1
|
Acute Tubular Injury is Associated With Severe Traumatic Brain Injury: in Vitro Study on Human Tubular Epithelial Cells. Sci Rep 2019; 9:6090. [PMID: 30988316 PMCID: PMC6465296 DOI: 10.1038/s41598-019-42147-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/15/2019] [Indexed: 01/12/2023] Open
Abstract
Acute kidney injury following traumatic brain injury is associated with poor outcome. We investigated in vitro the effects of plasma of brain injured patients with acute tubular kidney injury on kidney tubular epithelial cell function. we performed a prospective observational clinical study in ICU in a trauma centre of the University hospital in Italy including twenty-three ICU patients with traumatic brain injury consecutively enrolled. Demographic data were recorded on admission: age 39 ± 19, Glasgow Coma Score 5 (3–8). Neutrophil Gelatinase-Associated Lipocalin and inflammatory mediators were measured in plasma on admission and after 24, 48 and 72 hours; urine were collected for immunoelectrophoresis having healthy volunteers as controls. Human renal proximal tubular epithelial cells were stimulated with patients or controls plasma. Adhesion of freshly isolated human neutrophils and trans-epithelial electrical resistance were assessed; cell viability (XTT assay), apoptosis (TUNEL staining), Neutrophil Gelatinase-Associated Lipocalin and Megalin expression (quantitative real-time PCR) were measured. All patients with normal serum creatinine showed increased plasmatic Neutrophil Gelatinase-Associated Lipocalin and increased urinary Retinol Binding Protein and α1-microglobulin. Neutrophil Gelatinase-Associated Lipocalin was significantly correlated with both inflammatory mediators and markers of tubular damage. Patient’ plasma incubated with tubular cells significantly increased adhesion of neutrophils, reduced trans-epithelial electrical resistance, exerted a cytotoxic effect and triggered apoptosis and down-regulated the endocytic receptor Megalin compared to control. Plasma of brain injured patients with increased markers of subclinical acute kidney induced a pro-inflammatory phenotype, cellular dysfunction and apoptotic death in tubular epithelial cells.
Collapse
|
2
|
Minor DM, Proud D. Role of human rhinovirus in triggering human airway epithelial-mesenchymal transition. Respir Res 2017; 18:110. [PMID: 28558698 PMCID: PMC5450126 DOI: 10.1186/s12931-017-0595-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 05/24/2017] [Indexed: 12/30/2022] Open
Abstract
Background Structural changes in the airways, collectively referred to as airway remodeling, are a characteristic feature of asthma, and are now known to begin in early life. Human rhinovirus (HRV)-induced wheezing illnesses during early life are a potential inciting stimulus for remodeling. Increased deposition of matrix proteins causes thickening of the lamina reticularis, which is a well-recognized component of airway remodeling. Increased matrix protein deposition is believed to be due to the presence of increased numbers of activated mesenchymal cells (fibroblasts/myofibroblasts) in the subepithelial region of asthmatic airways. The origin of these increased mesenchymal cells is not clear, but one potential contributor is the process of epithelial-mesenchymal transition (EMT). We hypothesized that HRV infection may help to induce EMT. Methods We used the BEAS-2B human bronchial epithelial cells line, which uniformly expresses the major group HRV receptor, to examine the effects of stimulation with HRV alone, transforming growth factor-β1 (TGF-β1), alone, and the combination, on induction of changes consistent with EMT. Western blotting was used to examine expression of epithelial and mesenchymal phenotypic marker proteins and selected signaling molecules. Cell morphology was also examined. Results In this study, we show that two different strains of HRV, which use two different cellular receptors, are each capable of triggering phenotypic changes consistent with EMT. Moreover, both HRV serotypes synergistically induced changes consistent with EMT when used in the presence of TGF-β1. Morphological changes were also most pronounced with the combination of HRV and TGF-β1. Viral replication was not essential for phenotypic changes. The synergistic interactions between HRV and TGF-β1 were mediated, at least in part, via activation of mitogen activated protein kinase pathways, and via induction of the transcription factor SLUG. Conclusions These data support a role for HRV in the induction of EMT, which may contribute to matrix protein deposition and thickening of the lamina reticularis in airways of patients with asthma.
Collapse
Affiliation(s)
- Danielle M Minor
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,University of Calgary, Faculty of Medicine, HRIC 4C50-54, 3280 Hospital Drive N.W., Calgary, AB, T2N 4Z6, Canada
| | - David Proud
- Department of Physiology & Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada. .,Department of Physiology & Pharmacology, HRIC 4AC60, University of Calgary Cumming School of Medicine, 3280 Hospital Drive NW, Calgary, Alberta, T2N 4Z6, Canada.
| |
Collapse
|
3
|
Brune KA, Ferreira F, Mandke P, Chau E, Aggarwal NR, D’Alessio FR, Lambert AA, Kirk G, Blankson J, Drummond MB, Tsibris AM, Sidhaye VK. HIV Impairs Lung Epithelial Integrity and Enters the Epithelium to Promote Chronic Lung Inflammation. PLoS One 2016; 11:e0149679. [PMID: 26930653 PMCID: PMC4773117 DOI: 10.1371/journal.pone.0149679] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/03/2016] [Indexed: 12/23/2022] Open
Abstract
Several clinical studies show that individuals with HIV are at an increased risk for worsened lung function and for the development of COPD, although the mechanism underlying this increased susceptibility is poorly understood. The airway epithelium, situated at the interface between the external environment and the lung parenchyma, acts as a physical and immunological barrier that secretes mucins and cytokines in response to noxious stimuli which can contribute to the pathobiology of chronic obstructive pulmonary disease (COPD). We sought to determine the effects of HIV on the lung epithelium. We grew primary normal human bronchial epithelial (NHBE) cells and primary lung epithelial cells isolated from bronchial brushings of patients to confluence and allowed them to differentiate at an air- liquid interface (ALI) to assess the effects of HIV on the lung epithelium. We assessed changes in monolayer permeability as well as the expression of E-cadherin and inflammatory modulators to determine the effect of HIV on the lung epithelium. We measured E-cadherin protein abundance in patients with HIV compared to normal controls. Cell associated HIV RNA and DNA were quantified and the p24 viral antigen was measured in culture supernatant. Surprisingly, X4, not R5, tropic virus decreased expression of E-cadherin and increased monolayer permeability. While there was some transcriptional regulation of E-cadherin, there was significant increase in lysosome-mediated protein degradation in cells exposed to X4 tropic HIV. Interaction with CXCR4 and viral fusion with the epithelial cell were required to induce the epithelial changes. X4 tropic virus was able to enter the airway epithelial cells but not replicate in these cells, while R5 tropic viruses did not enter the epithelial cells. Significantly, X4 tropic HIV induced the expression of intercellular adhesion molecule-1 (ICAM-1) and activated extracellular signal-regulated kinase (ERK). We demonstrate that HIV can enter airway epithelial cells and alter their function by impairing cell-cell adhesion and increasing the expression of inflammatory mediators. These observed changes may contribute local inflammation, which can lead to lung function decline and increased susceptibility to COPD in HIV patients.
Collapse
Affiliation(s)
- Kieran A. Brune
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Fernanda Ferreira
- Division of Infectious Diseases, Mass General Hospital, Boston, MA, United States of America
| | - Pooja Mandke
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Eric Chau
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Neil R. Aggarwal
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Franco R. D’Alessio
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Allison A. Lambert
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Gregory Kirk
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States of America
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD, United States of America
| | - Joel Blankson
- Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD, United States of America
| | - M. Bradley Drummond
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Athe M. Tsibris
- Division of Infectious Diseases, Mass General Hospital, Boston, MA, United States of America
| | - Venkataramana K. Sidhaye
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
4
|
Dendritic cells from aged subjects contribute to chronic airway inflammation by activating bronchial epithelial cells under steady state. Mucosal Immunol 2014; 7:1386-94. [PMID: 24759206 PMCID: PMC4205198 DOI: 10.1038/mi.2014.28] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 03/24/2014] [Indexed: 02/04/2023]
Abstract
The mechanisms underlying the increased susceptibility of the elderly to respiratory infections are not well understood. The crosstalk between the dendritic cells (DCs) and epithelial cells is essential in maintaining tolerance as well as in generating immunity in the respiratory mucosa. DCs from aged subjects display an enhanced basal level of activation, which can affect the function of epithelial cells. Our results suggest that this is indeed the scenario as exposure of primary bronchial epithelial cells (PBECs) to supernatants from unstimulated DCs of aged subjects resulted in activation of PBECs. The expression of CCL20, CCL26, CXCL10, mucin, and CD54 was significantly increased in the PBECs exposed to aged DC supernatants, but not to young DC supernatants. Furthermore, aged DC supernatants also enhanced the permeability of the PBEC barrier. We also found that DCs from aged subjects spontaneously secreted increased levels of pro-inflammatory mediators, interleukin-6, tumor necrosis factor (TNF)-α, and metalloproteinase A disintegrin family of metalloproteinase 10, which can affect the functions of PBECs. Finally, we demonstrated that TNF-α, present in the supernatant of DCs from aged subjects, was the primary pro-inflammatory mediator that affected PBEC functions. Thus, age-associated alterations in DC-epithelial interactions contribute to chronic airway inflammation in the elderly, increasing their susceptibility to respiratory diseases.
Collapse
|
5
|
Abstract
The airway epithelial cell is the initial cell type impacted both by inhaled environmental factors, such as pathogens, allergens, and pollutants, and inhaled medications for airway diseases. As such, epithelial cells are now recognized to play a central role in the regulation of airway inflammatory status, structure, and function in normal and diseased airways. This article reviews our current knowledge regarding the roles of the epithelial cell in airway inflammation and host defense. The interactions of inhaled environmental factors and pathogens with epithelial cells are also discussed, with an emphasis on epithelial innate immune responses and contributions of epithelial cells to immune regulation. Recent evidence suggesting that epithelial cells play an active role in inducing several of the structural changes, collectively referred to airway remodeling, seen in the airways of asthmatic subjects is reviewed. Finally, the concept that the epithelium is a major target for the actions of a number of classes of inhaled medications is discussed, as are the potential mechanisms by which selected drugs may alter epithelial function.
Collapse
Affiliation(s)
- David Proud
- Department of Physiology and Pharmacology, University of Calgary Faculty of Medicine, Calgary, AB, Canada.
| | | |
Collapse
|
6
|
Koelsche C, Strebovsky J, Baetz A, Dalpke AH. Structural and functional analysis of a nuclear localization signal in SOCS1. Mol Immunol 2009; 46:2474-80. [PMID: 19515423 DOI: 10.1016/j.molimm.2009.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 05/18/2009] [Indexed: 01/12/2023]
Abstract
Suppressor of cytokine signaling 1 (SOCS1) belongs to a family of genes involved in inducible feedback inhibition of janus kinases (JAKs) and signal transducers and activators of transcription (STATs) signaling pathway. Recently, we were able to show that SOCS1 surprisingly translocates to the nucleus due to the presence of a functional nuclear localization signal (NLS). However, the precise nature of the NLS remained ill-defined. Here we investigated further details of the SOCS1 NLS and analyzed its functional importance. We show that nuclear transport of SOCS1 particularly depends on the second cluster of basic amino acid residues within the NLS. Neither the first nor a nearby identified third cluster of basic amino acids were sufficient for mediating nuclear localization of SOCS1. Altering the subcellular localization of SOCS1 by mutating clusters of arginine residues within the NLS did not affect the inhibition of interferon mediated STAT1 tyrosine-phosphorylation, but surprisingly led to impaired inhibitory activity of STAT mediated reporter gene induction and IFN-gamma induced CD54 regulation. A SOCS-box deletion mutant (E176X) also had reduced inhibitory activity. In contrast, nuclear factor kappaB (NFkappaB) signaling was not affected by SOCS1 wt or mutants. Thus, SOCS1 may accomplish its inhibitory function in the IFN-pathway in part through nuclear localization.
Collapse
Affiliation(s)
- Christian Koelsche
- Department of Hygiene and Medical Microbiology, Hygiene Institute, University Heidelberg, Germany
| | | | | | | |
Collapse
|
7
|
Zemans RL, Colgan SP, Downey GP. Transepithelial migration of neutrophils: mechanisms and implications for acute lung injury. Am J Respir Cell Mol Biol 2009; 40:519-35. [PMID: 18978300 PMCID: PMC2677434 DOI: 10.1165/rcmb.2008-0348tr] [Citation(s) in RCA: 256] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Indexed: 12/20/2022] Open
Abstract
The primary function of neutrophils in host defense is to contain and eradicate invading microbial pathogens. This is achieved through a series of swift and highly coordinated responses culminating in ingestion (phagocytosis) and killing of invading microbes. While these tasks are usually performed without injury to host tissues, in pathologic circumstances such as sepsis, potent antimicrobial compounds can be released extracellularly, inducing a spectrum of responses in host cells ranging from activation to injury and death. In the lung, such inflammatory damage is believed to contribute to the pathogenesis of diverse lung diseases, including acute lung injury and the acute respiratory distress syndrome, chronic obstructive lung disease, and cystic fibrosis. In these disorders, epithelial cells are targets of leukocyte-derived antimicrobial products, including proteinases and oxidants. Herein, we review the mechanisms involved in the physiologic process of neutrophil transepithelial migration, including the role of specific adhesion molecules on the leukocyte and epithelial cells. We examine the responses of the epithelial cells to the itinerant leukocytes and their cytotoxic products and the consequences of this for lung injury and repair. This paradigm has important clinical implications because of the potential for selective blockade of these pathways to prevent or attenuate lung injury.
Collapse
Affiliation(s)
- Rachel L Zemans
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | | | | |
Collapse
|
8
|
Bhalla DK, Hirata F, Rishi AK, Gairola CG. Cigarette smoke, inflammation, and lung injury: a mechanistic perspective. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2009; 12:45-64. [PMID: 19117209 DOI: 10.1080/10937400802545094] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Inflammation is a common feature in the pathogenesis of cigarette smoke-associated diseases. The recruitment of inflammatory cells into the lung following cigarette smoke exposure presents a risk of tissue damage through the release of toxic mediators, including proteolytic enzymes and reactive oxygen species. This review represents a toxicological approach to investigation of cigarette smoke-induced lung injury, with a focus on laboratory studies and an emphasis on inflammatory mechanisms. The studies discussed in this review analyze the role of inflammation and inflammatory mediators in the development of injury. In cases where information relating to cigarette smoke is limited, examples are taken from other models of lung injury applicable to cigarette smoke. The primary aim of the review is to summarize published work so as to permit (1) an evaluation of chronic lung injury and inflammatory responses in animal models, (2) a discussion of inflammatory mediators in the development of chronic injury, and (3) identification of immunological mechanisms of injury. These studies discuss the currently understood roles of cytokines, cell adhesion molecules, and oxidative stress in inflammatory reactions and lung injury. A role for lipocortin 1 (annexin 1), a naturally occurring defense factor against inflammation, is discussed because of the possibility that impaired synthesis and degradation of lipocortin 1 will influence immune responses in animals exposed to cigarette smoke either by augmenting T helper cell Th1 response or by shifting Th1 to Th2 response. While Th1 augmentation will increase the risk for development of emphysema, Th1 to Th2 shift will favor development of asthma.
Collapse
Affiliation(s)
- Deepak K Bhalla
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, Michigan 48202, USA.
| | | | | | | |
Collapse
|
9
|
Lubrano V, Boni G, L'Abbate A, Turchi G. Antioxidant Activity of Plicatin B on Cultured Human Microvascular Endothelial Cells Exposed to H2O2. Drug Chem Toxicol 2008; 30:311-25. [DOI: 10.1080/01480540701522148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Olejniczak I, Kobos J, Gryczyński M, Durko M, Pietruszewska W. [Expression of adhesion molecule ICAM-1 in patients with nasal polyps]. Otolaryngol Pol 2008; 61:607-11. [PMID: 18260262 DOI: 10.1016/s0030-6657(07)70495-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Nasal polyposis is a chronic inflammatory disease of the nasal mucosa. The prevalence of nasal polyps seems to vary between 1 and 4% of the population. The pathogenesis of nasal polyps is still not entirely known and has been debated for many years. The aim of the present study was to evaluate the expression of adhesion molecule ICAM-1 in patients with nasal polyps. MATERIALS AND METHODS 53 patients with nasal polyposis were selected and divided into two groups--allergic and non-allergic. Patients with allergy were distinguished from those without allergy on the basis of positive allergy skin tests to dust and serum levels of IgE. Immunohistochemical studies with monoclonal antibody against ICAM-1 antigen (NCL-CD54, Novocastra) using immunoperoxidase method were performed to evaluate expression of ICAM-1. RESULTS Immunoexpression of ICAM-1 was present on some epithelial cells and on fibroblast, inflammatory cells and endothelium in the submucosa. The mean +/-SD values of the immunoexpression of ICAM-1 were significantly increased in dust-sensitive patients compared with dust-tolerant patients (1.93 +/- 0.83 vs 0.83 +/- 0.73 (p < 0.001). CONCLUSIONS This research suggests that ICAM-1 plays an important role in the pathogenesis of nasal polyps and the allergic mechanism may play a fundamental role in this process. However, further examinations to confirm this need to be undertaken.
Collapse
|
11
|
Upregulation of ICAM-1 expression in bronchial epithelial cells by airway secretions in bronchiectasis. Respir Med 2007; 102:287-98. [PMID: 17931847 DOI: 10.1016/j.rmed.2007.08.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 08/17/2007] [Accepted: 08/30/2007] [Indexed: 11/23/2022]
Abstract
The airway epithelium participates in chronic airway inflammation by expressing adhesion molecules that mediate the transmigration of neutrophils into the inflamed airways. We hypothesize that, in patients with bronchiectasis, cytokines in their bronchial secretions enhance the expression of intercellular cell adhesion molecule (ICAM-1) in the bronchial epithelium and thus contribute to sustained recruitment of neutrophils into the inflamed airways. In the present study, we investigated the effect of bronchial secretions on the regulation of ICAM-1 in bronchial epithelial cells, and its modulation by pharmacologic agents. The expression of ICAM-1 mRNA and protein in human bronchial epithelial cells upon exposure to sputum sol from subjects with bronchiectasis were evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and ELISA, respectively. Modulating effects of dexamethasone, ibuprofen, MK-663 or triptolide on ICAM-1 regulation were investigated in vitro. We demonstrated that changes in ICAM-1 expression correlated with levels of TNF-alpha in the sputum sol, and treatment of sol samples with TNF-alpha antibodies attenuated both the increase in ICAM-1 mRNA and protein. The role of TNF-alpha was further demonstrated when TNF-alpha elicited dose dependent increase in ICAM-1 expression. The sputum effect could also be suppressed dose-dependently by pre-incubation of bronchial epithelial cells with dexamethasone, ibuprofen, MK-663 or triptolide. Evidence is thus provided for the upregulation of bronchial epithelial ICAM-1 expression by airway secretions in bronchiectasis and a specific role for TNF-alpha in the secretions. The success of drug attenuation of this upregulation provides insight into possible therapeutic paradigms in the management of the disease.
Collapse
|
12
|
Lee SY, Park KH, Choi JW, Kwon JK, Lee DR, Shin MS, Lee JS, You CE, Park MY. A prospective, randomized, placebo-controlled, double-blinded, and split-face clinical study on LED phototherapy for skin rejuvenation: clinical, profilometric, histologic, ultrastructural, and biochemical evaluations and comparison of three different treatment settings. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2007; 88:51-67. [PMID: 17566756 DOI: 10.1016/j.jphotobiol.2007.04.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 04/10/2007] [Accepted: 04/11/2007] [Indexed: 10/23/2022]
Abstract
Light-emitting diodes (LEDs) are considered to be effective in skin rejuvenation. We investigated the clinical efficacy of LED phototherapy for skin rejuvenation through the comparison with three different treatment parameters and a control, and also examined the LED-induced histological, ultrastructural, and biochemical changes. Seventy-six patients with facial wrinkles were treated with quasimonochromatic LED devices on the right half of their faces. All subjects were randomly divided into four groups treated with either 830nm alone, 633nm alone, a combination of 830 and 633nm, or a sham treatment light, twice a week for four weeks. Serial photography, profilometry, and objective measurements of the skin elasticity and melanin were performed during the treatment period with a three-month follow-up period. The subject's and investigator's assessments were double-blinded. Skin specimens were evaluated for the histologic and ultrastructural changes, alteration in the status of matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs), and the changes in the mRNA levels of IL-1ss, TNF-alpha, ICAM-1, IL-6 and connexin 43 (Cx43), by utilizing specific stains, TEM, immunohistochemistry, and real-time RT-PCR, respectively. In the results, objectively measured data showed significant reductions of wrinkles (maximum: 36%) and increases of skin elasticity (maximum: 19%) compared to baseline on the treated face in the three treatment groups. Histologically, a marked increase in the amount of collagen and elastic fibers in all treatment groups was observed. Ultrastructural examination demonstrated highly activated fibroblasts, surrounded by abundant elastic and collagen fibers. Immunohistochemistry showed an increase of TIMP-1 and 2. RT-PCR results showed the mRNA levels of IL-1ss, TNF-alpha, ICAM-1, and Cx43 increased after LED phototherapy whereas that of IL-6 decreased. This therapy was well-tolerated by all patients with no adverse effects. We concluded that 830 and 633nm LED phototherapy is an effective approach for skin rejuvenation.
Collapse
Affiliation(s)
- Seung Yoon Lee
- Department of Dermatology, National Medical Center, 18-79, Euljiro 6-ga, Jung-ku, Seoul, Republic of Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Neurogenic pulmonary edema (NPE) is usually defined as an acute pulmonary edema occurring shortly after a central neurologic insult. It has been reported regularly for a long time in numerous and various injuries of the central nervous system in both adults and children, but remains poorly understood because of the complexity of its pathophysiologic mechanisms involving hemodynamic and inflammatory aspects. NPE seems to be under-diagnosed in acute neurologic injuries, partly because the prevention and detection of non-neurologic complications of acute cerebral insults are not at the forefront of the strategy of physicians. The presence of NPE should be high on the list of diagnoses when patients with central neurologic injury suddenly become dyspneic or present with a decreased P(a)o(2)/F(i)o(2) ratio. The associated mortality rate is high, but recovery is usually rapid with early and appropriate management. The treatment of NPE should aim to meet the oxygenation needs without impairing cerebral hemodynamics, to avoid pulmonary worsening and to treat possible associated myocardial dysfunction. During brain death, NPE may worsen myocardial dysfunction, preventing heart harvesting.
Collapse
Affiliation(s)
- A Baumann
- Département d'Anesthésie - Réanimation, Centre Hospitalier Universitaire de Nancy, Hôpital Central, Nancy, France
| | | | | | | |
Collapse
|
14
|
Jeong HJ, Lee SA, Moon PD, Na HJ, Park RK, Um JY, Kim HM, Hong SH. Alginic acid has anti-anaphylactic effects and inhibits inflammatory cytokine expression via suppression of nuclear factor-kappaB activation. Clin Exp Allergy 2006; 36:785-94. [PMID: 16776680 DOI: 10.1111/j.1365-2222.2006.02508.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Alginic acid is comprised of complex polymerized polysaccharides, and can be chemically extracted from seaweed. Alginic acid has an inhibitory effect on histamine release, but its molecular mechanisms are not well understood. OBJECTIVE To investigate the effect of alginic acid on the mast cell-mediated anaphylactic and inflammatory reaction using in vivo and in vitro models and elucidate its molecular mechanisms. MATERIALS AND METHOD The effect of alginic acid on an allergy model was analysed by anaphylaxis, a histidine decarboxylase (HDC) assay, and a histamine assay. Cytokine production was analysed by means of ELISA. Cytokine expression was analysed by means of RT-PCR, and Western blotting. Transcription factor activity was analysed by a luciferase assay and a transcription factor-enzyme linked immunoassay. RESULTS Alginic acid dose dependently inhibited compound 48/80-induced systemic anaphylaxis with doses of 0.25-1 g/kg 1 h (P<0.01, n=6) and significantly inhibited passive cutaneous anaphylaxis by 54.8%. Alginic acid (0.01-1 microg/mL) inhibited histamine release from serum and peritoneal mast cells (P<0.01). All these effects were stronger than those of disodium cromoglycate (DSCG), the reference drug tested. Alginic acid also inhibited HDC expression and activity on the phorbol myristate acetate (PMA)+A23187-stimulated human mast cell line, HMC-1 cells. Moreover, alginic acid significantly inhibited the production of PMA+A23187-induced inflammatory cytokines, IL-1beta and TNF-alpha, but not that of IL-6 or IL-8. In activated HMC-1 cells, the expression level of nuclear factor (NF)-kappaB/Rel A protein increased in the nucleus, whereas the level of NF-kappaB/Rel A in the nucleus was decreased by alginic acid treatment. In addition, alginic acid (0.01 microg/mL) decreased the PMA+A23187-induced luciferase activity and DNA-binding activity. CONCLUSION The present results indicate that alginic acid has potent anti-anaphylactic and anti-inflammatory properties.
Collapse
Affiliation(s)
- H-J Jeong
- College of Pharmacy, VestibuloCochlear Research Center of Wonkwang University, Iksan Jeonbuk, Korea
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Pereira R, Medeiros YS, Fröde TS. Antiinflammatory effects of Tacrolimus in a mouse model of pleurisy. Transpl Immunol 2006; 16:105-11. [PMID: 16860713 DOI: 10.1016/j.trim.2006.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 04/18/2006] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Tacrolimus is an antibiotic macrolide with immunosuppressant properties isolated from Streptomyces tsukubaensis. OBJECTIVES This study evaluated whether the acute and systemic administration of Tacrolimus significantly interfered in leukocyte migration, exudation, myeloperoxidase and adenosine-deaminase and nitric oxide levels, as well as Interleukin-1 (IL-1beta) and tumor necrosis factor alpha (TNFalpha) levels in a mouse model of pleurisy in comparison to those obtained with dexamethasone. MATERIALS AND METHODS Pleurisy was induced by carrageenan (Cg, 1%), bradykinin (BK, 10 nmol), histamine (HIS, 1 micromol) or substance P (PS, 20 nmol) administered by intrapleural route (ipl.) and the inflammatory parameters (cell migration and exudation) were analyzed 4 h after. In the model of pleurisy induced by carrageenan, other markers in the pleural fluid, such as cytokines (TNFalpha and Il-1beta), nitrite/nitrate (NOx), myeloperoxidase (MPO) and adenosine-deaminase (ADA) levels, were also studied. Dexamethaseone (0.5 mg/kg, i.p., 0.5 h before) was also analyzed in all protocols. RESULTS In the pleurisy induced by carrageenan, Tacrolimus (1 mg/kg, i.p.) and dexamethasone (0.5 mg/kg, i.p.) administered 0.5 h before caused a significant decrease in leukocytes, neutrophils and exudation (P < 0.01). Under the same conditions, Tacrolimus and dexamethasone did not modify the blood's white or red cells (P > 0.05). Tacrolimus showed a long lasting antiinflammatory effect, inhibiting leukocytes and neutrophils for up to 24 h (P < 0.01), whereas the inhibition of exudation was less marked (up to 2 h) (P < 0.01). These drugs caused a marked reduction in MPO activity, as well as IL-1beta and TNFalpha levels (P < 0.01), but only Tacrolimus inhibited ADA activity (P < 0.01). On the other hand, dexamethasone, but not Tacrolimus, inhibited NOx levels (P < 0.01). In the same conditions, Tacrolimus significantly inhibited cell migration induced by either bradykinin, histamine or substance P (P < 0.05). In a similar manner, dexamethasone inhibited leukocyte influx induced by bradykinin and histamine (P < 0.05). Regarding exudation effects, dexamethasone markedly inhibited this parameter induced by BK, HIS or SP, whereas Tacrolimus only inhibited exudation caused by HIS (P < 0.05). CONCLUSIONS The results of the present work indicate that Tacrolimus showed important antiinflammatory properties against pleurisy in mice that are different from those caused by dexamethasone. The inhibition of proinflammatory cytokine (TNFalpha, IL-1beta), enzyme (myeloperoxidase, adenosine-deaminase) and mediator (bradykinin, histamine, substance P) release and/or action appears to account for Tacrolimus's actions.
Collapse
Affiliation(s)
- Robson Pereira
- Department of Medical Science, Universidade Federal de Santa Catarina, Campus Universitário - Trindade, 88040-970, Florianópolis, SC, Brazil
| | | | | |
Collapse
|
16
|
Farkas L, Hahn MC, Schmoczer M, Jentsch N, Krätzel K, Pfeifer M, Schulz C. Expression of CXC Chemokine Receptors 1 and 2 in Human Bronchial Epithelial Cells. Chest 2005; 128:3724-34. [PMID: 16304340 DOI: 10.1378/chest.128.5.3724] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
INTRODUCTION CXC chemokine receptor 1 (CXCR1) and CXC chemokine receptor 2 (CXCR2) have been shown to play an important role in transepithelial migration of neutrophil granulocytes during inflammation in various tissues. This study investigated the regulation of gene expression and surface expression of CXCR1 and CXCR2 in a human bronchial epithelial cell line (BEAS-2B), as well as in primary bronchial epithelial cells (PBECs) from 10 COPD patients and 10 control subjects. METHODS AND RESULTS The transcription expression of CXCR1 and CXCR2 was quantitatively assessed by means of real-time polymerase chain reaction (PCR) under various inflammatory conditions. Flow cytometry was used to measure CXCR1 and CXCR2 surface expression. There was a low baseline expression of CXCR1 and CXCR2 in real-time PCR in PBECs from COPD patients and control subjects as well as in BEAS-2B cells, and no significant regulation occurred under various inflammatory conditions in PBECs and BEAS-2B cells. Furthermore, unstimulated surface expression of CXCR1 and CXCR2 on BEAS-2B cells was very low, and no significant regulation was detectable under time-dependent inflammatory stimulation up to 24 h. CONCLUSION Various inflammatory responses that are of potential relevance in COPD pathophysiology do not affect transcription regulation and surface expression of the interleukin-8 receptors CXCR1 and CXCR2 on human bronchial epithelial cells.
Collapse
Affiliation(s)
- Laszlo Farkas
- Klinik und Poliklinik für Innere Medizin II, Klinikum der Universitaet Regensburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Skrabal CA, Thompson LO, Potapov EV, Southard RE, Joyce DL, Youker KA, Noon GP, Loebe M. Organ-specific regulation of pro-inflammatory molecules in heart, lung, and kidney following brain death. J Surg Res 2005; 123:118-25. [PMID: 15652959 DOI: 10.1016/j.jss.2004.07.245] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Indexed: 11/28/2022]
Abstract
BACKGROUND Nonspecific inflammatory events following brain death may increase the intensity of the immunological host response. The present study investigated the course of pro-inflammatory molecules in heart, lung, kidney, and plasma after brain death induction. MATERIALS AND METHODS Brain death was induced in five pigs by inflation of an intracranial Foley catheter and five pigs were sham-operated as controls. Each experiment was terminated 6 h after brain death/sham operation and the organs were harvested. We measured the mRNA and protein levels for TNF-alpha, IL-1beta, and IL-6 in heart, lung, kidney, and plasma. Additionally, the mRNA expression for IL-6R, ICAM-1, MCP-1, and TGF-beta was determined in each organ. RESULTS After 6 h, the plasma cytokine levels were higher in the brain-dead animals than in the sham-operated. In heart, lung, and kidney there was an increase in IL-6 and IL-1beta following brain death, while TNF-alpha was up-regulated in lung only (P < 0.05). MCP-1 and TGF-beta were significantly higher in heart and lung and IL-6R increased in heart after brain death (P < 0.05). CONCLUSIONS Brain death was associated with non-uniform cytokine expression patterns in the investigated organs. These expression patterns may cause variable pro-inflammatory priming resulting in different degrees of damage and explain the organ-specific variation in outcomes after transplantations.
Collapse
Affiliation(s)
- Christian A Skrabal
- Michael E. DeBakey Department of Surgery, Division of Transplant Surgery and Assist Devices, Baylor College of Medicine, Houston, Texas, USA.
| | | | | | | | | | | | | | | |
Collapse
|