1
|
Longhena F, Faustini G, Brembati V, Pizzi M, Benfenati F, Bellucci A. An updated reappraisal of synapsins: structure, function and role in neurological and psychiatric disorders. Neurosci Biobehav Rev 2021; 130:33-60. [PMID: 34407457 DOI: 10.1016/j.neubiorev.2021.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 01/02/2023]
Abstract
Synapsins (Syns) are phosphoproteins strongly involved in neuronal development and neurotransmitter release. Three distinct genes SYN1, SYN2 and SYN3, with elevated evolutionary conservation, have been described to encode for Synapsin I, Synapsin II and Synapsin III, respectively. Syns display a series of common features, but also exhibit distinctive localization, expression pattern, post-translational modifications (PTM). These characteristics enable their interaction with other synaptic proteins, membranes and cytoskeletal components, which is essential for the proper execution of their multiple functions in neuronal cells. These include the control of synapse formation and growth, neuron maturation and renewal, as well as synaptic vesicle mobilization, docking, fusion, recycling. Perturbations in the balanced expression of Syns, alterations of their PTM, mutations and polymorphisms of their encoding genes induce severe dysregulations in brain networks functions leading to the onset of psychiatric or neurological disorders. This review presents what we have learned since the discovery of Syn I in 1977, providing the state of the art on Syns structure, function, physiology and involvement in central nervous system disorders.
Collapse
Affiliation(s)
- Francesca Longhena
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Gaia Faustini
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Viviana Brembati
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Marina Pizzi
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Fabio Benfenati
- Italian Institute of Technology, Via Morego 30, Genova, Italy; IRCSS Policlinico San Martino Hospital, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| | - Arianna Bellucci
- Division of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy; Laboratory for Preventive and Personalized Medicine, Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123, Brescia, Italy.
| |
Collapse
|
2
|
Zhang N, Zhu H, Han S, Sui L, Li J. cPKCγ alleviates ischemic injury through modulating synapsin Ia/b phosphorylation in neurons of mice. Brain Res Bull 2018; 142:156-162. [PMID: 30016727 DOI: 10.1016/j.brainresbull.2018.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/02/2018] [Accepted: 07/12/2018] [Indexed: 01/13/2023]
Abstract
Conventional protein kinase C (cPKC)γ and synapsin Ia/b have been implicated in the development of ischemic stroke, but their relationships and functions are unclear. In the present study, the oxygen-glucose deprivation (OGD)-induced ischemic insult in primary cultured cortical neurons in vitro and middle cerebral artery occlusion (MCAO)-induced ischemic stroke model in vivo were used to elucidate the function of cPKCγ and its modulation on synapsin Ia/b phosphorylation in ischemic stroke. We found that cPKCγ knockout significantly increased the infarct volume of mice after 1 h MCAO/72 h reperfusion by using triphenyltetrazolium chloride (TTC) staining. In the primarily cultured cortical neurons, cPKCγ knockout also aggravated the OGD-induced cell death and morphological damage of neurites, while cPKCγ restoration could alleviate the ischemic injury. Among the five phosphorylation sites of synapsin Ia/b, only the phosphorylation levels of Ser549 and 553 could be modulated by cPKCγ in neurons following 0.5 h OGD/24 h reoxygenation. In addition, we found that cPKCγ and synapsin Ia/b could be reciprocally co-immunoprecipitated in the cerebral cortex of MCAO mice. Taken together, we proposed that cPKCγ alleviates ischemic injury through modulating Ser549/553- synapsin Ia/b phosphorylation in neurons of mice.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Human Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, PR China; Chinese Medical Association Publishing House, Beijing 100710, PR China
| | - Hongyi Zhu
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, PR China
| | - Song Han
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, PR China
| | - Leiming Sui
- Core Facility Center, Capital Medical University, Beijing 100069, PR China
| | - Junfa Li
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
3
|
Evaluation of acetylcholinesterase and adenosine deaminase activities in brain and erythrocytes and proinflammatory cytokine levels in rats submitted to neonatal hypoxia-ischemia model. Mol Cell Biochem 2013; 378:247-55. [DOI: 10.1007/s11010-013-1615-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 03/02/2013] [Indexed: 01/08/2023]
|
4
|
Pimentel V, Pinheiro F, De Bona K, Maldonado P, da Silva C, de Oliveira S, Ferreira J, Bertoncheli C, Schetinger M, Da Luz S, Moretto M. Hypoxic–ischemic brain injury stimulates inflammatory response and enzymatic activities in the hippocampus of neonatal rats. Brain Res 2011; 1388:134-40. [DOI: 10.1016/j.brainres.2011.01.108] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 01/27/2011] [Accepted: 01/29/2011] [Indexed: 11/27/2022]
|
5
|
Moretto MB, Boff B, Lavinsky D, Netto CA, Rocha JBT, Souza DO, Wofchuk ST. Importance of schedule of administration in the therapeutic efficacy of guanosine: early intervention after injury enhances glutamate uptake in model of hypoxia-ischemia. J Mol Neurosci 2008; 38:216-9. [PMID: 18846436 DOI: 10.1007/s12031-008-9154-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 09/26/2008] [Indexed: 10/21/2022]
Abstract
Perinatal cerebral hypoxia-ischemia (HI) is an important cause of mortality and neurological disabilities such as cerebral palsy, epilepsy, and mental retardation. The potential for neuroprotection in HI can be achieved mainly during the recovery period. In previous work, we demonstrated that guanosine (Guo) prevented the decrease of glutamate uptake by hippocampal slices of neonatal rats exposed to a hypoxic-ischemic (HI) insult in vivo when administrated before and after insult. In the present study, we compared the effect of Guo administration only after HI using various protocols. When compared with the control, a decrease of [(3)H] glutamate uptake was avoided only when three doses of Guo were administered immediately, 24 h and 48 h after insult, or at 3 h, 24 h, and 48 h after injury or at 6 h, 24 h, and 48 h after HI. These findings indicate that early Guo administration (until 6 h) after HI, in three doses may enhance glutamate uptake into brain slices after hypoxia/ischemia, probably resulting in decreased excitotoxicity.
Collapse
Affiliation(s)
- M B Moretto
- Departamento de Análises Clínicas e Toxicológicas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | | | | | | | | | | | | |
Collapse
|
6
|
Weitzdörfer R, Höger H, Burda G, Pollak A, Lubec G. Differences in Hippocampal Protein Expression at 3 Days, 3 Weeks, and 3 Months Following Induction of Perinatal Asphyxia in the Rat. J Proteome Res 2008; 7:1945-52. [DOI: 10.1021/pr700835y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Rachel Weitzdörfer
- Department of Pediatrics, Medical University of Vienna, Waehringer Guertel 18, 1090 Vienna, Austria, and Division for Laboratory Animal Science and Genetics, Medical University of Vienna, Brauhausgasse 34, 2325 Himberg, Austria
| | - Harald Höger
- Department of Pediatrics, Medical University of Vienna, Waehringer Guertel 18, 1090 Vienna, Austria, and Division for Laboratory Animal Science and Genetics, Medical University of Vienna, Brauhausgasse 34, 2325 Himberg, Austria
| | - Gudrun Burda
- Department of Pediatrics, Medical University of Vienna, Waehringer Guertel 18, 1090 Vienna, Austria, and Division for Laboratory Animal Science and Genetics, Medical University of Vienna, Brauhausgasse 34, 2325 Himberg, Austria
| | - Arnold Pollak
- Department of Pediatrics, Medical University of Vienna, Waehringer Guertel 18, 1090 Vienna, Austria, and Division for Laboratory Animal Science and Genetics, Medical University of Vienna, Brauhausgasse 34, 2325 Himberg, Austria
| | - Gert Lubec
- Department of Pediatrics, Medical University of Vienna, Waehringer Guertel 18, 1090 Vienna, Austria, and Division for Laboratory Animal Science and Genetics, Medical University of Vienna, Brauhausgasse 34, 2325 Himberg, Austria
| |
Collapse
|
7
|
Valdez SR, Patterson SI, Ezquer ME, Torrecilla M, Lama MC, Seltzer AM. Acute sublethal global hypoxia induces transient increase of GAP-43 immunoreactivity in the striatum of neonatal rats. Synapse 2007; 61:124-37. [PMID: 17146769 DOI: 10.1002/syn.20353] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We assessed immunoreactivity (IR) in the cerebral cortex (CC), hippocampus (Hipp), and striatum (ST) of a growth-associated protein, GAP-43, and of proteins of the synaptic vesicle fusion complex: VAMP-2, Syntaxin-1, and SNAP-25 (SNARE proteins) throughout postnatal development of rats after submitting the animals to acute global postnatal hypoxia (6.5% O(2), 70 min) at postnatal day 4 (PND4). In the CC only the IR of the SNARE protein SNAP-25 increased significantly with age. The hypoxic animals showed the same pattern of IR for SNAP-25, although with lower levels at PND11, and also a significant increase of VAMP-2. SNAP-25 (control): PND11 P < 0.001 vs. PND18, 25, and 40, SNAP-25 (hypoxic): P < 0.001 vs. PND18, 25, and 40; VAMP-2 (hypoxic): P < 0.05 PND11 vs. PND18, and P < 0.01 vs. PND25 and PND40; one-way ANOVA and Bonferroni post-test. In the Hipp, SNAP-25 and syntaxin-1 increased significantly with age, reaching a plateau at PND25 through PND40 in control animals (one-way ANOVA: syntaxin-1: P = 0.043; Bonferroni: NS; SNAP-25: P = 0.013; Bonferroni: P < 0.01 PND11 vs. PND40). Hypoxic rats showed higher levels of significance in the one-way ANOVA than controls (syntaxin-1: P = 0.009; Bonferroni: P < 0.05 PND11 vs. PND25 and P < 0.001 PND11 vs. PND40). In the ST, GAP-43 differed significantly among hypoxic and control animals and the two-way ANOVA revealed significant differences with age (F = 3.23; P = 0.037) and treatment (F = 4.84; P = 0.036). VAMP-2 expression also reached statistical significance when comparing control and treated animals (F = 6.25, P = 0.018) without changes regarding to age. Elevated plus maze test performed at PND40 indicated a lower level of anxiety in the hypoxic animals. At adulthood (12 weeks) learning, memory and locomotor abilities were identical in both groups of animals. With these results, we demonstrate that proteins of the presynaptic structures of the ST are sensitive to acute disruption of homeostatic conditions, such as a temporary decrease of the O(2) concentration. Modifications in the activity of these proteins could contribute to the long term altered responses to stress due to acute hypoxic insult in the neonatal period.
Collapse
Affiliation(s)
- Susana R Valdez
- IMBECU-CRICYT, Centro Regional de Investigaciones Científicas y Tecnológicas, Mendoza, Argentina
| | | | | | | | | | | |
Collapse
|
8
|
Moretto MB, Arteni NS, Lavinsky D, Netto CA, Rocha JBT, Souza DO, Wofchuk S. Hypoxic-ischemic insult decreases glutamate uptake by hippocampal slices from neonatal rats: prevention by guanosine. Exp Neurol 2005; 195:400-6. [PMID: 16051218 DOI: 10.1016/j.expneurol.2005.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 04/15/2005] [Accepted: 06/04/2005] [Indexed: 11/27/2022]
Abstract
Brain injury secondary to hypoxic-ischemic disease is the predominant form of damage encountered in the perinatal period. The impact of neonatal hypoxia-ischemia (HI) in 7-day-old pups on the high-affinity [3H] glutamate uptake into hippocampal slices at different times after insult was examined. Immediately following, and 1 day after the insult there was no effect. But at 3 to 5 days after the HI insult, glutamate uptake into the hippocampus was markedly reduced; however, after 30 or 60 days the glutamate uptake into hippocampal slices returned to control levels. Also, this study demonstrated the effect of the nucleoside guanosine (Guo) on the [3H] glutamate uptake in neonatal HI injury, maintaining the [3H] glutamate uptake at control levels when injected before and after insult HI. We conclude that neonatal HI influences glutamate uptake a few days following insult, and that guanosine prevents this action.
Collapse
Affiliation(s)
- M B Moretto
- Departamento de Análises Clínicas e Toxicológicas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, RS, Brazil
| | | | | | | | | | | | | |
Collapse
|
9
|
Rubens DD. Are lethal audiogenic seizures a missing link to the sudden infant death syndrome? Med Hypotheses 2004; 63:87-91. [PMID: 15193355 DOI: 10.1016/j.mehy.2004.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2004] [Accepted: 02/02/2004] [Indexed: 11/22/2022]
Abstract
The pathogenesis of human seizure disorders has largely been derived from rodent models. A number of rodent and chick strains exhibit a genetic predisposition for lethal audiogenic seizures (AGSs) in the first year of life. Consideration is warranted that this disorder may be linked to the sudden infant death syndrome (SIDS). Factors that carry a strong association with SIDS such as hyperthermia and the prone sleeping position would conceivably play a significant role in a human AGS syndrome. Importantly, there is data to support the likelihood that motor seizure activity may be absent in infants with an AGS syndrome. Rodent AGSs may hold important clues to unraveling the mystery of SIDS.
Collapse
Affiliation(s)
- Daniel D Rubens
- Department of Anesthesia and Critical Care, Children's Hospital and Regional Medical Center, University of Washington, School of Medicine, 4800 Sand Point Way NE, Seattle, WA 98105, USA.
| |
Collapse
|
10
|
Kumar GK, Klein JB. Analysis of expression and posttranslational modification of proteins during hypoxia. J Appl Physiol (1985) 2004; 96:1178-86; discussion 1170-2. [PMID: 14766768 DOI: 10.1152/japplphysiol.00818.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cellular responses to hypoxia are complex and characterized by alterations in the expression of a number of genes, including stress-related genes and corresponding proteins that are necessary to maintain homeostasis. The purpose of this article is to review previous and recent studies that have examined the changes in the expression and posttranslational modification of proteins in response to chronic sustained and intermittent forms of hypoxia. A large number of studies focused on the analysis of either the single protein or a subset of related proteins using one-dimensional gel electrophoresis to separate a complex set of proteins from solubilized tissues or cell extracts, followed by immunostaining of proteins using antibodies that are specific to either native or posttranslationally modified forms. On the other hand, only a limited number of studies have examined the global perturbations on protein expression by hypoxia using proteomics approach involving two-dimensional electrophoresis coupled with mass spectrometry. Results derived from specific protein analysis of a variety of tissues and cells showed that hypoxia, depending on the duration and severity of the stimulus, affects the level and the state of posttranslational modification of a subset of proteins that are associated with energy metabolism, stress response, cell injury, development, and apoptosis. Some of these earlier findings are further corroborated by recent studies that utilize a global proteomics approach, and, more importantly, results from these proteomics investigations on the effects of hypoxia provide new protein targets for further functional analysis. The anticipated new information stems from the analysis of expression, and posttranslational modification of these novel protein targets, along with gene expression profiles, offers exciting new opportunities to further define the mechanisms of cellular responses to hypoxia and to control more effectively the clinical consequences of prolonged or periodic lack of oxygen.
Collapse
Affiliation(s)
- Ganesh K Kumar
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4935, USA.
| | | |
Collapse
|
11
|
Ramirez MR, Muraro F, Zylbersztejn DS, Abel CR, Arteni NS, Lavinsky D, Netto CA, Trindade VMT. Neonatal hypoxia-ischemia reduces ganglioside, phospholipid and cholesterol contents in the rat hippocampus. Neurosci Res 2003; 46:339-47. [PMID: 12804795 DOI: 10.1016/s0168-0102(03)00100-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hypoxia-ischemia is a common cause of neonatal brain damage producing serious impact on cerebral maturation. This report demonstrates that rats submitted to hypoxia-ischemia present a marked decrease in hippocampal gangliosides, phospholipids and cholesterol contents as from 7 days after the injury. Although chromatographic profiles of the different ganglioside species (GM1, GD1a, GD1b, and GT1b) from the hippocampus of hypoxic-ischemic hippocampi groups (HI) were apparently unaffected, as compared with controls, there were quantitative absolute reductions in HI. The phospholipid patterns were altered in HI as from the 14th to the 30th day after the injury, where phosphatidylcholine (PC) quantities were higher than phosphatidylethanolamine (PE); additionally, the cardiolipin band was detected only in hippocampi of control adult rats. In general, the absolute quantities of phospholipids were lower in HI than in correspondent controls since 7th day after the injury. Considering that reported effects were maintained, we suggest they express a late biochemical response triggered by the neonatal hypoxic-ischemic episode; the consequences would be cell death and a delay on brain development, expressed by a reduction on synaptogenesis and myelinogenesis processes.
Collapse
Affiliation(s)
- M Rosana Ramirez
- Departamento de Bioqui;mica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, CEP 90 035-003, RS, Porto Alegre, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Trindade VM, Daniotti JL, Raimondi L, Chazan R, Netto CA, Maccioni HJ. Effects of neonatal hypoxia/ischemia on ganglioside expression in the rat hippocampus. Neurochem Res 2001; 26:591-7. [PMID: 11519719 DOI: 10.1023/a:1010974917308] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Neonatal Hypoxia-Ischemia (HI) triggers a cascade of biochemical events that result in neuronal injury, but the mechanisms underlying these processes are not completely understood, and information regarding the effect of HI on the synthesis of brain glycoconjugates is lacking. The present work evaluates the effects of neonatal HI on hippocampal ganglioside synthesis. Seven-day-old rat pups were exposed to HI for 2.5 h according to the modified Levine model and samples from hyppocampus were obtained at 30 min as well as at 1, 2 and 4 days later. The activity for synthesis of gangliosides was evaluated by determining the incorporation of N-acetyl [3H]neuraminc acid ([3H]NeuAc) into the endogenous gangliosides of Golgi membranes and by determining the activity of Sial-T2 (GD3 synthase) and GalNAc-T (GM2 synthase), the two enzymes acting on sialyllactosylceramide (GM3) at the branching point of synthesis of a- and b-ganglioside pathway. Northern blot experiments were also conducted to determine transcription levels of the mRNAs specific for these transferases. Neonatal HI caused a relative increase of in vitro [3H]NeuAc incorporation into endogenous lactosylceramide, which was most noticeable at 30 min and I day post-event and disappeared by day 2 and 4. The transient accumulation of [3H]GM3 correlated with decreases in the activities of GD3- and GM2 synthase measured at 30 min and at 1 day after the HI insult. No significant variations in the expression of the genes for these enzymes were observed. Results suggest that transient accumulation of GM3 may be due to post-translational events negatively modulating both GD3- and GM2 synthase activities.
Collapse
Affiliation(s)
- V M Trindade
- Dep Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brasil
| | | | | | | | | | | |
Collapse
|