping to develop a better understanding of how cells respond to mechanical forces. However, these devices often have constraints, such as cost and limited functional capabilities, that restrict their use in research or educational environments. Here, we describe a low-cost method to fabricate a uniaxial cell stretcher that would enable widespread use and facilitate engineering design and mechanobiology education for undergraduate students. The device is capable of producing consistent and reliable strain profiles through the use of a servomotor, gear, and gear rack system. The servomotor can be programmed to output various waveforms at specific frequencies and stretch amplitudes by controlling the degree of rotation, speed, and acceleration of the servogear. In addition, the stretchable membranes are easy to fabricate and can be customized, allowing for greater flexibility in culture well size. We used the custom-built stretching device to uniaxially strain macrophages and cardiomyocytes, and found that both cell types displayed functional and cell shape changes that were consistent with the previous studies using commercially available systems. Overall, this uniaxial cell stretcher provides a more cost-effective alternative to study the effects of mechanical stretch on cells, and can therefore, be widely used in research and educational environments to broaden the study and pedagogy of cell mechanobiology.
Collapse
Affiliation(s)
- Hamza Atcha
- Department of Biomedical Engineering,
The Edwards Lifesciences Center for
Advanced Cardiovascular Technology,
University of California Irvine,
Irvine, CA 92697
| | - Chase T. Davis
- Department of Biomedical Engineering,
The Edwards Lifesciences Center for
Advanced Cardiovascular Technology,
University of California Irvine,
Irvine, CA 92697
| | - Nicholas R. Sullivan
- Department of Biomedical Engineering,
The Edwards Lifesciences Center for
Advanced Cardiovascular Technology,
University of California Irvine,
Irvine, CA 92697
| | - Tim D. Smith
- Department of Biomedical Engineering,
The Edwards Lifesciences Center for
Advanced Cardiovascular Technology,
University of California Irvine,
Irvine, CA 92697
| | - Sara Anis
- Department of Biomedical Engineering,
The Edwards Lifesciences Center for
Advanced Cardiovascular Technology,
University of California Irvine,
Irvine, CA 92697
| | - Waleed Z. Dahbour
- Department of Biomedical Engineering,
The Edwards Lifesciences Center for
Advanced Cardiovascular Technology,
University of California Irvine,
Irvine, CA 92697
| | - Zachery R. Robinson
- Department of Biomedical Engineering,
The Edwards Lifesciences Center for
Advanced Cardiovascular Technology,
University of California Irvine,
Irvine, CA 92697
| | - Anna Grosberg
- Department of Biomedical Engineering,Center for Complex Biological Systems,
The Edwards Lifesciences Center for
Advanced Cardiovascular Technology,
University of California Irvine,
Irvine, CA 92697
- Department of Chemical Engineeringand Materials Science,
University of California Irvine,
Irvine, CA 92697
e-mail:
| | - Wendy F. Liu
- Department of Biomedical Engineering,The Edwards Lifesciences Center for
Advanced Cardiovascular Technology,
University of California Irvine,
Irvine, CA 92697
- Department of Chemical Engineeringand Materials Science,
University of California Irvine,
Irvine, CA 92697
e-mail:
| |
Collapse
|
16
|
Besser RR, Ishahak M, Mayo V, Carbonero D, Claure I, Agarwal A. Engineered Microenvironments for Maturation of Stem Cell Derived Cardiac Myocytes. Am J Cancer Res 2018; 8:124-140. [PMID: 29290797 PMCID: PMC5743464 DOI: 10.7150/thno.19441] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 10/19/2017] [Indexed: 01/11/2023] Open
Abstract
Through the use of stem cell-derived cardiac myocytes, tissue-engineered human myocardial constructs are poised for modeling normal and diseased physiology of the heart, as well as discovery of novel drugs and therapeutic targets in a human relevant manner. This review highlights the recent bioengineering efforts to recapitulate microenvironmental cues to further the maturation state of newly differentiated cardiac myocytes. These techniques include long-term culture, co-culture, exposure to mechanical stimuli, 3D culture, cell-matrix interactions, and electrical stimulation. Each of these methods has produced various degrees of maturation; however, a standardized measure for cardiomyocyte maturation is not yet widely accepted by the scientific community.
Collapse
|
17
|
Yanamandala M, Zhu W, Garry DJ, Kamp TJ, Hare JM, Jun HW, Yoon YS, Bursac N, Prabhu SD, Dorn GW, Bolli R, Kitsis RN, Zhang J. Overcoming the Roadblocks to Cardiac Cell Therapy Using Tissue Engineering. J Am Coll Cardiol 2017; 70:766-775. [PMID: 28774384 PMCID: PMC5553556 DOI: 10.1016/j.jacc.2017.06.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/05/2017] [Accepted: 06/05/2017] [Indexed: 12/20/2022]
Abstract
Transplantations of various stem cells or their progeny have repeatedly improved cardiac performance in animal models of myocardial injury; however, the benefits observed in clinical trials have been generally less consistent. Some of the recognized challenges are poor engraftment of implanted cells and, in the case of human cardiomyocytes, functional immaturity and lack of electrical integration, leading to limited contribution to the heart's contractile activity and increased arrhythmogenic risks. Advances in tissue and genetic engineering techniques are expected to improve the survival and integration of transplanted cells, and to support structural, functional, and bioenergetic recovery of the recipient hearts. Specifically, application of a prefabricated cardiac tissue patch to prevent dilation and to improve pumping efficiency of the infarcted heart offers a promising strategy for making stem cell therapy a clinical reality.
Collapse
Affiliation(s)
- Mounica Yanamandala
- Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York
| | - Wuqiang Zhu
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel J Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota
| | - Timothy J Kamp
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Joshua M Hare
- Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida
| | - Ho-Wook Jun
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama
| | - Young-Sup Yoon
- Department of Medicine, Emory University, and Severance Biomedical Science Institute, Yonsei University College of Medicine, Atlanta, Georgia
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, North Carolina
| | - Sumanth D Prabhu
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gerald W Dorn
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Roberto Bolli
- Institute of Molecular Cardiology, University of Louisville, Louisville, Kentucky
| | - Richard N Kitsis
- Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, New York
| | - Jianyi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
18
|
Teo A, Morshedi A, Wang JC, Zhou Y, Lim M. Enhancement of Cardiomyogenesis in Murine Stem Cells by Low-Intensity Ultrasound. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2017; 36:1693-1706. [PMID: 28439945 DOI: 10.7863/ultra.16.12042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 10/19/2016] [Indexed: 05/15/2023]
Abstract
OBJECTIVES Low-intensity ultrasound (LIUS) has been shown to enhance bone and cartilage regeneration from stem cells. The ease of its incorporation makes it an attractive mechanical stimulus for not only osteogenesis and chondrogenesis, but also cardiomyogenesis. However, to date, no study has investigated its effects on cardiomyogenesis from embryonic stem cells. METHODS In this study, murine embryonic stem cells were differentiated via embryoid body formation and plating, and after 3 days they were subjected to daily 10 minutes of LIUS treatment with various conditions: (1) low-pulsed (21 mW/cm2 , 20% duty cycle), (2) low-continuous, (3) high-pulsed (147 mW/cm2 , 20% duty cycle), and (4) high-continuous LIUS. RESULTS Low-pulsed and high-continuous LIUS had improved beating rates of contractile areas as well as increased late cardiac gene expressions, such as α- and β-myosin heavy chain and cardiac troponin T, showing its benefits on cardiomyocyte differentiation. Meanwhile, an early endodermal marker, α-fetoprotein, was significantly attenuated after LIUS treatments. CONCLUSIONS With these observations, it is demonstrated that LIUS simulation could enhance cardiomyogenesis from embryonic stem cells and increase its selectivity toward cardiomyocytes by reducing spontaneous differentiation.
Collapse
Affiliation(s)
- Ailing Teo
- Schools of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Amir Morshedi
- Schools of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| | - Jen-Chieh Wang
- Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Yufeng Zhou
- Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore
| | - Mayasari Lim
- Schools of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore
| |
Collapse
|
19
|
Corona-Villalobos CP, Saha S, Pozios I, Hurtado-de-Mendoza Paz D, Sorensen L, Gonzalez Cordoba J, Dolores-Cerna K, Kamel IR, Mormontoy Laurel W, Bluemke DA, Abraham TP, Zimmerman SL, Abraham MR. Exercise-QTc is associated with diffuse interstitial fibrosis reflected by lower approximated T1 relaxation time in hypertrophic cardiomyopathy patients. J Electrocardiol 2017; 50:484-490. [PMID: 28292523 DOI: 10.1016/j.jelectrocard.2017.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Indexed: 01/05/2023]
Affiliation(s)
- Celia P Corona-Villalobos
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 N Wolfe St, MRI 110B, Baltimore, MD, United States; Hypertrophic Cardiomyopathy Center of Excellence, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sudip Saha
- Hypertrophic Cardiomyopathy Center of Excellence, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Iraklis Pozios
- Hypertrophic Cardiomyopathy Center of Excellence, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - David Hurtado-de-Mendoza Paz
- Hypertrophic Cardiomyopathy Center of Excellence, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Medicine, Cayetano Heredia University School of Medicine, Av. Honorio Delgado 430, San Martin de Porres, Lima, Peru
| | - Lars Sorensen
- Hypertrophic Cardiomyopathy Center of Excellence, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jorge Gonzalez Cordoba
- Department of Medicine, Cayetano Heredia University School of Medicine, Av. Honorio Delgado 430, San Martin de Porres, Lima, Peru
| | - Ketty Dolores-Cerna
- Department of Statistics, Cayetano Heredia University School of Medicine, Av. Honorio Delgado 430, San Martin de Porres, Lima, Peru
| | - Ihab R Kamel
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 N Wolfe St, MRI 110B, Baltimore, MD, United States
| | - Wilfredo Mormontoy Laurel
- Department of Statistics, Cayetano Heredia University School of Medicine, Av. Honorio Delgado 430, San Martin de Porres, Lima, Peru
| | - David A Bluemke
- Radiology and Imaging Sciences, National Institute of Health Clinical Center, Building 10, Clinical Center 10 Center Drive, MSC 1074, Bethesda, MD, United States
| | - Theodore P Abraham
- Hypertrophic Cardiomyopathy Center of Excellence, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Stefan L Zimmerman
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, 600 N Wolfe St, MRI 110B, Baltimore, MD, United States
| | - M Roselle Abraham
- Hypertrophic Cardiomyopathy Center of Excellence, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
20
|
Chacar S, Farès N, Bois P, Faivre JF. Basic Signaling in Cardiac Fibroblasts. J Cell Physiol 2016; 232:725-730. [DOI: 10.1002/jcp.25624] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Stéphanie Chacar
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM); Université de Poitiers; CNRS; Poitiers France
- Laboratoire de recherche en Physiologie et Physiopathologie (LRPP); pôle technologie santé; Faculté de Médecine; Université Saint Joseph; Beyrouth Liban
| | - Nassim Farès
- Laboratoire de recherche en Physiologie et Physiopathologie (LRPP); pôle technologie santé; Faculté de Médecine; Université Saint Joseph; Beyrouth Liban
| | - Patrick Bois
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM); Université de Poitiers; CNRS; Poitiers France
| | - Jean-François Faivre
- Laboratoire Signalisation et Transports Ioniques Membranaires (STIM); Université de Poitiers; CNRS; Poitiers France
| |
Collapse
|
21
|
The TIR/BB-loop mimetic AS-1 attenuates mechanical stress-induced cardiac fibroblast activation and paracrine secretion via modulation of large tumor suppressor kinase 1. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1191-202. [DOI: 10.1016/j.bbadis.2016.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/15/2016] [Accepted: 03/04/2016] [Indexed: 12/18/2022]
|
22
|
Ugolini GS, Rasponi M, Pavesi A, Santoro R, Kamm R, Fiore GB, Pesce M, Soncini M. On-chip assessment of human primary cardiac fibroblasts proliferative responses to uniaxial cyclic mechanical strain. Biotechnol Bioeng 2016; 113:859-869. [PMID: 26444553 DOI: 10.1002/bit.25847] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/29/2015] [Accepted: 09/29/2015] [Indexed: 01/05/2025]
Abstract
Cardiac cell function is substantially influenced by the nature and intensity of the mechanical loads the cells experience. Cardiac fibroblasts (CFs) are primarily involved in myocardial tissue remodeling: at the onset of specific pathological conditions, CFs activate, proliferate, differentiate, and critically alter the amount of myocardial extra-cellular matrix with important consequences for myocardial functioning. While cyclic mechanical strain has been shown to increase matrix synthesis of CFs in vitro, the role of mechanical cues in CFs proliferation is unclear. We here developed a multi-chamber cell straining microdevice for cell cultures under uniform, uniaxial cyclic strain. After careful characterization of the strain field, we extracted human heart-derived CFs and performed cyclic strain experiments. We subjected cells to 2% or 8% cyclic strain for 24 h or 72 h, using immunofluorescence to investigate markers of cell morphology, cell proliferation (Ki67, EdU, phospho-Histone-H3) and subcellular localization of the mechanotransduction-associated transcription factor YAP. Cell morphology was affected by cyclic strain in terms of cell area, cell and nuclear shape and cellular alignment. We additionally observed a strain intensity-dependent control of cell growth: a significant proliferation increase occurred at 2% cyclic strain, while time-dependent effects took place upon 8% cyclic strain. The YAP-dependent mechano-transduction pathway was similarly activated in both strain conditions. These results demonstrate a differential effect of cyclic strain intensity on human CFs proliferation control and provide insights into the YAP-dependent mechano-sensing machinery of human CFs.
Collapse
Affiliation(s)
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Andrea Pavesi
- BioSyM IRG, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Rosaria Santoro
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Roger Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Monica Soncini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
23
|
Green EM, Wakimoto H, Anderson RL, Evanchik MJ, Gorham JM, Harrison BC, Henze M, Kawas R, Oslob JD, Rodriguez HM, Song Y, Wan W, Leinwand LA, Spudich JA, McDowell RS, Seidman JG, Seidman CE. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science 2016; 351:617-21. [PMID: 26912705 DOI: 10.1126/science.aad3456] [Citation(s) in RCA: 470] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is an inherited disease of heart muscle that can be caused by mutations in sarcomere proteins. Clinical diagnosis depends on an abnormal thickening of the heart, but the earliest signs of disease are hyperdynamic contraction and impaired relaxation. Whereas some in vitro studies of power generation by mutant and wild-type sarcomere proteins are consistent with mutant sarcomeres exhibiting enhanced contractile power, others are not. We identified a small molecule, MYK-461, that reduces contractility by decreasing the adenosine triphosphatase activity of the cardiac myosin heavy chain. Here we demonstrate that early, chronic administration of MYK-461 suppresses the development of ventricular hypertrophy, cardiomyocyte disarray, and myocardial fibrosis and attenuates hypertrophic and profibrotic gene expression in mice harboring heterozygous human mutations in the myosin heavy chain. These data indicate that hyperdynamic contraction is essential for HCM pathobiology and that inhibitors of sarcomere contraction may be a valuable therapeutic approach for HCM.
Collapse
Affiliation(s)
| | - Hiroko Wakimoto
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Joshua M Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Brooke C Harrison
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | | | - Raja Kawas
- MyoKardia, South San Francisco, CA 94080, USA
| | | | | | | | - William Wan
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Leslie A Leinwand
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - James A Spudich
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - J G Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA. Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
24
|
Yong KW, Li Y, Huang G, Lu TJ, Safwani WKZW, Pingguan-Murphy B, Xu F. Mechanoregulation of cardiac myofibroblast differentiation: implications for cardiac fibrosis and therapy. Am J Physiol Heart Circ Physiol 2015; 309:H532-42. [PMID: 26092987 DOI: 10.1152/ajpheart.00299.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 06/19/2015] [Indexed: 12/16/2022]
Abstract
Cardiac myofibroblast differentiation, as one of the most important cellular responses to heart injury, plays a critical role in cardiac remodeling and failure. While biochemical cues for this have been extensively investigated, the role of mechanical cues, e.g., extracellular matrix stiffness and mechanical strain, has also been found to mediate cardiac myofibroblast differentiation. Cardiac fibroblasts in vivo are typically subjected to a specific spatiotemporally changed mechanical microenvironment. When exposed to abnormal mechanical conditions (e.g., increased extracellular matrix stiffness or strain), cardiac fibroblasts can undergo myofibroblast differentiation. To date, the impact of mechanical cues on cardiac myofibroblast differentiation has been studied both in vitro and in vivo. Most of the related in vitro research into this has been mainly undertaken in two-dimensional cell culture systems, although a few three-dimensional studies that exist revealed an important role of dimensionality. However, despite remarkable advances, the comprehensive mechanisms for mechanoregulation of cardiac myofibroblast differentiation remain elusive. In this review, we introduce important parameters for evaluating cardiac myofibroblast differentiation and then discuss the development of both in vitro (two and three dimensional) and in vivo studies on mechanoregulation of cardiac myofibroblast differentiation. An understanding of the development of cardiac myofibroblast differentiation in response to changing mechanical microenvironment will underlie potential targets for future therapy of cardiac fibrosis and failure.
Collapse
Affiliation(s)
- Kar Wey Yong
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, People's Republic of China; Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia; and
| | - YuHui Li
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, People's Republic of China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - GuoYou Huang
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, People's Republic of China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, People's Republic of China
| | | | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia; and
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an, People's Republic of China; The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, People's Republic of China
| |
Collapse
|
25
|
Dostal D, Glaser S, Baudino TA. Cardiac Fibroblast Physiology and Pathology. Compr Physiol 2015; 5:887-909. [DOI: 10.1002/cphy.c140053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Song J, Zhu Y, Li J, Liu J, Gao Y, Ha T, Que L, Liu L, Zhu G, Chen Q, Xu Y, Li C, Li Y. Pellino1-mediated TGF-β1 synthesis contributes to mechanical stress induced cardiac fibroblast activation. J Mol Cell Cardiol 2014; 79:145-56. [PMID: 25446187 DOI: 10.1016/j.yjmcc.2014.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 10/22/2014] [Accepted: 11/04/2014] [Indexed: 11/24/2022]
Abstract
Activation of cardiac fibroblasts is a key event in the progression of cardiac fibrosis that leads to heart failure. However, the molecular mechanisms underlying mechanical stress-induced cardiac fibroblast activation are complex and poorly understood. This study demonstrates that Pellino1, an E3 ubiquitin ligase, was activated in vivo in pressure overloaded rat hearts and in cultured neonatal rat cardiac fibroblasts (NRCFs) exposed to mechanical stretch in vitro. Suppression of the expression and activity of Pellino1 by adenovirus-mediated delivery of shPellino1 (adv-shpeli1) attenuated pressure overload-induced cardiac dysfunction and cardiac hypertrophy and decreased cardiac fibrosis in rat hearts. Transfection of adv-shpeli1 also significantly attenuated mechanical stress-induced proliferation, differentiation and collagen synthesis in NRCFs. Pellino1 silencing also abrogated mechanical stretch-induced polyubiquitination of tumor necrosis factor-alpha receptor association factor-6 (TRAF6) and receptor-interacting protein 1 (RIP1) and consequently decreased the DNA binding activity of nuclear factor-kappa B (NF-κB) in NRCFs. In addition, Pellino1 silencing prevented stretch-induced activation of p38 and activator protein 1 (AP-1) binding activity in NRCFs. Chromatin Immunoprecipitation (ChIP) and luciferase reporter assays showed that Pellino1 silencing prevented the binding of NF-κB and AP-1 to the promoter region of transforming growth factor-β1 (TGF-β1) thus dampening TGF-β1 transactivation. Our data reveal a previously unrecognized role of Pellino1 in extracellular matrix deposition and cardiac fibroblast activation in response to mechanical stress and provides a novel target for treatment of cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Juan Song
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Yun Zhu
- Department of Pathology, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, Jiangsu, China
| | - Jiantao Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Jiahao Liu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Yun Gao
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Tuanzhu Ha
- Department of Surgery, East Tennessee State University, Campus Box 70575, Johnson City, TN 37614-0575, USA
| | - Linli Que
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Li Liu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Guoqing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Qi Chen
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Campus Box 70575, Johnson City, TN 37614-0575, USA
| | - Yuehua Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
27
|
Brenner B, Seebohm B, Tripathi S, Montag J, Kraft T. Familial hypertrophic cardiomyopathy: functional variance among individual cardiomyocytes as a trigger of FHC-phenotype development. Front Physiol 2014; 5:392. [PMID: 25346696 PMCID: PMC4193225 DOI: 10.3389/fphys.2014.00392] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/22/2014] [Indexed: 11/13/2022] Open
Abstract
Familial hypertrophic cardiomyopathy (FHC) is the most frequent inherited cardiac disease. It has been related to numerous mutations in many sarcomeric and even some non-sarcomeric proteins. So far, however, no common mechanism has been identified by which the many different mutations in different sarcomeric and non-sarcomeric proteins trigger development of the FHC phenotype. Here we show for different MYH7 mutations variance in force pCa-relations from normal to highly abnormal as a feature common to all mutations we studied, while direct functional effects of the different FHC-mutations, e.g., on force generation, ATPase or calcium sensitivity of the contractile system, can be quite different. The functional variation among individual M. soleus fibers of FHC-patients is accompanied by large variation in mutant vs. wildtype β-MyHC-mRNA. Preliminary results show a similar variation in mutant vs. wildtype β-MyHC-mRNA among individual cardiomyocytes. We discuss our previously proposed concept as to how different mutations in the β-MyHC and possibly other sarcomeric and non-sarcomeric proteins may initiate an FHC-phenotype by functional variation among individual cardiomyocytes that results in structural distortions within the myocardium, leading to cellular and myofibrillar disarray. In addition, distortions can activate stretch-sensitive signaling in cardiomyocytes and non-myocyte cells which is known to induce cardiac remodeling with interstitial fibrosis and hypertrophy. Such a mechanism will have major implications for therapeutic strategies to prevent FHC-development, e.g., by reducing functional imbalances among individual cardiomyocytes or by inhibition of their triggering of signaling paths initiating remodeling. Targeting increased or decreased contractile function would require selective targeting of mutant or wildtype protein to reduce functional imbalances.
Collapse
Affiliation(s)
- Bernhard Brenner
- Institute of Molecular and Cell Physiology, Hannover Medical School Hannover, Germany
| | - Benjamin Seebohm
- Institute of Molecular and Cell Physiology, Hannover Medical School Hannover, Germany
| | - Snigdha Tripathi
- Institute of Molecular and Cell Physiology, Hannover Medical School Hannover, Germany
| | - Judith Montag
- Institute of Molecular and Cell Physiology, Hannover Medical School Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School Hannover, Germany
| |
Collapse
|
28
|
Wendel JS, Ye L, Zhang P, Tranquillo RT, Zhang JJ. Functional consequences of a tissue-engineered myocardial patch for cardiac repair in a rat infarct model. Tissue Eng Part A 2014; 20:1325-35. [PMID: 24295499 DOI: 10.1089/ten.tea.2013.0312] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell therapies have emerged as a promising treatment for the prevention of heart failure after myocardial infarction (MI). This study evaluated the capacity of an aligned, fibrin-based, stretch-conditioned cardiac patch consisting of either the native population or a cardiomyocyte (CM)-depleted population (i.e., CM+ or CM- patches) of neonatal rat heart cells to ameliorate left ventricular (LV) remodeling in the acute-phase postinfarction in syngeneic, immunocompetent rats. Patches were exposed to 7 days of static culture and 7 days of cyclic stretching prior to implantation. Within 1 week of implantation, both patches became vascularized, and non-CMs began migrating from CM+ patches. By week 4, patches had been remodeled into collagenous tissue, and live, elongated, donor CMs were found within grafted CM+ patches. Significant improvement in cardiac contractile function was seen with the administration of the CM+ patch (ejection fraction increased from 35.1% ± 4.0% for MI only to 58.8% ± 7.3% with a CM+ patch, p<0.05) associated with a 77% reduction in infarct size (61.3% ± 7.9% for MI only, 13.9% ± 10.8% for CM+ patch, p<0.05), and the elimination of LV free-wall thinning. Decreased infarct size and reduced wall thinning also occurred with the administration of the CM- patch (infarct size 36.9% ± 10.2%, LV wall thickness: 1058.2 ± 135.4 μm for CM- patch, 661.3 ± 37.4 μm for MI only, p<0.05), but without improvements in cardiac function. Approximately 36.5% of the transplanted CMs survived at 4 weeks; however, they remained separated and electrically uncoupled from the host myocardium by a layer of CM-free tissue, which suggests that the benefits of CM+ patch transplantation resulted from paracrine mechanisms originating from CMs. Collectively, these observations suggest that the transplantation of CM-containing engineered heart tissue patches can lead to dramatic improvements in cardiac function and remodeling after acute MI.
Collapse
Affiliation(s)
- Jacqueline S Wendel
- 1 Department of Biomedical Engineering, University of Minnesota , Minneapolis, Minnesota
| | | | | | | | | |
Collapse
|
29
|
van Neerven S, Pannaye P, Bozkurt A, Van Nieuwenhoven F, Joosten E, Hermans E, Taccola G, Deumens R. Schwann cell migration and neurite outgrowth are influenced by media conditioned by epineurial fibroblasts. Neuroscience 2013; 252:144-53. [DOI: 10.1016/j.neuroscience.2013.08.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/03/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
|
30
|
Amin S, Banijamali SE, Tafazoli-Shadpour M, Shokrgozar MA, Dehghan MM, Haghighipour N, Mahdian R, Bayati V, Abbasnia P. Comparing the effect of equiaxial cyclic mechanical stimulation on GATA4 expression in adipose-derived and bone marrow-derived mesenchymal stem cells. Cell Biol Int 2013; 38:219-27. [PMID: 24123331 DOI: 10.1002/cbin.10194] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 09/17/2013] [Indexed: 11/10/2022]
Abstract
Myocardium is prone to mechanical stimuli among which pulsatile blood flow exerts both radial and longitudinal strains on the heart. Recent studies have shown that mechanical stimulation can notably influence regeneration of cardiac muscle cells. GATA4 is a cardiac-specific transcription factor that plays an important role in late embryonic heart development. Our study aimed at investigating the effect of equiaxial cyclic strain on GATA4 expression in adipose-derived (ASCs) and bone marrow-derived (BMSCs) mesenchymal stem cells. For this reason, both ASCs and BMSCs were studied in four distinct groups of chemical, mechanical, mechano-chemical and negative control. According to this categorisation, the cells were exposed to cyclic mechanical loading and/or 5-azacytidine as the chemical factor. The level of GATA4 expression was then quantified using real-time PCR method on the first, fourth and seventh days. The results show that: (1) equiaxial cyclic stimulation of mesenchymal stem cells could promote GATA4 expression from the early days of induction and as it went on, its combination with chemical factor elevated expression; (2) cyclic strain could accelerate GATA4 expression compared to the chemical factor; (3) in this regard, these results indicate a higher capacity of ASCs than BMSCs to express GATA4.
Collapse
Affiliation(s)
- Susan Amin
- Cardiovascular Lab, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Meens MJ, Pfenniger A, Kwak BR, Delmar M. Regulation of cardiovascular connexins by mechanical forces and junctions. Cardiovasc Res 2013; 99:304-14. [PMID: 23612582 DOI: 10.1093/cvr/cvt095] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Connexins form a family of transmembrane proteins that consists of 20 members in humans and 21 members in mice. Six connexins assemble into a connexon that can function as a hemichannel or connexon that can dock to a connexon expressed by a neighbouring cell, thereby forming a gap junction channel. Such intercellular channels synchronize responses in multicellular organisms through direct exchange of ions, small metabolites, and other second messenger molecules between the cytoplasms of adjacent cells. Multiple connexins are expressed in the cardiovascular system. These connexins not only experience the different biomechanical forces within this system, but may also act as effector proteins in co-ordinating responses within groups of cells towards these forces. This review discusses recent insights regarding regulation of cardiovascular connexins by mechanical forces and junctions. It specifically addresses effects of (i) shear stress on endothelial connexins, (ii) hypertension on vascular connexins, and (iii) changes in afterload and the composition of myocardial mechanical junctions on cardiac connexins.
Collapse
Affiliation(s)
- Merlijn J Meens
- Department of Pathology and Immunology, Foundation for Medical Research, University of Geneva, 2nd floor, 64 Avenue de Roseraie, 1211 Geneva, Switzerland
| | | | | | | |
Collapse
|
32
|
Lu L, Ravens U. The use of a novel cardiac bioreactor system in investigating fibroblast physiology and its perspectives. Organogenesis 2013; 9:82-6. [PMID: 23820046 DOI: 10.4161/org.25014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The physical environment of myocardium, featuring excitation-contraction coupling, constant and efficient provision of nutrient/oxygen and delicate integration of cardiomyocytes and supporting cell population (fibroblasts, endothelial cells), is one of the most complex systems in human body. Numerous studies have demonstrated the significance of physical stimulation in cardiac cell physiology, including the maintenance of contractile function in cardiomyocytes, ( 1) cell alignment and extracellular matrix secretion in fibroblasts and endothelial cells. ( 2) (,) ( 3) In effort to reconstruct the physical environment found in the cardiac niche for routine cell culture use, we have devised a bioreactor system to account for three major forms of physical stimuli, namely, cyclic stretch, electrical stimulation and fluid perfusion. ( 4).
Collapse
Affiliation(s)
- Liang Lu
- Department of Pharmacology and Toxicology, Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden, Germany
| | | |
Collapse
|
33
|
Law BA, Carver WE. Activation of cardiac fibroblasts by ethanol is blocked by TGF-β inhibition. Alcohol Clin Exp Res 2013; 37:1286-94. [PMID: 23528014 DOI: 10.1111/acer.12111] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 01/09/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND Alcohol abuse is the second leading cause of dilated cardiomyopathy, a disorder specifically referred to as alcoholic cardiomyopathy (ACM). Rodent and human studies have revealed cardiac fibrosis to be a consequence of ACM, and prior studies by this laboratory have associated this occurrence with elevated transforming growth factor-beta (TGF-β) and activated fibroblasts (myofibroblasts). To date, there have been no other studies to investigate the direct effect of alcohol on the cardiac fibroblast. METHODS Primary rat cardiac fibroblasts were cultured in the presence of ethanol (EtOH) and assayed for fibroblast activation by collagen gel contraction, alpha-smooth muscle actin (α-SMA) expression, migration, proliferation, apoptosis, collagen I and III, and TGF-β expression. The TGF-β receptor type 1 inhibitor compound SB 431542 and a soluble recombinant TGF-βII receptor (RbII) were used to assess the role of TGF-β in the response of cardiac fibroblasts to EtOH. RESULTS Treatment for cardiac fibroblasts with EtOH at concentrations of 100 mg/dl or higher resulted in fibroblast activation and fibrogenic activity after 24 hours including an increase in contraction, α-SMA expression, migration, and expression of collagen I and TGF-β. No changes in fibroblast proliferation or apoptosis were observed. Inhibition of TGF-β by SB 431542 and RbII attenuated the EtOH-induced fibroblast activation. CONCLUSIONS EtOH treatment directly promotes cardiac fibroblast activation by stimulating TGF-β release from fibroblasts. Inhibiting the action of TGF-β decreases the fibrogenic effect induced by EtOH treatment. The results of this study support TGF-β to be an important component in cardiac fibrosis induced by exposure to EtOH.
Collapse
Affiliation(s)
- Brittany A Law
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208, USA.
| | | |
Collapse
|
34
|
Teekakirikul P, Padera RF, Seidman JG, Seidman CE. Hypertrophic cardiomyopathy: translating cellular cross talk into therapeutics. ACTA ACUST UNITED AC 2013; 199:417-21. [PMID: 23109667 PMCID: PMC3483129 DOI: 10.1083/jcb.201207033] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is a common inherited heart disease with serious adverse outcomes, including heart failure, arrhythmias, and sudden cardiac death. The discovery that mutations in sarcomere protein genes cause HCM has enabled the development of mouse models that recapitulate clinical manifestations of disease. Studies in these models have provided unexpected insights into the biophysical and biochemical properties of mutated contractile proteins and may help to improve clinical diagnosis and management of patients with HCM.
Collapse
|
35
|
Samarel AM. Syndecan-4: a component of the mechanosensory apparatus of cardiac fibroblasts. J Mol Cell Cardiol 2012; 56:19-21. [PMID: 23266594 DOI: 10.1016/j.yjmcc.2012.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 12/06/2012] [Indexed: 01/12/2023]
|
36
|
Shachar M, Benishti N, Cohen S. Effects of mechanical stimulation induced by compression and medium perfusion on cardiac tissue engineering. Biotechnol Prog 2012; 28:1551-9. [PMID: 22961835 DOI: 10.1002/btpr.1633] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 07/31/2012] [Indexed: 11/12/2022]
Abstract
Cardiac tissue engineering presents a challenge due to the complexity of the muscle tissue and the need for multiple signals to induce tissue regeneration in vitro. We investigated the effects of compression (1 Hz, 15% strain) combined with fluid shear stress (10(-2) -10(-1) dynes/cm(2) ) provided by medium perfusion on the outcome of cardiac tissue engineering. Neonatal rat cardiac cells were seeded in Arginine-Glycine-Aspartate (RGD)-attached alginate scaffolds, and the constructs were cultivated in a compression bioreactor. A daily, short-term (30 min) compression (i.e., "intermittent compression") for 4 days induced the formation of cardiac tissue with typical striation, while in the continuously compressed constructs (i.e., "continuous compression"), the cells remained spherical. By Western blot, on day 4 the expression of the gap junction protein connexin 43 was significantly greater in the "intermittent compression" constructs and the cardiomyocyte markers (α-actinin and N-cadherin) showed a trend of better preservation compared to the noncompressed constructs. This regime of compression had no effect on the proliferation of nonmyocyte cells, which maintained low expression level of proliferating cell nuclear antigen. Elevated secretion levels of basic fibroblast growth factor and transforming growth factor-β in the daily, intermittently compressed constructs likely attributed to tissue formation. Our study thus establishes the formation of an improved cardiac tissue in vitro, when induced by combined mechanical signals of compression and fluid shear stress provided by perfusion.
Collapse
Affiliation(s)
- Michal Shachar
- The Avram and Stella Goldstein-Goren Dept. of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | | | | |
Collapse
|
37
|
DO MKQ, Suzuki T, Gerelt B, Sato Y, Mizunoya W, Nakamura M, Ikeuchi Y, Anderson JE, Tatsumi R. Time-coordinated prevalence of extracellular HGF, FGF2 and TGF-β3 in crush-injured skeletal muscle. Anim Sci J 2012; 83:712-7. [PMID: 23035711 DOI: 10.1111/j.1740-0929.2012.01057.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 06/12/2012] [Indexed: 12/22/2022]
Abstract
Successful regeneration and remodeling of neuromuscular junctions are critical for restoring functional capacities and properties of skeletal muscle after damage, and axon-guidance molecules may be involved in the signaling that regulates such restoration. Recently, we found that early-differentiated satellite cells up-regulate a secreted neural chemorepellent Sema3A upon in vivo muscle-crush injury. The study also revealed that Sema3A expression is up-regulated in primary satellite-cell cultures in response to hepatocyte growth factor (HGF) and basic fibroblast growth factor (FGF2) and is prevented by transforming growth factor (TGF)-β2, 3. In order to verify the physiological significance of this regulation in vitro, the present study was designed to estimate the time-course of extracellular HGF, FGF2 and TGF-β3 concentrations after crush-injury of Gastrocnemius muscle in the rat lower hind-limb, using a combination of a non-homogenization/non-spin extraction of extracellular wound fluids and enhanced chemiluminescence-Western blotting analyses. Results clearly demonstrated that active HGF and FGF2 are prevalent in 2-8 days post-crush, whereas active TGF-β3 increases after 12 days, providing a better understanding of the time-coordinated levels of HGF, FGF2 and TGF-β3 that drive regulation of Sema3A expression during regenerative intramuscular moto-neuritogenesis.
Collapse
Affiliation(s)
- Mai-Khoi Q DO
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Palomero J, Pye D, Kabayo T, Jackson MJ. Effect of passive stretch on intracellular nitric oxide and superoxide activities in single skeletal muscle fibres: influence of ageing. Free Radic Res 2011; 46:30-40. [PMID: 22103935 DOI: 10.3109/10715762.2011.637203] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Skeletal muscle is repeatedly exposed to passive stretches due to the activation of antagonist muscles and to external forces. Stretch has multiple effects on muscle mass and function, but the initiating mechanisms and intracellular signals that modulate those processes are not well understood. Mechanical stretch applied to some cell types induces production of reactive oxygen species (ROS) and nitric oxide that modulate various cellular signalling pathways. The aim of this study was to assess whether intracellular activities of ROS and nitric oxide were modulated by passive stretches applied to single mature muscle fibres isolated from young and old mice. We developed a novel approach to apply passive stretch to single mature fibres from the flexor digitorum brevis muscle in culture and to monitor the activities of ROS and nitric oxide in situ by fluorescence microscopy. Passive stretch applied to single skeletal muscle fibres from young mice induced an increase in dihydroethidium oxidation (reflecting intracellular superoxide) with no increase in intracellular DAF-FM oxidation (reflecting nitric oxide activity) or CM-DCFH oxidation. In contrast, in fibres isolated from muscles of old mice passive stretch was found to induce an increase in intracellular nitric oxide activities with no change in DHE oxidation.
Collapse
Affiliation(s)
- Jesus Palomero
- Department of Physiology and Pharmacology, University of Salamanca, Spain
| | | | | | | |
Collapse
|
39
|
Do MKQ, Sato Y, Shimizu N, Suzuki T, Shono JI, Mizunoya W, Nakamura M, Ikeuchi Y, Anderson JE, Tatsumi R. Growth factor regulation of neural chemorepellent Sema3A expression in satellite cell cultures. Am J Physiol Cell Physiol 2011; 301:C1270-9. [DOI: 10.1152/ajpcell.00257.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Successful regeneration and remodeling of the intramuscular motoneuron network and neuromuscular connections are critical for restoring skeletal muscle function and physiological properties. The regulatory signals of such coordination remain unclear, although axon-guidance molecules may be involved. Recently, satellite cells, resident myogenic stem cells positioned beneath the basal lamina and at high density at the myoneural junction regions of mature fibers, were shown to upregulate a secreted neural chemorepellent semaphorin 3A (Sema3A) in response to in vivo muscle-crush injury. The initial report on that expression centered on the observation that hepatocyte growth factor (HGF), an essential cue in muscle fiber growth and regeneration, remarkably upregulates Sema3A expression in early differentiated satellite cells in vitro [Tatsumi et al., Am J Physiol Cell Physiol 297: C238–C252, 2009]. Here, we address regulatory effects of basic fibroblast growth factor (FGF2) and transforming growth factor (TGF)-βs on Sema3A expression in satellite cell cultures. When treated with FGF2, Sema3A message and protein were upregulated as revealed by reverse transcription-polymerase chain reaction and immunochemical studies. Sema3A upregulation by FGF2 was dose dependent with a maximum (8- to 1-fold relative to the control) at 2.5 ng/ml (150 pM) and occurred exclusively at the early differentiation stage. The response was highly comparable in dose response and timing to effects of HGF treatment, without any additive or synergistic effect from treatment with a combination of both potent upregulators. In contrast, TGF-β2 and -β3 potently decreased basal Sema3A expression; the maximum effect was at very low concentrations (40 and 8 pM, respectively) and completely cancelled the activities of FGF2 and HGF to upregulate Sema3A. These results therefore encourage the prospect that a time-coordinated increase in HGF, FGF2, and TGF-β ligands and their receptors promotes a programmed strategy for Sema3A expression that guarantees successful intramuscular motor reinnervation by delaying sprouting and reattachment of motoneuron terminals onto damaged muscle fibers early in regeneration pending restoration of muscle fiber contractile integrity.
Collapse
Affiliation(s)
- Mai-Khoi Q. Do
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture,
| | - Yusuke Sato
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture,
| | - Naomi Shimizu
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture,
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture,
| | - Jun-ichi Shono
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture,
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture,
| | - Mako Nakamura
- Faculty of Agriculture, Kyushu University, Fukuoka, Japan; and
| | - Yoshihide Ikeuchi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture,
| | - Judy E. Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture,
| |
Collapse
|
40
|
Prabhakaran MP, Venugopal J, Kai D, Ramakrishna S. Biomimetic material strategies for cardiac tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2010.12.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Pagliari S, Vilela-Silva AC, Forte G, Pagliari F, Mandoli C, Vozzi G, Pietronave S, Prat M, Licoccia S, Ahluwalia A, Traversa E, Minieri M, Di Nardo P. Cooperation of biological and mechanical signals in cardiac progenitor cell differentiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2011; 23:514-8. [PMID: 21254254 DOI: 10.1002/adma.201003479] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Indexed: 05/23/2023]
Affiliation(s)
- Stefania Pagliari
- Department of Internal Medicine, University of Rome "Tor Vergata", Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
De Jong AM, Maass AH, Oberdorf-Maass SU, Van Veldhuisen DJ, Van Gilst WH, Van Gelder IC. Mechanisms of atrial structural changes caused by stretch occurring before and during early atrial fibrillation. Cardiovasc Res 2010; 89:754-65. [PMID: 21075756 DOI: 10.1093/cvr/cvq357] [Citation(s) in RCA: 192] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Structural remodelling occurring before, due to the underlying heart disease, and during atrial fibrillation (AF) sets the stage for permanent AF. Current therapy in AF aims to maintain sinus rhythm in symptomatic patients, but outcome is unfortunately poor. Stretch of the atria is a main contributor to atrial remodelling. In this review, we describe different aspects of structural remodelling as seen in animal models and in patients with AF, including atrial enlargement, cellular hypertrophy, dedifferentiation, fibrosis, apoptosis, and loss of contractile elements. In the second part, we describe downstream signals of mechanical stretch and their contribution to AF and structural remodelling. Ultimately, knowledge of mechanisms underlying structural remodelling may help to identify new pharmacological targets for AF prevention.
Collapse
Affiliation(s)
- Anne Margreet De Jong
- Department of Experimental Cardiology, University Medical Center Groningen, University of Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
43
|
Pozzobon M, Bollini S, Iop L, De Gaspari P, Chiavegato A, Rossi CA, Giuliani S, Leon FF, Elvassore N, Sartore S, De Coppi P. Human Bone Marrow-Derived CD133+ Cells Delivered to a Collagen Patch on Cryoinjured Rat Heart Promote Angiogenesis and Arteriogenesis. Cell Transplant 2010; 19:1247-60. [DOI: 10.3727/096368910x505864] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Transplanting hematopoietic and peripheral blood-derived stem/progenitor cells can have beneficial effects in slowing the effects of heart failure. We investigated whether human bone marrow CD133+-derived cells (BM-CD133+ cells) might be used for cell therapy of heart injury in combination with tissue engineering. We examined these cells for: 1) their in vitro capacity to be converted into cardiomyocytes (CMs), and 2) their potential for in vivo differentiation when delivered to a tissue-engineered type I collagen patch placed on injured hearts (group II). To ensure a microvascular network ready for use by the transplanted cells, cardiac injury and patching were scheduled 2 weeks before cell injection. The cardiovascular potential of the BM-CD133+ cells was compared with that of a direct injection (group I) of the same cells in heart tissue damaged according to the same schedule as for group II. While a small fraction (2 ± 0.5%) of BM-CD133+cells cocultured with rat CMs switched in vitro to a CM-like cell phenotype, in vivo—and in both groups of nude rats transplanted with BM-CD133+—there was no evidence of any CM differentiation (as detected by cardiac troponin I expression), but there were signs instead of new capillaries and small arterioles. While capillaries prevailed over arterioles in group II, the opposite occurred in group I. The transplanted cells further contributed to the formation of new microvessels induced by the patch (group II) but the number of vessels did not appear superior to the one developed after directly injecting the BM-CD133+cells into the injured heart. Although chimeric human–rat microvessels were consistently found in the hearts of both groups I and II, they represented a minority (1.5–2.3%) compared with those of rat origin. Smooth muscle myosin isoform expression suggested that the arterioles achieved complete differentiation irrespective of the presence or absence of the collagen patch. These findings suggest that: 1) BM-CD133+ cells display a limited propensity for in vitro conversion to CMs; 2) the preliminarily vascularized bioscaffold did not confer a selective homing and differentiation advantage for the phenotypic conversion of BM-CD133+ cells into CMs; and 3) combined patching and cell transplantation is suitable for angiogenesis and arteriogenesis, but it does not produce better results, in terms of endothelial and smooth muscle cell differentiation, than the “traditional” method of cell injection into the myocardium.
Collapse
Affiliation(s)
- M. Pozzobon
- Stem Cell Processing Laboratory, Cord Blood Bank, Department of Pediatric Oncohematology and Stem Cell Unit, University of Padua, Padua, Italy
| | - S. Bollini
- Stem Cell Processing Laboratory, Cord Blood Bank, Department of Pediatric Oncohematology and Stem Cell Unit, University of Padua, Padua, Italy
| | - L. Iop
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - P. De Gaspari
- Stem Cell Processing Laboratory, Cord Blood Bank, Department of Pediatric Oncohematology and Stem Cell Unit, University of Padua, Padua, Italy
| | - A. Chiavegato
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - C. A. Rossi
- Stem Cell Processing Laboratory, Cord Blood Bank, Department of Pediatric Oncohematology and Stem Cell Unit, University of Padua, Padua, Italy
| | - S. Giuliani
- Department of Pediatric Surgery, University of Padua, Padua, Italy
| | - F. Fascetti Leon
- Department of Pediatric Surgery, University of Padua, Padua, Italy
| | - N. Elvassore
- Department of Chemical Engineering, University of Padua, Padua, Italy
| | - S. Sartore
- Stem Cell Unit, University of Padua, Padua, Italy
| | - P. De Coppi
- Department of Pediatric Surgery, University of Padua, Padua, Italy
- Surgery Unit, UCL Institute of Child Health and Great Ormond Street Hospital, London, UK
| |
Collapse
|
44
|
Abstract
BACKGROUND Differentiation of cardiac fibroblasts (CFs) into myofibroblasts is a critical event in the initiation of myocardial fibrosis (MF). Previous studies have shown that arginine vasopressin (AVP) facilitates MF. However, the effects of AVP on CFs-myofibroblasts transformation, and its possible mechanisms are still unknown. METHODS CFs obtained from neonatal Sprague-Dawley rats were stimulated with AVP in the absence or presence of AVP V1a receptor specific antagonist [d(CH2)5Tyr(Me)]AVP. CFs-myofibroblast transformation was detected by expression of alpha-smooth muscle actin (alpha-SMA) and collagen synthesis. Western bolt and immunofluorescent staining were used to detect expression of alpha-SMA, [H]Proline incorporation was used to detect collagen synthesis. AVP-induced transforming growth factor-beta1 (TGF-beta1) secretion was detected by enzyme-linked immunosorbent assay. CFs was also stimulated with exogenous TGF-beta1 to find out the required dose to induce CFs-myofibroblast transformation. RESULTS 10 mol/L AVP increased alpha-SMA expression and collagen synthesis significantly, and this effect was blocked by [d(CH2)5Tyr(Me)]AVP at the concentration of 10 mol/L. Meanwhile, AVP significantly increased TGF-beta1 secretion of CFs in a dose-dependent manner, and this effect was also blocked by 10 mol/L [d(CH2)5Tyr(Me)]AVP. However, the maximum production of biologic active TGF-beta1 induced by AVP is far less than the dose of exogenous TGF-beta1 needed to induce CFs-myofibroblast transformation. CONCLUSIONS AVP can induce CFs-myofibroblast transformation via its V1a receptor, AVP-induced increase of TGF-beta1 synthesis, which also is mediated by V1a receptor, may play a minor role in the transformation. Inducing differentiation of CFs into myofibroblasts may be a mechanism of AVP contributing to MF.
Collapse
|
45
|
Teekakirikul P, Eminaga S, Toka O, Alcalai R, Wang L, Wakimoto H, Nayor M, Konno T, Gorham JM, Wolf CM, Kim JB, Schmitt JP, Molkentin JD, Norris RA, Tager AM, Hoffman SR, Markwald RR, Seidman CE, Seidman JG. Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-β. J Clin Invest 2010; 120:3520-9. [PMID: 20811150 DOI: 10.1172/jci42028] [Citation(s) in RCA: 358] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 07/14/2010] [Indexed: 02/06/2023] Open
Abstract
Mutations in sarcomere protein genes can cause hypertrophic cardiomyopathy (HCM), a disorder characterized by myocyte enlargement, fibrosis, and impaired ventricular relaxation. Here, we demonstrate that sarcomere protein gene mutations activate proliferative and profibrotic signals in non-myocyte cells to produce pathologic remodeling in HCM. Gene expression analyses of non-myocyte cells isolated from HCM mouse hearts showed increased levels of RNAs encoding cell-cycle proteins, Tgf-β, periostin, and other profibrotic proteins. Markedly increased BrdU labeling, Ki67 antigen expression, and periostin immunohistochemistry in the fibrotic regions of HCM hearts confirmed the transcriptional profiling data. Genetic ablation of periostin in HCM mice reduced but did not extinguish non-myocyte proliferation and fibrosis. In contrast, administration of Tgf-β-neutralizing antibodies abrogated non-myocyte proliferation and fibrosis. Chronic administration of the angiotensin II type 1 receptor antagonist losartan to mutation-positive, hypertrophy-negative (prehypertrophic) mice prevented the emergence of hypertrophy, non-myocyte proliferation, and fibrosis. Losartan treatment did not reverse pathologic remodeling of established HCM but did reduce non-myocyte proliferation. These data define non-myocyte activation of Tgf-β signaling as a pivotal mechanism for increased fibrosis in HCM and a potentially important factor contributing to diastolic dysfunction and heart failure. Preemptive pharmacologic inhibition of Tgf-β signals warrants study in human patients with sarcomere gene mutations.
Collapse
Affiliation(s)
- Polakit Teekakirikul
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The permanent cellular constituents of the heart include cardiac fibroblasts, myocytes, endothelial cells, and vascular smooth muscle cells. Previous studies have demonstrated that there are undulating changes in cardiac cell populations during embryonic development, through neonatal development and into the adult. Transient cell populations include lymphocytes, mast cells, and macrophages, which can interact with these permanent cell types to affect cardiac function. It has also been observed that there are marked differences in the makeup of the cardiac cell populations depending on the species, which may be important when examining myocardial remodeling. Current dogma states that the fibroblast makes up the largest cell population of the heart; however, this appears to vary for different species, especially mice. Cardiac fibroblasts play a critical role in maintaining normal cardiac function, as well as in cardiac remodeling during pathological conditions such as myocardial infarct and hypertension. These cells have numerous functions, including synthesis and deposition of extracellular matrix, cell-cell communication with myocytes, cell-cell signaling with other fibroblasts, as well as with endothelial cells. These contacts affect the electrophysiological properties, secretion of growth factors and cytokines, as well as potentiating blood vessel formation. Although a plethora of information is known about several of these processes, relatively little is understood about fibroblasts and their role in angiogenesis during development or cardiac remodeling. In this review, we provide insight into the various properties of cardiac fibroblasts that helps illustrate their importance in maintaining proper cardiac function, as well as their critical role in the remodeling heart.
Collapse
Affiliation(s)
- Colby A. Souders
- Texas A&M Health Science Center College of Medicine, Division of Molecular Cardiology, Temple, TX 76504
| | - Stephanie L.K. Bowers
- Texas A&M Health Science Center College of Medicine, Division of Molecular Cardiology, Temple, TX 76504
| | - Troy A. Baudino
- Texas A&M Health Science Center College of Medicine, Division of Molecular Cardiology, Temple, TX 76504
| |
Collapse
|
47
|
Cardiac fibroblasts: at the heart of myocardial remodeling. Pharmacol Ther 2009; 123:255-78. [PMID: 19460403 DOI: 10.1016/j.pharmthera.2009.05.002] [Citation(s) in RCA: 768] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 05/05/2009] [Indexed: 12/24/2022]
Abstract
Cardiac fibroblasts are the most prevalent cell type in the heart and play a key role in regulating normal myocardial function and in the adverse myocardial remodeling that occurs with hypertension, myocardial infarction and heart failure. Many of the functional effects of cardiac fibroblasts are mediated through differentiation to a myofibroblast phenotype that expresses contractile proteins and exhibits increased migratory, proliferative and secretory properties. Cardiac myofibroblasts respond to proinflammatory cytokines (e.g. TNFalpha, IL-1, IL-6, TGF-beta), vasoactive peptides (e.g. angiotensin II, endothelin-1, natriuretic peptides) and hormones (e.g. noradrenaline), the levels of which are increased in the remodeling heart. Their function is also modulated by mechanical stretch and changes in oxygen availability (e.g. ischaemia-reperfusion). Myofibroblast responses to such stimuli include changes in cell proliferation, cell migration, extracellular matrix metabolism and secretion of various bioactive molecules including cytokines, vasoactive peptides and growth factors. Several classes of commonly prescribed therapeutic agents for cardiovascular disease also exert pleiotropic effects on cardiac fibroblasts that may explain some of their beneficial outcomes on the remodeling heart. These include drugs for reducing hypertension (ACE inhibitors, angiotensin receptor blockers, beta-blockers), cholesterol levels (statins, fibrates) and insulin resistance (thiazolidinediones). In this review, we provide insight into the properties of cardiac fibroblasts that underscores their importance in the remodeling heart, including their origin, electrophysiological properties, role in matrix metabolism, functional responses to environmental stimuli and ability to secrete bioactive molecules. We also review the evidence suggesting that certain cardiovascular drugs can reduce myocardial remodeling specifically via modulatory effects on cardiac fibroblasts.
Collapse
|
48
|
Entcheva E, Bien H. Mechanical and spatial determinants of cytoskeletal geodesic dome formation in cardiac fibroblasts. Integr Biol (Camb) 2009; 1:212-9. [PMID: 20023805 DOI: 10.1039/b818874b] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study tests the hypothesis that the cell cytoskeletal (CSK) network can rearrange from geodesic dome type structures to stress fibers in response to microenvironmental cues. The CSK geodesic domes are highly organized actin microarchitectures within the cell, consisting of ordered polygonal elements. We studied primary neonatal rat cardiac fibroblasts. The cues used to trigger the interconversion between the two CSK architectures (geodesic domes and stress fibers) included factors affecting spatial order and the degree of CSK tension in the cells. Microfabricated three-dimensional substrates with micrometre sized grooves and peaks were used to alter the spatial order of cell growth in culture. CSK tension was modified by 2,3-butanedione 2-monoxime (BDM), cytochalasin D and the hyphae of Candida albicans. CSK geodesic domes occurred spontaneously in about 20% of the neonatal rat cardiac fibroblasts used in this study. Microfabricated structured surfaces produced anisotropy in the cell CSK and effectively converted geodesic domes into stress fibers in a dose-dependent manner (dependence on the period of the features). Affectors of actin structure, inhibitors of CSK tension and cell motility, e.g. BDM, cytochalasin D and the hyphae of C. albicans, suppressed or eliminated the geodesic domes. Our data suggest that the geodesic domes, similar to actin stress fibers, require maintenance of CSK integrity and tension. However, microenvironments that promote structural anisotropy in tensed cells cause the transformation of the geodesic domes into stress fibers, consistent with topographic cell guidance and some previous CSK model predictions.
Collapse
Affiliation(s)
- Emilia Entcheva
- Department of Biomedical Engineering, Stony Brook University, HSC T18-030, Stony Brook, NY 11794-8181, USA.
| | | |
Collapse
|
49
|
TATSUMI R, ALLEN RE. Mechano-biology of resident myogenic stem cells: Molecular mechanism of stretch-induced activation of satellite cells. Anim Sci J 2008. [DOI: 10.1111/j.1740-0929.2008.00528.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Krüger M, Sachse C, Zimmermann WH, Eschenhagen T, Klede S, Linke WA. Thyroid Hormone Regulates Developmental Titin Isoform Transitions via the Phosphatidylinositol-3-Kinase/ AKT Pathway. Circ Res 2008; 102:439-47. [DOI: 10.1161/circresaha.107.162719] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Titins, giant sarcomere proteins with major mechanical/signaling functions, are expressed in 2 main isoform classes in the mammalian heart: N2B (3000 kDa) and N2BA (>3200 kDa). A dramatic isoform switch occurs during cardiac development, from fetal N2BA titin (3700 kDa) expressed before birth to a mix of smaller N2BA/N2B isoforms found postnatally; adult rat hearts almost exclusively have N2B titin. The isoform switch, which can be reversed in chronic human heart failure, alters myocardial distensibility and mechanosignaling. Here we determined factors regulating this switch using, as a model system, primary cardiomyocyte cultures prepared from embryonic rats. In standard culture, the mean N2B percentage initially was 14% and increased by ≈60% within 1 week, resembling the in vivo switching. The titin isoform transition was independent of endothelin-1–induced myocyte hypertrophy and was not altered by pacing, contractile arrest, or cell stretch; however, it was modestly impaired by decreasing substrate rigidity and strongly dependent on serum components. Angiotensin II significantly promoted the transition. The mean N2B proportion in 1-week-old cultures dropped 20% to 25% in hormone-reduced medium, but addition of 3,5,3′-triiodo-
l
-thyronine (T3) nearly restored the proportion to that found in standard culture. This T3 effect was not prevented by bisphenol A, a specific inhibitor of the classic genomic pathway of T3 action. In contrast, the titin switch could be stalled by the phosphatidylinositol 3-kinase inhibitor LY294002, which decreased the proportion of N2B mRNA transcripts within hours and suppressed a rapid T3-induced increase in Akt phosphorylation. Also, angiotensin II, but not endothelin-1 or cell stretch, enhanced Akt phosphorylation. Thus, although matrix stiffness modulates developmental titin isoform transitions, these transitions are mainly regulated through phosphatidylinositol 3-kinase/Akt-dependent signaling triggered particularly by T3 via a rapid action pathway.
Collapse
Affiliation(s)
- Martina Krüger
- From the Physiology and Biophysics Unit (M.K., C.S., S.K., W.A.L.), University of Muenster, Germany; and Institute of Experimental and Clinical Pharmacology and Toxicology (W.H.Z., T.E.), University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Christine Sachse
- From the Physiology and Biophysics Unit (M.K., C.S., S.K., W.A.L.), University of Muenster, Germany; and Institute of Experimental and Clinical Pharmacology and Toxicology (W.H.Z., T.E.), University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Wolfram H. Zimmermann
- From the Physiology and Biophysics Unit (M.K., C.S., S.K., W.A.L.), University of Muenster, Germany; and Institute of Experimental and Clinical Pharmacology and Toxicology (W.H.Z., T.E.), University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Thomas Eschenhagen
- From the Physiology and Biophysics Unit (M.K., C.S., S.K., W.A.L.), University of Muenster, Germany; and Institute of Experimental and Clinical Pharmacology and Toxicology (W.H.Z., T.E.), University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Stefanie Klede
- From the Physiology and Biophysics Unit (M.K., C.S., S.K., W.A.L.), University of Muenster, Germany; and Institute of Experimental and Clinical Pharmacology and Toxicology (W.H.Z., T.E.), University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Wolfgang A. Linke
- From the Physiology and Biophysics Unit (M.K., C.S., S.K., W.A.L.), University of Muenster, Germany; and Institute of Experimental and Clinical Pharmacology and Toxicology (W.H.Z., T.E.), University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|