1
|
Park JY, Cho YL, Lee TS, Lee D, Kang JH, Lim S, Lee Y, Lim JH, Kang WJ. In Vivo Evaluation of 68Ga-Labeled NOTA-EGFRvIII Aptamer in EGFRvIII-Positive Glioblastoma Xenografted Model. Pharmaceutics 2024; 16:814. [PMID: 38931935 PMCID: PMC11207964 DOI: 10.3390/pharmaceutics16060814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
EGFRvIII is expressed only in tumor cells and strongly in glioblastoma and is considered a promising target in cancer diagnosis and therapy. Aptamers are synthetic single-stranded oligonucleotides that bind to biochemical target molecules with high binding affinity and specificity. This study examined the potential of the 68Ga-NOTA-EGFRvIII aptamer as a nuclear imaging probe for visualizing EGFRvIII-expressing glioblastoma by positron emission tomography (PET). EGFRvIII aptamer was selected using the SELEX technology, and flow cytometry and fluorescence microscopy verified the high binding affinity to EGFRvIII positive U87MG vIII 4.12 glioma cells but not to EGFRvIII negative U87MG cells. The EGFRvIII aptamer was conjugated with a chelator (1,4,7-triazanonane-1,4,7-triyl)triacetic acid (NOTA) for 68Ga-labeling. The 68Ga-NOTA-EGFRvIII aptamer was prepared using the preconcentration-based labeling method with a high radiolabeling yield at room temperature. Ex vivo biodistribution analyses confirmed the significantly higher tumor uptake of the 68Ga-NOTA-EGFRvIII aptamer in EGFRvIII-expressing xenograft tumors than that in EGFRvIII negative tumors, confirming the specific tumor uptake of the 68Ga-NOTA-EGFRvIII aptamer in vivo. PET imaging studies revealed a high retention rate of the 68Ga-NOTA-EGFRvIII aptamer in U87MG vIII 4.12 tumors but only low uptake levels in U87-MG tumors, suggesting that the 68Ga-NOTA-EGFRvIII aptamer may be used as a PET imaging agent for EGFRvIII-expressing glioblastoma.
Collapse
Affiliation(s)
- Jun Young Park
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; (J.Y.P.); (Y.L.C.)
| | - Ye Lim Cho
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; (J.Y.P.); (Y.L.C.)
| | - Tae Sup Lee
- Division of RI Application, Korea Institute of Radiological and Medical Science (KIRAMS), Seoul 01812, Republic of Korea; (T.S.L.); (J.H.L.)
| | - Daekyun Lee
- Aptamer Sciences Inc., Pangyo Seven Venture Valley 1 (3-dong), 15, Pangyo-ro 228 beon-gil, Bundang-gu, Seongnam-si 13487, Republic of Korea; (D.L.); (J.-H.K.); (S.L.); (Y.L.)
| | - Ju-Hyung Kang
- Aptamer Sciences Inc., Pangyo Seven Venture Valley 1 (3-dong), 15, Pangyo-ro 228 beon-gil, Bundang-gu, Seongnam-si 13487, Republic of Korea; (D.L.); (J.-H.K.); (S.L.); (Y.L.)
| | - Soryong Lim
- Aptamer Sciences Inc., Pangyo Seven Venture Valley 1 (3-dong), 15, Pangyo-ro 228 beon-gil, Bundang-gu, Seongnam-si 13487, Republic of Korea; (D.L.); (J.-H.K.); (S.L.); (Y.L.)
| | - Yujin Lee
- Aptamer Sciences Inc., Pangyo Seven Venture Valley 1 (3-dong), 15, Pangyo-ro 228 beon-gil, Bundang-gu, Seongnam-si 13487, Republic of Korea; (D.L.); (J.-H.K.); (S.L.); (Y.L.)
| | - Jae Hyun Lim
- Division of RI Application, Korea Institute of Radiological and Medical Science (KIRAMS), Seoul 01812, Republic of Korea; (T.S.L.); (J.H.L.)
| | - Won Jun Kang
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea; (J.Y.P.); (Y.L.C.)
| |
Collapse
|
2
|
Okamoto T, Mizuta R, Takahashi Y, Otani Y, Sasaki E, Horio Y, Kuroda H, Matsushita H, Date I, Hashimoto N, Masago K. Genomic landscape of glioblastoma without IDH somatic mutation in 42 cases: a comprehensive analysis using RNA sequencing data. J Neurooncol 2024; 167:489-499. [PMID: 38653957 DOI: 10.1007/s11060-024-04628-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/29/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE Glioblastoma is a malignant brain tumor with a poor prognosis. Genetic mutations associated with this disease are complex are not fully understood and require further elucidation for the development of new treatments. The purpose of this study was to comprehensively analyze genetic mutations in glioblastomas and evaluate the usefulness of RNA sequencing. PATIENTS AND METHODS We analyzed 42 glioblastoma specimens that were resected in routine clinical practice and found wild-type variants of the IDH1 and IDH2 genes. RNA was extracted from frozen specimens and sequenced, and genetic analyses were performed using the CLC Genomics Workbench. RESULTS The most common genetic alterations in the 42 glioblastoma specimens were TP53 mutation (28.6%), EGFR splicing variant (16.7%), EGFR mutation (9.5%), and FGFR3 fusion (9.5%). Novel genetic mutations were detected in 8 patients (19%). In 12 cases (28.6%), driver gene mutations were not detected, suggesting an association with PPP1R14A overexpression. Our findings suggest the transcription factors SOX10 and NKX6-2 are potential markers in glioblastoma. CONCLUSION RNA sequencing is a promising approach for genotyping glioblastomas because it provides comprehensive information on gene expression and is relatively cost-effective.
Collapse
Affiliation(s)
- Takanari Okamoto
- Department of Neurosurgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Ryo Mizuta
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Yoshinobu Takahashi
- Department of Neurosurgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshihiro Otani
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Eiichi Sasaki
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Aichi, Japan
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Yoshitsugu Horio
- Department of Thoracic oncology, Aichi Cancer Center Hospital, Aichi, Japan
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Hiroaki Kuroda
- Department of Thoracic Surgery, Teikyo University Mizonokuchi Hospital, Kanagawa, Japan
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Hirokazu Matsushita
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Aichi, Japan
| | - Isao Date
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Naoya Hashimoto
- Department of Neurosurgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Katsuhiro Masago
- Department of Pathology and Molecular Diagnostics, Aichi Cancer Center Hospital, Aichi, Japan.
- Division of Translational Oncoimmunology, Aichi Cancer Center Research Institute, Aichi, Japan.
| |
Collapse
|
3
|
Chakraborty J, Chakraborty S, Chakraborty S, Narayan MN. Entanglement of MAPK pathways with gene expression and its omnipresence in the etiology for cancer and neurodegenerative disorders. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194988. [PMID: 37739217 DOI: 10.1016/j.bbagrm.2023.194988] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Mitogen Activated Protein Kinase (MAPK) is one of the most well characterized cellular signaling pathways that controls fundamental cellular processes including proliferation, differentiation, and apoptosis. These cellular functions are consequences of transcription of regulatory genes that are influenced and regulated by the MAP-Kinase signaling cascade. MAP kinase components such as Receptor Tyrosine Kinases (RTKs) sense external cues or ligands and transmit these signals via multiple protein complexes such as RAS-RAF, MEK, and ERKs and eventually modulate the transcription factors inside the nucleus to induce transcription and other regulatory functions. Aberrant activation, dysregulation of this signaling pathway, and genetic alterations in any of these components results in the developmental disorders, cancer, and neurodegenerative disorders. Over the years, the MAPK pathway has been a prime pharmacological target, to treat complex human disorders that are genetically linked such as cancer, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The current review re-visits the mechanism of MAPK pathways in gene expression regulation. Further, a current update on the progress of the mechanistic understanding of MAPK components is discussed from a disease perspective.
Collapse
Affiliation(s)
- Joydeep Chakraborty
- Institute for Advancing Health through Agriculture, Texas A&M Agrilife, College Station, TX, USA
| | - Sayan Chakraborty
- Department of Anesthesiology, Weill Cornell School of Medicine, New York, USA
| | - Sohag Chakraborty
- Human Oncology & Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, USA
| | - Mahesh N Narayan
- Department of Chemistry and Biochemistry, University of Texas, El Paso, TX, USA.
| |
Collapse
|
4
|
Wang F, Yang W, Liu H, Zhou B. Identification of the structural features of quinazoline derivatives as EGFR inhibitors using 3D-QSAR modeling, molecular docking, molecular dynamics simulations and free energy calculations. J Biomol Struct Dyn 2022; 40:11125-11140. [PMID: 34338597 DOI: 10.1080/07391102.2021.1956591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Epidermal growth factor receptor (EGFR) is a promising target for the treatment of different types of malignant tumors. Therefore, a combined molecular modeling study was performed on a series of quinazoline derivatives as EGFR inhibitors. The optimum ligand-based CoMFA and CoMSIA models showed reliable and satisfactory predictability (with R2cv=0.681, R2ncv=0.844, R2pred=0.8702 and R2cv=0.643, R2ncv=0.874, R2pred=0.6423). The derived contour maps provide structural features to improve inhibitory activity. Furthermore, the contour maps, molecular docking, and molecular dynamics (MD) simulations have good consistency, illustrating that the derived models are reliable. In addition, MD simulations and binding free energy calculations were also carried out to understand the conformational fluctuations at the binding pocket of the receptor. The results indicate that hydrogen bond, hydrophobic and electrostatic interactions play significant roles on activity and selectivity. Furthermore, amino acids Val31, Lys50, Thr95, Leu149 and Asp160 are considered as essential residues to participate in the ligand-receptor interactions. Overall, this work would offer reliable theoretical basis for future structural modification, design and synthesis of novel EGFR inhibitors with good potency.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fangfang Wang
- School of Life Science, Linyi University, Linyi, China
| | - Wei Yang
- Warshel Institute for Computational Biology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China.,School of Biotechnology, University of Science and Technology of China, Hefei, China.,Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Hongping Liu
- School of Life Science, Linyi University, Linyi, China
| | - Bo Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Basic Medical, Guizhou Medical University, Guizhou, China
| |
Collapse
|
5
|
Mansour S, Adhya I, Lebleu C, Dumpati R, Rehan A, Chall S, Dai J, Errasti G, Delacroix T, Chakrabarti R. Identification of a novel peptide ligand for the cancer-specific receptor mutation EGFRvIII using high-throughput sequencing of phage-selected peptides. Sci Rep 2022; 12:20725. [PMID: 36456600 PMCID: PMC9715707 DOI: 10.1038/s41598-022-25257-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
We report here the selection and characterization of a novel peptide ligand using phage display targeted against the cancer-specific epidermal growth factor tyrosine kinase receptor mutation variant III (EGFRvIII). This receptor is expressed in several kinds of cancer: ovarian cancer, breast cancer and glioblastoma, but not in normal tissues. A 12-mer random peptide library was screened against EGFRvIII. Phage-selected peptides were sequenced in high-throughput by next generation sequencing (NGS), and their diversity was studied to identify highly abundant clones expected to bind with the highest affinities to EGFRvIII. The enriched peptides were characterized and their binding capacity towards stable cell lines expressing EGFRvIII, EGFR wild type (EGFR WT), or a low endogenous level of EGFR WT was confirmed by flow cytometry analysis. The best peptide candidate, VLGREEWSTSYW, was synthesized, and its binding specificity towards EGFRvIII was validated in vitro. Additionally, computational docking analysis suggested that the identified peptide binds selectively to EGFRvIII. The novel VLGREEWSTSYW peptide is thus a promising EGFRvIII-targeting agent for future applications in cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Sourour Mansour
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Indranil Adhya
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Coralie Lebleu
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Rama Dumpati
- Division of Computational Research, Chakrabarti Advanced Technology, Hyderabad, Telangana India
| | - Ahmed Rehan
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Santu Chall
- Division of Computational Research, Chakrabarti Advanced Technology, Hyderabad, Telangana India
| | - Jingqi Dai
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Gauthier Errasti
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Thomas Delacroix
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France
| | - Raj Chakrabarti
- grid.509464.aCenter for Protein Engineering and Drug Discovery, PMC Isochem SAS, 32, rue Lavoisier 91710, Vert-Le-Petit, France ,Division of Computational Research, Chakrabarti Advanced Technology, Hyderabad, Telangana India ,Chakrabarti Advanced Technology, LLC, PMC Group Building, 1288 Route 73, Ste 110, Mount Laurel, NJ 08054 USA
| |
Collapse
|
6
|
Sternjak A, Lee F, Thomas O, Balazs M, Wahl J, Lorenczewski G, Ullrich I, Muenz M, Rattel B, Bailis JM, Friedrich M. Preclinical Assessment of AMG 596, a Bispecific T-cell Engager (BiTE) Immunotherapy Targeting the Tumor-specific Antigen EGFRvIII. Mol Cancer Ther 2021; 20:925-933. [PMID: 33632870 DOI: 10.1158/1535-7163.mct-20-0508] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/25/2020] [Accepted: 02/11/2021] [Indexed: 11/16/2022]
Abstract
AMG 596 is a bispecific T-cell engager (BiTE) immuno-oncology therapy in clinical development for treatment of glioblastoma multiforme (GBM), the most common primary brain tumor in adults with limited therapeutic options. AMG 596 is composed of two single-chain variable fragments that simultaneously bind to the tumor-specific antigen, EGFR variant III (EGFRvIII), on GBM cells and to CD3 on T cells, thereby activating T cells to proliferate and secrete cytotoxic substances that induce lysis of the bound tumor cell. T-cell-redirected lysis by AMG 596 is very potent; in vitro studies revealed EC50 values in the low picomolar range, and in vivo studies showed that AMG 596 treatment significantly increased the overall survival of mice bearing EGFRvIII-expressing orthotopic tumors. In addition, AMG 596 activity is highly specific; no AMG 596-induced T-cell activity can be observed in assays with EGFRvIII-negative GBM cells, and no signs of toxicity and activity were observed in cynomolgus monkeys, which lack expression of EGFRvIII on normal tissues. With EGFRvIII-expressing GBM cells, we showed shedding of EGFRvIII-containing membrane vesicles, followed by vesicle uptake and EGFRvIII cell surface presentation by EGFRvIII noncoding GBM cells. Cell membrane presentation of EGFRvIII following microvesicle transfer allows engagement by AMG 596, resulting in T-cell activation and T-cell-dependent lysis of GBM cells. Together, these data show a compelling preclinical efficacy and safety profile of AMG 596, supporting its development as a novel immunotherapy for treatment of GBM.
Collapse
Affiliation(s)
- Alexander Sternjak
- Translational Safety & Bioanalytical Sciences, Amgen Research (Munich) GmbH, Munich, Germany.
| | - Fei Lee
- Department of Oncology Research, Amgen Research, Amgen Inc., South San Francisco, California
| | - Oliver Thomas
- Translational Safety & Bioanalytical Sciences, Amgen Research (Munich) GmbH, Munich, Germany
| | - Mercedesz Balazs
- Translational Safety & Bioanalytical Sciences, Amgen Research, Amgen Inc., South San Francisco, California
| | - Joachim Wahl
- Translational Safety & Bioanalytical Sciences, Amgen Research (Munich) GmbH, Munich, Germany
| | - Grit Lorenczewski
- Translational Safety & Bioanalytical Sciences, Amgen Research (Munich) GmbH, Munich, Germany
| | - Ines Ullrich
- Therapeutic Discovery, Amgen Research (Munich) GmbH, Munich, Germany
| | - Markus Muenz
- Therapeutic Discovery, Amgen Research (Munich) GmbH, Munich, Germany
| | - Benno Rattel
- Translational Safety & Bioanalytical Sciences, Amgen Research (Munich) GmbH, Munich, Germany
| | - Julie M Bailis
- Department of Oncology Research, Amgen Research, Amgen Inc., South San Francisco, California
| | - Matthias Friedrich
- Translational Safety & Bioanalytical Sciences, Amgen Research (Munich) GmbH, Munich, Germany
| |
Collapse
|
7
|
Liang Y, Zhang T, Zhang J. Natural tyrosine kinase inhibitors acting on the epidermal growth factor receptor: Their relevance for cancer therapy. Pharmacol Res 2020; 161:105164. [PMID: 32846211 DOI: 10.1016/j.phrs.2020.105164] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Epidermal growth factor receptor (EGFR), also known as ErbB-1/HER-1, plays a key role in the regulation of the cell proliferation, migration, differentiation, and survival. Since the constitutive activation or overexpression of EGFR is nearly found in various cancers, the applications focused on EGFR are the most widely used in the clinical level, including the therapeutic drugs of targeting EGFR, monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs).Over the past decades, the compounds from natural sources have been a productive source of novel drugs, especially in both discovery and development of anti-tumor drugs by targeting the EGFR pathways as the TKIs. This work presents a review of the compounds from natural sources as potential EGFR-TKIs involved in the regulation of cancer. Moreover, high-throughput drug screening of EGFR-TKIs from the natural compounds has also been summarized.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
8
|
The function and clinical application of extracellular vesicles in innate immune regulation. Cell Mol Immunol 2020; 17:323-334. [PMID: 32203193 PMCID: PMC7109106 DOI: 10.1038/s41423-020-0391-1] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 02/17/2020] [Indexed: 12/21/2022] Open
Abstract
The innate immune system plays a crucial role in the host defense against viral and microbial infection. Exosomes constitute a subset of extracellular vesicles (EVs) that can be released by almost all cell types. Owing to their capacity to shield the payload from degradation and to evade recognition and subsequent removal by the immune system, exosomes efficiently transport functional components to recipient cells. Accumulating evidence has recently shown that exosomes derived from tumor cells, host cells and even bacteria and parasites mediate the communication between the invader and innate immune cells and thus play an irreplaceable function in the dissemination of pathogens and donor cell-derived molecules, modulating the innate immune responses of the host. In this review, we describe the current understanding of EVs (mainly focusing on exosomes) and summarize and discuss their crucial roles in determining innate immune responses. Additionally, we discuss the potential of using exosomes as biomarkers and cancer vaccines in diagnostic and therapeutic applications.
Collapse
|
9
|
Panarese I, Aquino G, Ronchi A, Longo F, Montella M, Cozzolino I, Roccuzzo G, Colella G, Caraglia M, Franco R. Oral and Oropharyngeal squamous cell carcinoma: prognostic and predictive parameters in the etiopathogenetic route. Expert Rev Anticancer Ther 2019; 19:105-119. [PMID: 30582397 DOI: 10.1080/14737140.2019.1561288] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Oral and oropharyngeal squamous cell carcinoma (OSCC and OPSCC) represents an increasing problem in the global public health. Indeed, squamous cell carcinoma is the most frequent malignancy in oral cavity and 1 of the 10 most common cancers worldwide. According to the most recent GLOBOCAN estimate in Europe between 2012 and 2015, there was an overall increasing incidence and mortality for oral cancer, mostly HPV-related in the oropharyngeal region with evidence of significant differences from the prognostic and therapeutic point of view. Areas covered: Until now, the management of the patients is based on classical histologic parameters such as TNM and tumor grading, but new molecular and cell markers have been investigated to improve patients' treatment and survival. Therefore, there is a need for new biomarkers characterizing the cancer diversity, with the consequent possibility of patient stratification for specific treatment. Expert commentary: This review aims to discuss some of the most relevant and novel genetic, epigenetic, and histological prognostic biomarkers in oral cancer, highlighting the main differences between HPV-unrelated oral squamous cell carcinoma (OSCC) and HPV-related oropharyngeal squamous cell carcinoma (OPSCC) that may aid in stratifying prognostic subgroups and rationalizing treatment decisions.
Collapse
Affiliation(s)
- Iacopo Panarese
- a Pathology Unit, Mental and Physical Health and Preventive Medicine Department , Università degli Studi della Campania 'Luigi Vanvitelli' , Naples , Italy
| | - Gabriella Aquino
- b Pathology Unit , Istituto dei Tumori 'Fondazione G. Pascale', IRCCS , Naples , Italy
| | - Andrea Ronchi
- a Pathology Unit, Mental and Physical Health and Preventive Medicine Department , Università degli Studi della Campania 'Luigi Vanvitelli' , Naples , Italy
| | - Francesco Longo
- c Head and Neck Surgery Unit , Istituto Nazionale per lo Studio e la Cura dei Tumori, "Fondazione G. Pascale", IRCCS , Naples , Italy
| | - Marco Montella
- a Pathology Unit, Mental and Physical Health and Preventive Medicine Department , Università degli Studi della Campania 'Luigi Vanvitelli' , Naples , Italy
| | - Immacolata Cozzolino
- a Pathology Unit, Mental and Physical Health and Preventive Medicine Department , Università degli Studi della Campania 'Luigi Vanvitelli' , Naples , Italy
| | - Giuseppe Roccuzzo
- a Pathology Unit, Mental and Physical Health and Preventive Medicine Department , Università degli Studi della Campania 'Luigi Vanvitelli' , Naples , Italy
| | - Giuseppe Colella
- d Maxillo-Facial Unit, Multidisciplinary Department of Medical, Surgical and Dental Specialties , Università degli Studi della Campania 'Luigi Vanvitelli' , Naples , Italy
| | - Michele Caraglia
- e Department of Precision Medicine , University of Campania "L. Vanvitelli" , Naples , Italy
| | - Renato Franco
- a Pathology Unit, Mental and Physical Health and Preventive Medicine Department , Università degli Studi della Campania 'Luigi Vanvitelli' , Naples , Italy
| |
Collapse
|
10
|
Zhang M, Sun H, Deng Y, Su M, Wei S, Wang P, Yu L, Liu J, Guo J, Wang X, Han X, He Q, Shen L. COPI-Mediated Nuclear Translocation of EGFRvIII Promotes STAT3 Phosphorylation and PKM2 Nuclear Localization. Int J Biol Sci 2019; 15:114-126. [PMID: 30662352 PMCID: PMC6329918 DOI: 10.7150/ijbs.28679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 09/26/2018] [Indexed: 12/17/2022] Open
Abstract
As a non-ligand-dependent activation protein, EGFRvIII is the most common mutant of EGFR, and its existence or especially its nuclear translocation in tumors can exacerbate the malignancy. Compared with the nuclear translocation of EGFR, which has been studied extensively, the specific mechanism by which EGFRvIII undergoes nuclear translocation has not yet been reported. Here, we found that EGFRvIII eventually reached the nucleus with the involvement of the Golgi and endoplasmic reticulum (ER) in glioma cells. In this process, syntaxin-6 was responsible for the identification and transport of EGFRvIII on Golgi. We also demonstrated that COPI mediated the reverse transport of EGFRvIII from the Golgi to ER, which process was also important for EGFRvIII's nuclear accumulation. EGFRvIII's nuclear translocation can significantly promote STAT3 phosphorylation and PKM2 nuclear localization. Finally, we showed that EGFRvIII's nuclear translocation obviously induced the growth of gliomas in an intracranial xenotransplantation experiment. These data suggested that searching methods that inhibit EGFRvIII entry into the nucleus will be effective glioma treatments.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Department of Cell Biology, Stem Cell Research Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Haojie Sun
- Neuroscience Research Institute, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Yue Deng
- Beijing Cellonis Biotechnologies Co. Ltd, Zhongguancun Bio-Medicine Park, Beijing, People's Republic of China
| | - Ming Su
- Department of Cell Biology, Stem Cell Research Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Shiruo Wei
- Department of Cell Biology, Stem Cell Research Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| | - Peipei Wang
- Beijing Cellonis Biotechnologies Co. Ltd, Zhongguancun Bio-Medicine Park, Beijing, People's Republic of China
| | - Lanlan Yu
- Beijing DongFang YaMei Gene Science and Technology Research Institute, Beijing, People's Republic of China
| | - Jinwen Liu
- Beijing DongFang YaMei Gene Science and Technology Research Institute, Beijing, People's Republic of China
| | - Jinhai Guo
- Beijing DongFang YaMei Gene Science and Technology Research Institute, Beijing, People's Republic of China
| | - Xuan Wang
- Research Center of Artificial Organ and Tissue Engineering, Second Department of Hepatobiliary Surgery, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Xu Han
- Research Center of Artificial Organ and Tissue Engineering, Second Department of Hepatobiliary Surgery, ZhuJiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, People's Republic of China
| | - Qihua He
- Medical and Health Analytical Center, Peking University Health Science Center, People's Republic of China
| | - Li Shen
- Department of Cell Biology, Stem Cell Research Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, People's Republic of China
| |
Collapse
|
11
|
Menotti L, Avitabile E, Gatta V, Malatesta P, Petrovic B, Campadelli-Fiume G. HSV as A Platform for the Generation of Retargeted, Armed, and Reporter-Expressing Oncolytic Viruses. Viruses 2018; 10:E352. [PMID: 29966356 PMCID: PMC6070899 DOI: 10.3390/v10070352] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/28/2022] Open
Abstract
Previously, we engineered oncolytic herpes simplex viruses (o-HSVs) retargeted to the HER2 (epidermal growth factor receptor 2) tumor cell specific receptor by the insertion of a single chain antibody (scFv) to HER2 in gD, gH, or gB. Here, the insertion of scFvs to three additional cancer targets—EGFR (epidermal growth factor receptor), EGFRvIII, and PSMA (prostate specific membrane antigen)—in gD Δ6–38 enabled the generation of specifically retargeted o-HSVs. Viable recombinants resulted from the insertion of an scFv in place of aa 6–38, but not in place of aa 61–218. Hence, only the gD N-terminus accepted all tested scFv inserts. Additionally, the insertion of mIL12 in the US1-US2 intergenic region of the HER2- or EGFRvIII-retargeted o-HSVs, and the further insertion of Gaussia Luciferase, gave rise to viable recombinants capable of secreting the cytokine and the reporter. Lastly, we engineered two known mutations in gB; they increased the ability of an HER2-retargeted recombinant to spread among murine cells. Altogether, current data show that the o-HSV carrying the aa 6–38 deletion in gD serves as a platform for the specific retargeting of o-HSV tropism to a number of human cancer targets, and the retargeted o-HSVs serve as simultaneous vectors for two molecules.
Collapse
Affiliation(s)
- Laura Menotti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy.
| | - Elisa Avitabile
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy.
| | - Valentina Gatta
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy.
| | - Paolo Malatesta
- Department of Experimental Medicine, University of Genoa, Genoa 16132, Italy.
- Ospedale Policlinico San Martino-IRCCS per l'Oncologia, Genoa 16132, Italy.
| | - Biljana Petrovic
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy.
| | - Gabriella Campadelli-Fiume
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy.
| |
Collapse
|
12
|
Zhenjiang L, Rao M, Luo X, Valentini D, von Landenberg A, Meng Q, Sinclair G, Hoffmann N, Karbach J, Altmannsberger HM, Jäger E, Peredo IH, Dodoo E, Maeurer M. Cytokine Networks and Survivin Peptide-Specific Cellular Immune Responses Predict Improved Survival in Patients With Glioblastoma Multiforme. EBioMedicine 2018; 33:49-56. [PMID: 30049387 PMCID: PMC6085502 DOI: 10.1016/j.ebiom.2018.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 06/03/2018] [Accepted: 06/12/2018] [Indexed: 01/08/2023] Open
Abstract
PURPOSE We investigated serum cytokine and T-cell responses directed against tumour-associated antigens (TAAs) in association with survival of patients with glioblastoma multiforme (GBM). PATIENTS AND METHODS Peripheral blood from 205 treatment-naïve patients with glioma (GBM = 145; non-GBM = 60) was obtained on the day of surgery to measure (i) circulating T-cells reacting to viral antigens and TAAs, in the presence or absence of cytokine conditioning with IL-2/IL-15/IL-21 or IL-2/IL-7, and (ii) serum cytokine levels (IL-4, IL-5, IL-6, TNF-α, IFN-γ and IL-17A). Patients were followed-up for at least 1000 days post-surgery. Survivin protein and gene expression in resected GBM tumour tissue were confirmed by immunohistochemistry and real-time polymerase chain reaction, respectively. Antigen-specific T-cell responses were gauged by ICS (intracellular cytokine production). Associations between patient survival and immunological reactivity patterns were analysed using univariate and multivariate statistics. RESULTS Approximately 2% of patients with GBM and 18% of patients with non-GBM glioma, were alive beyond 1000 days of surgery. Univariate analysis indicated that the combination of three cytokines (IL-4/IL-5/IL-6, p = .0022; IFN-γ/TNF-α/IL-17A, p = .0083) but not a 'partial' combination of these cytokines, the IFN-γ immune response to EBV-EBNA-1 (p < .0001) as well as T-cell responses to the survivin97-111 peptide (p = .0152) correlated with longer survival among patients with GBM. Multivariate analysis identified survivin97-111-directed IFN-γ production with IL-2/IL-15/IL-21 conditioning (p = .024), and the combined presence of serum IFN-γ/TNF-α/IL-17a (p = .003) as independent predictors of survival. CONCLUSION Serum cytokine patterns and lymphocyte reactivity to survivin97-111, particularly with IL-2, IL-15 and IL-21 conditioning may be instrumental in predicting survival among patients with GBM. This has implications for clinical follow-up of patients with GBM and the targeted development of immunotherapy for patients with CNS tumours.
Collapse
Affiliation(s)
- Liu Zhenjiang
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Martin Rao
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xiaohua Luo
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Davide Valentini
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for allogeneic stem cell transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden
| | - Anna von Landenberg
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Qingda Meng
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Georges Sinclair
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | - Nina Hoffmann
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Julia Karbach
- Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt/Main, Germany
| | | | - Elke Jäger
- Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt/Main, Germany
| | - Inti Harvey Peredo
- Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | - Ernest Dodoo
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden; Department of Clinical Neuroscience, Section for Neurosurgery, Karolinska Institutet, Stockholm, Sweden
| | - Markus Maeurer
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Centre for allogeneic stem cell transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
13
|
Toffoli G, De Mattia E, Cecchin E, Biason P, Masier S, Corona G. Pharmacology of Epidermal Growth Factor Inhibitors. Int J Biol Markers 2018; 22:24-39. [DOI: 10.1177/17246008070221s404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Research into the molecular bases of malignant diseases has yielded the development of many novel agents with potential antitumor activity. Evidence for a causative role for the epidermal growth factor receptor (EGFR), which is now regarded as an excellent target for cancer chemotherapy in human cancer, leads to the development of EGFR inhibitors. Two classes of anti-EGFR agents are currently in clinical use: monoclonal antibodies directed at the extracellular domain of the receptor, and the low-molecular-weight receptor tyrosine kinase inhibitors acting intracellularly by competing with adenosine triphosphate for binding to the tyrosine kinase portion of the EGFR. The effect on the receptor interferes with key biological functions including cell cycle arrest, potentiation of apoptosis, inhibition of angiogenesis and cell invasion and metastasis. Cetuximab, a monoclonal antibody, and the receptor tyrosine kinase inhibitors gefitinib and erlotinib are currently approved for the treatment of patients with cancer. New agents with clinical activity are entering the clinic, and new combinatorial approaches are being explored with the aim of improving the potency and pharmacokinetics of EGFR inhibition, to increase the synergistic activity in combination with chemotherapy and overcome resistance to the EGFR inhibitors.
Collapse
Affiliation(s)
- G. Toffoli
- Clinical and Experimental Pharmacology, Centro di Riferimento Oncologico, Aviano, Pordenone - Italy
| | - E. De Mattia
- Clinical and Experimental Pharmacology, Centro di Riferimento Oncologico, Aviano, Pordenone - Italy
| | - E. Cecchin
- Clinical and Experimental Pharmacology, Centro di Riferimento Oncologico, Aviano, Pordenone - Italy
| | - P. Biason
- Clinical and Experimental Pharmacology, Centro di Riferimento Oncologico, Aviano, Pordenone - Italy
| | - S. Masier
- Clinical and Experimental Pharmacology, Centro di Riferimento Oncologico, Aviano, Pordenone - Italy
| | - G. Corona
- Clinical and Experimental Pharmacology, Centro di Riferimento Oncologico, Aviano, Pordenone - Italy
| |
Collapse
|
14
|
Abstract
We report here on the state of our knowledge of the target - namely, the epidermal growth factor (EGF) and its receptor - and the challenges related to the methods of determination of the epidermal growth factor receptor (EGFR) and associated molecular pathways. A critical review of the anti-EGFR therapeutic strategies is also outlined. The chimeric anti-EGFR monoclonal antibody cetuximab has been approved for EGFR-expressing colorectal tumors in patients who progress after irinotecan-based chemotherapy in combination with irinotecan and in squamous cell head and neck carcinomas for patients with locally advanced disease in combination with radiation therapy or after failure of platinum-based chemotherapy in recurrent or metastatic disease (FDA). Cetuximab has the potential to provide an improvement of clinical outcome also in other indications and tumor types, particularly when used as first-line therapy combined with standard chemotherapy for metastatic disease or in the adjuvant setting. Possible strategies to improve the effectiveness of anti-EGFR agents are suggested and include (i) the use of predictive tools capable of making a more rational selection of patients; (ii) the development of standardized predictive biomarkers as surrogates for early monitoring of drug efficacy; and (iii) adequate study design, statistical analysis and proper end points of efficacy to be applied in future prospective trials.
Collapse
Affiliation(s)
- M.R. D'Andrea
- Division of Medical Oncology, Azienda Complesso Ospedaliero S. Filippo Neri, Rome - Italy
| | - G. Gasparini
- Division of Medical Oncology, Azienda Complesso Ospedaliero S. Filippo Neri, Rome - Italy
| |
Collapse
|
15
|
Lee K, Fraser K, Ghaddar B, Yang K, Kim E, Balaj L, Chiocca EA, Breakefield XO, Lee H, Weissleder R. Multiplexed Profiling of Single Extracellular Vesicles. ACS NANO 2018; 12:494-503. [PMID: 29286635 PMCID: PMC5898240 DOI: 10.1021/acsnano.7b07060] [Citation(s) in RCA: 239] [Impact Index Per Article: 34.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Extracellular vesicles (EV) are a family of cell-originating, membrane-enveloped nanoparticles with diverse biological function, diagnostic potential, and therapeutic applications. While EV can be abundant in circulation, their small size (∼4 order of magnitude smaller than cells) has necessitated bulk analyses, making many more nuanced biological explorations, cell of origin questions, or heterogeneity investigations impossible. Here we describe a single EV analysis (SEA) technique which is simple, sensitive, multiplexable, and practical. We profiled glioblastoma EV and discovered surprising variations in putative pan-EV as well as tumor cell markers on EV. These analyses shed light on the heterogeneous biomarker profiles of EV. The SEA technology has the potential to address fundamental questions in vesicle biology and clinical applications.
Collapse
Affiliation(s)
- Kyungheon Lee
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Kyle Fraser
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Bassel Ghaddar
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Katy Yang
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Eunha Kim
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Leonora Balaj
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - E. Antonio Chiocca
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts 02115, United States
| | - Xandra O. Breakefield
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, Massachusetts 02114, United States
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, Massachusetts 02114, United States
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts 02114, United States
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, Massachusetts 02115, United States
| |
Collapse
|
16
|
Vettath SK, Shivashankar G, Menon KN, Vijayachandran LS. Recombinant expression of extracellular domain of mutant Epidermal Growth Factor Receptor in prokaryotic and baculovirus expression systems. Int J Biol Macromol 2017; 110:582-587. [PMID: 29292145 DOI: 10.1016/j.ijbiomac.2017.12.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 11/29/2017] [Accepted: 12/27/2017] [Indexed: 11/19/2022]
Abstract
Epidermal Growth Factor Receptor variant III (EGFRvIII) is a tumor specific antigen detected in various tumors including gliomas, breast cancer, lung cancer, head and neck squamous cell carcinoma (HNSCC). Screening of EGFRvIII targeting drug molecules can be accelerated by developing drug screening platforms using recombinantly expressed protein. Choice of expression system is one of the major factors deciding the success of recombinant expression of a protein. In our study, we have tried to express and purify the extracellular domain (ECD) of this highly unstable protein using bacterial and baculovirus expression systems to select the expression system suited for our purpose. Even though the protein was successfully expressed in prokaryotic system, purification could be done only under denaturing conditions. But in the baculovirus expression system, the protein was expressed in soluble form and could be purified under native conditions, with single step of purification. Based on our results, we conclude that insect cells are better choice over E. coli cells for expressing EGFRvIII ECD in soluble form. This study provides insights for other researchers involved in expression of similar unstable membrane proteins, on selecting the best expression system and challenges involved.
Collapse
Affiliation(s)
- Sunitha Kodengil Vettath
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Gaganashree Shivashankar
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Krishnakumar N Menon
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India.
| | - Lakshmi S Vijayachandran
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India.
| |
Collapse
|
17
|
Mirzaei HR, Rodriguez A, Shepphird J, Brown CE, Badie B. Chimeric Antigen Receptors T Cell Therapy in Solid Tumor: Challenges and Clinical Applications. Front Immunol 2017; 8:1850. [PMID: 29312333 PMCID: PMC5744011 DOI: 10.3389/fimmu.2017.01850] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022] Open
Abstract
Adoptive cellular immunotherapy (ACT) employing engineered T lymphocytes expressing chimeric antigen receptors (CARs) has demonstrated promising antitumor effects in advanced hematologic cancers, such as relapsed or refractory acute lymphoblastic leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma, supporting the translation of ACT to non-hematological malignancies. Although CAR T cell therapy has made remarkable strides in the treatment of patients with certain hematological cancers, in solid tumors success has been limited likely due to heterogeneous antigen expression, immunosuppressive networks in the tumor microenvironment limiting CAR T cell function and persistence, and suboptimal trafficking to solid tumors. Here, we outline specific approaches to overcome barriers to CAR T cell effectiveness in the context of the tumor microenvironment and offer our perspective on how expanding the use of CAR T cells in solid tumors may require modifications in CAR T cell design. We anticipate these modifications will further expand CAR T cell therapy in clinical practice.
Collapse
Affiliation(s)
- Hamid R Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Analiz Rodriguez
- Division of Neurosurgery, Department of Surgery, City of Hope National Medical Center, Duarte, CA, United States
| | - Jennifer Shepphird
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Christine E Brown
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Behnam Badie
- Division of Neurosurgery, Department of Surgery, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
18
|
Abstract
Breast cancer affects approximately 1 in 8 women, and it is estimated that over 246,660 women in the USA will be diagnosed with breast cancer in 2016. Breast cancer mortality has decline over the last two decades due to early detection and improved treatment. Over the last few years, there is mounting evidence to demonstrate the prominent role of receptor tyrosine kinases (RTKs) in tumor initiation and progression, and targeted therapies against the RTKs have been developed, evaluated in clinical trials, and approved for many cancer types, including breast cancer. However, not all breast cancers are the same as evidenced by the multiple subtypes of the disease, with some more aggressive than others, showing differential treatment response to different types of drugs. Moreover, in addition to canonical signaling from the cell surface, many RTKs can be trafficked to various subcellular compartments, e.g., the multivesicular body and nucleus, where they carry out critical cellular functions, such as cell proliferation, DNA replication and repair, and therapeutic resistance. In this review, we provide a brief summary on the role of a selected number of RTKs in breast cancer and describe some mechanisms of resistance to targeted therapies.
Collapse
Affiliation(s)
- Jennifer L Hsu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.,Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, 404, Taiwan.,Department of Biotechnology, Asia University, Taichung, 413, Taiwan
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA. .,Center for Molecular Medicine and Graduate Institute of Cancer Biology, China Medical University, Taichung, 404, Taiwan. .,Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
19
|
Kawada M, Atsumi S, Wada SI, Sakamoto S. Novel approaches for identification of anti-tumor drugs and new bioactive compounds. J Antibiot (Tokyo) 2017; 71:ja201797. [PMID: 28852178 DOI: 10.1038/ja.2017.97] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/02/2017] [Accepted: 07/17/2017] [Indexed: 12/18/2022]
Abstract
Thanks to the pioneering work done by Professor Hamao Umezawa, bioactive compounds have been used in treatment of several diseases including cancer. In this review, we discuss our work, which focuses on developing new candidates for anti-tumor drugs by screening for bioactive natural compounds in microbial cultures using unique experimental systems. We summarize our recent progress including the following: (1) small-molecule modulators of tumor-stromal cell interactions, (2) inhibitors of three-dimensional spheroid formation of cancer cells, (3) multi-cancer cell panel screening and (4) new experimental animal models for cancer metastasis.The Journal of Antibiotics advance online publication, 30 August 2017; doi:10.1038/ja.2017.97.
Collapse
Affiliation(s)
- Manabu Kawada
- Laboratory of Oncology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo, Japan
- Numazu, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Shizuoka, Japan
| | - Sonoko Atsumi
- Laboratory of Oncology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Shun-Ichi Wada
- Laboratory of Oncology, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Shuichi Sakamoto
- Numazu, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Shizuoka, Japan
| |
Collapse
|
20
|
Fukuhara S, Nomoto J, Kim SW, Taniguchi H, Miyagi Maeshima A, Tobinai K, Kobayashi Y. Partial deletion of the ALK gene in ALK-positive anaplastic large cell lymphoma. Hematol Oncol 2017; 36:150-158. [PMID: 28665006 DOI: 10.1002/hon.2455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 12/20/2022]
Abstract
Anaplastic lymphoma kinase (ALK) protein is an orphan receptor tyrosine kinase that is constitutively activated by aberrant translocations of the ALK gene in anaplastic large cell lymphoma, ALK-positive and several other cancers. Additionally, aberrant mutation and amplification of the ALK gene, resulting in ALK kinase activation, were detected mainly in neuroblastoma. Recently, truncated ALK protein was also reported in neuroblastoma. Here, we describe a novel truncated form of the ALK transcript with in-frame skipping through exons 2 to 17 (ALKΔ2-17) in anaplastic large cell lymphoma, ALK-positive. The ALKΔ2-17 showed ligand-independent deregulated phosphorylation that initiated strong STAT3 signalling in NIH3T3 cells. The ALKΔ2-17-transduced NIH3T3 cells showed oncogenic potential in a colony formation assay. Our data indicate that the aberrant deletion of the ALK gene might be oncogenic, providing a novel insight into the oncogenic role of the ALK pathway.
Collapse
Affiliation(s)
- Suguru Fukuhara
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan.,Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Junko Nomoto
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Sung-Won Kim
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | | | | | - Kensei Tobinai
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| | - Yukio Kobayashi
- Department of Hematology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
21
|
Yu S, Li A, Liu Q, Li T, Yuan X, Han X, Wu K. Chimeric antigen receptor T cells: a novel therapy for solid tumors. J Hematol Oncol 2017; 10:78. [PMID: 28356156 PMCID: PMC5372296 DOI: 10.1186/s13045-017-0444-9] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/16/2017] [Indexed: 12/20/2022] Open
Abstract
The chimeric antigen receptor T (CAR-T) cell therapy is a newly developed adoptive antitumor treatment. Theoretically, CAR-T cells can specifically localize and eliminate tumor cells by interacting with the tumor-associated antigens (TAAs) expressing on tumor cell surface. Current studies demonstrated that various TAAs could act as target antigens for CAR-T cells, for instance, the type III variant epidermal growth factor receptor (EGFRvIII) was considered as an ideal target for its aberrant expression on the cell surface of several tumor types. CAR-T cell therapy has achieved gratifying breakthrough in hematological malignancies and promising outcome in solid tumor as showed in various clinical trials. The third generation of CAR-T demonstrates increased antitumor cytotoxicity and persistence through modification of CAR structure. In this review, we summarized the preclinical and clinical progress of CAR-T cells targeting EGFR, human epidermal growth factor receptor 2 (HER2), and mesothelin (MSLN), as well as the challenges for CAR-T cell therapy.
Collapse
Affiliation(s)
- Shengnan Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Anping Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tengfei Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
22
|
Henson E, Chen Y, Gibson S. EGFR Family Members' Regulation of Autophagy Is at a Crossroads of Cell Survival and Death in Cancer. Cancers (Basel) 2017; 9:cancers9040027. [PMID: 28338617 PMCID: PMC5406702 DOI: 10.3390/cancers9040027] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 12/14/2022] Open
Abstract
The epidermal growth factor receptor (EGFR) signaling pathways are altered in many cancers contributing to increased cell survival. These alterations are caused mainly through increased expression or mutation of EGFR family members EGFR, ErbB2, ErbB3, and ErbB4. These receptors have been successfully targeted for cancer therapy. Specifically, a monoclonal antibody against ErbB2, trastuzumab, and a tyrosine kinase inhibitor against EGFR, gefitinib, have improved the survival of breast and lung cancer patients. Unfortunately, cancer patients frequently become resistant to these inhibitors. This has led to investigating how EGFR can contribute to cell survival and how cancer cells can overcome inhibition of its signaling. Indeed, it is coming into focus that EGFR signaling goes beyond a single signal triggering cell proliferation and survival and is a sensor that regulates the cell’s response to microenvironmental stresses such as hypoxia. It acts as a switch that modulates the ability of cancer cells to survive. Autophagy is a process of self-digestion that is inhibited by EGFR allowing cancer cells to survive under stresses that would normally cause death and become resistant to chemotherapy. Inhibiting EGFR signaling allows autophagy to contribute to cell death. This gives new opportunities to develop novel therapeutic strategies to treat cancers that rely on EGFR signaling networks and autophagy. In this review, we summarize the current understanding of EGFR family member regulation of autophagy in cancer cells and how new therapeutic strategies could be developed to overcome drug resistance.
Collapse
Affiliation(s)
- Elizabeth Henson
- Research Institute in Oncology and Hematology, CancerCare Manitoba, 675 McDermot Ave., Winnipeg, MB R3E 0V9, Canada.
| | - Yongqiang Chen
- Research Institute in Oncology and Hematology, CancerCare Manitoba, 675 McDermot Ave., Winnipeg, MB R3E 0V9, Canada.
| | - Spencer Gibson
- Research Institute in Oncology and Hematology, CancerCare Manitoba, 675 McDermot Ave., Winnipeg, MB R3E 0V9, Canada.
- Department of Biochemistry and Medical Genetics, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0V9, Canada.
| |
Collapse
|
23
|
Peciak J, Stec WJ, Treda C, Ksiazkiewicz M, Janik K, Popeda M, Smolarz M, Rosiak K, Hulas-Bigoszewska K, Och W, Rieske P, Stoczynska-Fidelus E. Low Incidence along with Low mRNA Levels of EGFRvIII in Prostate and Colorectal Cancers Compared to Glioblastoma. J Cancer 2017; 8:146-151. [PMID: 28123609 PMCID: PMC5264051 DOI: 10.7150/jca.16108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/15/2016] [Indexed: 11/17/2022] Open
Abstract
Background: The presence as well as the potential role of EGFRvIII in tumors other than glioblastoma still remains a controversial subject with many contradictory data published. Previous analyses, however, did not consider the level of EGFRvIII mRNA expression in different tumor types. Methods: Appropriately designed protocol for Real-time quantitative reverse-transcription PCR (Real-time qRT-PCR) was applied to analyze EGFRvIII and EGFRWT mRNA expression in 155 tumor specimens. Additionally, Western Blot (WB) analysis was performed for selected samples. Stable cell lines showing EGFRvIII expression (CAS-1 and DK-MG) were analyzed by means of WB, immunocytochemistry (ICC) and fluorescence in situ hybridization (FISH). Results: Our analyses revealed EGFRvIII expression in 27.59% of glioblastomas (8/29), 8.11% of colorectal cancers (3/37), 6.52% of prostate cancers (3/46) and none of breast cancers (0/43). Despite the average relative expression of EGFRvIII varying greatly among tumors of different tissues (approximately 800-fold) or even within the same tissue group (up to 8000-fold for GB), even the marginal expression of EGFRvIII mRNA can be detrimental to cancer progression, as determined by the analysis of stable cell lines endogenously expressing the oncogene. Conclusion: EGFRvIII plays an unquestionable role in glioblastomas with high expression of this oncogene. Our data suggests that EGFRvIII importance should not be underestimated even in tumors with relatively low expression of this oncogene.
Collapse
Affiliation(s)
- Joanna Peciak
- Department of Research and Development, Celther Polska, Ltd., Milionowa 23, 93-193 Lodz, Poland;; Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Wojciech J Stec
- Department of Research and Development, Celther Polska, Ltd., Milionowa 23, 93-193 Lodz, Poland
| | - Cezary Treda
- Department of Research and Development, Celther Polska, Ltd., Milionowa 23, 93-193 Lodz, Poland;; Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Magdalena Ksiazkiewicz
- Department of Research and Development, Celther Polska, Ltd., Milionowa 23, 93-193 Lodz, Poland
| | - Karolina Janik
- Department of Research and Development, Celther Polska, Ltd., Milionowa 23, 93-193 Lodz, Poland;; Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Marta Popeda
- Department of Research and Development, Celther Polska, Ltd., Milionowa 23, 93-193 Lodz, Poland
| | - Maciej Smolarz
- Department of Research and Development, Celther Polska, Ltd., Milionowa 23, 93-193 Lodz, Poland
| | - Kamila Rosiak
- Department of Research and Development, Celther Polska, Ltd., Milionowa 23, 93-193 Lodz, Poland;; Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | | | - Waldemar Och
- Clinical Department of Neurosurgery, The Voivodal Specialistic Hospital in Olsztyn, Zolnierska 18, 10-561 Olsztyn, Poland
| | - Piotr Rieske
- Department of Research and Development, Celther Polska, Ltd., Milionowa 23, 93-193 Lodz, Poland;; Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| | - Ewelina Stoczynska-Fidelus
- Department of Research and Development, Celther Polska, Ltd., Milionowa 23, 93-193 Lodz, Poland;; Department of Tumor Biology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland
| |
Collapse
|
24
|
Janković J, Tatić S, Božić V, Živaljević V, Cvejić D, Paskaš S. Inverse expression of caveolin-1 and EGFR in thyroid cancer patients. Hum Pathol 2016; 61:164-172. [PMID: 27818286 DOI: 10.1016/j.humpath.2016.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/23/2016] [Accepted: 10/14/2016] [Indexed: 01/21/2023]
Abstract
Cytological analysis of fine-needle aspiration (FNA) is the first step in evaluation of patients with nodular thyroid disease with the primary goal to exclude thyroid malignancy. Its improvement by combining cytology with molecular markers is still a matter of investigation. In this study, 2 molecular markers were used: caveolin-1 and epidermal growth factor receptor (EGFR), along with the well-established genetic marker BRAF V600E mutation. We set out to determine the expression signatures of EGFR and caveolin-1 in patients with thyroid malignancy as well as to determine their possible association with disease severity. In FNA biopsy samples (n=186), immunocytochemical expression of caveolin-1 and BRAF V600E mutation coincided with malignancy. The patients were sorted according to 3 parameters: final histopathological diagnosis, caveolin-1 expression, and BRAF V600E mutation status before measurement of EGFR mRNA expression. EGFR upregulation was detected in the group of patients with malignant diagnosis, no caveolin-1 expression, and wild-type BRAF. Spearman rank correlation yielded a statistically significant negative correlation of EGFR and caveolin-1. Double immunofluorescence confirmed colocalization and inverse expression of EGFR and caveolin-1. Our data demonstrated that EGFR overexpression is associated with malignancy but not with tumor aggressiveness. Furthermore, high-caveolin-1/low-EGFR cases were associated with an advanced pT status and had a greater degree of neoplastic infiltration than low-caveolin-1/high-EGFR cases. Combining caveolin-1 and BRAF V600E with EGFR might help in recognizing more aggressive thyroid lesions in a pool of relatively indolent tumors in FNA biopsies and thus be useful for early risk stratification of thyroid cancer patients.
Collapse
Affiliation(s)
- Jelena Janković
- Institute for the Application of Nuclear Energy-INEP, Department for Endocrinology and Radioimmunology, University of Belgrade, 11080 Belgrade, Serbia
| | - Svetislav Tatić
- Institute of Pathology, Medical Faculty, University of Belgrade, 11000 Belgrade, Serbia
| | - Vesna Božić
- Clinical Center of Serbia, Department of Endocrine and Cardiovascular Pathology, 11000 Belgrade, Serbia
| | - Vladan Živaljević
- Center for Endocrine Surgery, Institute of Endocrinology, Diabetes and Diseases of Metabolism, University of Belgrade, 11000 Belgrade, Serbia
| | - Dubravka Cvejić
- Institute for the Application of Nuclear Energy-INEP, Department for Endocrinology and Radioimmunology, University of Belgrade, 11080 Belgrade, Serbia
| | - Svetlana Paskaš
- Institute for the Application of Nuclear Energy-INEP, Department for Endocrinology and Radioimmunology, University of Belgrade, 11080 Belgrade, Serbia.
| |
Collapse
|
25
|
Elliott JT, Marra K, Evans LT, Davis SC, Samkoe KS, Feldwisch J, Paulsen KD, Roberts DW, Pogue BW. Simultaneous In Vivo Fluorescent Markers for Perfusion, Protoporphyrin Metabolism, and EGFR Expression for Optically Guided Identification of Orthotopic Glioma. Clin Cancer Res 2016; 23:2203-2212. [PMID: 27799250 DOI: 10.1158/1078-0432.ccr-16-1400] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 09/26/2016] [Accepted: 10/14/2016] [Indexed: 11/16/2022]
Abstract
Purpose: While extent of tumor resection is an important predictor of outcome in glioma, margin delineation remains challenging due to lack of inherent contrast between tumor and normal parenchyma. Fluorescence-guided surgery is promising for its ability to enhance contrast through exogenous fluorophores; however, the specificity and sensitivity of the underlying contrast mechanism and tumor delivery and uptake vary widely across approved and emerging agents.Experimental Design: Rats with orthotopic F98 wild-type and F98 EGFR-positive (EGFR+) gliomas received in vivo administration of IRDye680RD, 5-aminioleuvulinic acid, and ABY-029-markers of perfusion, protoporphyrin metabolism, and EGFR expression, respectively. Ex vivo imaging demonstrates the contrast mechanism-dependent spatial heterogeneity and enables within-animal comparisons of tumor-to-background ratio (TBR).Results: Generally, ABY-029 outperformed PpIX in F98EGFR orthotopic tumor margins and core (50% and 60% higher TBR, respectively). PpIX outperformed ABY-029 in F98wt margins by 60% but provided equivalent contrast in the bulk tumor. IRDye680RD provided little contrast, having an average TBR of 1.7 ± 0.2. The unique spatial patterns of each agent were combined into a single metric, the multimechanistic fluorescence-contrast index (MFCI). ABY-029 performed best in EGFR+ tumors (91% accuracy), while PpIX performed best in wild-type tumors (87% accuracy). Across all groups, ABY-029 and PpIX performed similarly (80% and 84%, respectively) but MFCI was 91% accurate, supporting multiagent imaging when tumor genotype was unknown.Conclusions: Human use of ABY-029 for glioma resection should enhance excision of EGFR+ tumors and could be incorporated into current PpIX strategies to further enhance treatment in the general glioma case. Clin Cancer Res; 23(9); 2203-12. ©2016 AACR.
Collapse
Affiliation(s)
- Jonathan T Elliott
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire.
| | - Kayla Marra
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - Linton T Evans
- Department of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Scott C Davis
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | | | | | - Keith D Paulsen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| | - David W Roberts
- Department of Neurosurgery, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire
| |
Collapse
|
26
|
Lee HC, Su MY, Lo HC, Wu CC, Hu JR, Lo DM, Chao TY, Tsai HJ, Dai MS. Cancer metastasis and EGFR signaling is suppressed by amiodarone-induced versican V2. Oncotarget 2016; 6:42976-87. [PMID: 26515726 PMCID: PMC4767485 DOI: 10.18632/oncotarget.5621] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 10/09/2015] [Indexed: 01/05/2023] Open
Abstract
Extracellular matrix components play an active role in cancer progression and prognosis. Versican, a large extracellular matrix proteoglycan, can promote cancer metastasis through facilitating cell proliferation, adhesion, migration and angiogenesis. We had previously demonstrated that amiodarone caused ectopic overexpression of similar to versican b (s-vcanb), inhibited EGFR/GSK3β/Snail signaling, and enhanced Cdh5 at the heart field of zebrafish, indicating interference with epithelial-mesenchymal transition (EMT). Since S-vcanb is homologous to mammalian versican V2 isoform, we examined the effects of amiodarone on mammalian tumor proliferation, migration, invasion and metastasis in vitro and in vivo and on EMT signaling pathways. Monolayer wound assays and extracellular matrix transwell invasion assays showed reduced migration and invasion by 15 μM amiodarone treated B16OVA, JC, 4T-1, MDA-MB-231 and MCF-7 tumor cell lines. All cancer cell lines showed reduced metastatic capabilities in vivo after treatment with amiodarone in experimental animals. Western blots revealed that EMT-related transcription factors Snail and Twist were reduced and E-cadherin was enhanced in amiodarone treated cells through an EGFR/ERK/GSK3β-dependent pathway. Immunohistochemistry showed amiodarone lead to increased expression of versican V2 isoform concomitant with reduced versican V1. Our study illustrated the role of versican v2 in EMT modulation and cancer suppression by amiodarone treatment.
Collapse
Affiliation(s)
- Hung-Chieh Lee
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Mai-Yan Su
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hao-Chan Lo
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chin-Chieh Wu
- Hematology/Oncology, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
| | - Jia-Rung Hu
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Dao-Ming Lo
- Institute of Molecular and Cellular Biology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Tsu-Yi Chao
- Hematology/Oncology, Shuang-Ho Hospital, Taipei Medical University, Taipei, Taiwan
| | - Huai-Jen Tsai
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan
| | - Ming-Shen Dai
- Hematology/Oncology, Tri-Service General Hospital, National Defense Medical Centre, Taipei, Taiwan
| |
Collapse
|
27
|
Abstract
Penile squamous cell carcinoma (PSCC) is a rare cancer, but is more common in developing countries. Locally advanced and metastatic PSCC is associated with significant morbidity and mortality, with the prognosis remaining extremely poor. The authors searched PubMed and published abstracts for metastatic PSCC studies to describe emerging therapies. Multimodality treatment using chemotherapy, radiation, and consolidative surgery are standard of care. Utilizing anti-EGFR therapies and novel immunotheraputic approaches may help improve outcomes in PSCC.
Collapse
Affiliation(s)
- Shilpa Gupta
- Department of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN 55455, USA
| | - Guru Sonpavde
- Section of Medical Oncology, Department of Medicine, UAB Comprehensive Cancer Center, 1802 6th Avenue South, NP2540B, Birmingham, AL 35294, USA.
| |
Collapse
|
28
|
Atsumi S, Nosaka C, Adachi H, Kimura T, Kobayashi Y, Takada H, Watanabe T, Ohba SI, Inoue H, Kawada M, Shibasaki M, Shibuya M. New anti-cancer chemicals Ertredin and its derivatives, regulate oxidative phosphorylation and glycolysis and suppress sphere formation in vitro and tumor growth in EGFRvIII-transformed cells. BMC Cancer 2016; 16:496. [PMID: 27431653 PMCID: PMC4949881 DOI: 10.1186/s12885-016-2521-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/05/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND EGFRvIII is a mutant form of the epidermal growth factor receptor gene (EGFR) that lacks exons 2-7. The resulting protein does not bind to ligands and is constitutively activated. The expression of EGFRvIII is likely confined to various types of cancer, particularly glioblastomas. Although an anti-EGFRvIII vaccine is of great interest, low-molecular-weight substances are needed to obtain better therapeutic efficacy. Thus, the purpose of this study is to identify low molecular weight substances that can suppress EGFRvIII-dependent transformation. METHODS We constructed a new throughput screening system and searched for substances that decreased cell survival of NIH3T3/EGFRvIII spheres under 3-dimensional (3D)-culture conditions, but retained normal NIH3T3 cell growth under 2D-culture conditions. In vivo activity was examined using a mouse transplantation model, and derivatives were chemically synthesized. Functional characterization of the candidate molecules was investigated using an EGFR kinase assay, immunoprecipitation, western blotting, microarray analysis, quantitative polymerase chain reaction analysis, and measurement of lactate and ATP synthesis. RESULTS In the course of screening 30,000 substances, a reagent, "Ertredin" was found to inhibit anchorage-independent 3D growth of sphere-forming cells transfected with EGFRvIII cDNA. Ertredin also inhibited sphere formation in cells expressing wild-type EGFR in the presence of EGF. However, it did not affect anchorage-dependent 2D growth of parental NIH3T3 cells. The 3D-growth-inhibitory activity of some derivatives, including those with new structures, was similar to Ertredin. Furthermore, we demonstrated that Ertredin suppressed tumor growth in an allograft transplantation mouse model injected with EGFRvIII- or wild-type EGFR-expressing cells; a clear toxicity to host animals was not observed. Functional characterization of Ertredin in cells expressing EGFRvIII indicated that it stimulated EGFRvIII ubiquitination, suppressed both oxidative phosphorylation and glycolysis under 3D conditions, and promoted cell apoptosis. CONCLUSION We developed a high throughput screening method based on anchorage-independent sphere formation induced by EGFRvIII-dependent transformation. In the course of screening, we identified Ertredin, which inhibited anchorage-independent 3D growth and tumor formation in nude mice. Functional analysis suggests that Ertredin suppresses both mitochondrial oxidative phosphorylation and cytosolic glycolysis in addition to promoting EGFRvIII degradation, and stimulates apoptosis in sphere-forming, EGFRvIII-overexpressing cells.
Collapse
Affiliation(s)
- Sonoko Atsumi
- Laboratory of Oncology, Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, 141-0021, Tokyo, Japan.
| | - Chisato Nosaka
- Laboratory of Oncology, Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, 141-0021, Tokyo, Japan
| | - Hayamitsu Adachi
- Numazu Branch, Institute of Microbial Chemistry, Miyamoto, Numazu-shi, Shizuoka, Japan
| | - Tomoyuki Kimura
- Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo, Japan
| | - Yoshihiko Kobayashi
- Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo, Japan
| | - Hisashi Takada
- Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo, Japan
| | - Takumi Watanabe
- Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo, Japan
| | - Shun-Ichi Ohba
- Numazu Branch, Institute of Microbial Chemistry, Miyamoto, Numazu-shi, Shizuoka, Japan
| | - Hiroyuki Inoue
- Numazu Branch, Institute of Microbial Chemistry, Miyamoto, Numazu-shi, Shizuoka, Japan
| | - Manabu Kawada
- Laboratory of Oncology, Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, 141-0021, Tokyo, Japan.,Numazu Branch, Institute of Microbial Chemistry, Miyamoto, Numazu-shi, Shizuoka, Japan
| | - Masakatsu Shibasaki
- Laboratory of Oncology, Institute of Microbial Chemistry, 3-14-23 Kamiosaki, Shinagawa-ku, 141-0021, Tokyo, Japan.,Numazu Branch, Institute of Microbial Chemistry, Miyamoto, Numazu-shi, Shizuoka, Japan.,Laboratory of Synthetic Organic Chemistry, Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo, Japan
| | - Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, Takasaki-shi, Gunma, Japan
| |
Collapse
|
29
|
Keller J, Nimnual AS, Varghese MS, VanHeyst KA, Hayman MJ, Chan EL. A Novel EGFR Extracellular Domain Mutant, EGFRΔ768, Possesses Distinct Biological and Biochemical Properties in Neuroblastoma. Mol Cancer Res 2016; 14:740-52. [PMID: 27216155 DOI: 10.1158/1541-7786.mcr-15-0477] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/13/2016] [Indexed: 11/16/2022]
Abstract
UNLABELLED EGFR is a popular therapeutic target for many cancers. EGFR inhibitors have been tested in children with refractory neuroblastoma. Interestingly, partial response or stable disease was observed in a few neuroblastoma patients. As EGFR mutations are biomarkers for response to anti-EGFR drugs, primary neuroblastoma tumors and cell lines were screened for mutations. A novel EGFR extracellular domain deletion mutant, EGFRΔ768, was discovered and the biologic and biochemical properties of this mutant were characterized and compared with wild-type and EGFRvIII receptors. EGFRΔ768 was found to be constitutively active and localized to the cell surface. Its expression conferred resistance to etoposide and drove proliferation as well as invasion of cancer cells. While EGFRΔ768 had similarity to EGFRvIII, its biologic and biochemical properties were distinctly different from both the EGFRvIII and wild-type receptors. Even though erlotinib inhibited EGFRΔ768, its effect on the mutant was not as strong as that on wild-type EGFR and EGFRvIII. In addition, downstream signaling of EGFRΔ768 was different from that of the wild-type receptor. In conclusion, this is the first study to demonstrate that neuroblastoma express not only EGFRvIII, but also a novel EGFR extracellular domain deletion mutant, EGFRΔ768. The EGFRΔ768 also possesses distinct biologic and biochemical properties which might have therapeutic implications for neuroblastoma as well as other tumors expressing this novel mutant. IMPLICATIONS Neuroblastoma expressed a novel EGFR mutant which possesses distinct biologic and biochemical properties that might have therapeutic implications. Mol Cancer Res; 14(8); 740-52. ©2016 AACR.
Collapse
Affiliation(s)
- James Keller
- Division of Pediatric Hematology/Oncology, Stony Brook University, Stony Brook, New York
| | - Anjaruwee S Nimnual
- Department of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, New York
| | - Mathew S Varghese
- Department of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, New York
| | - Kristen A VanHeyst
- Division of Pediatric Hematology/Oncology, Stony Brook University, Stony Brook, New York
| | - Michael J Hayman
- Department of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, New York
| | - Edward L Chan
- Department of Molecular Genetics & Microbiology, Stony Brook University, Stony Brook, New York. Division of Pediatric Hematology/Oncology, Stony Brook University, Stony Brook, New York.
| |
Collapse
|
30
|
Bao X, Pastan I, Bigner DD, Chandramohan V. EGFR/EGFRvIII-targeted immunotoxin therapy for the treatment of glioblastomas via convection-enhanced delivery. RECEPTORS & CLINICAL INVESTIGATION 2016; 3:e1430. [PMID: 28286803 PMCID: PMC5341612 DOI: 10.14800/rci.1430] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glioblastoma is the most aggressive malignant brain tumor among all primary brain and central nervous system tumors. The median survival time for glioblastoma patients given the current standard of care treatment (surgery, radiation, and chemotherapy) is less than 15 months. Thus, there is an urgent need to develop more efficient therapeutics to improve the poor survival rates of patients with glioblastoma. To address this need, we have developed a novel tumor-targeted immunotoxin (IT), D2C7-(scdsFv)-PE38KDEL (D2C7-IT), by fusing the single chain variable fragment (scFv) from the D2C7 monoclonal antibody (mAb) with the Pseudomonas Exotoxin (PE38KDEL). D2C7-IT reacts with both the wild-type epidermal growth factor receptor (EGFRwt) and EGFR variant III (EGFRvIII), two onco-proteins frequently amplified or overexpressed in glioblastomas. Surface plasmon resonance and flow cytometry analyses demonstrated a significant binding capacity of D2C7-IT to both EGFRwt and EGFRvIII proteins. In vitro cytotoxicity data showed that D2C7-IT can effectively inhibit protein synthesis and kill a variety of EGFRwt-, EGFRvIII-, and both EGFRwt- and EGFRvIII-expressing glioblastoma xenograft cells and human tumor cell lines. Furthermore, D2C7-IT exhibited a robust anti-tumor efficacy in orthotopic mouse glioma models when administered via intracerebral convection-enhanced delivery (CED). A preclinical toxicity study was therefore conducted to determine the maximum tolerated dose (MTD) and no-observed-adverse-effect-level (NOAEL) of D2C7-IT via intracerebral CED for 72 hours in rats. Based on this successful rat toxicity study, an Investigational New Drug (IND) application (#116855) was approved by the Food and Drug Administration (FDA), and is now in effect for a Phase I/II D2C7-IT clinical trial (D2C7 for Adult Patients with Recurrent Malignant Glioma, https://clinicaltrials.gov/ct2/show/NCT02303678). While it is still too early to draw conclusions from the trial, results thus far are promising.
Collapse
Affiliation(s)
- Xuhui Bao
- Preston Robert Tisch Brain Tumor Center at Duke and Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Ira Pastan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Darell D. Bigner
- Preston Robert Tisch Brain Tumor Center at Duke and Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Vidyalakshmi Chandramohan
- Preston Robert Tisch Brain Tumor Center at Duke and Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
31
|
Premkumar DR, Jane EP, Pollack IF. Cucurbitacin-I inhibits Aurora kinase A, Aurora kinase B and survivin, induces defects in cell cycle progression and promotes ABT-737-induced cell death in a caspase-independent manner in malignant human glioma cells. Cancer Biol Ther 2015; 16:233-43. [PMID: 25482928 DOI: 10.4161/15384047.2014.987548] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Because STAT signaling is commonly activated in malignant gliomas as a result of constitutive EGFR activation, strategies for inhibiting the EGFR/JAK/STAT cascade are of significant interest. We, therefore, treated a panel of established glioma cell lines, including EGFR overexpressors, and primary cultures derived from patients diagnosed with glioblastoma with the JAK/STAT inhibitor cucurbitacin-I. Treatment with cucurbitacin-I depleted p-STAT3, p-STAT5, p-JAK1 and p-JAK2 levels, inhibited cell proliferation, and induced G2/M accumulation, DNA endoreduplication, and multipolar mitotic spindles. Longer exposure to cucurbitacin-I significantly reduced the number of viable cells and this decrease in viability was associated with cell death, as confirmed by an increase in the subG1 fraction. Our data also demonstrated that cucurbitacin-I strikingly downregulated Aurora kinase A, Aurora kinase B and survivin. We then searched for agents that exhibited a synergistic effect on cell death in combination with cucurbitacin-I. We found that cotreatment with cucurbitacin-I significantly increased Bcl(-)2/Bcl(-)xL family member antagonist ABT-737-induced cell death regardless of EGFR/PTEN/p53 status of malignant human glioma cell lines. Although >50% of the cucurbitacin-I plus ABT-737 treated cells were annexin V and propidium iodide positive, PARP cleavage or caspase activation was not observed. Pretreatment of z-VAD-fmk, a pan caspase inhibitor did not inhibit cell death, suggesting a caspase-independent mechanism of cell death. Genetic inhibition of Aurora kinase A or Aurora kinase B or survivin by RNA interference also sensitized glioma cells to ABT-737, suggesting a link between STAT activation and Aurora kinases in malignant gliomas.
Collapse
Key Words
- Aurora kinases
- BSA, bovine serum albumin
- DMSO, dimethyl sulfoxide
- EGFR, epidermal growth factor receptor
- FITC, fluorescein isothiocyanate
- Glioma
- MTS, 3-[4, 5-dimethylthiazol- 2yl]-5-[3-carboxymethoxyphenyl]-2-[4-sulfophenyl]-2H, tetrazolium
- NF-кB, nuclear factor кB
- PAGE, polyacrylamide gel electrophoresis
- PBS, phosphate-buffered saline
- PDGFR, platelet derived growth factor receptor
- PI, propidium iodide
- PI3K, Phosphatidylinositol 3-Kinase
- TBS, Tris-buffered saline
- TRAIL, tumor necrosis factor–related apoptosis inducing ligand
- caspase-independent cell death
- cell cycle arrest
Collapse
Affiliation(s)
- Daniel R Premkumar
- a Department of Neurosurgery ; University of Pittsburgh School of Medicine ; Pittsburgh , PA USA
| | | | | |
Collapse
|
32
|
Kou C, Zhou T, Han X, Zhuang H, Qian H. LRIG1, a 3p tumor suppressor, represses EGFR signaling and is a novel epigenetic silenced gene in colorectal cancer. Biochem Biophys Res Commun 2015; 464:519-25. [PMID: 26159916 DOI: 10.1016/j.bbrc.2015.06.173] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
Abstract
Downregulation of LRIG1 was found in many types of cancer. However, data concerning the possible mechanism of LRIG1 reduction in cancers were not reported yet. To analyze the regulation and function of LRIG1 in colorectal cancer (CRC), 6 cell lines, 46 paired tissues from primary CRC cases were employed in this study. In CRC cell lines, under-expression of LRIG1 was correlated with promoter region hypermethylation, and restoration of LRIG1 was induced by 5-Aza-2'-deoxyazacytidine treatment. Subsequently, we ectopically expressed LRIG1 in LRIG1 low-expressing HCT-116 cells and suppressed LRIG1 in LRIG1 high-expressing LoVo cells. We found that over-expression of LRIG1 inhibits cell proliferation and colony formation and tumor growth, while knockdown of LRIG1 promotes cell proliferation and colony formation. Decreased and increased EGFR/AKT signaling pathway may partially explain the lower and higher rates of proliferation in CRC cells transfected with LRIG1 cDNA or shRNA. In clinical samples, we compared the methylation, mRNA and protein expression of LRIG1 in samples of CRC tissues. A significant increase in LRIG1 methylation was identified in CRC specimens compared to adjacent normal tissues and that it was negatively correlated with its mRNA and protein expression. In conclusion, LRIG1 is frequently methylated in human CRC and consequent mRNA and protein downregulation may contribute to tumor growth by activating EGFR/AKT signaling.
Collapse
Affiliation(s)
- Changhua Kou
- Department of Oncological Surgery, The Central Hospital of Xuzhou City, Xuzhou, Jiangsu 221000, China.
| | - Tian Zhou
- Department of Gastroenterology, The Central Hospital of Xuzhou City, Xuzhou, Jiangsu 221000, China
| | - Xilin Han
- Department of Oncological Surgery, The Central Hospital of Xuzhou City, Xuzhou, Jiangsu 221000, China
| | - Huijie Zhuang
- Department of Oncological Surgery, The Central Hospital of Xuzhou City, Xuzhou, Jiangsu 221000, China
| | - Haixin Qian
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
33
|
Hypermethylated Epidermal growth factor receptor (EGFR) promoter is associated with gastric cancer. Sci Rep 2015; 5:10154. [PMID: 25959250 PMCID: PMC4426697 DOI: 10.1038/srep10154] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/01/2015] [Indexed: 01/28/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is a member of the receptor tyrosine kinases ErbB family and it is found to be overexpressed in gastric cancer. However, the mechanism of the regulation of the EGFR expression is still unknown. We used the Sequenom EpiTYPER assay to detect the methylation status of the EGFR promoter in normal and tumour tissues of 30 patients with gastric cancer. We also carried out quantitative real time PCR (qPCR) to detect the expression level of EGFR in our 30 patients. Notably, increased methylation level at EGFR promoter was found in tumour tissues than the corresponding adjacent noncancerous. In both Region I DMR and Region II DMR detected in our study, tumor tissues were significantly hypermethylated (P=2.7743E-10 and 2.1703E-05, respectively). Region I_⊿CpG_2 was also found to be associated with the presence of distant metastasis (P=0.0323). Furthermore, the results showed a strongly significant association between the relative EGFR expression and the EGFR methylation changes in both Region I and Region II (P=0.0004 and 0.0001, respectively). Our findings help to indicate the hypermethylation at EGFR promoter in gastric cancer and it could be a potential epigenetic biomarker for gastric cancer status and progression.
Collapse
|
34
|
Hamblett KJ, Kozlosky CJ, Siu S, Chang WS, Liu H, Foltz IN, Trueblood ES, Meininger D, Arora T, Twomey B, Vonderfecht SL, Chen Q, Hill JS, Fanslow WC. AMG 595, an Anti-EGFRvIII Antibody–Drug Conjugate, Induces Potent Antitumor Activity against EGFRvIII-Expressing Glioblastoma. Mol Cancer Ther 2015; 14:1614-24. [DOI: 10.1158/1535-7163.mct-14-1078] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/23/2015] [Indexed: 11/16/2022]
|
35
|
Yan Z, Jiang J, Li F, Yang W, Xie G, Zhou C, Xia S, Cheng Y. Adenovirus-mediated LRIG1 expression enhances the chemosensitivity of bladder cancer cells to cisplatin. Oncol Rep 2015; 33:1791-8. [PMID: 25695283 DOI: 10.3892/or.2015.3807] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/19/2015] [Indexed: 11/05/2022] Open
Abstract
Cisplatin (cis-diaminodichloroplatinum, CDDP) is one of the most effective chemotherapeutic agents that has been widely used in the treatment of many malignancies, including muscle invasive bladder cancer. However, development of CDDP resistance in cancer cells is a major obstacle to the effective treatment of bladder cancer. Therefore, the development of chemosensitizers to overcome the acquired resistance to chemotherapeutic agents is crucial. Previous studies have confirmed that the epidermal growth factor receptor (EGFR) and its signaling pathways are important in the chemoresistance of cancer cells against CDDP‑induced cell apoptosis. In a preliminary study we showed that leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1) is the natural ligand of EGFR, and that the extracellular leucine-rich repeat (LRR) domain and immunoglobulin-like domains of LRIG1 were able to bind to the extracellular domain of EGFR, resulting in the downregulation of EGFR expression. Based on these findings, we hypothesized that LRIG1 may enhance the chemosensitivity of bladder cancer cells to CDDP. In the present study, LRIG1 was overexpressed by the adenovirus vector to determine the effect of LRIG1 on chemosensitivity in the T24 bladder cancer cell line and explored the possible mechanisms. The results showed that CDDP inhibited the growth of the T24 cell line and induced activation of EGFR. Overexpression of LRIG1 increased the inhibitory effect of CDDP on the T24 cell line, which may be associated with inactivation of the EGFR signaling pathway, followed by the decrease of Bcl-2 expression and a concomitantly induced expression of Bax. Based on these results, we concluded that the upregulation of LRIG1 expression inhibited the EGFR signaling pathway, activated the mitochondrial pathway of apoptosis and eventually increased the sensitivity of bladder cancer cells to CDDP.
Collapse
Affiliation(s)
- Zejun Yan
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Junhui Jiang
- Department of Urology, Ningbo First Hospital, Medical College of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Fan Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Weiming Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Guohai Xie
- Department of Urology, Ningbo First Hospital, Medical College of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Cheng Zhou
- Department of Urology, Ningbo First Hospital, Medical College of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Shujie Xia
- Department of Urology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, P.R. China
| | - Yue Cheng
- Department of Urology, Ningbo First Hospital, Medical College of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
36
|
Duan J, Wang Z, Bai H, An T, Zhuo M, Wu M, Wang Y, Yang L, Wang J. Epidermal growth factor receptor variant III mutation in Chinese patients with squamous cell cancer of the lung. Thorac Cancer 2015; 6:319-26. [PMID: 26273378 PMCID: PMC4448391 DOI: 10.1111/1759-7714.12204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/31/2014] [Indexed: 12/26/2022] Open
Abstract
Background The aim of this study was to investigate the distribution of epidermal growth factor receptor (EGFR)vIII mutation in Chinese non-small cell lung cancer (NSCLC) patients and to explore the likely relationship between EGFRvIII mutation and response to EGFR-tyrosine kinase inhibitors (TKIs) in squamous cell carcinoma (SCC). Methods Samples were derived from two patient cohorts: (i) 114 early-stage NSCLC who received surgical resection; and (ii) 31 advanced-stage SCC who received EGFR-TKI EGFRvIII. EGFR and V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations were detected by reverse transcription polymerase chain reaction (RT-PCR), denaturing high-performance liquid chromatography, and PCR-restriction fragment length polymorphism, respectively. The associations of EGFRvIII, EGFR, and KRAS mutations with clinical outcome of EGFR-TKI treatment were evaluated using the Kaplan-Meier method, descriptive analysis, and multi-variable Cox regression analysis. Results In the first cohort, EGFRvIII mutation was detected in eight of 114 (7.0%) patients, including 11.1% (6/54) SCC and 3.6% (2/55) adenocarcinomas (ADC) (P = 0.269). In the second cohort, five (16.1%) and 10 out of 31 advanced SCC presented EGFRvIII and EGFR mutations, respectively. No appreciable discrepancy of progression-free survival or disease control rate was detected between the patients with and without EGFRvIII mutation (P > 0.05). However, longer median overall survival (OS) was observed in patients harboring EGFRvIII compared to those without EGFRvIII, although the difference did not reach statistical significance. Conclusion The frequency of EGFRvIII mutation in SCC was higher than in ADC. SCC patients harboring EGFRvIII mutations had a tendency for prolonged OS.
Collapse
Affiliation(s)
- Jianchun Duan
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Thoracic Medical Oncology, Beijing Cancer Hospital & Institute, Peking University School of Oncology Beijing, China
| | - Zhijie Wang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Thoracic Medical Oncology, Beijing Cancer Hospital & Institute, Peking University School of Oncology Beijing, China
| | - Hua Bai
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Thoracic Medical Oncology, Beijing Cancer Hospital & Institute, Peking University School of Oncology Beijing, China
| | - Tongtong An
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Thoracic Medical Oncology, Beijing Cancer Hospital & Institute, Peking University School of Oncology Beijing, China
| | - Minglei Zhuo
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Thoracic Medical Oncology, Beijing Cancer Hospital & Institute, Peking University School of Oncology Beijing, China
| | - Meina Wu
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Thoracic Medical Oncology, Beijing Cancer Hospital & Institute, Peking University School of Oncology Beijing, China
| | - Yuyan Wang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Thoracic Medical Oncology, Beijing Cancer Hospital & Institute, Peking University School of Oncology Beijing, China
| | - Lu Yang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Thoracic Medical Oncology, Beijing Cancer Hospital & Institute, Peking University School of Oncology Beijing, China
| | - Jie Wang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, Department of Thoracic Medical Oncology, Beijing Cancer Hospital & Institute, Peking University School of Oncology Beijing, China
| |
Collapse
|
37
|
Li L, Puliyappadamba VT, Chakraborty S, Rehman A, Vemireddy V, Saha D, Souza RF, Hatanpaa KJ, Koduru P, Burma S, Boothman DA, Habib AA. EGFR wild type antagonizes EGFRvIII-mediated activation of Met in glioblastoma. Oncogene 2015; 34:129-134. [PMID: 24362532 PMCID: PMC4804705 DOI: 10.1038/onc.2013.534] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/02/2013] [Accepted: 11/01/2013] [Indexed: 12/30/2022]
Abstract
Epidermal growth factor receptor (EGFR)vIII is the most common EGFR mutant found in glioblastoma (GBM). EGFRvIII does not bind ligand, is highly oncogenic and is usually coexpressed with EGFR wild type (EGFRwt). EGFRvIII activates Met, and Met contributes to EGFRvIII-mediated oncogenicity and resistance to treatment. Here, we report that addition of EGF results in a rapid loss of EGFRvIII-driven Met phosphorylation in glioma cells. Met is associated with EGFRvIII in a physical complex. Addition of EGF results in a dissociation of the EGFRvIII-Met complex with a concomitant loss of Met phosphorylation. Consistent with the abrogation of Met activation, addition of EGF results in the inhibition of EGFRvIII-mediated resistance to chemotherapy. Thus, our study suggests that ligand in the milieu of EGFRvIII-expressing GBM cells is likely to influence the EGFRvIII-Met interaction and resistance to treatment, and highlights a novel antagonistic interaction between EGFRwt and EGFRvIII in glioma cells.
Collapse
Affiliation(s)
- L Li
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - VT Puliyappadamba
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - S Chakraborty
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - A Rehman
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - V Vemireddy
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - D Saha
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - RF Souza
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Esophagal Diseases Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - KJ Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - P Koduru
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - S Burma
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - DA Boothman
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - AA Habib
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- VA North Texas Health Care System, Dallas, TX, USA
| |
Collapse
|
38
|
Guéguinou M, Gambade A, Félix R, Chantôme A, Fourbon Y, Bougnoux P, Weber G, Potier-Cartereau M, Vandier C. Lipid rafts, KCa/ClCa/Ca2+ channel complexes and EGFR signaling: Novel targets to reduce tumor development by lipids? BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2603-20. [PMID: 25450343 DOI: 10.1016/j.bbamem.2014.10.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/15/2014] [Accepted: 10/22/2014] [Indexed: 12/29/2022]
Abstract
Membrane lipid rafts are distinct plasma membrane nanodomains that are enriched with cholesterol, sphingolipids and gangliosides, with occasional presence of saturated fatty acids and phospholipids containing saturated acyl chains. It is well known that they organize receptors (such as Epithelial Growth Factor Receptor), ion channels and their downstream acting molecules to regulate intracellular signaling pathways. Among them are Ca2+ signaling pathways, which are modified in tumor cells and inhibited upon membrane raft disruption. In addition to protein components, lipids from rafts also contribute to the organization and function of Ca2+ signaling microdomains. This article aims to focus on the lipid raft KCa/ClCa/Ca2+ channel complexes that regulate Ca2+ and EGFR signaling in cancer cells, and discusses the potential modification of these complexes by lipids as a novel therapeutic approach in tumor development. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Maxime Guéguinou
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Audrey Gambade
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Romain Félix
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Aurélie Chantôme
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Yann Fourbon
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Philippe Bougnoux
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France; Centre HS Kaplan, CHRU Tours, Tours F-37032, France
| | - Günther Weber
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Marie Potier-Cartereau
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France
| | - Christophe Vandier
- Inserm, UMR1069, Nutrition, Croissance et Cancer, Tours F-37032, France; Université François Rabelais, Tours F-37032, France.
| |
Collapse
|
39
|
Activation of EGFR signaling from pilocytic astrocytomas to glioblastomas. Int J Biol Markers 2014; 29:e69-77. [PMID: 24170555 DOI: 10.5301/jbm.5000045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2013] [Indexed: 01/12/2023]
Abstract
INTRODUCTION EGFR analyses allow for better correlation between genotype and phenotype in astrocytomas and represent an attractive therapeutic target. Most studies emphasize analyses of EGFR in glioblastomas (GBMs) but do not analyze all grades of astrocytomas (from pilocytic to GBM). The purpose of our study was to evaluate the status of EGFR (expression, deletion, and amplification) and EGFR protein expression in all grades of astrocytomas. PATIENTS AND METHODS We analyzed a total of 145 surgical tumor specimens that included: 22 pilocytic astrocytomas, 22 grade II astrocytomas, 17 grade III astrocytomas and 84 GBMs. The specimens were compared to 17 non-neoplastic brain tissues obtained from epilepsy surgery. EGFR expression, EGFR amplification and EGFRvIII analyses were performed by quantitative real-time PCR, and protein expression was evaluated by immunohistochemistry. RESULTS EGFR relative overexpression and EGFR amplification were observed, respectively, in 50% and 20% of astrocytomas, while EGFRvIII was only found in GBMs (34.5%, p=0.005). Amongst EGFR-amplified GBM cases, 59% also presented EGFRvIII (p<0.001). Cytoplasmic accumulation of EGFR protein was detected in 75% of astrocytomas, and 21% of the astrocytomas showed nuclear localization (p=0.003). CONCLUSIONS EGFR alterations were found in all grades of astrocytomas, from pilocytic to GBMs, while EGFRvIII was exclusively found in GBMs. These findings provide important information on the mechanisms involved in the progression of astrocytomas for determining whether EGFR status can be used for effective and specific therapy.
Collapse
|
40
|
Agarwal G, Gupta S, Spiess PE. Novel targeted therapies for the treatment of penile cancer. Expert Opin Drug Discov 2014; 9:959-68. [DOI: 10.1517/17460441.2014.925875] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
41
|
Luo X, Xie H, Long X, Zhou M, Xu Z, Shi B, Jiang H, Li Z. EGFRvIII mediates hepatocellular carcinoma cell invasion by promoting S100 calcium binding protein A11 expression. PLoS One 2013; 8:e83332. [PMID: 24376686 PMCID: PMC3869758 DOI: 10.1371/journal.pone.0083332] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 11/04/2013] [Indexed: 01/17/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) is frequently aberrantly expressed in cancer, and abnormal signalling downstream of this receptor contributes to tumour growth. EGFR variant III (EGFRvIII) is the most commonly altered form of EGFR and contains a truncated ligand-binding domain. Aberrant signalling downstream of this receptor contributes to tumour invasion. We previously reported that EGFRvIII can promote hepatocellular carcinoma (HCC) invasion. However, little is known concerning the mechanisms underlying EGFRvIII-mediated increases in cell motility and invasion in HCC. In this study, we observed that S100A11 was significantly upregulated in Huh-7 cells that overexpressed EGFRvIII. Moreover, S100A11 expression was elevated in HCC tissue samples (68.6%; 35/51), and this elevation was correlated with EGFRvIII expression (p = 0.0020; n = 20). Furthermore, the overexpression of S100A11 can promote HCC cell invasiveness, whereas siRNA against S100A11 can suppress the invasiveness of HCC cells stably transfected with EGFRvIII. Additionally, STAT3 inhibitors can block S100A11 expression and S100A11 promoter activity in HCC cells with stable overexpression of EGFRvIII. Furthermore, mutation in STATx binding sites could abolish the S1000A11 promoter activity stimulation by EGFRvIII. Taken together, the results demonstrate that the EGFRvIII-STAT3 pathway promotes cell migration and invasion by upregulating S100A11.
Collapse
Affiliation(s)
- Xiaoying Luo
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hailong Xie
- Cancer Research Institute, University of South China; Hengyang, Hunan, China
| | - Xiaolan Long
- Cancer Research Institute, University of South China; Hengyang, Hunan, China
| | - Min Zhou
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhibin Xu
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Bizhi Shi
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hua Jiang
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zonghai Li
- State Key Laboratory of Oncogenes & Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
42
|
Chang L, Shi R, Yang T, Li F, Li G, Guo Y, Lang B, Yang W, Zhuang Q, Xu H. Restoration of LRIG1 suppresses bladder cancer cell growth by directly targeting EGFR activity. J Exp Clin Cancer Res 2013; 32:101. [PMID: 24314030 PMCID: PMC3880093 DOI: 10.1186/1756-9966-32-101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/04/2013] [Indexed: 11/10/2022] Open
Abstract
Background Recently, leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1), a negative regulator of EGFR, was discovered is a novel agent for suppressing bladder cancer. The aim of this study was to investigate the impact of LRIG1 on the biological features of aggressive bladder cancer cells and the possible mechanisms of enhanced apoptosis induced by upregulation of LRIG1. Methods In this study, we examined the mRNA and protein expression of LRIG1 and EGFR in bladder cancers and normal bladder. Meanwhile, we overexpressed LRIG1 with adenovirus vector in T24/5637 bladder cancer cell lines, and we used real time-PCR, western blot, and co-immunoprecipitation analysis in order to examine the effects of LRIG1 gene on EGFR. Furthermore, we evaluate the impact of LRIG1 gene on the function of human bladder cancer cells and EGFR signaling. Results The expression of LRIG1 was decreased, while the expression of EGFR was increased in the majority of bladder cancer, and the ratio of EGFR/LRIG1 was increased in tumors versus normal tissue. We found that upregulation of LRIG1 induced cell apoptosis and cell growth inhibition, and further reversed invasion in bladder cancer cell lines in vitro by inhibiting phosphorylation of downstream MAPK and AKT signaling pathway. Conclusion Taken together, our findings provide us with an insight into LRIG1 function, and we conclude that LRIG1 evolved in bladder cancer as a rare feedback negative attenuator of EGFR, thus could offer a novel therapeutic target to treat patients with bladder cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Hua Xu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
43
|
Gong H, Kovar JL, Cheung L, Rosenthal EL, Olive DM. A comparative study of affibody, panitumumab, and EGF for near-infrared fluorescence imaging of EGFR- and EGFRvIII-expressing tumors. Cancer Biol Ther 2013; 15:185-93. [PMID: 24100437 DOI: 10.4161/cbt.26719] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Aberrant overexpression and/or activation of epidermal growth factor receptor (EGFR) is associated with many types of cancers. EGFR variant III (EGFRvIII) is a common in-frame deletion mutant, which lacks a large part of the extracellular portion (exons 2-7), including components of the ligand-binding domain. Although EGFR has been extensively studied as a molecular imaging target, information about EGFRvIII-targeted molecular imaging is lacking. In this study, the EGFR-specific affibody, therapeutic antibody panitumumab, and ligand EGF were labeled with IRDye 800CW (Ex/Em: 774/789 nm), yielding Aff800, Pan800, and EGF800, respectively. The binding affinities of the labeled agents were compared in cell-based assays using a rat glioma cell line F98 parental (F98-p) lacking EGFR expression, and 2 F98-derived transgenic cell lines expressing EGFR or EGFRvIII (designated as F98-EGFR and F98-vIII, respectively). Results showed that all agents could bind to F98-EGFR, with Pan800 having the highest binding affinity, followed by Aff800 and EGF800. Pan800 and Aff800, but not EGF800, also bound to F98-vIII. In vivo animal imaging demonstrated that compared with F98-p tumors, F98-EGFR tumors generated higher signals with all three agents. However, in the case of F98-vIII, only Pan800 and Aff800 signals were higher. Analysis of tissue lysates showed that a large portion of Pan800 was degraded into small fragments in F98-EGFR and F98-vIII tumors, possibly due to proteolytic digestion after its specific binding and internalization. In conclusion, Pan800 and Aff800 could be used as imaging agents for both wild-type EGFR and EGFRvIII, whereas EGF800 only targets wild-type EGFR.
Collapse
Affiliation(s)
| | | | | | - Eben L Rosenthal
- Division of Otolaryngology; Head and Neck Surgery; University of Alabama at Birmingham; Birmingham, AL USA
| | | |
Collapse
|
44
|
EGFR exon-level biomarkers of the response to bevacizumab/erlotinib in non-small cell lung cancer. PLoS One 2013; 8:e72966. [PMID: 24039832 PMCID: PMC3769372 DOI: 10.1371/journal.pone.0072966] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 07/16/2013] [Indexed: 02/02/2023] Open
Abstract
Activating epidermal growth factor receptor (EGFR) mutations are recognized biomarkers for patients with metastatic non-small cell lung cancer (NSCLC) treated with EGFR tyrosine kinase inhibitors (TKIs). EGFR TKIs can also have activity against NSCLC without EGFR mutations, requiring the identification of additional relevant biomarkers. Previous studies on tumor EGFR protein levels and EGFR gene copy number revealed inconsistent results. The aim of the study was to identify novel biomarkers of the response to TKIs in NSCLC by investigating whole genome expression at the exon-level. We used exon arrays and clinical samples from a previous trial (SAKK19/05) to investigate the expression variations at the exon-level of 3 genes potentially playing a key role in modulating treatment response: EGFR, V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) and vascular endothelial growth factor (VEGFA). We identified the expression of EGFR exon 18 as a new predictive marker for patients with untreated metastatic NSCLC treated with bevacizumab and erlotinib in the first line setting. The overexpression of EGFR exon 18 in tumor was significantly associated with tumor shrinkage, independently of EGFR mutation status. A similar significant association could be found in blood samples. In conclusion, exonic EGFR expression particularly in exon 18 was found to be a relevant predictive biomarker for response to bevacizumab and erlotinib. Based on these results, we propose a new model of EGFR testing in tumor and blood.
Collapse
|
45
|
The monoclonal antibody CH12 augments 5-fluorouracil-induced growth suppression of hepatocellular carcinoma xenografts expressing epidermal growth factor receptor variant III. Cancer Lett 2013; 342:113-20. [PMID: 24007863 DOI: 10.1016/j.canlet.2013.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 08/16/2013] [Accepted: 08/26/2013] [Indexed: 11/22/2022]
Abstract
5-Fluorouracil (5-FU) is one of the most common chemotherapeutic agents used for the treatment of hepatocellular carcinoma (HCC). However, chemoresistance has precluded the use of 5-FU alone in clinical regimens. Combination therapies with 5-FU and other anticancer agents are considered to be a therapeutic option for patients with HCC. We previously reported that the expression of epidermal growth factor receptor variant III (EGFRvIII) can decrease the sensitivity of HCC cells to 5-FU. To overcome this problem, in this study, we elucidated the mechanism underlying EGFRvIII-mediated 5-FU resistance. We observed that EGFRvIII expression can induce miR-520d-3p downregulation and the ensuing upregulation of the transcription factor E2F-1 and the enzyme thymidylate synthase (TS), which may lead to drug resistance. Intriguingly, we found that CH12, a monoclonal antibody directed against EGFRvIII, and 5-FU together had an additive antitumor effect on EGFRvIII-positive HCC xenografts and significantly improved survival in all mice with established tumors when compared with either 5-FU or CH12 alone. Mechanistically, compared with 5-FU alone, the combination more noticeably downregulated EGFR phosphorylation and Akt phosphorylation as well as the expression of the apoptotic protector Bcl-xL and the cell cycle regulator cyclin D1. Additionally, the combination upregulated the expression of the cell cycle inhibitor p27 in in vivo treatment. More interestingly, CH12 treatment upregulated miR-520-3p and downregulated E2F-1 and TS at the mRNA and protein levels. Collectively, these observations suggest that the combination of 5-FU with mAb CH12 is a potential means of circumventing EGFRvIII-mediated 5-FU resistance in HCC.
Collapse
|
46
|
Furrukh M, Al-Moundhri M, Zahid KF, Kumar S, Burney I. Customised, Individualised Treatment of Metastatic Non-Small-Cell Lung Carcinoma (NSCLC). Sultan Qaboos Univ Med J 2013; 13:202-17. [PMID: 23862025 PMCID: PMC3706109 DOI: 10.12816/0003225] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/18/2012] [Accepted: 10/27/2012] [Indexed: 01/27/2023] Open
Abstract
A series of phase II and randomised phase III trials in Asia and Europe have confirmed recently that advanced stage non-small-cell lung carcinoma patients with adenocarcinoma subtypes harbouring specific mutations when subjected to targeted therapy experience equivalent survival outcomes as those treated with chemotherapy and are spared from its side effects. The concept of chemotherapy for all is fading, and therapy optimisation has emerged as a paradigm shift in treatment. This article briefly describes cellular mechanisms involved in lung carcinogenesis which provide a molecular basis for targeted therapy. Advances in molecular biology have improved our understanding of mechanisms involved in primary or secondary drug resistance. Evolving biomarkers of prognostic and predictive importance, and the impact of translational research on outcomes are also covered. A marker is considered prognostic if it predicts the outcome, regardless of the treatment, and predictive if it predicts the outcome of a specific therapy.
Collapse
Affiliation(s)
- Muhammad Furrukh
- Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman
| | - Mansour Al-Moundhri
- Department of Medicine, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Khawaja F. Zahid
- Oncology Department, Shaukat Khanum Memorial Cancer Hospital & Research Center, Lahore, Pakistan
| | - Shiyam Kumar
- Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman
| | - Ikram Burney
- Department of Medicine, Sultan Qaboos University Hospital, Muscat, Oman
| |
Collapse
|
47
|
Multiplex ligation-dependent probe amplification (MLPA) in tumor diagnostics and prognostics. ACTA ACUST UNITED AC 2013; 21:189-206. [PMID: 23111197 DOI: 10.1097/pdm.0b013e3182595516] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The increasing knowledge about genetic alterations and molecular biomarkers in cancer initiation and progression opens new possibilities for the treatment of various types of cancer. This requires the inclusion of sensitive, and preferably multiplex, methods for the detection of molecular genetic alterations in the toolbox of classic pathology. Multiplex ligation-dependent probe amplification (MLPA) is a multiplex polymerase chain reaction-based method that can detect changes in the gene copy number status, DNA methylation, and point mutations simultaneously. MLPA probes recognize target sequences of only 50 to 100 nucleotides in length. This makes it possible to use MLPA even on highly fragmented DNA, and allows the detection of small deletions encompassing only a single exon. MLPA is a reliable, cost-effective, and robust method that can be performed using a standard thermocycler and capillary electrophoresis equipment, generating results within 24 hours with a short hands-on working time. Up to 50 different genomic locations can be tested in a single reaction, which can be sufficient to detect those genetic alterations that are of diagnostic and prognostic significance in a certain tumor entity. In the last years, MLPA has been used successfully in tumor diagnostics and in cancer research. This review gives an overview on the collected experience of MLPA applications on tumor DNA, about the advantages but also potential pitfalls and limitations of this technique.
Collapse
|
48
|
Hirte HW. Profile of erlotinib and its potential in the treatment of advanced ovarian carcinoma. Onco Targets Ther 2013; 6:427-35. [PMID: 23723710 PMCID: PMC3665572 DOI: 10.2147/ott.s30373] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The epidermal growth-factor receptor (EGFR) is overexpressed in the majority of epithelial ovarian cancers and promotes cell proliferation, migration and invasion, and angiogenesis, as well as resistance to apoptosis. This makes EGFR an attractive therapeutic target in this disease. A number of strategies to block EGFR activity have been developed, including small-molecular-weight tyrosine kinase inhibitors such as erlotinib. Erlotinib has been evaluated as a single agent in recurrent ovarian cancer, as well as in combination with chemotherapeutic agents in the first-line and recurrent settings, and in combination with the antiangiogenic agent bevacizumab in the recurrent setting, as well as in the maintenance setting after completion of first-line chemotherapy. Unfortunately, erlotinib has shown only minimal efficacy as a single agent, and it has not enhanced the effects of chemotherapy or bevacizumab when combined with these agents. Ongoing and future studies of erlotinib and other agents blocking EGFR will need to define mechanisms resulting in resistance to such interventions, and to validate biomarkers of response to identify patients most likely to benefit from such approaches.
Collapse
Affiliation(s)
- Hal W Hirte
- Department of Oncology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
49
|
Qi Y, Chang L, Li H, Yu G, Xiao W, Xia D, Guan W, Yang Y, Lang B, Deng KL, Yao WM, Ye ZQ, Zhuang QY. Over-expression of LRIG3 suppresses growth and invasion of bladder cancer cells. ACTA ACUST UNITED AC 2013; 33:111-116. [PMID: 23392718 DOI: 10.1007/s11596-013-1081-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Indexed: 11/26/2022]
Abstract
The purpose of this study was to investigate the impact of leucine-rich repeats and immunoglobulin-like domains 3 (LRIG3) on the biological features of bladder cancer cell lines. The plasmids of over-expressed LRIG3 and the blank plasmid serving as control were transfected into the bladder cancer cell lines, T24, EJ and BIU-87, and the expression levels of LRIG3 mRNA and protein were detected by using real-time PCR and Western blotting. The changes in the cell cycle and apoptosis were examined by using flow cytometry. The invasive ability was measured by Transwell assay, and CCK-8 assays were used to measure the proliferation of cells. As compared with the control group, the LRIG3 mRNA and protein expression levels in LRIG3 cDNA-transfected group were raised significantly (P<0.05). The average number of cells with up-regulated LRIG3 passing through the inserted filter was decreased significantly as compared with the control group (P<0.05). Up-regulation of LRIG3 also could inhibit proliferation and induce apoptosis of T24, EJ and BIU-87 cells. Except BIU-87, the T24 and EJ cells transfected with LIRG3 cDNA were arrested in G(0)/G(1) phase compared to the control group (P<0.05). In conclusion, the over-expression of LRIG3 could influence the cell cycle and invasion, inhibit proliferation and induce apoptosis in the three bladder cancer cell lines.
Collapse
Affiliation(s)
- Yong Qi
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lei Chang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Heng Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gan Yu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Xiao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ding Xia
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Guan
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bin Lang
- School of Health Sciences, Macao Polytechnic Institute, Macao, China
| | - Kang-Li Deng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei-Min Yao
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhang-Qun Ye
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian-Yuan Zhuang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
50
|
Linking proteomic and transcriptional data through the interactome and epigenome reveals a map of oncogene-induced signaling. PLoS Comput Biol 2013; 9:e1002887. [PMID: 23408876 PMCID: PMC3567149 DOI: 10.1371/journal.pcbi.1002887] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 11/30/2012] [Indexed: 02/06/2023] Open
Abstract
Cellular signal transduction generally involves cascades of post-translational protein modifications that rapidly catalyze changes in protein-DNA interactions and gene expression. High-throughput measurements are improving our ability to study each of these stages individually, but do not capture the connections between them. Here we present an approach for building a network of physical links among these data that can be used to prioritize targets for pharmacological intervention. Our method recovers the critical missing links between proteomic and transcriptional data by relating changes in chromatin accessibility to changes in expression and then uses these links to connect proteomic and transcriptome data. We applied our approach to integrate epigenomic, phosphoproteomic and transcriptome changes induced by the variant III mutation of the epidermal growth factor receptor (EGFRvIII) in a cell line model of glioblastoma multiforme (GBM). To test the relevance of the network, we used small molecules to target highly connected nodes implicated by the network model that were not detected by the experimental data in isolation and we found that a large fraction of these agents alter cell viability. Among these are two compounds, ICG-001, targeting CREB binding protein (CREBBP), and PKF118–310, targeting β-catenin (CTNNB1), which have not been tested previously for effectiveness against GBM. At the level of transcriptional regulation, we used chromatin immunoprecipitation sequencing (ChIP-Seq) to experimentally determine the genome-wide binding locations of p300, a transcriptional co-regulator highly connected in the network. Analysis of p300 target genes suggested its role in tumorigenesis. We propose that this general method, in which experimental measurements are used as constraints for building regulatory networks from the interactome while taking into account noise and missing data, should be applicable to a wide range of high-throughput datasets. The ways in which cells respond to changes in their environment are controlled by networks of physical links among the proteins and genes. The initial signal of a change in conditions rapidly passes through these networks from the cytoplasm to the nucleus, where it can lead to long-term alterations in cellular behavior by controlling the expression of genes. These cascades of signaling events underlie many normal biological processes. As a result, being able to map out how these networks change in disease can provide critical insights for new approaches to treatment. We present a computational method for reconstructing these networks by finding links between the rapid short-term changes in proteins and the longer-term changes in gene regulation. This method brings together systematic measurements of protein signaling, genome organization and transcription in the context of protein-protein and protein-DNA interactions. When used to analyze datasets from an oncogene expressing cell line model of human glioblastoma, our approach identifies key nodes that affect cell survival and functional transcriptional regulators.
Collapse
|