1
|
Acetylation-dependent glutamate receptor GluR signalosome formation for STAT3 activation in both transcriptional and metabolism regulation. Cell Death Discov 2021; 7:11. [PMID: 33446662 PMCID: PMC7809112 DOI: 10.1038/s41420-020-00389-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 11/11/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Besides their original regulating roles in the brain, spinal cord, retina, and peripheral nervous system for mediating fast excitatory synaptic transmission, glutamate receptors consisting of metabotropic glutamate receptors (GluRs) and ionotropic glutamate receptors (iGluRs) have emerged to have a critical role in the biology of cancer initiation, progression, and metastasis. However, the precise mechanism underpinning the signal transduction mediated by ligand-bound GluRs is not clearly elucidated. Here, we show that iGluRs, GluR1 and GluR2, are acetylated by acetyltransferase CREB-binding protein upon glutamate stimulation of cells, and are targeted by lysyl oxidase-like 2 for deacetylation. Acetylated GluR1/2 recruit β-arrestin1/2 and signal transducer and activator of transcription 3 (STAT3) to form a protein complex. Both β-arrestin1/2 and STAT3 are subsequently acetylated and activated. Simultaneously, activated STAT3 acetylated at lysine 685 translocates to mitochondria to upregulate energy metabolism-related gene transcription. Our results reveal that acetylation-dependent formation of GluR1/2-β-arrestin1/2-STAT3 signalosome is critical for glutamate-induced cell proliferation.
Collapse
|
2
|
Corbetta C, Di Ianni N, Bruzzone MG, Patanè M, Pollo B, Cantini G, Cominelli M, Zucca I, Pisati F, Poliani PL, Finocchiaro G, Pellegatta S. Altered function of the glutamate–aspartate transporter GLAST, a potential therapeutic target in glioblastoma. Int J Cancer 2019; 144:2539-2554. [DOI: 10.1002/ijc.31985] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/17/2018] [Accepted: 10/31/2018] [Indexed: 01/07/2023]
Affiliation(s)
- Cristina Corbetta
- Unit of Molecular Neuro‐OncologyFondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Natalia Di Ianni
- Unit of Molecular Neuro‐OncologyFondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Maria Grazia Bruzzone
- Experimental Imaging and Neuro‐RadiologyFondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Monica Patanè
- Unit of PathologyFondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Bianca Pollo
- Unit of PathologyFondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Gabriele Cantini
- Unit of Molecular Neuro‐OncologyFondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | | | - Ileana Zucca
- Experimental Imaging and Neuro‐RadiologyFondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Federica Pisati
- Unit of Molecular Neuro‐OncologyFondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | | | - Gaetano Finocchiaro
- Unit of Molecular Neuro‐OncologyFondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| | - Serena Pellegatta
- Unit of Molecular Neuro‐OncologyFondazione IRCCS Istituto Neurologico Carlo Besta Milan Italy
| |
Collapse
|
3
|
Ohgomori T, Yamasaki R, Kira JI, Jinno S. Upregulation of Vesicular Glutamate Transporter 2 and STAT3 Activation in the Spinal Cord of Mice Receiving 3,3'-Iminodipropionitrile. Neurotox Res 2017; 33:768-780. [PMID: 28965218 DOI: 10.1007/s12640-017-9822-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/14/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022]
Abstract
Chronic administration of 3,3'-iminodipropionitrile (IDPN) causes axonal impairment. Although controversy still remains, it has been suggested that IDPN intoxication mimics the axonopathy of amyotrophic lateral sclerosis (ALS). Interestingly, recent studies including our own showed that signal transducer and activator of transcription 3 (STAT3) in spinal α-motoneurons was activated in both IDPN-treated mice and SOD1 G93A mice, a genetic model of familial ALS. Because activation of STAT3 occurs in response to various stimuli, such as axonal injury, ischemia, and excessive glutamate, here we focused on a potential link between phosphorylated STAT3 (pSTAT3, an active form) and vesicular glutamate transporter 2 (VGluT2, a regulator of glutamate storage and release) in IDPN-treated mice and SOD1 G93A mice. Impairment of axonal transport was confirmed by western blot analysis: the expression levels of phosphorylated neurofilament H were elevated in both models. As shown in SOD1 G93A mice, the expression frequencies of VGluT2 in synaptophysin-positive (SYP)+ presynaptic terminals around spinal α-motoneurons were significantly higher in IDPN-treated mice than in vehicle controls. The coverages of spinal α-motoneurons by VGluT2+ presynaptic terminals were more elevated around pSTAT3+ cells than around pSTAT3- cells in IDPN-treated mice and SOD1 G93A mice. Considering that excessive glutamate is shown to be involved in axonal impairment and STAT3 activation, the present results suggest that IDPN-induced upregulation of VGluT2 may result in an increase in glutamate, which might cause axonopathy and induction of pSTAT3. The link between upregulation of VGluT2 and activation of STAT3 via glutamate may represent a common pathological feature of IDPN-treated mice and SOD1 G93A mice.
Collapse
Affiliation(s)
- Tomohiro Ohgomori
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Ryo Yamasaki
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Jun-Ichi Kira
- Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shozo Jinno
- Department of Anatomy and Neuroscience, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
4
|
Shi Z, Mirza M, Wang B, Kennedy MA, Weber GF. Osteopontin-a alters glucose homeostasis in anchorage-independent breast cancer cells. Cancer Lett 2013; 344:47-53. [PMID: 24157812 DOI: 10.1016/j.canlet.2013.10.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 01/23/2023]
Abstract
Invasive breast tumor cells generate three splice variants of the metastasis gene osteopontin, while non-invasive breast cells express only the unspliced form or no osteopontin at all. One role for osteopontin in tumor progression is the support of anchorage-independence. Here we show that the full-length gene product, osteopontin-a, induces a gene expression profile that is associated with tissue remodeling and directed movement/sprouting. This occurs via signals through STAT1 and STAT3 to sn-glycero-3-phosphocholine. Osteopontin-a upregulates the levels of glucose in breast cancer cells, likely through STAT3 and its transcriptional targets apolipoprotein D and IGFBP5. The splice variants osteopontin-a and osteopontin-c may synergize, with each form activating signal transduction pathways that are distinct from the other. The elevated glucose is used by osteopontin-c dependent signals to generate chemical energy (Shi et al. submitted for publication). The splice variant-specific metabolic effects of osteopontin add a novel aspect to the pro-metastatic functions of this molecule.
Collapse
Affiliation(s)
- Zhanquan Shi
- University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Mana Mirza
- University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| | - Bo Wang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Georg F Weber
- University of Cincinnati Academic Health Center, Cincinnati, OH, USA
| |
Collapse
|
5
|
Reinert KC, Gao W, Chen G, Wang X, Peng YP, Ebner TJ. Cellular and metabolic origins of flavoprotein autofluorescence in the cerebellar cortex in vivo. CEREBELLUM (LONDON, ENGLAND) 2011; 10:585-99. [PMID: 21503591 PMCID: PMC4126810 DOI: 10.1007/s12311-011-0278-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Flavoprotein autofluorescence imaging, an intrinsic mitochondrial signal, has proven useful for monitoring neuronal activity. In the cerebellar cortex, parallel fiber stimulation evokes a beam-like response consisting of an initial, short-duration increase in fluorescence (on-beam light phase) followed by a longer duration decrease (on-beam dark phase). Also evoked are parasagittal bands of decreased fluorescence due to molecular layer inhibition. Previous work suggests that the on-beam light phase is due to oxidative metabolism in neurons. The present study further investigated the metabolic and cellular origins of the flavoprotein signal in vivo, testing the hypotheses that the dark phase is mediated by glia activation and the inhibitory bands reflect decreased flavoprotein oxidation and increased glycolysis in neurons. Blocking postsynaptic ionotropic and metabotropic glutamate receptors abolished the on-beam light phase and the parasagittal bands without altering the on-beam dark phase. Adding glutamate transporter blockers reduced the dark phase. Replacing glucose with lactate (or pyruvate) or adding lactate to the bathing media abolished the on-beam dark phase and reduced the inhibitory bands without affecting the light phase. Blocking monocarboxylate transporters eliminated the on-beam dark phase and increased the light phase. These results confirm that the on-beam light phase is due primarily to increased oxidative metabolism in neurons. They also show that the on-beam dark phase involves activation of glycolysis in glia resulting in the generation of lactate that is transferred to neurons. Oxidative savings in neurons contributes to the decrease in fluorescence characterizing the inhibitory bands. These findings provide strong in vivo support for the astrocyte-neuron lactate shuttle hypothesis.
Collapse
Affiliation(s)
- Kenneth C. Reinert
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wangcai Gao
- Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth St. S.E., Minneapolis, MN 55455, USA
| | - Gang Chen
- Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth St. S.E., Minneapolis, MN 55455, USA
| | - Xinming Wang
- Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth St. S.E., Minneapolis, MN 55455, USA
| | - Yu-Ping Peng
- Nantong University, Nantong, Jiangsu 226001, People’s Republic of China
| | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Lions Research Building, Room 421, 2001 Sixth St. S.E., Minneapolis, MN 55455, USA,
| |
Collapse
|
6
|
Campolongo P, Trezza V, Cassano T, Gaetani S, Morgese MG, Ubaldi M, Soverchia L, Antonelli T, Ferraro L, Massi M, Ciccocioppo R, Cuomo V. Perinatal exposure to delta-9-tetrahydrocannabinol causes enduring cognitive deficits associated with alteration of cortical gene expression and neurotransmission in rats. Addict Biol 2007; 12:485-95. [PMID: 17578508 DOI: 10.1111/j.1369-1600.2007.00074.x] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The aim of the present study was to investigate whether perinatal exposure to a moderate dose of delta-9-tetrahydrocannabinol (THC) alters cortical gene expression and neurotransmission, leading to enduring cognitive dysfunctions in rat offspring. To this purpose, rat dams were treated, from gestational day 15 to postnatal day 9, with THC at a daily dose (5 mg/kg, per os) devoid of overt signs of toxicity. THC did not influence reproduction parameters, whereas it caused subtle neurofunctional deficits in the adult offspring. Particularly, perinatal THC induced long-lasting alterations of cortical genes related to glutamatergic and noradrenergic systems, associated with a decrease in the cortical extracellular levels of both neurotransmitters. These alterations may account, at least in part, for the enduring cognitive impairment displayed by THC-exposed offspring. Taken together, the present results highlight how exposure to cannabinoids during early stages of brain development can lead to irreversible, subtle dysfunctions in the offspring.
Collapse
Affiliation(s)
- Patrizia Campolongo
- Department of Human Physiology and Pharmacology, Sapienza, University of Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Méndez JA, López-Bayghen E, Rojas F, Hernández ME, Ortega A. Glutamate regulates Oct-2 DNA-binding activity through α-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors in cultured chick Bergmann glia cells. J Neurochem 2004; 88:835-43. [PMID: 14756804 DOI: 10.1046/j.1471-4159.2003.02206.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ionotropic glutamate receptors in cerebellar Bergmann glial cells are linked to transcriptional regulation and, by these means, are thought to play an important role in plasticity, learning and memory and in several neuropathologies. Within the CNS, the transcription factors of the POU family bind their target DNA sequences after a growth factor-dependent phosphorylation-dephosphorylation cascade. Exposure of cultured Bergmann glial cells to glutamate leads to a time- and dose-dependent increase in Oct-2 DNA-binding activity. The use of specific pharmacological tools established the involvement of Ca2+-permeable alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate receptors. Furthermore, the signaling cascade includes phosphatidyl inositol 3-kinase as well as protein kinase C activation. Interestingly, transcriptional as well as translational inhibitors abolish the glutamate effect, suggesting a transcriptional up-regulation of the oct-2 gene. These data demonstrate that Oct-2 expression is not restricted to neurons and further strengthen the notion that the glial glutamate receptors participate in the modulation of glutamatergic cerebellar neurotransmission.
Collapse
Affiliation(s)
- J Alfredo Méndez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del instituto Politécnico Nacional, México
| | | | | | | | | |
Collapse
|
8
|
Aguirre A, López T, López-Bayghen E, Ortega A. Glutamate regulates kainate-binding protein expression in cultured chick Bergmann glia through an activator protein-1 binding site. J Biol Chem 2000; 275:39246-53. [PMID: 10993879 DOI: 10.1074/jbc.m002847200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of the chick kainate-binding protein, a member of the ionotropic glutamate receptor family, is restricted to the cerebellum, specifically to Bergmann glia. Glutamate induces a membrane to nuclei signaling involved in gene expression regulation. Exposure of cultured chick Bergmann glia cells to glutamate leads to an increase in kainate binding protein and mRNA levels, suggesting a transcriptional level of regulation. The 5' proximal region of the chick kainate binding gene was cloned and transfected 4into Bergmann glia cells. Three main regulatory regions could be defined, a minimal promoter region, a negative regulatory region, and interestingly, a glutamate-responsive element. Deletion of this element abolishes the agonist effect. Moreover, electrophoretic mobility shift assays, cotransfection experiments, and site-directed mutagenesis clearly suggest that the glutamate effect is mediated through an AP-1 site by a Fos/Jun heterodimer. The present results favor the notion of a functional role of kainate-binding protein in glutamatergic cerebellar neurotransmission.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Blotting, Northern
- Blotting, Western
- Cell Nucleus/metabolism
- Cells, Cultured
- Cerebellum/metabolism
- Chick Embryo
- Chloramphenicol O-Acetyltransferase/metabolism
- Cloning, Molecular
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Gene Expression Regulation
- Glutamic Acid/physiology
- Models, Biological
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Neuroglia/metabolism
- Plasmids/metabolism
- Promoter Regions, Genetic
- Proto-Oncogene Proteins c-fos/metabolism
- Proto-Oncogene Proteins c-jun/metabolism
- RNA, Messenger/metabolism
- Receptors, Glutamate/biosynthesis
- Receptors, Glutamate/genetics
- Receptors, Kainic Acid/biosynthesis
- Receptors, Kainic Acid/genetics
- Response Elements
- Reverse Transcriptase Polymerase Chain Reaction
- Time Factors
- Transcription Factor AP-1/chemistry
- Transcription Factor AP-1/metabolism
- Transcription, Genetic
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- A Aguirre
- Departamento de Genética y Biologia Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, México D.F. 07000, México
| | | | | | | |
Collapse
|
9
|
Abstract
Two classes of receptors transduce neurotransmitter signals: ionotropic receptors and heptahelical metabotropic receptors. Whereas the ionotropic receptors are structurally associated with a membrane channel, a mediating mechanism is necessary to functionally link metabotropic receptors with their respective effectors. According to the accepted paradigm, the first step in the metabotropic transduction process requires the activation of heterotrimeric G-proteins. An increasing number of observations, however, point to a novel mechanism through which neurotransmitters can initiate biochemical signals and modulate neuronal excitability. According to this mechanism metabotropic receptors induce responses by activating transduction systems that do not involve G-proteins.
Collapse
Affiliation(s)
- C Heuss
- Brain Research Institute, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | | |
Collapse
|
10
|
Abstract
Functional glutamate receptors are expressed on the majority of glial cell types in the developing and mature brain. Although glutamate receptors on glia are activated by glutamate released from neurons, their physiological role remains largely unknown. Potential roles for these receptors in glia include regulation of proliferation and differentiation, and modulation of synaptic efficacy. Recent anatomical and functional evidence indicates that glutamate receptors on immature glia are activated through direct synaptic inputs. Therefore, glutamate and its receptors appear to be involved in a continuous crosstalk between neurons and glia during development and also in the mature brain.
Collapse
Affiliation(s)
- V Gallo
- Laboratory of Cellular and Molecular Neurophysiology, National Institute of Child Health and Human Development, NIH, Building 49, Room 5A-78, 49 Convent Drive, Bethesda, MD 20892-4495, USA.
| | | |
Collapse
|