1
|
Kale MB, Bhondge HM, Wankhede NL, Shende PV, Thanekaer RP, Aglawe MM, Rahangdale SR, Taksande BG, Pandit SB, Upaganlawar AB, Umekar MJ, Kopalli SR, Koppula S. Navigating the intersection: Diabetes and Alzheimer's intertwined relationship. Ageing Res Rev 2024; 100:102415. [PMID: 39002642 DOI: 10.1016/j.arr.2024.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/06/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
Alzheimer's disease (AD) and Diabetes mellitus (DM) exhibit comparable pathophysiological pathways. Genetic abnormalities in APP, PS-1, and PS-2 are linked to AD, with diagnostic aid from CSF and blood biomarkers. Insulin dysfunction, termed "type 3 diabetes mellitus" in AD, involves altered insulin signalling and neuronal shrinkage. Insulin influences beta-amyloid metabolism, exacerbating neurotoxicity in AD and amyloid production in DM. Both disorders display impaired glucose transporter expression, hastening cognitive decline. Mitochondrial dysfunction and Toll-like receptor 4-mediated inflammation worsen neurodegeneration in both diseases. ApoE4 raises disease risk, especially when coupled with dyslipidemia common in DM. Targeting shared pathways like insulin-degrading enzyme activation and HSP60 holds promise for therapeutic intervention. Recognizing these interconnected mechanisms underscores the imperative for developing tailored treatments addressing the overlapping pathophysiology of AD and DM, offering potential avenues for more effective management of both conditions.
Collapse
Affiliation(s)
- Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | | | - Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Prajwali V Shende
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Rushikesh P Thanekaer
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Manish M Aglawe
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Sandip R Rahangdale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Sunil B Pandit
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Spandana Rajendra Kopalli
- Department of Bioscience and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Chungcheongbuk Do 27478, Republic of Korea.
| |
Collapse
|
2
|
Mahmoudi M, Alizadeh P, Soltani M. Wound healing performance of electrospun PVA/70S30C bioactive glass/Ag nanoparticles mats decorated with curcumin: In vitro and in vivo investigations. BIOMATERIALS ADVANCES 2023; 153:213530. [PMID: 37356283 DOI: 10.1016/j.bioadv.2023.213530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Biocompatible fibrous scaffold containing polyvinyl alcohol (PVA), 70S30C bioactive glass (BG), silver (Ag) nanoparticles and curcumin (Cur) was fabricated through electrospinning method. Scanning electron microscope (SEM) and Field emission scanning electron microscopy (FESEM) were employed to investigate the morphological characteristics of the scaffolds. In addition, biodegradability, hydrophilicity, and contact angle were studied as criteria for evaluating physical properties of the scaffolds. Tensile strength was reported to be 0.971 ± 0.093 MPa. Also, the viability of fibroblasts after 7 days of cell culture was 93.58 ± 1.36 %. The antibacterial activity against Escherichia coli and Staphylococcus aureus bacteria was illustrated using inhibition zones of 13.12 ± 0.69 and 14.21 ± 1.37 mm, respectively. Histological results revealed that tissue regeneration after 14 days of surgery was much higher for the dressing group compared to the blank group. According to the obtained results, the authors introduce the PVA-BG-Ag-Cur scaffold as a promising candidate for skin tissue engineering applications.
Collapse
Affiliation(s)
- Masoud Mahmoudi
- Department of Materials Science and Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, P. O. Box: 14115-143, Tehran, Iran
| | - Parvin Alizadeh
- Department of Materials Science and Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, P. O. Box: 14115-143, Tehran, Iran.
| | - Mohammad Soltani
- Department of Materials Science and Engineering, Faculty of Engineering & Technology, Tarbiat Modares University, P. O. Box: 14115-143, Tehran, Iran
| |
Collapse
|
3
|
Currò M, Saija C, Trainito A, Trovato-Salinaro A, Bertuccio MP, Visalli G, Caccamo D, Ientile R. Rotenone-induced oxidative stress in THP-1 cells: biphasic effects of baicalin. Mol Biol Rep 2023; 50:1241-1252. [PMID: 36446982 DOI: 10.1007/s11033-022-08060-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Several results demonstrated that microglia and peripheral monocytes/macrophages infiltrating the central nervous system (CNS) are involved in cell response against toxic compounds. It has been shown that rotenone induces neurodegeneration in various in vitro experimental models. Baicalin, a natural compound, is able to attenuate cell damage through anti-oxidant, anti-microbial, anti-inflammatory, and immunomodulatory action. Using THP-1 monocytes, we investigated rotenone effects on mitochondrial dysfunction and apoptosis, as well as baicalin ability to counteract rotenone toxicity. METHODS AND RESULTS THP-1 cells were exposed to rotenone (250 nM), in the presence/absence of baicalin (10-500 μM) for 2-24 h. Reactive Oxygen Species production (ROS), mitochondrial activity and transmembrane potential (Δψm), DNA damage, and caspase-3 activity were assessed. Moreover, gene expression of mitochondrial transcription factor a (mtTFA), interleukin-1β (IL-1β), B-cell lymphoma 2 (Bcl2) and BCL2-associated X protein (Bax), together with apoptotic morphological changes, were evaluated. After 2 h of rotenone incubation, increased ROS production and altered Δψm were observed, hours later resulting in DNA oxidative damage and apoptosis. Baicalin treatment at 50 µM counteracted rotenone toxicity by modulating the expression levels of some proteins involved in mitochondrial biogenesis and apoptosis. Interestingly, at higher baicalin concentrations, rotenone-induced alterations persisted. CONCLUSIONS These results give evidence that exposure to rotenone may promote the activation of THP-1 monocytes contributing to enhanced neurodegeneration. In this context, baicalin at low concentration exerts beneficial effects on mitochondrial function, and thus may prevent the onset of neurotoxic processes.
Collapse
Affiliation(s)
- Monica Currò
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Polyclinic Hospital University, 98125, Messina, Italy
| | - Caterina Saija
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Polyclinic Hospital University, 98125, Messina, Italy
| | - Alessandra Trainito
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Polyclinic Hospital University, 98125, Messina, Italy
| | | | - Maria Paola Bertuccio
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Polyclinic Hospital University, 98125, Messina, Italy
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Polyclinic Hospital University, 98125, Messina, Italy
| | - Daniela Caccamo
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Polyclinic Hospital University, 98125, Messina, Italy
| | - Riccardo Ientile
- Department of Biomedical and Dental Sciences and Morpho-Functional Imaging, University of Messina, Polyclinic Hospital University, 98125, Messina, Italy.
| |
Collapse
|
4
|
The Evolution of Ketosis: Potential Impact on Clinical Conditions. Nutrients 2022; 14:nu14173613. [PMID: 36079870 PMCID: PMC9459968 DOI: 10.3390/nu14173613] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/27/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Ketone bodies are small compounds derived from fatty acids that behave as an alternative mitochondrial energy source when insulin levels are low, such as during fasting or strenuous exercise. In addition to the metabolic function of ketone bodies, they also have several signaling functions separate from energy production. In this perspective, we review the main current data referring to ketone bodies in correlation with nutrition and metabolic pathways as well as to the signaling functions and the potential impact on clinical conditions. Data were selected following eligibility criteria accordingly to the reviewed topic. We used a set of electronic databases (Medline/PubMed, Scopus, Web of Sciences (WOS), Cochrane Library) for a systematic search until July 2022 using MeSH keywords/terms (i.e., ketone bodies, BHB, acetoacetate, inflammation, antioxidant, etc.). The literature data reported in this review need confirmation with consistent clinical trials that might validate the results obtained in in vitro and in vivo in animal models. However, the data on exogenous ketone consumption and the effect on the ketone bodies’ brain uptake and metabolism might spur the research to define the acute and chronic effects of ketone bodies in humans and pursue the possible implication in the prevention and treatment of human diseases. Therefore, additional studies are required to examine the potential systemic and metabolic consequences of ketone bodies.
Collapse
|
5
|
Gore E, Duparc T, Genoux A, Perret B, Najib S, Martinez LO. The Multifaceted ATPase Inhibitory Factor 1 (IF1) in Energy Metabolism Reprogramming and Mitochondrial Dysfunction: A New Player in Age-Associated Disorders? Antioxid Redox Signal 2022; 37:370-393. [PMID: 34605675 PMCID: PMC9398489 DOI: 10.1089/ars.2021.0137] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: The mitochondrial oxidative phosphorylation (OXPHOS) system, comprising the electron transport chain and ATP synthase, generates membrane potential, drives ATP synthesis, governs energy metabolism, and maintains redox balance. OXPHOS dysfunction is associated with a plethora of diseases ranging from rare inherited disorders to common conditions, including diabetes, cancer, neurodegenerative diseases, as well as aging. There has been great interest in studying regulators of OXPHOS. Among these, ATPase inhibitory factor 1 (IF1) is an endogenous inhibitor of ATP synthase that has long been thought to avoid the consumption of cellular ATP when ATP synthase acts as an ATP hydrolysis enzyme. Recent Advances: Recent data indicate that IF1 inhibits ATP synthesis and is involved in a multitude of mitochondrial-related functions, such as mitochondrial quality control, energy metabolism, redox balance, and cell fate. IF1 also inhibits the ATPase activity of cell-surface ATP synthase, and it is used as a cardiovascular disease biomarker. Critical Issues: Although recent data have led to a paradigm shift regarding IF1 functions, these have been poorly studied in entire organisms and in different organs. The understanding of the cellular biology of IF1 is, therefore, still limited. The aim of this review was to provide an overview of the current understanding of the role of IF1 in mitochondrial functions, health, and diseases. Future Directions: Further investigations of IF1 functions at the cell, organ, and whole-organism levels and in different pathophysiological conditions will help decipher the controversies surrounding its involvement in mitochondrial function and could unveil therapeutic strategies in human pathology. Antioxid. Redox Signal. 37, 370-393.
Collapse
Affiliation(s)
- Emilia Gore
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France
| | - Thibaut Duparc
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France
| | - Annelise Genoux
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France.,Service de Biochimie, Pôle de biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| | - Bertrand Perret
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France.,Service de Biochimie, Pôle de biologie, Hôpital de Purpan, CHU de Toulouse, Toulouse, France
| | - Souad Najib
- I2MC, University of Toulouse, INSERM, UPS, Toulouse, France
| | | |
Collapse
|
6
|
Ontario ML, Siracusa R, Modafferi S, Scuto M, Sciuto S, Greco V, Bertuccio MP, Salinaro AT, Crea R, Calabrese EJ, Di Paola R, Calabrese V. POTENTIAL PREVENTION AND TREATMENT OF NEURODEGENERATIVE DISORDERS BY OLIVE POLYPHENOLS AND HYDROX. Mech Ageing Dev 2022; 203:111637. [DOI: 10.1016/j.mad.2022.111637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/15/2022]
|
7
|
Chung JY, Kim OY, Song J. Role of ketone bodies in diabetes-induced dementia: sirtuins, insulin resistance, synaptic plasticity, mitochondrial dysfunction, and neurotransmitter. Nutr Rev 2021; 80:774-785. [PMID: 34957519 PMCID: PMC8907488 DOI: 10.1093/nutrit/nuab118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Patients with type 2 diabetes can have several neuropathologies, such as memory deficits. Recent studies have focused on the association between metabolic imbalance and neuropathological problems, and the associated molecular pathology. Diabetes triggers neuroinflammation, impaired synaptic plasticity, mitochondrial dysfunction, and insulin resistance in the brain. Glucose is a main energy substrate for neurons, but under certain conditions, such as fasting and starvation, ketone bodies can be used as an energy fuel for these cells. Recent evidence has shed new light on the role of ketone bodies in regulating several anti-inflammation cellular pathways and improving glucose metabolism, insulin action, and synaptic plasticity, thereby being neuroprotective. However, very high amount of ketone bodies can be toxic for the brain, such as in ketoacidosis, a dangerous complication that may occur in type 1 diabetes mellitus or alcoholism. Recent findings regarding the relationship between ketone bodies and neuropathogenesis in dementia are reviewed in this article. They suggest that the adequately low amount of ketone bodies can be a potential energy source for the treatment of diabetes-induced dementia neuropathology, considering the multifaceted effects of the ketone bodies in the central nervous system. This review can provide useful information for establishing the therapeutic guidelines of a ketogenic diet for diabetes-induced dementia.
Collapse
Affiliation(s)
- Ji Yeon Chung
- Department of Neurology, Chosun University Medical School, Gwangju, Republic of Korea
| | - Oh Yoen Kim
- Department of Food Science and Nutrition and the Department of Health Sciences, Dong-A University, Busan, Republic of Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Jeollanam-do, Republic of Korea
| |
Collapse
|
8
|
Wang Z, Zhang DW, Xiao ZZ, Qi CH, Yuan J, Feng HX. Preliminary study on alleviation of heat-induced intestinal inflammation through compensatory effects of glucose oxidase. Br Poult Sci 2021; 63:235-243. [PMID: 34406099 DOI: 10.1080/00071668.2021.1969645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
1. The influence of glucose oxidase (GOD) supplementation on growth, gut inflammation and its compensatory effects in broilers was investigated before and after heat stress.2. Before heat stress, one-day-old broilers were divided into two groups: the control (CON) and GOD (100 g/t complete feed) groups. On d 21, the CON group was equally divided into CON1 and CON2 groups, and heat stress (35°C) was applied to the CON2 and GOD groups for 8 h/day to the end of the study, d 27 of age. The chickens were either killed before heat stress and 2 d after heat stress for the determination of cytokines in the liver and ileum, serum antioxidant enzymes and ileal microbiota. Growth performance was determined before and 7 d after heat stress.3. The GOD decreased Clostridiales and Enterobacteriaceae families of bacteria and increased ileal nuclear factor-κB, interleukin-1β, and interferon-γ (P < 0.05) before heat stress. The broilers exhibited compensatory effects, including increases in ileal sirtuin-1, heat shock protein 70 expression, liver nuclear factor erythroid 2-related factor 2 content, serum total antioxidant capacity and glutathione peroxidase level (P < 0.05). At 2 d after heat stress, inflammatory factors were increased in both the CON2 and GOD groups, but the levels were lower in the GOD than CON2 (P < 0.05). On d 7 after heat stress, GOS alleviated heat stress induced growth retardation (P < 0.05).4. These data suggested that GOD supplementation in broiler diets before heat stress stimulated intestinal oxidative stress and produced a compensatory response, which prevented a rapid increase in intestinal inflammatory factors and helped to maintain growth performance under heat stress.
Collapse
Affiliation(s)
- Z Wang
- R & D Center, GBW Group, Qingdao, Shandong, China
| | - D-W Zhang
- R & D Center, GBW Group, Qingdao, Shandong, China
| | - Z-Z Xiao
- R & D Center, GBW Group, Qingdao, Shandong, China
| | - C-H Qi
- R & D Center, GBW Group, Qingdao, Shandong, China
| | - J Yuan
- R & D Center, GBW Group, Qingdao, Shandong, China
| | - H-X Feng
- R & D Center, GBW Group, Qingdao, Shandong, China
| |
Collapse
|
9
|
Diabetes and Alzheimer's Disease: Might Mitochondrial Dysfunction Help Deciphering the Common Path? Antioxidants (Basel) 2021; 10:antiox10081257. [PMID: 34439505 PMCID: PMC8389322 DOI: 10.3390/antiox10081257] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/06/2023] Open
Abstract
A growing number of clinical and epidemiological studies support the hypothesis of a tight correlation between type 2 diabetes mellitus (T2DM) and the development risk of Alzheimer's disease (AD). Indeed, the proposed definition of Alzheimer's disease as type 3 diabetes (T3D) underlines the key role played by deranged insulin signaling to accumulation of aggregated amyloid beta (Aβ) peptides in the senile plaques of the brain. Metabolic disturbances such as hyperglycemia, peripheral hyperinsulinemia, dysregulated lipid metabolism, and chronic inflammation associated with T2DM are responsible for an inefficient transport of insulin to the brain, producing a neuronal insulin resistance that triggers an enhanced production and deposition of Aβ and concomitantly contributes to impairment in the micro-tubule-associated protein Tau, leading to neural degeneration and cognitive decline. Furthermore, the reduced antioxidant capacity observed in T2DM patients, together with the impairment of cerebral glucose metabolism and the decreased performance of mitochondrial activity, suggests the existence of a relationship between oxidative damage, mitochondrial impairment, and cognitive dysfunction that could further reinforce the common pathophysiology of T2DM and AD. In this review, we discuss the molecular mechanisms by which insulin-signaling dysregulation in T2DM can contribute to the pathogenesis and progression of AD, deepening the analysis of complex mechanisms involved in reactive oxygen species (ROS) production under oxidative stress and their possible influence in AD and T2DM. In addition, the role of current therapies as tools for prevention or treatment of damage induced by oxidative stress in T2DM and AD will be debated.
Collapse
|
10
|
Rackova L, Mach M, Brnoliakova Z. An update in toxicology of ageing. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 84:103611. [PMID: 33581363 DOI: 10.1016/j.etap.2021.103611] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/17/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
The field of ageing research has been rapidly advancing in recent decades and it had provided insight into the complexity of ageing phenomenon. However, as the organism-environment interaction appears to significantly affect the organismal pace of ageing, the systematic approach for gerontogenic risk assessment of environmental factors has yet to be established. This puts demand on development of effective biomarker of ageing, as a relevant tool to quantify effects of gerontogenic exposures, contingent on multidisciplinary research approach. Here we review the current knowledge regarding the main endogenous gerontogenic pathways involved in acceleration of ageing through environmental exposures. These include inflammatory and oxidative stress-triggered processes, dysregulation of maintenance of cellular anabolism and catabolism and loss of protein homeostasis. The most effective biomarkers showing specificity and relevancy to ageing phenotypes are summarized, as well. The crucial part of this review was dedicated to the comprehensive overview of environmental gerontogens including various types of radiation, certain types of pesticides, heavy metals, drugs and addictive substances, unhealthy dietary patterns, and sedentary life as well as psychosocial stress. The reported effects in vitro and in vivo of both recognized and potential gerontogens are described with respect to the up-to-date knowledge in geroscience. Finally, hormetic and ageing decelerating effects of environmental factors are briefly discussed, as well.
Collapse
Affiliation(s)
- Lucia Rackova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia.
| | - Mojmir Mach
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| | - Zuzana Brnoliakova
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Dubravska cesta 9, 841 04 Bratislava, Slovakia
| |
Collapse
|
11
|
Singh S, Singh TG, Rehni AK, Sharma V, Singh M, Kaur R. Reviving mitochondrial bioenergetics: A relevant approach in epilepsy. Mitochondrion 2021; 58:213-226. [PMID: 33775871 DOI: 10.1016/j.mito.2021.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/03/2021] [Accepted: 03/22/2021] [Indexed: 02/06/2023]
Abstract
Epileptogenesis is most commonly associated with neurodegeneration and a bioenergetic defect attributing to the fact that mitochondrial dysfunction plays a key precursor for neuronal death. Mitochondria are the essential organelle of neuronal cells necessary for certain neurophysiological processes like neuronal action potential activity and synaptic transmission. The mitochondrial dysfunction disrupts calcium homeostasis leading to inhibitory interneuron dysfunction and increasing the excitatory postsynaptic potential. In epilepsy, the prolonged repetitive neuronal activity increases the excessive demand for energy and acidosis in the brain further increasing the intracellular calcium causing neuronal death. Similarly, the mitochondrial damage also leads to the decline of energy by dysfunction of the electron transport chain and abnormal production of the ROS triggering the apoptotic neuronal death. Thus, the elevated level of cytosolic calcium causes the mitochondria DNA damage coinciding with mtROS and releasing the cytochrome c binding to Apaf protein further initiating the apoptosis resulting in epileptic encephalopathies. The various genetic and mRNA studies of epilepsy have explored the various pathogenic mutations of genes affecting the mitochondria functioning further initiating the neuronal excitotoxicity. Based on the results of previous studies, the recent therapeutic approaches are targeting basic mitochondrial processes, such as energy metabolism or free-radical generation, or specific interactions of disease-related proteins with mitochondria and hold great promise to attenuate epileptogenesis. Therefore, the current review emphasizes the emerging insights to uncover the relation between mitochondrial dysfunction and ROS generation contributing to mechanisms underlying epileptic seizures.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Ashish Kumar Rehni
- Cerebral Vascular Disease Research Laboratories, Department of Neurology and Neuroscience Program, University of Miami School of Medicine, Miami, FL 33101, USA
| | - Vivek Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India; Govt. College of Pharmacy, Rohru, District Shimla, Himachal Pradesh, 171207, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rupinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
12
|
Hirase S, Tezuka A, Nagano AJ, Sato M, Hosoya S, Kikuchi K, Iwasaki W. Integrative genomic phylogeography reveals signs of mitonuclear incompatibility in a natural hybrid goby population. Evolution 2021; 75:176-194. [PMID: 33165944 PMCID: PMC7898790 DOI: 10.1111/evo.14120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 08/14/2020] [Accepted: 09/30/2020] [Indexed: 12/28/2022]
Abstract
Hybridization between divergent lineages generates new allelic combinations. One mechanism that can hinder the formation of hybrid populations is mitonuclear incompatibility, that is, dysfunctional interactions between proteins encoded in the nuclear and mitochondrial genomes (mitogenomes) of diverged lineages. Theoretically, selective pressure due to mitonuclear incompatibility can affect genotypes in a hybrid population in which nuclear genomes and mitogenomes from divergent lineages admix. To directly and thoroughly observe this key process, we de novo sequenced the 747-Mb genome of the coastal goby, Chaenogobius annularis, and investigated its integrative genomic phylogeographics using RNA-sequencing, RAD-sequencing, genome resequencing, whole mitogenome sequencing, amplicon sequencing, and small RNA-sequencing. Chaenogobius annularis populations have been geographically separated into Pacific Ocean (PO) and Sea of Japan (SJ) lineages by past isolation events around the Japanese archipelago. Despite the divergence history and potential mitonuclear incompatibility between these lineages, the mitogenomes of the PO and SJ lineages have coexisted for generations in a hybrid population on the Sanriku Coast. Our analyses revealed accumulation of nonsynonymous substitutions in the PO-lineage mitogenomes, including two convergent substitutions, as well as signals of mitochondrial lineage-specific selection on mitochondria-related nuclear genes. Finally, our data implied that a microRNA gene was involved in resolving mitonuclear incompatibility. Our integrative genomic phylogeographic approach revealed that mitonuclear incompatibility can affect genome evolution in a natural hybrid population.
Collapse
Affiliation(s)
- Shotaro Hirase
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0032Japan
- Fisheries LaboratoryGraduate School of Agricultural and Life SciencesThe University of TokyoHamamatsuShizuoka431‐0214Japan
| | - Ayumi Tezuka
- Faculty of AgricultureRyukoku UniversityOtsuShiga520–2194Japan
| | | | - Mana Sato
- Fisheries LaboratoryGraduate School of Agricultural and Life SciencesThe University of TokyoHamamatsuShizuoka431‐0214Japan
| | - Sho Hosoya
- Fisheries LaboratoryGraduate School of Agricultural and Life SciencesThe University of TokyoHamamatsuShizuoka431‐0214Japan
| | - Kiyoshi Kikuchi
- Fisheries LaboratoryGraduate School of Agricultural and Life SciencesThe University of TokyoHamamatsuShizuoka431‐0214Japan
| | - Wataru Iwasaki
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0032Japan
- Atmosphere and Ocean Research InstituteThe University of TokyoKashiwaChiba277–8564Japan
- Department of Computational Biology and Medical SciencesGraduate School of Frontier SciencesThe University of TokyoKashiwaChiba277–8561Japan
- Institute for Quantitative BiosciencesThe University of TokyoBunkyo‐kuTokyo113‐0032Japan
- Collaborative Research Institute for Innovative MicrobiologyThe University of TokyoBunkyo‐kuTokyo113‐0032Japan
| |
Collapse
|
13
|
Kövesdi E, Szabó-Meleg E, Abrahám IM. The Role of Estradiol in Traumatic Brain Injury: Mechanism and Treatment Potential. Int J Mol Sci 2020; 22:E11. [PMID: 33374952 PMCID: PMC7792596 DOI: 10.3390/ijms22010011] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 01/02/2023] Open
Abstract
Patients surviving traumatic brain injury (TBI) face numerous neurological and neuropsychological problems significantly affecting their quality of life. Extensive studies over the past decades have investigated pharmacological treatment options in different animal models, targeting various pathological consequences of TBI. Sex and gender are known to influence the outcome of TBI in animal models and in patients, respectively. Apart from its well-known effects on reproduction, 17β-estradiol (E2) has a neuroprotective role in brain injury. Hence, in this review, we focus on the effect of E2 in TBI in humans and animals. First, we discuss the clinical classification and pathomechanism of TBI, the research in animal models, and the neuroprotective role of E2. Based on the results of animal studies and clinical trials, we discuss possible E2 targets from early to late events in the pathomechanism of TBI, including neuroinflammation and possible disturbances of the endocrine system. Finally, the potential relevance of selective estrogenic compounds in the treatment of TBI will be discussed.
Collapse
Affiliation(s)
- Erzsébet Kövesdi
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Center for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pecs, Hungary;
| | - Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, H-7624 Pecs, Hungary;
| | - István M. Abrahám
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Center for Neuroscience, Szentágothai Research Center, University of Pécs, H-7624 Pecs, Hungary;
| |
Collapse
|
14
|
Rossnerova A, Izzotti A, Pulliero A, Bast A, Rattan SIS, Rossner P. The Molecular Mechanisms of Adaptive Response Related to Environmental Stress. Int J Mol Sci 2020; 21:ijms21197053. [PMID: 32992730 PMCID: PMC7582272 DOI: 10.3390/ijms21197053] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/13/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The exposure of living organisms to environmental stress triggers defensive responses resulting in the activation of protective processes. Whenever the exposure occurs at low doses, defensive effects overwhelm the adverse effects of the exposure; this adaptive situation is referred to as “hormesis”. Environmental, physical, and nutritional hormetins lead to the stimulation and strengthening of the maintenance and repair systems in cells and tissues. Exercise, heat, and irradiation are examples of physical hormetins, which activate heat shock-, DNA repair-, and anti-oxidative-stress responses. The health promoting effect of many bio-actives in fruits and vegetables can be seen as the effect of mildly toxic compounds triggering this adaptive stimulus. Numerous studies indicate that living organisms possess the ability to adapt to adverse environmental conditions, as exemplified by the fact that DNA damage and gene expression profiling in populations living in the environment with high levels of air pollution do not correspond to the concentrations of pollutants. The molecular mechanisms of the hormetic response include modulation of (a) transcription factor Nrf2 activating the synthesis of glutathione and the subsequent protection of the cell; (b) DNA methylation; and (c) microRNA. These findings provide evidence that hormesis is a toxicological event, occurring at low exposure doses to environmental stressors, having the benefit for the maintenance of a healthy status.
Collapse
Affiliation(s)
- Andrea Rossnerova
- Department of Genetic Toxicology and Epigenetics, Institute of Experimental Medicine, 14220 Prague, Czech Republic;
| | - Alberto Izzotti
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Alessandra Pulliero
- Department of Health Science, University of Genoa, 16132 Genoa, Italy
- Correspondence:
| | - Aalt Bast
- Department of Pharmacology and Toxicology, Maastricht University, 6200 MD Maastricht, The Netherlands;
- Campus Venlo, Maastricht University, 5900 AA Venlo, The Netherlands
| | - S. I. S. Rattan
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark;
| | - Pavel Rossner
- Department of Nanotoxicology and Molecular Epidemiology, Institute of Experimental Medicine, 14220 Prague, Czech Republic;
| |
Collapse
|
15
|
Er R, Aydın B, Şekeroğlu V, Atlı Şekeroğlu Z. Protective effect of Argan oil on mitochondrial function and oxidative stress against acrylamide-induced liver and kidney injury in rats. Biomarkers 2020; 25:458-467. [PMID: 32683986 DOI: 10.1080/1354750x.2020.1797877] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
CONTEXT Acrylamide (ACR) is now a risk for general public health. Argan oil (AO) is harvested from the fruits of Argania spinosa and its rich source of antioxidant and phenolic compounds. OBJECTIVE The aim of present study was to investigate the protective effect of AO against ACR-induced liver and kidney injury in rats. MATERIALS AND METHODS Rats were exposed to ACR (50 mg/kg/day three times per week), AO (6 ml/kg/day per day) and ACR together with AO for 30 days. Oxidative status and mitochondrial functions were evaluated in liver and kidney. RESULTS Although ALT, AST, urea and creatine levels in serum, myeloperoxidase and total nitrite (NOx) levels in the tissues, lipid peroxidation and protein carbonyls levels were increased in the ACR-treated rats, cytosolic glucose-6-phosphate dehydrogenase and glutathione-S-transferase activities, mitochondrial antioxidant enzyme activities, glutathione levels, oxidative phosphorylation enzymes, TCA cycle enzymes, mitochondrial metabolic function and ATP level were decreased. The administration of ACR together with AO normalised almost all these parameters. CONCLUSION Over recent years, compounds that specifically target mitochondria have emerged as promising therapeutic options for patients with hepatic and renal diseases. We think that AO oil is one of these compounds due to its unique content.
Collapse
Affiliation(s)
- Rahime Er
- Department of Biology, Faculty of Science and Letters, Amasya University, Amasya, Turkey
| | - Birsen Aydın
- Department of Biology, Faculty of Science and Letters, Amasya University, Amasya, Turkey
| | - Vedat Şekeroğlu
- Department of Biology, Faculty of Science and Letters, Amasya University, Amasya, Turkey
| | - Zülal Atlı Şekeroğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Ordu University, Ordu, Turkey
| |
Collapse
|
16
|
Terzioğlu Bebitoğlu B, Oğuz E, Gökçe A. Effect of valproic acid on oxidative stress parameters of glutamate-induced excitotoxicity in SH-SY5Y cells. Exp Ther Med 2020; 20:1321-1328. [PMID: 32742366 PMCID: PMC7388284 DOI: 10.3892/etm.2020.8802] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Glutamate-induced excitotoxicity has been reported to be involved in the pathophysiology of neurodegenerative disorders. It has been proposed that valproic acid (VPA), which is used in epileptic and bipolar disorders, may be protective against excitotoxic insult. The aim of the present study was to investigate the effects of VPA against the glutamate excitotoxicity in the SH-SY5Y human neuroblastoma cell line and determine its anti-oxidant capacity by measuring oxidative and anti-oxidant biochemical parameters. SH-SY5Y human neuroblastoma cells were pre-treated with 1, 5 or 10 mM VPA prior to exposure to 15 mM glutamate. The MTT assay was performed to determine cell viability. To detect oxidative insult in glutamate toxicity and the potential anti-oxidant effect of VPA, the cell catalase (CAT), superoxide dismutase (SOD), malondialdehyde and hydrogen peroxide (H2O2) activity was determined. A progressive decline in cell viability was observed with increasing glutamate concentrations (1-50 mM). Treatment with 1 mM VPA was revealed to be effective in increasing the viability of cells exposed to glutamate for 24 h. Oxidative damage, including an increase in H2O2 and MDA, was observed in SH-SY5Y cells treated with glutamate and was reduced by pre-treatment with VPA. CAT activity was decreased following glutamate exposure, but VPA did not prevent this decrease. SOD activity was increased by treatment with VPA alone and was not affected by glutamate exposure. Overall, the present results confirmed the critical role of oxidative stress in glutamate-induced excitotoxicity. They also suggested that VPA may exert an anti-oxidant effect against glutamate-induced excitotoxicity by decreasing oxidative parameters, including H2O2 and MDA, but only had a slight effect on CAT and SOD activity, which have an anti-oxidant capacity.
Collapse
Affiliation(s)
- Berna Terzioğlu Bebitoğlu
- Department of Medical Pharmacology, İstanbul Medeniyet University School of Medicine, İstanbul 34700, Turkey
| | - Elif Oğuz
- Department of Medical Pharmacology, İstanbul Medeniyet University School of Medicine, İstanbul 34700, Turkey
| | - Acet Gökçe
- Department of Medical Pharmacology, İstanbul Medeniyet University School of Medicine, İstanbul 34700, Turkey
| |
Collapse
|
17
|
Duan J, Yang R, Lu W, Zhao L, Hu S, Hu C. Comorbid Bipolar Disorder and Migraine: From Mechanisms to Treatment. Front Psychiatry 2020; 11:560138. [PMID: 33505322 PMCID: PMC7829298 DOI: 10.3389/fpsyt.2020.560138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 12/02/2020] [Indexed: 12/27/2022] Open
Abstract
Bipolar disorder (BD) is a severe psychiatric disorder characterized by recurrent episodes of manic/hypomanic or depressive symptoms and euthymic periods, with some patients suffering a gradual deterioration of illness and consequent cognitive deficits during the late stage. Migraine is a disease generally without abnormal medical examinations, neurological examinations or laboratory studies, and the diagnosis is made based on the retrospective demonstration of headache features and groupings of disease-associated symptoms. The epidemiology of comorbid BD and migraine is high and it is obligatory to find effective treatments to improve the prognosis. Recent investigations demonstrated that the close relationship between BD and migraine significantly increased the rapid cycling rates of both BD and migraine in patients. Although the detailed mechanism is complex and largely unclear in comorbid BD and migrain, genetic factors, neurotransmitters, altered signaling pathways, disturbances of inflammatory cytokines, and mitochondrial dysfunction are risk factors of BD and migraine. Particularly these two diseases share some overlapping mechanisms according to previous studies. To this end, we call for further investigations of the potential mechanisms, and more efforts are underway to improve the treatment of people with comorbid BD and migraine. In this review, we provide an overview of the potential mechanisms in patients with BD or migraine and we further discuss the treatment strategies for comorbid BD and migraine and it is obligatory to find effective treatments to improve the prognosis. This work will provide insights for us to know more about the mechanisms of comorbid BD and migraine, provides new therapeutic targets for the treatment and give clinicians some guidance for more appropriate and beneficial treatment.
Collapse
Affiliation(s)
- Jinfeng Duan
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Department of Psychiatry, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Rongmei Yang
- Department of Psychogeriatrics, Hangzhou Seventh People's Hospital, Hangzhou, China
| | - Wenwen Lu
- Department of Traditional Chinese Medicine, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lingfei Zhao
- Key Laboratory of Kidney Disease Prevention and Control Technology, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Shaohua Hu
- Key Laboratory of Mental Disorder's Management of Zhejiang Province, Department of Psychiatry, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chenxia Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Kielar C, Morton AJ. Early Neurodegeneration in R6/2 Mice Carrying the Huntington's Disease Mutation with a Super-Expanded CAG Repeat, Despite Normal Lifespan. J Huntingtons Dis 2019; 7:61-76. [PMID: 29480204 DOI: 10.3233/jhd-170265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The threshold of CAG repeat expansion in the HTT gene that causes HD is 36 CAG repeats, although 'superlong' expansions are found in individual neurons in postmortem brains. Previously, we showed that, compared to mice with <250 CAG repeats, onset of disease in R6/2 mice carrying superlong (>440) CAG repeat expansions was delayed, and disease progression was slower. Inclusion pathology also differed from 250 CAG repeat mice, being dominated by a novel kind of extranuclear neuronal inclusion (nENNI) that resembles a class of aggregate seen in patients with the adult onset form of HD. Here, we characterised neuropathology in R6/2 mice with >400 CAG repeats using light and electron microscopy. nENNIs were found with increased frequency and wider distribution with age. Some nENNIs appear to 'mature' as the disease develops, developing a multi-layered cored structure. Mice with superlong CAG repeats do not develop clinical signs until they are around 30-40 weeks of age, and they attain a normal life span (>2 years). Nevertheless, they show brain atrophy and unequivocal neuron loss from the striatum and cortex by 22 weeks of age, an age at which similar pathology is seen in 250 CAG repeat mice. Since this time-point is 'end stage' for a 250 CAG mouse, but very far (at least 18 months) from end stage for a > 440 CAG repeat mouse, our data confirm that the appearance of clinical signs, the formation of inclusions, and neurodegeneration are processes that progress independently. A better understanding of the relationship between CAG repeat length, neurodegenerative pathways, and clinical behavioural signs is essential, if we are to find strategies to delay or reverse the course of this disease.
Collapse
Affiliation(s)
- Catherine Kielar
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
19
|
Salobrar-García E, de Hoz R, Ramírez AI, López-Cuenca I, Rojas P, Vazirani R, Amarante C, Yubero R, Gil P, Pinazo-Durán MD, Salazar JJ, Ramírez JM. Changes in visual function and retinal structure in the progression of Alzheimer's disease. PLoS One 2019; 14:e0220535. [PMID: 31415594 PMCID: PMC6695171 DOI: 10.1371/journal.pone.0220535] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/17/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Alzheimer's Disease (AD) can cause degeneration in the retina and optic nerve either directly, as a result of amyloid beta deposits, or secondarily, as a result of the degradation of the visual cortex. These effects raise the possibility that tracking ophthalmologic changes in the retina can be used to assess neurodegeneration in AD. This study aimed to detect retinal changes and associated functional changes in three groups of patients consisting of AD patients with mild disease, AD patients with moderate disease and healthy controls by using non-invasive psychophysical ophthalmological tests and optical coherence tomography (OCT). METHODS We included 39 patients with mild AD, 21 patients with moderate AD and 40 age-matched healthy controls. Both patients and controls were ophthalmologically healthy. Visual acuity, contrast sensitivity, colour perception, visual integration, and choroidal thicknesses were measured. In addition, OCT and OCT angiography (OCTA) were applied. FINDINGS Visual acuity, contrast sensitivity, colour perception, and visual integration were significantly lower in AD patients than in healthy controls. Compared to healthy controls, macular thinning in the central region was significant in the mild AD patients, while macular thickening in the central region was found in the moderate AD group. The analysis of macular layers revealed significant thinning of the retinal nerve fibre layer, the ganglion cell layer and the outer plexiform layer in AD patients relative to controls. Conversely, significant thickening was observed in the outer nuclear layer of the patients. However, mild AD was associated with significant thinning of the subfovea and the nasal and inferior sectors of the choroid. Significant superonasal and inferotemporal peripapillary thinning was observed in patients with moderate disease. CONCLUSIONS The first changes in the mild AD patients appear in the psychophysical tests and in the central macula with a decrease in the central retinal thickness. When there was a disease progression to moderate AD, psychophysical tests remained stable with respect to the decrease in mild AD, but significant thinning in the peripapillary retina and thickening in the central retina appeared. The presence of AD is best indicated based on contrast sensitivity.
Collapse
Affiliation(s)
- Elena Salobrar-García
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana I. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - Inés López-Cuenca
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Pilar Rojas
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Servicio de Oftalmología, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Ravi Vazirani
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Carla Amarante
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Raquel Yubero
- Unidad de Memoria, Servicio de Geriatría, Hospital Clínico San Carlos, Madrid, Spain
| | - Pedro Gil
- Unidad de Memoria, Servicio de Geriatría, Hospital Clínico San Carlos, Madrid, Spain
| | - María D. Pinazo-Durán
- Unidad de Investigación Oftalmológica «Santiago Grisolia»/FISABIO, Valencia, Spain
- Grupo de Oftalmobiología Celular y Molecular, Facultad de Medicina y Odontología, Universidad de Valencia, Valencia, Spain
| | - Juan J. Salazar
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Madrid, Spain
| | - José M. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
- Departamento de Inmunología, Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
20
|
Allen J, Romay-Tallon R, Brymer KJ, Caruncho HJ, Kalynchuk LE. Mitochondria and Mood: Mitochondrial Dysfunction as a Key Player in the Manifestation of Depression. Front Neurosci 2018; 12:386. [PMID: 29928190 PMCID: PMC5997778 DOI: 10.3389/fnins.2018.00386] [Citation(s) in RCA: 204] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Human and animal studies suggest an intriguing link between mitochondrial diseases and depression. Although depression has historically been linked to alterations in monoaminergic pharmacology and adult hippocampal neurogenesis, new data increasingly implicate broader forms of dampened plasticity, including plasticity within the cell. Mitochondria are the cellular powerhouse of eukaryotic cells, and they also regulate brain function through oxidative stress and apoptosis. In this paper, we make the case that mitochondrial dysfunction could play an important role in the pathophysiology of depression. Alterations in mitochondrial functions such as oxidative phosphorylation (OXPHOS) and membrane polarity, which increase oxidative stress and apoptosis, may precede the development of depressive symptoms. However, the data in relation to antidepressant drug effects are contradictory: some studies reveal they have no effect on mitochondrial function or even potentiate dysfunction, whereas other studies show more beneficial effects. Overall, the data suggest an intriguing link between mitochondrial function and depression that warrants further investigation. Mitochondria could be targeted in the development of novel antidepressant drugs, and specific forms of mitochondrial dysfunction could be identified as biomarkers to personalize treatment and aid in early diagnosis by differentiating between disorders with overlapping symptoms.
Collapse
Affiliation(s)
- Josh Allen
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | | | - Kyle J Brymer
- Department of Psychology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hector J Caruncho
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Lisa E Kalynchuk
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
21
|
Şekeroğlu V, Aydın B, Atlı Şekeroğlu Z, Özdener Kömpe Y. Hepatoprotective effects of capsaicin and alpha-tocopherol on mitochondrial function in mice fed a high-fat diet. Biomed Pharmacother 2018; 98:821-825. [PMID: 29571252 DOI: 10.1016/j.biopha.2018.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 12/30/2022] Open
Abstract
Capsaicin (CAP) and alpha-tocopherol (TOC) have antioxidant properties. We investigated effects of CAP and TOC on mitochondrial oxidative stress and mitochondrial bioenergetics in liver of mice fed HFD. AST, ALT, glucose, homeostasis model assessment-insulin resistance index ((HOMA-IR)) and mitochondrial oxidative stress parameters increased, whereas oxidative phosphorylation (OXPHOS) enzymes, tricarboxylic acid cycle (TCA) enzymes, ATP level and mitochondrial metabolic function (MTT) decreased in mice fed a HFD compared to the fed a standard diet (NC). Treatment of HFD together with CAP (HFC group), TOC (HFT group) or TOC and CAP (HCT group) can ameliorate the examined parameters. Because co-treatment with CAP and TOC displayed a better ameliorating effect on liver redox status and mitochondrial bioenergetics functions, they can be useful to protect against HFD and oxidative stress-related in liver diseases.
Collapse
Affiliation(s)
- Vedat Şekeroğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Ordu University, 52200 Ordu, Turkey.
| | - Birsen Aydın
- Department of Biology, Faculty of Science and Letters, Amasya University, 05100 Amasya, Turkey
| | - Zülal Atlı Şekeroğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Ordu University, 52200 Ordu, Turkey
| | - Yasemin Özdener Kömpe
- Department of Biology, Faculty of Science and Letters, Ondokuz Mayıs University, 55139 Samsun, Turkey
| |
Collapse
|
22
|
Castro JP, Wardelmann K, Grune T, Kleinridders A. Mitochondrial Chaperones in the Brain: Safeguarding Brain Health and Metabolism? Front Endocrinol (Lausanne) 2018; 9:196. [PMID: 29755410 PMCID: PMC5932182 DOI: 10.3389/fendo.2018.00196] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/10/2018] [Indexed: 12/31/2022] Open
Abstract
The brain orchestrates organ function and regulates whole body metabolism by the concerted action of neurons and glia cells in the central nervous system. To do so, the brain has tremendously high energy consumption and relies mainly on glucose utilization and mitochondrial function in order to exert its function. As a consequence of high rate metabolism, mitochondria in the brain accumulate errors over time, such as mitochondrial DNA (mtDNA) mutations, reactive oxygen species, and misfolded and aggregated proteins. Thus, mitochondria need to employ specific mechanisms to avoid or ameliorate the rise of damaged proteins that contribute to aberrant mitochondrial function and oxidative stress. To maintain mitochondria homeostasis (mitostasis), cells evolved molecular chaperones that shuttle, refold, or in coordination with proteolytic systems, help to maintain a low steady-state level of misfolded/aggregated proteins. Their importance is exemplified by the occurrence of various brain diseases which exhibit reduced action of chaperones. Chaperone loss (expression and/or function) has been observed during aging, metabolic diseases such as type 2 diabetes and in neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD) or even Huntington's (HD) diseases, where the accumulation of damage proteins is evidenced. Within this perspective, we propose that proper brain function is maintained by the joint action of mitochondrial chaperones to ensure and maintain mitostasis contributing to brain health, and that upon failure, alter brain function which can cause metabolic diseases.
Collapse
Affiliation(s)
- José Pedro Castro
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- *Correspondence: José Pedro Castro, ; André Kleinridders,
| | - Kristina Wardelmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Central Regulation of Metabolism, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- German Center for Cardiovascular Research (DZHK), Berlin, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - André Kleinridders
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Central Regulation of Metabolism, German Institute of Human Nutrition (DIfE), Potsdam-Rehbruecke, Germany
- *Correspondence: José Pedro Castro, ; André Kleinridders,
| |
Collapse
|
23
|
Elkamhawy A, Park JE, Hassan AHE, Pae AN, Lee J, Park BG, Roh EJ. Synthesis and evaluation of 2-(3-arylureido)pyridines and 2-(3-arylureido)pyrazines as potential modulators of Aβ-induced mitochondrial dysfunction in Alzheimer's disease. Eur J Med Chem 2017; 144:529-543. [PMID: 29288949 DOI: 10.1016/j.ejmech.2017.12.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 11/09/2017] [Accepted: 12/13/2017] [Indexed: 10/18/2022]
Abstract
A series of 2-(3-arylureido)pyridines and 2-(3-benzylureido)pyridines were synthesized and evaluated as potential modulators for amyloid beta (Aβ)-induced mitochondrial dysfunction in Alzheimer's disease (AD). The blocking activities of forty one small molecules against Aβ-induced mitochondrial permeability transition pore (mPTP) opening were evaluated by JC-1 assay which measures the change of mitochondrial membrane potential (ΔΨm). The inhibitory activity of twenty five compounds against Aβ-induced mPTP opening was superior to that of the standard cyclosporin A (CsA). Six hit compounds have been identified as likely safe in regards to mitochondrial and cellular safety and subjected to assessment for their protective effect against Aβ-induced deterioration of ATP production and cytotoxicity. Among them, compound 7fb has been identified as a lead compound protecting neuronal cells against 67% of neurocytotoxicity and 43% of suppression of mitochondrial ATP production induced by 5 μM concentrations of Aβ. Using CDocker algorithm, a molecular docking model presented a plausible binding mode for these compounds with cyclophilin D (CypD) receptor as a major component of mPTP. Hence, this report presents compound 7fb as a new nonpeptidyl mPTP blocker which would be promising for further development of Alzheimer's disease (AD) therapeutics.
Collapse
Affiliation(s)
- Ahmed Elkamhawy
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Jung-Eun Park
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Jiyoun Lee
- Department of Global Medical Science, Sungshin Women's University, Seoul 01133, Republic of Korea
| | - Beoung-Geon Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; School of Life Sciences and Biotechnology, Korea University, Seoul 02792, Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
24
|
Haj-Mirzaian A, Amiri S, Amini-Khoei H, Hosseini MJ, Haj-Mirzaian A, Momeny M, Rahimi-Balaei M, Dehpour AR. Anxiety- and Depressive-Like Behaviors are Associated with Altered Hippocampal Energy and Inflammatory Status in a Mouse Model of Crohn’s Disease. Neuroscience 2017; 366:124-137. [DOI: 10.1016/j.neuroscience.2017.10.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 10/14/2017] [Accepted: 10/16/2017] [Indexed: 02/07/2023]
|
25
|
Crosstalk between endoplasmic reticulum stress and oxidative stress in schizophrenia: The dawn of new therapeutic approaches. Neurosci Biobehav Rev 2017; 83:589-603. [DOI: 10.1016/j.neubiorev.2017.08.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/09/2017] [Accepted: 08/30/2017] [Indexed: 01/15/2023]
|
26
|
Cheung LTY, Manthey AL, Lai JSM, Chiu K. Targeted Delivery of Mitochondrial Calcium Channel Regulators: The Future of Glaucoma Treatment? Front Neurosci 2017; 11:648. [PMID: 29213227 PMCID: PMC5702640 DOI: 10.3389/fnins.2017.00648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/07/2017] [Indexed: 11/18/2022] Open
Affiliation(s)
- Leanne T Y Cheung
- Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| | - Abby L Manthey
- Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| | - Jimmy S M Lai
- Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| | - Kin Chiu
- Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| |
Collapse
|
27
|
Henderson LE, Abdelmegeed MA, Yoo SH, Rhee SG, Zhu X, Smith MA, Nguyen RQ, Perry G, Song BJ. Enhanced Phosphorylation of Bax and Its Translocation into Mitochondria in the Brains of Individuals Affiliated with Alzheimer's Disease. Open Neurol J 2017; 11:48-58. [PMID: 29290835 PMCID: PMC5738752 DOI: 10.2174/1874205x01711010048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/05/2017] [Accepted: 10/10/2017] [Indexed: 12/22/2022] Open
Abstract
Background: Despite increased neuronal death, senile plaques, and neurofibrillary tangles observed in patients suffering from Alzheimer’s disease (AD), the detailed mechanism of cell death in AD is still poorly understood. Method: We hypothesized that p38 kinase activates and then phosphorylates Bax, leading to its translocation to mitochondria in AD brains compared to controls. The aim of this study was to investigate the role of p38 kinase in phosphorylation and sub-cellular localization of pro-apoptotic Bax in the frontal cortex of the brains from AD and control subjects. Increased oxidative stress in AD individuals compared to control was evaluated by measuring the levels of carbonylated proteins and oxidized peroxiredoxin, an antioxidant enzyme. The relative amounts of p38 kinase and phospho-Bax in mitochondria in AD brains and controls were determined by immunoblot analysis using the respective antibody against each protein following immunoprecipitation. Results: Our results showed that the levels of oxidized peroxiredoxin-SO3 and carbonylated proteins are significantly elevated in AD brains compared to controls, demonstrating the increased oxidative stress. Conclusion: The amount of phospho-p38 kinase is increased in AD brains and the activated p38 kinase appears to phosphorylate Thr residue(s) of Bax, which leads to its mitochondrial translocation, contributing to apoptosis and ultimately, neurodegeneration.
Collapse
Affiliation(s)
- L E Henderson
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9410, USA
| | - M A Abdelmegeed
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9410, USA
| | - S H Yoo
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9410, USA
| | - S G Rhee
- Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - X Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - M A Smith
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - R Q Nguyen
- Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - G Perry
- Department of Biology, College of Sciences, University of Texas at San Antonio, San Antonio, TX, USA
| | - B J Song
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9410, USA
| |
Collapse
|
28
|
Munk M, Brandão HM, Yéprémian C, Couté A, Ladeira LO, Raposo NRB, Brayner R. Effect of Multi-walled Carbon Nanotubes on Metabolism and Morphology of Filamentous Green Microalgae. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 73:649-658. [PMID: 28687867 DOI: 10.1007/s00244-017-0429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
Multi-walled carbon nanotubes (MWCNTs) have potential applications in the industrial, agricultural, pharmaceutical, medical, and environmental remediation fields. However, many uncertainties exist regarding the environmental implications of engineered nanomaterials. This study examined the effect of the MWCNTs on metabolic status and morphology of filamentous green microalgae Klebsormidium flaccidum. Appropriate concentrations of MWCNT (1, 50, and 100 μg mL-1) were added to a microalgal culture in the exponential growth phase and incubated for 24, 48, 72, and 96 h. Exposure to MWCNT led to reductions in algal growth after 48 h and decreased on cell viability for all experimental endpoints except for 1 µg mL-1 at 24 h and 100 µg mL-1 after 72 h. At 100 µg mL-1, MWCNTs induced reactive oxygen species (ROS) production and had an effect on intracellular adenosine triphosphate (ATP) content depending on concentration and time. No photosynthetic activity variation was observed. Observations by scanning transmission electron microscopy showed cell damage. In conclusion, we have demonstrated that exposure to MWCNTs affects cell metabolism and microalgal cell morphology. To our best knowledge, this is the first case in which MWCNTs exhibit adverse effects on filamentous green microalgae K. flaccidum. These results contribute to elucidate the mechanism of MWCNT nanotoxicity in the bioindicator organism of terrestrial and freshwater habitats.
Collapse
Affiliation(s)
- Michele Munk
- Department of Biology, Federal University of Juiz de Fora, José Lourenço Kelmer, Campus Universitário, Juiz De Fora, 36036-900, Brazil.
| | - Humberto M Brandão
- Laboratory of Nanotechnology, Brazilian Agricultural Research Corporation (EMBRAPA), Juiz De Fora, 36038-330, Brazil
| | - Claude Yéprémian
- National Museum of Natural History, Communication Molecules and Adaptation of Microorganisms, UMR 7245, Paris, France
| | - Alain Couté
- National Museum of Natural History, Communication Molecules and Adaptation of Microorganisms, UMR 7245, Paris, France
| | - Luiz O Ladeira
- Department of Physics, Federal University of Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Nádia R B Raposo
- Nucleus of Analytical Identification and Quantification (NIQUA), Federal University of Juiz de Fora, Juiz De Fora, 36036-900, Brazil
| | - Roberta Brayner
- University of Paris Diderot, Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), UMR 7086, Paris, France
| |
Collapse
|
29
|
Park JE, Elkamhawy A, Hassan AHE, Pae AN, Lee J, Paik S, Park BG, Roh EJ. Synthesis and evaluation of new pyridyl/pyrazinyl thiourea derivatives: Neuroprotection against amyloid-β-induced toxicity. Eur J Med Chem 2017; 141:322-334. [PMID: 29031076 DOI: 10.1016/j.ejmech.2017.09.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/20/2017] [Accepted: 09/21/2017] [Indexed: 12/14/2022]
Abstract
Herein, we report synthesis and evaluation of new twenty six small molecules against β amyloid (Aβ)-induced opening of mitochondrial permeability transition pore (mPTP) using JC-1 assay which measures the change of mitochondrial membrane potential (ΔΨm). The neuroprotective effect of seventeen compounds against Aβ-induced mPTP opening was superior to that of the standard Cyclosporin A (CsA). Fifteen derivatives eliciting increased green to red fluorescence percentage less than 40.0% were evaluated for their impact on ATP production, cell viability and neuroprotection against Aβ-induced neuronal cell death. Among evaluated compounds, derivatives 9w, 9r and 9k had safe profile regarding ATP production and cell viability. In addition, they exhibited significant neuroprotection (69.3, 51.8 and 48.2% respectively). Molecular modeling study using CDocker algorithm predicted plausible binding modes explaining the elicited mPTP blocking activity. Hence, this study suggests compounds 9w, 9r and 9k as leads for further development of novel therapy to Alzheimer's disease.
Collapse
Affiliation(s)
- Jung-Eun Park
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Ahmed Elkamhawy
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Life and Nonopharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Jiyoun Lee
- Department of Global Medical Science, Sungshin Women's University, Seoul 142-732, Republic of Korea
| | - Sora Paik
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Beoung-Geon Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Eun Joo Roh
- Chemical Kinomics Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
30
|
Quayle LA, Pereira MG, Scheper G, Wiltshire T, Peake RE, Hussain I, Rea CA, Bates TE. Anti-angiogenic drugs: direct anti-cancer agents with mitochondrial mechanisms of action. Oncotarget 2017; 8:88670-88688. [PMID: 29179466 PMCID: PMC5687636 DOI: 10.18632/oncotarget.20858] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 06/17/2017] [Indexed: 12/15/2022] Open
Abstract
Components of the mitochondrial electron transport chain have recently gained much interest as potential therapeutic targets. Since mitochondria are essential for the supply of energy that is required for both angiogenic and tumourigenic activity, targeting the mitochondria represents a promising potential therapeutic approach for treating cancer. Here we investigate the established anti-angiogenesis drugs combretastatin A4, thalidomide, OGT 2115 and tranilast that we hypothesise are able to exert a direct anti-cancer effect in the absence of vasculature by targeting the mitochondria. Drug cytotoxicity was measured using the MTT assay. Mitochondrial function was measured in intact isolated mitochondria using polarography, fluorimetry and enzymatic assays to measure mitochondrial oxygen consumption, membrane potential and complex I-IV activities respectively. Combretastatin A4, OGT 2115 and tranilast were both shown to decrease mitochondrial oxygen consumption. OGT 2115 and tranilast decreased mitochondrial membrane potential and reduced complex I activity while combretastatin A4 and thalidomide did not. OGT 2115 inhibited mitochondrial complex II-III activity while combretastatin A4, thalidomide and tranilast did not. Combretastatin A4, thalidomide and OGT 2115 induced bi-phasic concentration-dependent increases and decreases in mitochondrial complex IV activity while tranilast had no evident effect. These data demonstrate that combretastatin A4, thalidomide, OGT 2115 and tranilast are all mitochondrial modulators. OGT 2115 and tranilast are both mitochondrial inhibitors capable of eliciting concentration-dependent reductions in cell viability by decreasing mitochondrial membrane potential and oxygen consumption.
Collapse
Affiliation(s)
- Lewis A Quayle
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K.,Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, S10 2RX, U.K
| | - Maria G Pereira
- School of Pharmacy, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Gerjan Scheper
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Tammy Wiltshire
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Ria E Peake
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Issam Hussain
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Carol A Rea
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K
| | - Timothy E Bates
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln, LN6 7DL, U.K.,Drugs With A Difference Limited, BioCity Nottingham, Nottingham, NG1 1GF, U.K.,Marlin Therapeutics Limited, Nottingham Science Park, Nottingham, NG7 2RF, U.K
| |
Collapse
|
31
|
de Oliveira MR, Nabavi SF, Nabavi SM, Jardim FR. Omega-3 polyunsaturated fatty acids and mitochondria, back to the future. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
32
|
Imran KM, Rahman N, Yoon D, Jeon M, Lee BT, Kim YS. Cryptotanshinone promotes commitment to the brown adipocyte lineage and mitochondrial biogenesis in C3H10T1/2 mesenchymal stem cells via AMPK and p38-MAPK signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1110-1120. [PMID: 28807877 DOI: 10.1016/j.bbalip.2017.08.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 12/18/2022]
Abstract
Although white adipose tissue (WAT) stores triglycerides and contributes to obesity, brown adipose tissue (BAT) dissipates energy as heat. Therefore, browning of WAT is regarded as an attractive way to counteract obesity. Our previous studies have revealed that treatment with cryptotanshinone (CT) during adipogenesis of 3T3-L1 cells inhibits their differentiation. Here, we found that pretreatment of C3H10T1/2 mesenchymal stem cells with CT before exposure to adipogenic hormonal stimuli promotes the commitment of these mesenchymal stem cells to the adipocyte lineage as confirmed by increased triglyceride accumulation. Furthermore, CT treatment induced the expression of early B-cell factor 2 (Ebf2) and bone morphogenetic protein 7 (Bmp7), which are known to drive differentiation of C3H10T1/2 mesenchymal stem cells toward preadipocytes and to the commitment to brown adipocytes. Consequently, CT treatment yielded brown-adipocyte-like features as evidenced by elevated expression of brown-fat signature genes including Ucp1, Prdm16, Pgc-1α, Cidea, Zic1, and beige-cell-specific genes such as CD137, Hspb7, Cox2, and Tmem26. Additionally, CT treatment induced mitochondrial biogenesis through upregulation of Sirt1, Tfam, Nrf1, and Cox7a and increased mitochondrial mass and DNA content. Our data also showed that cotreatment with CT and BMP4 was more effective at activating brown-adipocyte-specific genes. Mechanistic experiments revealed that treatment with CT activated AMPKα and p38-MAPK via their phosphorylation: the two major signaling pathways regulating energy metabolism. Thus, these findings suggest that CT is a candidate therapeutic agent against obesity working via activation of browning and mitochondrial biogenesis in C3H10T1/2 mesenchymal stem cells.
Collapse
Affiliation(s)
- Khan Mohammad Imran
- Dept. of Microbiology, College of Medicine, Soonchunhyang University, Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Korea
| | - Naimur Rahman
- Dept. of Microbiology, College of Medicine, Soonchunhyang University, Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Korea
| | - Dahyeon Yoon
- Dept. of Microbiology, College of Medicine, Soonchunhyang University, Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Korea
| | - Miso Jeon
- Dept. of Microbiology, College of Medicine, Soonchunhyang University, Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Korea
| | - Byong-Taek Lee
- Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Korea; Dept. of Tissue Engineering, College of Medicine, Soonchunhyang University, Korea
| | - Yong-Sik Kim
- Dept. of Microbiology, College of Medicine, Soonchunhyang University, Korea; Institute of Tissue Regeneration, College of Medicine, Soonchunhyang University, Korea.
| |
Collapse
|
33
|
Ramirez AI, de Hoz R, Salobrar-Garcia E, Salazar JJ, Rojas B, Ajoy D, López-Cuenca I, Rojas P, Triviño A, Ramírez JM. The Role of Microglia in Retinal Neurodegeneration: Alzheimer's Disease, Parkinson, and Glaucoma. Front Aging Neurosci 2017; 9:214. [PMID: 28729832 PMCID: PMC5498525 DOI: 10.3389/fnagi.2017.00214] [Citation(s) in RCA: 306] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/16/2017] [Indexed: 12/12/2022] Open
Abstract
Microglia, the immunocompetent cells of the central nervous system (CNS), act as neuropathology sensors and are neuroprotective under physiological conditions. Microglia react to injury and degeneration with immune-phenotypic and morphological changes, proliferation, migration, and inflammatory cytokine production. An uncontrolled microglial response secondary to sustained CNS damage can put neuronal survival at risk due to excessive inflammation. A neuroinflammatory response is considered among the etiological factors of the major aged-related neurodegenerative diseases of the CNS, and microglial cells are key players in these neurodegenerative lesions. The retina is an extension of the brain and therefore the inflammatory response in the brain can occur in the retina. The brain and retina are affected in several neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and glaucoma. AD is an age-related neurodegeneration of the CNS characterized by neuronal and synaptic loss in the cerebral cortex, resulting in cognitive deficit and dementia. The extracellular deposits of beta-amyloid (Aβ) and intraneuronal accumulations of hyperphosphorylated tau protein (pTau) are the hallmarks of this disease. These deposits are also found in the retina and optic nerve. PD is a neurodegenerative locomotor disorder with the progressive loss of dopaminergic neurons in the substantia nigra. This is accompanied by Lewy body inclusion composed of α-synuclein (α-syn) aggregates. PD also involves retinal dopaminergic cell degeneration. Glaucoma is a multifactorial neurodegenerative disease of the optic nerve, characterized by retinal ganglion cell loss. In this pathology, deposition of Aβ, synuclein, and pTau has also been detected in retina. These neurodegenerative diseases share a common pathogenic mechanism, the neuroinflammation, in which microglia play an important role. Microglial activation has been reported in AD, PD, and glaucoma in relation to protein aggregates and degenerated neurons. The activated microglia can release pro-inflammatory cytokines which can aggravate and propagate neuroinflammation, thereby degenerating neurons and impairing brain as well as retinal function. The aim of the present review is to describe the contribution in retina to microglial-mediated neuroinflammation in AD, PD, and glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Ana I. Ramirez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid (UCM)Madrid, Spain
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid (UCM)Madrid, Spain
| | - Elena Salobrar-Garcia
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid (UCM)Madrid, Spain
| | - Juan J. Salazar
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Óptica y Optometría, Universidad Complutense de Madrid (UCM)Madrid, Spain
| | - Blanca Rojas
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid (UCM)Madrid, Spain
| | - Daniel Ajoy
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
| | - Inés López-Cuenca
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
| | - Pilar Rojas
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Servicio de Oftalmología, Hospital Gregorio MarañónMadrid, Spain
| | - Alberto Triviño
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid (UCM)Madrid, Spain
| | - José M. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo. Universidad Complutense de MadridMadrid, Spain
- Departamento de Oftalmología y ORL, Facultad de Medicina, Universidad Complutense de Madrid (UCM)Madrid, Spain
| |
Collapse
|
34
|
Braissant O, Jafari P, Remacle N, Cudré-Cung HP, Do Vale Pereira S, Ballhausen D. Immunolocalization of glutaryl-CoA dehydrogenase (GCDH) in adult and embryonic rat brain and peripheral tissues. Neuroscience 2017; 343:355-363. [DOI: 10.1016/j.neuroscience.2016.10.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/03/2016] [Accepted: 10/19/2016] [Indexed: 01/23/2023]
|
35
|
Aydın B. Effects of argan oil on the mitochondrial function, antioxidant system and the activity of NADPH- generating enzymes in acrylamide treated rat brain. Biomed Pharmacother 2017; 87:476-481. [PMID: 28068639 DOI: 10.1016/j.biopha.2016.12.124] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 12/21/2016] [Accepted: 12/28/2016] [Indexed: 01/14/2023] Open
Abstract
Argan oil (AO) is rich in minor compounds such as polyphenols and tocopherols which are powerful antioxidants. Acrylamide (ACR) has been classified as a neurotoxic agent in animals and humans. Mitochondrial oxidative stress and dysfunction is one of the most probable molecular mechanisms of neurodegenerative diseases. Female Sprague Dawley rats were exposed to ACR (50mg/kg i.p. three times a week), AO (6ml/kg,o.p, per day) or together for 30days. The activities of cytosolic enzymes such as xanthine oxidase (XO), glucose 6-phosphate dehydrogenase (G6PDH), glutathione-S-transferase (GST), mitochondrial oxidative stress, oxidative phosphorylation (OXPHOS) and tricarboxylic acid cycle (TCA) enzymes, mitochondrial metabolic function, adenosine triphosphate (ATP) level and acetylcholinesterase (AChE) activity were assessed in rat brain. Cytosolic and mitochondrial antioxidant enzymes were significantly diminished in the brains of rats treated with ACR compared to those in control. Besides, ACR treatment resulted in a significant reduction in brain ATP level, mitochondrial metabolic function, OXPHOS and TCA enzymes. Administration of AO restored both the cytosolic and mitochondrial oxidative stress by normalizing nicotinamide adenine dinucleotide phosphate (NADPH) generating enzymes. In addition, improved mitochondrial function primarily enhancing nicotinamide adenine dinucleotide (NADH) generated enzymes activities and ATP level in the mitochondria. The reason for AO's obvious beneficial effects in this study may be due to synergistic effects of its different bioactive compounds which is especially effective on mitochondria. Modulation of the brain mitochondrial functions and antioxidant systems by AO may lead to the development of new mitochondria-targeted antioxidants in the future.
Collapse
Affiliation(s)
- Birsen Aydın
- Department of Biology, Science and Art Faculty, Amasya University, 05100, İpekköy, Amasya, Turkey.
| |
Collapse
|
36
|
Ribe EM, Lovestone S. Insulin signalling in Alzheimer's disease and diabetes: from epidemiology to molecular links. J Intern Med 2016; 280:430-442. [PMID: 27739227 DOI: 10.1111/joim.12534] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
As populations across the world both age and become more obese, the numbers of individuals with Alzheimer's disease and diabetes are increasing; posing enormous challenges for society and consequently becoming priorities for governments and global organizations. These issues, an ageing population at risk of neurodegenerative diseases such as Alzheimer's disease and an increasingly obese population at risk of metabolic alterations such as type 2 diabetes, are usually considered as independent conditions, but increasing evidence from both epidemiological and molecular studies link these disorders. The aim of this review was to highlight these multifactorial links. We will discuss the impact of direct links between insulin and IGF-1 signalling and the Alzheimer's disease-associated pathological events as well as the impact of other processes such as inflammation, oxidative stress and mitochondrial dysfunction either common to both conditions or perhaps responsible for a mechanistic link between metabolic and neurodegenerative disease. An understanding of such associations might be of importance not only in the understanding of disease mechanisms but also in the search for novel therapeutic options.
Collapse
Affiliation(s)
- E M Ribe
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - S Lovestone
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
37
|
Calabrese V, Giordano J, Signorile A, Laura Ontario M, Castorina S, De Pasquale C, Eckert G, Calabrese EJ. Major pathogenic mechanisms in vascular dementia: Roles of cellular stress response and hormesis in neuroprotection. J Neurosci Res 2016; 94:1588-1603. [PMID: 27662637 DOI: 10.1002/jnr.23925] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 12/18/2022]
Abstract
Vascular dementia (VaD), considered the second most common cause of cognitive impairment after Alzheimer disease in the elderly, involves the impairment of memory and cognitive function as a consequence of cerebrovascular disease. Chronic cerebral hypoperfusion is a common pathophysiological condition frequently occurring in VaD. It is generally associated with neurovascular degeneration, in which neuronal damage and blood-brain barrier alterations coexist and evoke beta-amyloid-induced oxidative and nitrosative stress, mitochondrial dysfunction, and inflammasome- promoted neuroinflammation, which contribute to and exacerbate the course of disease. Vascular cognitive impairment comprises a heterogeneous group of cognitive disorders of various severity and types that share a presumed vascular etiology. The present study reviews major pathogenic factors involved in VaD, highlighting the relevance of cerebrocellular stress and hormetic responses to neurovascular insult, and addresses these mechanisms as potentially viable and valuable as foci of novel neuroprotective methods to mitigate or prevent VaD. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.
| | - James Giordano
- Departments of Neurology and Biochemistry and Neuroethics Studies Program, Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC
| | - Anna Signorile
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Sergio Castorina
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Concetta De Pasquale
- Department of Medical, Surgical Sciences and Advanced Technologies, University of Catania, Italy
| | - Gunter Eckert
- Institute of Nutrition Sciences, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Edward J Calabrese
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts
| |
Collapse
|
38
|
Stucki DM, Ruegsegger C, Steiner S, Radecke J, Murphy MP, Zuber B, Saxena S. Mitochondrial impairments contribute to Spinocerebellar ataxia type 1 progression and can be ameliorated by the mitochondria-targeted antioxidant MitoQ. Free Radic Biol Med 2016; 97:427-440. [PMID: 27394174 DOI: 10.1016/j.freeradbiomed.2016.07.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/23/2016] [Accepted: 07/05/2016] [Indexed: 12/29/2022]
Abstract
Spinocerebellar ataxia type 1 (SCA1), due to an unstable polyglutamine expansion within the ubiquitously expressed Ataxin-1 protein, leads to the premature degeneration of Purkinje cells (PCs), decreasing motor coordination and causing death within 10-15 years of diagnosis. Currently, there are no therapies available to slow down disease progression. As secondary cellular impairments contributing to SCA1 progression are poorly understood, here, we focused on identifying those processes by performing a PC specific proteome profiling of Sca1(154Q/2Q) mice at a symptomatic stage. Mass spectrometry analysis revealed prominent alterations in mitochondrial proteins. Immunohistochemical and serial block-face scanning electron microscopy analyses confirmed that PCs underwent age-dependent alterations in mitochondrial morphology. Moreover, colorimetric assays demonstrated impairment of the electron transport chain complexes (ETC) and decrease in ATPase activity. Subsequently, we examined whether the mitochondria-targeted antioxidant MitoQ could restore mitochondrial dysfunction and prevent SCA1-associated pathology in Sca1(154Q/2Q) mice. MitoQ treatment both presymptomatically and when symptoms were evident ameliorated mitochondrial morphology and restored the activities of the ETC complexes. Notably, MitoQ slowed down the appearance of SCA1-linked neuropathology such as lack of motor coordination as well as prevented oxidative stress-induced DNA damage and PC loss. Our work identifies a central role for mitochondria in PC degeneration in SCA1 and provides evidence for the supportive use of mitochondria-targeted therapeutics in slowing down disease progression.
Collapse
Affiliation(s)
- David M Stucki
- Institute of Cell Biology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Céline Ruegsegger
- Institute of Cell Biology, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Silvio Steiner
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Julika Radecke
- Institute of Anatomy, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Michael P Murphy
- Medical Research Council, Mitochondrial Biology Unit, Cambridge, United Kingdom
| | - Benoît Zuber
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Smita Saxena
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| |
Collapse
|
39
|
Dose J, Nebel A, Piegholdt S, Rimbach G, Huebbe P. Influence of the APOE genotype on hepatic stress response: Studies in APOE targeted replacement mice and human liver cells. Free Radic Biol Med 2016; 96:264-72. [PMID: 27130033 DOI: 10.1016/j.freeradbiomed.2016.04.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/22/2016] [Accepted: 04/25/2016] [Indexed: 11/29/2022]
Abstract
Apolipoprotein E (APOE) is a multifunctional plasma protein mainly acting in lipid metabolism. Human APOE is polymorphic with three major isoforms (APOE2, APOE3 and APOE4). Up to 75% of the body's APOE is produced by the liver. There is increasing evidence from studies in brain-derived cells that APOE4 affects mitochondrial function and biogenesis as well as stress and inflammatory responses - processes, whose disturbances are considered hallmarks of the ageing process. However, although the liver is the main production site of APOE, knowledge about the impact of the APOE genotype on hepatic stress response-related processes is rather limited. Therefore, we studied biomarkers of oxidative status (glutathione levels, 3-nitrotyrosine adducts, protein carbonyl concentration), ER stress (XBP1(S), BiP, DDIT3), proteasome activity, mitochondrial function (respiratory complexes, ATP levels and mitochondrial membrane potential as well as biomarkers of mitochondrial biogenesis, fission and fusion), autophagy (LC3, LAMP2A), apoptosis (BCL2, BAX, CYCS) and DNA damage in the liver of APOE targeted replacement (TR) mice and in Huh7 hepatocytes overexpressing the APOE3 and the APOE4 isoform, respectively. APOE4 mice exhibited a lower chymotrypsin-like and a higher trypsin-like proteasome activity. Levels of protein carbonyls were moderately higher in liver tissue of APOE4 vs. APOE3 mice. Other biomarkers of oxidative stress were similar between the two genotypes. Under basal conditions, the stress-response pathways investigated appeared largely unaffected by the APOE genotype. However, upon stress induction, APOE4 expressing cells showed lower levels of adenosine triphosphate (ATP) and lower mRNA levels of the ATP-generating complex V of the mitochondrial respiratory chain. Overall, our findings provide evidence for a rather low influence of the APOE genotype on the hepatic stress response processes investigated in this study.
Collapse
Affiliation(s)
- Janina Dose
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Str. 6, 24118 Kiel, Germany.
| | - Almut Nebel
- Institute of Clinical Molecular Biology, University of Kiel, University Hospital Schleswig-Holstein, Schittenhelmstr. 12, 24105 Kiel, Germany.
| | - Stefanie Piegholdt
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Str. 6, 24118 Kiel, Germany.
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Str. 6, 24118 Kiel, Germany.
| | - Patricia Huebbe
- Institute of Human Nutrition and Food Science, University of Kiel, Hermann-Rodewald-Str. 6, 24118 Kiel, Germany.
| |
Collapse
|
40
|
Rani V, Deshmukh R, Jaswal P, Kumar P, Bariwal J. Alzheimer's disease: Is this a brain specific diabetic condition? Physiol Behav 2016; 164:259-67. [PMID: 27235734 DOI: 10.1016/j.physbeh.2016.05.041] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 05/16/2016] [Accepted: 05/22/2016] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD) and type 2 diabetes (T2DM) are the two major health issues affecting millions of elderly people worldwide, with major impacts in the patient's daily life. Numerous studies have demonstrated that patients with diabetes have an increased risk of developing AD compared with healthy individuals. The principal biological mechanisms that associate with the progression of diabetes and AD are not completely understood. Impaired insulin signaling, uncontrolled glucose metabolism, oxidative stress, abnormal protein processing, and the stimulation of inflammatory pathways are common features to both AD and T2DM. In recent years brain specific abnormalities in insulin and insulin like growth factor (IGF) signaling considered as a major trigger involved in the etiopathogenesis of AD, showing T2DM like milieu. This review summarizes the pathways that might link diabetes and AD and the effect of diminished insulin.
Collapse
Affiliation(s)
- Vanita Rani
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Rahul Deshmukh
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India.
| | - Priya Jaswal
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Puneet Kumar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India
| | - Jitender Bariwal
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga 142001, Punjab, India
| |
Collapse
|
41
|
Ramallo Guevara C, Philipp O, Hamann A, Werner A, Osiewacz HD, Rexroth S, Rögner M, Poetsch A. Global Protein Oxidation Profiling Suggests Efficient Mitochondrial Proteome Homeostasis During Aging. Mol Cell Proteomics 2016; 15:1692-709. [PMID: 26884511 DOI: 10.1074/mcp.m115.055616] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Indexed: 11/06/2022] Open
Abstract
The free radical theory of aging is based on the idea that reactive oxygen species (ROS) may lead to the accumulation of age-related protein oxidation. Because themajority of cellular ROS is generated at the respiratory electron transport chain, this study focuses on the mitochondrial proteome of the aging model Podospora anserina as target for ROS-induced damage. To ensure the detection of even low abundant modified peptides, separation by long gradient nLC-ESI-MS/MS and an appropriate statistical workflow for iTRAQ quantification was developed. Artificial protein oxidation was minimized by establishing gel-free sample preparation in the presence of reducing and iron-chelating agents. This first large scale, oxidative modification-centric study for P. anserina allowed the comprehensive quantification of 22 different oxidative amino acid modifications, and notably the quantitative comparison of oxidized and nonoxidized protein species. In total 2341 proteins were quantified. For 746 both protein species (unmodified and oxidatively modified) were detected and the modification sites determined. The data revealed that methionine residues are preferably oxidized. Further prominent identified modifications in decreasing order of occurrence were carbonylation as well as formation of N-formylkynurenine and pyrrolidinone. Interestingly, for the majority of proteins a positive correlation of changes in protein amount and oxidative damage were noticed, and a general decrease in protein amounts at late age. However, it was discovered that few proteins changed in oxidative damage in accordance with former reports. Our data suggest that P. anserina is efficiently capable to counteract ROS-induced protein damage during aging as long as protein de novo synthesis is functioning, ultimately leading to an overall constant relationship between damaged and undamaged protein species. These findings contradict a massive increase in protein oxidation during aging and rather suggest a protein damage homeostasis mechanism even at late age.
Collapse
Affiliation(s)
- Carina Ramallo Guevara
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, Bochum-44801, Germany
| | - Oliver Philipp
- §Molecular Developmental Biology, Faculty of Biosciences and Cluster of Excellence 'Macromolecular Complexes', Johann Wolfgang Goethe University, Frankfurt am Main-60438, Germany; ¶Molecular Bioinformatics, Faculty of Computer Science and Mathematics and Cluster of Excellence 'Macromolecular Complexes', Johann Wolfgang Goethe University, Frankfurt am Main-60325, Germany
| | - Andrea Hamann
- §Molecular Developmental Biology, Faculty of Biosciences and Cluster of Excellence 'Macromolecular Complexes', Johann Wolfgang Goethe University, Frankfurt am Main-60438, Germany
| | - Alexandra Werner
- §Molecular Developmental Biology, Faculty of Biosciences and Cluster of Excellence 'Macromolecular Complexes', Johann Wolfgang Goethe University, Frankfurt am Main-60438, Germany
| | - Heinz D Osiewacz
- §Molecular Developmental Biology, Faculty of Biosciences and Cluster of Excellence 'Macromolecular Complexes', Johann Wolfgang Goethe University, Frankfurt am Main-60438, Germany
| | - Sascha Rexroth
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, Bochum-44801, Germany
| | - Matthias Rögner
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, Bochum-44801, Germany
| | - Ansgar Poetsch
- From the ‡Plant Biochemistry, Faculty of Biology & Biotechnology, Ruhr University Bochum, Bochum-44801, Germany;
| |
Collapse
|
42
|
van Zyl PJ, Dimatelis JJ, Russell VA. Behavioural and biochemical changes in maternally separated Sprague-Dawley rats exposed to restraint stress. Metab Brain Dis 2016; 31:121-33. [PMID: 26555398 DOI: 10.1007/s11011-015-9757-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/27/2015] [Indexed: 01/26/2023]
Abstract
Early life adversity has been associated with the development of various neuropsychiatric disorders in adulthood such as depression and anxiety. The aim of this study was to determine if stress during adulthood can exaggerate the depression-/anxiety-like behaviour observed in the widely accepted maternally separated (MS) Sprague-Dawley (SD) rat model of depression. A further aim was to determine whether the behavioural changes were accompanied by changes in hippocampal brain-derived neurotrophic factor (BDNF) and the protein profile of the prefrontal cortex (PFC). Depression-/anxiety-like behaviour was measured in the elevated plus maze, open field and forced swim test (FST) in the MS SD rats exposed to chronic restraint stress in adulthood. As expected, MS increased immobility of SD rats in the FST but restraint stress did not enhance this effect of MS on SD rats. A proteomic analysis of the PFC revealed a decrease in actin-related proteins in MS and non-separated rats subjected to restraint stress as well as a decrease in mitochondrial energy-related proteins in the stressed rat groups. Since MS during early development causes a disruption in the hypothalamic-pituitary-adrenal axis and long-term changes in the response to subsequent stress, it may have prevented restraint stress from exerting its effects on behaviour. Moreover, the decrease in proteins related to mitochondrial energy metabolism in MS rats with or without subsequent restraint stress may be related to stress per se and not depression-like behaviour, because rats subjected to restraint stress displayed similar decreases in energy-related proteins and spent less time immobile in the FST than control rats.
Collapse
Affiliation(s)
- P J van Zyl
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, South Africa.
| | - J J Dimatelis
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, South Africa
| | - V A Russell
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, South Africa
| |
Collapse
|
43
|
Activity of Krebs cycle enzymes in mdx
mice. Muscle Nerve 2015; 53:91-5. [DOI: 10.1002/mus.24704] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 04/30/2015] [Accepted: 05/07/2015] [Indexed: 11/07/2022]
|
44
|
Asuni AA, Guridi M, Sanchez S, Sadowski MJ. Antioxidant peroxiredoxin 6 protein rescues toxicity due to oxidative stress and cellular hypoxia in vitro, and attenuates prion-related pathology in vivo. Neurochem Int 2015; 90:152-65. [PMID: 26265052 DOI: 10.1016/j.neuint.2015.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 08/05/2015] [Accepted: 08/06/2015] [Indexed: 01/04/2023]
Abstract
Protein misfolding, mitochondrial dysfunction and oxidative stress are common pathomechanisms that underlie neurodegenerative diseases. In prion disease, central to these processes is the post-translational transformation of cellular prion protein (PrP(c)) to the aberrant conformationally altered isoform; PrP(Sc). This can trigger oxidative reactions and impair mitochondrial function by increasing levels of peroxynitrite, causing damage through formation of hydroxyl radicals or via nitration of tyrosine residues on proteins. The 6 member Peroxiredoxin (Prdx) family of redox proteins are thought to be critical protectors against oxidative stress via reduction of H2O2, hydroperoxides and peroxynitrite. In our in vitro studies cellular metabolism of SK-N-SH human neuroblastoma cells was significantly decreased in the presence of H2O2 (oxidative stressor) or CoCl2 (cellular hypoxia), but was rescued by treatment with exogenous Prdx6, suggesting that its protective action is in part mediated through a direct action. We also show that CoCl2-induced apoptosis was significantly decreased by treatment with exogenous Prdx6. We proposed a redox regulator role for Prdx6 in regulating and maintaining cellular homeostasis via its ability to control ROS levels that could otherwise accelerate the emergence of prion-related neuropathology. To confirm this, we established prion disease in mice with and without astrocyte-specific antioxidant protein Prdx6, and demonstrated that expression of Prdx6 protein in Prdx6 Tg ME7-animals reduced severity of the behavioural deficit, decreased neuropathology and increased survival time compared to Prdx6 KO ME7-animals. We conclude that antioxidant Prdx6 attenuates prion-related neuropathology, and propose that augmentation of endogenous Prdx6 protein represents an attractive adjunct therapeutic approach for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ayodeji A Asuni
- Department of Neurology, New York University School of Medicine, New York, NY 10016, USA; Centre for Biological Sciences, University of Southampton, Southampton, UK.
| | - Maitea Guridi
- Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Sandrine Sanchez
- Department of Neurology, New York University School of Medicine, New York, NY 10016, USA
| | - Martin J Sadowski
- Department of Neurology, New York University School of Medicine, New York, NY 10016, USA; Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
45
|
Xue C, Luo W, Yang XL. A mechanism for nano-titanium dioxide-induced cytotoxicity in HaCaT cells under UVA irradiation. Biosci Biotechnol Biochem 2015; 79:1384-90. [PMID: 25822594 DOI: 10.1080/09168451.2015.1023248] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Abstract
Nano-TiO2 has been reported to be an efficient photocatalyst, which is able to produce reactive oxygen species (ROS) under UVA irradiation. In this study, we investigated the effects of nano-TiO2 on the cytotoxicity, induction of apoptosis, and the putative pathways of its actions in HaCaT cells. We show that nano-TiO2 is a potent inducer of apoptosis and that it transduces the apoptotic signal via ROS generation, thereby inducing mitochondrial permeability transition (MPT) and activating Caspase-3 from HaCaT cells. ROS production, mitochondrial alteration, and subsequent apoptotic cell death in nano-TiO2-treated cells were blocked by the MPT pore-blocker cyclosporin A. Taken together, our data indicate that nano-TiO2 induces the ROS-mediated MPT and resultant Caspase-3 activation.
Collapse
Affiliation(s)
- Chengbin Xue
- School Hospital, Huazhong University of Science and Technology, Wuhan, China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Luo
- School Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang liang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
46
|
Masotti A, Celluzzi A, Petrini S, Bertini E, Zanni G, Compagnucci C. Aged iPSCs display an uncommon mitochondrial appearance and fail to undergo in vitro neurogenesis. Aging (Albany NY) 2015; 6:1094-108. [PMID: 25567319 PMCID: PMC4298368 DOI: 10.18632/aging.100708] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Reprogramming of human fibroblasts into induced pluripotent stem cells (iPSCs) leads to mitochondrial rejuvenation, making iPSCs a candidate model to study the mitochondrial biology during stemness and differentiation. At present, it is generally accepted that iPSCs can be maintained and propagated indefinitely in culture, but no specific studies have addressed this issue. In our study, we investigated features related to the 'biological age' of iPSCs, culturing and analyzing iPSCs kept for prolonged periods in vitro. We have demonstrated that aged iPSCs present an increased number of mitochondria per cell with an altered mitochondrial membrane potential and fail to properly undergo in vitro neurogenesis. In aged iPSCs we have also found an altered expression of genes relevant to mitochondria biogenesis. Overall, our results shed light on the mitochondrial biology of young and aged iPSCs and explore how an altered mitochondrial status may influence neuronal differentiation. Our work suggests to deepen the understanding of the iPSCs biology before considering their use in clinical applications.
Collapse
|
47
|
Abstract
SIGNIFICANCE The molecular mechanism of aging is still vigorously debated, although a general consensus exists that mitochondria are significantly involved in this process. However, the previously postulated role of mitochondrial-derived reactive oxygen species (ROS) as the damaging agents inducing functional loss in aging has fallen out of favor in the recent past. In this review, we critically examine the role of ROS in aging in the light of recent advances on the relationship between mitochondrial structure and function. RECENT ADVANCES The functional mitochondrial respiratory chain is now recognized as a reflection of the dynamic association of respiratory complexes in the form of supercomplexes (SCs). Besides providing kinetic advantage (channeling), SCs control ROS generation by the respiratory chain, thus providing a means to regulate ROS levels in the cell. Depending on their concentration, these ROS are either physiological signals essential for the life of the cell or toxic species that damage cell structure and functions. CRITICAL ISSUES We propose that under physiological conditions the dynamic nature of SCs reversibly controls the generation of ROS as signals involved in mitochondrial-nuclear communication. During aging, there is a progressive loss of control of ROS generation so that their production is irreversibly enhanced, inducing a vicious circle in which signaling is altered and structural damage takes place. FUTURE DIRECTIONS A better understanding on the forces affecting SC association would allow the manipulation of ROS generation, directing these species to their physiological signaling role.
Collapse
Affiliation(s)
- Maria Luisa Genova
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum-Università di Bologna , Bologna, Italy
| | - Giorgio Lenaz
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum-Università di Bologna , Bologna, Italy
| |
Collapse
|
48
|
Sha B, Gao W, Cui X, Wang L, Xu F. The potential health challenges of TiO2nanomaterials. J Appl Toxicol 2015; 35:1086-101. [DOI: 10.1002/jat.3193] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 05/10/2015] [Accepted: 05/10/2015] [Indexed: 01/09/2023]
Affiliation(s)
- Baoyong Sha
- School of Basic Medical Science; Xi'an Medical University; Xi'an 710021 China
- Bioinspired Engineering & Biomechanics Center (BEBC); Xi'an Jiaotong University; Xi'an 710049 China
| | - Wei Gao
- Department of Anesthesiology; the First Affiliated Hospital of Xi'an Jiaotong University Health Science Center; Xi'an 710061 China
| | - Xingye Cui
- Bioinspired Engineering & Biomechanics Center (BEBC); Xi'an Jiaotong University; Xi'an 710049 China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
| | - Lin Wang
- Bioinspired Engineering & Biomechanics Center (BEBC); Xi'an Jiaotong University; Xi'an 710049 China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
| | - Feng Xu
- Bioinspired Engineering & Biomechanics Center (BEBC); Xi'an Jiaotong University; Xi'an 710049 China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology; Xi'an Jiaotong University; Xi'an 710049 China
| |
Collapse
|
49
|
Baburina YL, Gordeeva AE, Moshkov DA, Krestinina OV, Azarashvili AA, Odinokova IV, Azarashvili TS. Interaction of myelin basic protein and 2',3'-cyclic nucleotide phosphodiesterase with mitochondria. BIOCHEMISTRY (MOSCOW) 2015; 79:555-65. [PMID: 25100014 DOI: 10.1134/s0006297914060091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The content and distribution of myelin basic protein (MBP) isoforms (17 and 21.5 kDa) as well as 2',3'-cyclic nucleotide-3'-phosphodiesterase (CNPase) were determined in mitochondrial fractions (myelin fraction, synaptic and nonsynaptic mitochondria) obtained after separation of brain mitochondria by Percoll density gradient. All the fractions could accumulate calcium, maintain membrane potential, and initiate the opening of the permeability transition pore (mPTP) in response to calcium overloading. Native mitochondria and structural contacts between membranes of myelin and mitochondria were found in the myelin fraction associated with brain mitochondria. Using Western blot, it was shown that addition of myelin fraction associated with brain mitochondria to the suspension of liver mitochondria can lead to binding of CNPase and MBP, present in the fraction with liver mitochondria under the conditions of both closed and opened mPTP. However, induction of mPTP opening in liver mitochondria was prevented in the presence of myelin fraction associated with brain mitochondria (Ca2+ release rate was decreased 1.5-fold, calcium retention time was doubled, and swelling amplitude was 2.8-fold reduced). These results indicate possible protective properties of MBP and CNPase.
Collapse
Affiliation(s)
- Yu L Baburina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | | | | | | | | | |
Collapse
|
50
|
De Riccardis L, Rizzello A, Ferramosca A, Urso E, De Robertis F, Danieli A, Giudetti AM, Trianni G, Zara V, Maffia M. Bioenergetics profile of CD4(+) T cells in relapsing remitting multiple sclerosis subjects. J Biotechnol 2015; 202:31-9. [PMID: 25701681 DOI: 10.1016/j.jbiotec.2015.02.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 12/17/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory autoimmune demyelinating disease of the central nervous system. There are four clinical forms of MS, the most common of which is characterized by a relapsing remitting course (RRMS). The etiology of MS is unknown, but many studies suggested that genetic, environmental and infectious agents may contribute to the development of this disease. In experimental autoimmune encephalomyelitis (EAE), the animal model for MS, it has been shown that CD4(+) T cells play a key role in MS pathogenesis. In fact, these cells are able to cross the blood-brain barrier and cause axonal damage with neuronal death. T cell activation critically depends on mitochondrial ATP synthesis and reactive oxygen species (ROS) production. Interestingly, lots of studies linked the oxidative damage arising from mitochondrial changes to neurodegenerative disorders, such as MS. Based on these evidences, this work focused on the metabolic reprogramming of CD4(+) T cells in MS subjects, being this cell population directly implicated in pathogenesis of disease, paying attention to mitochondrial function and response to oxidative stress. Such aspects, once clarified, may open new opportunities for a therapeutic metabolic modulation of MS disorder.
Collapse
Affiliation(s)
- Lidia De Riccardis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy
| | - Antonia Rizzello
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy
| | - Alessandra Ferramosca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy
| | - Emanuela Urso
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy
| | | | - Antonio Danieli
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy
| | - Anna Maria Giudetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy
| | - Giorgio Trianni
- Department of Neurology, "Vito Fazzi" Hospital, ASL-Lecce, Italy
| | - Vincenzo Zara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Monteroni, Lecce, Italy.
| |
Collapse
|