1
|
The influence of vitamin-rich diet on the extent of lipoperoxidation in brain of mice during an acute post-insulin hypoglycaemia. Eur J Pharmacol 2014; 740:641-4. [DOI: 10.1016/j.ejphar.2014.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 06/11/2014] [Accepted: 06/17/2014] [Indexed: 11/19/2022]
|
2
|
Vandresen-Filho S, Martins WC, Bertoldo DB, Mancini G, Herculano BA, de Bem AF, Tasca CI. Atorvastatin prevents cell damage via modulation of oxidative stress, glutamate uptake and glutamine synthetase activity in hippocampal slices subjected to oxygen/glucose deprivation. Neurochem Int 2013; 62:948-55. [DOI: 10.1016/j.neuint.2013.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 02/28/2013] [Accepted: 03/03/2013] [Indexed: 10/27/2022]
|
3
|
Errico F, Napolitano F, Nisticò R, Centonze D, Usiello A. D-Aspartate: An Atypical Amino Acid with Neuromodulatory Activity in Mammals. Rev Neurosci 2009; 20:429-40. [DOI: 10.1515/revneuro.2009.20.5-6.429] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Bertram KM, Bula DV, Pulido JS, Shippy SA, Gautam S, Lu MJ, Hatfield RM, Kim JH, Quirk MT, Arroyo JG. Amino-acid levels in subretinal and vitreous fluid of patients with retinal detachment. Eye (Lond) 2007; 22:582-9. [PMID: 17948040 DOI: 10.1038/sj.eye.6702993] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
PURPOSE To compare the concentration of amino acids in subretinal and vitreous fluid of patients with primary rhegmatogenous retinal detachment to that of control vitreous. METHODS This prospective, observational study measured amino-acid levels in subretinal fluid of patients undergoing scleral buckle placement (n=20) and vitreous fluid in patients undergoing pars plana vitrectomy (n=5) for primary retinal detachment. Vitreous fluid from patients undergoing vitrectomy for macular hole (n=7) or epiretinal membrane (n=3) served as a control. Subretinal fluid and control vitreous were analysed using high-pressure liquid chromatography. Retinal detachment vitreous was analysed using capillary electrophoresis-laser-induced fluorescence. RESULTS Mean levels of glutamate (27.0+/-1.7 microM), aspartate (4.1+/-4.0 microM), and glycine (44.1+/-31.0 microM) in subretinal fluid and glutamate (13.4+/-11.9 microM) in the vitreous were significantly elevated in retinal detachment compared to control vitreous. A significant, positive association was observed between levels of aspartate and glutamate in subretinal fluid (Spearman's correlation coefficient: 0.74, P<0.01). Mean arginine levels did not differ significantly between subretinal fluid and control vitreous. Levels of alanine, tyrosine, valine, isoleucine, leucine, and phenylalanine were significantly lower in subretinal fluid compared to control vitreous (all P<0.01). CONCLUSIONS Glutamate levels in subretinal fluid and vitreous of patients with primary retinal detachment is significantly elevated in comparison to control vitreous. This finding lends further support to the hypothesis that elevated glutamate levels may result from ischaemia of the outer retina secondary to retinal detachment.
Collapse
Affiliation(s)
- K M Bertram
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Saransaari P, Oja SS. Characteristics of GABA Release Induced by Free Radicals in Mouse Hippocampal Slices. Neurochem Res 2007; 33:384-93. [PMID: 17712630 DOI: 10.1007/s11064-007-9439-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Accepted: 07/09/2007] [Indexed: 10/22/2022]
Abstract
The release of the inhibitory neurotransmitter GABA is generally enhanced under potentially cell-damaging conditions. The properties and regulation of preloaded [3H]GABA release from mouse hippocampal slices were now studied in free radical-containing medium in a superfusion system. Free radical production was induced by 0.01% of H2O2 in the medium. H2O2 markedly potentiated GABA release, which was further enhanced about 1.5-fold by K+ stimulation (50 mM). In Ca2+-free media this stimulation was not altered, indicating that the release was mostly Ca2+-independent. Moreover, omission of Na+ increased the release, suggesting that it is mediated by Na+-dependent transporters operating outwards, a conception confirmed by the enhancement with GABA homoexchange. Inhibition of the release with the ion channel inhibitors diisothiocyanostilbene-2,2'-disulphonate and 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonate indicates that Cl(-) channels also participate in the process. This release was not modified by the adenosine receptor (A1 and A2a) agonists and ionotropic glutamate receptor agonists kainate, N-methy-D: -aspartate and 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate, whereas the agonists of metabotropic glutamate receptors of group I [(S)-3,5-dihydroxyphenylglycine] and of group II [(2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate] enhanced it by receptor-mediated mechanisms, the effects being abolished by their respective antagonists. The group III agonist L+-2-amino-4-phosphonobutyrate reduced the evoked GABA release, but this was not affected by the antagonist. Furthermore, the release was reduced by activation of protein kinase C by 4 beta-phorbol 12-myristate 13-acetate and by inhibition of tyrosine kinase by genistein and of phoshoplipase by quinacrine. On the other hand, increasing cGMP levels with the phosphodiesterase inhibitor zaprinast, selective for PDE5, 6 and 9, and NO production with the NO-generating compounds hydroxylamine, sodium nitroprusside and S-nitroso-N-penicillamine enhanced the release. The regulation of GABA release induced by free radical production proved thus to be rather complex. Under potentially cell-damaging conditions, the potentiation of GABA release may be a mechanism to counteract hyperactivity and reduce the effects of excitatory amino acid release. On the other hand, reduction of GABA release could be harmful and contribute to excitotoxic damage and neuronal degeneration.
Collapse
Affiliation(s)
- Pirjo Saransaari
- Tampere Brain Research Center, Medical School, University of Tampere, Tampere 33014, Finland.
| | | |
Collapse
|
6
|
Molchanova SM, Oja SS, Saransaari P. Taurine attenuates D-[3H]aspartate release evoked by depolarization in ischemic corticostriatal slices. Brain Res 2006; 1099:64-72. [PMID: 16781687 DOI: 10.1016/j.brainres.2006.04.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Revised: 04/23/2006] [Accepted: 04/28/2006] [Indexed: 02/06/2023]
Abstract
Taurine is thought to be protective in ischemia due to its neuroinhibitory effects. The present aim was to assess the ability of taurine to attenuate glutamate release evoked by ischemia and to determine which component of this release is affected. The release of preloaded D-[(3)H]aspartate (a non-metabolized analog of glutamate) from superfused murine corticostriatal slices was used as index of glutamate release. Preincubation of corticostriatal slices with 10 mM taurine reduced the D-[(3)H]aspartate release evoked by either chemical ischemia (0.5 mM NaCN in glucose-free medium) or oxygen-glucose deprivation. The taurine uptake inhibitor guanidinoethanesulfonate (5 mM), the glycine receptor antagonist strychnine (0.1 mM) and the GABA(A) receptor antagonist bicuculline (0.1 mM) did not block the taurine effect. To determine which component of ischemia-induced glutamate release is affected by taurine, three pathways of this release were pharmacologically modeled. Unlabeled D-aspartate (0.5 mM) and hypo-osmotic medium (NaCl reduced by 50 mM) evoked D-[(3)H]aspartate release via homoexchange and hypo-osmotic release pathways, respectively. Taurine did not influence these pathways. However, it suppressed the synaptic release of D-[(3)H]aspartate evoked by the voltage-gated sodium channel opener veratridine (0.1 mM). Taurine thus reduces glutamate release under ischemic conditions by affecting the depolarization-evoked component.
Collapse
|
7
|
Bull ND, Barnett NL. Retinal glutamate transporter activity persists under simulated ischemic conditions. J Neurosci Res 2005; 78:590-9. [PMID: 15468177 DOI: 10.1002/jnr.20301] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Elevated extracellular concentrations of the neurotransmitter glutamate are neurotoxic and directly contribute to CNS damage as a result of ischemic pathologies. However, the main contributors to this uncontrolled rise in glutamate are still unconfirmed. It has been reported that the reversal of high-affinity glutamate transporters is a significant contributing factor. Conversely, it has also been observed that these transporters continue to take up glutamate, albeit at a reduced saturation concentration, under ischemic conditions. We sought to determine whether glutamate transporters continue to remove glutamate from the extracellular space under ischemic conditions by pharmacologically modulating the activity of high-affinity retinal glutamate transporters during simulated ischemia in vitro. Retinal glutamate transporter activity was significantly reduced under these ischemic conditions. The suppression of retinal glutamate transporter activity, with the protein kinase C inhibitor chelerythrine, significantly reduced ischemic glutamate uptake and enhanced retinal neurodegeneration. These findings imply a limited but protective role for retinal glutamate transporters under certain ischemic conditions, suggesting that pharmacological enhancement of high-affinity glutamate transporter activity may reduce tissue damage and loss of function resulting from toxic extracellular glutamate concentrations.
Collapse
Affiliation(s)
- Natalie D Bull
- Vision, Touch and Hearing Research Centre, School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| | | |
Collapse
|
8
|
Ohia SE, Awe SO, Opere CA, LeDay AM, Harris LC, Kulkarni K, Sharif NA. Glucose-Deprivation-Induced [3H]D-Aspartate Release from Isolated Bovine and Human Retinae. J Ocul Pharmacol Ther 2003; 19:599-609. [PMID: 14733717 DOI: 10.1089/108076803322660512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The glucose deprivation-induced release of [3H]D-aspartate was studied in bovine and human retinas in a superfusion apparatus. [3H]D-aspartate release was significantly increased upon omitting glucose in the superfusion buffer. This effect was dependent on external Ca2+ because L- and N-type Ca2+-channel blockers, such as diltiazem (1 microM), nitrendipine (1 microM), and omega-conotoxin (100 nM), significantly reduced the effect of glucose-deprivation induced release of [3H]D-aspartate. Furthermore, while glutamate receptor agonists (L-glutamate, N-methyl-D-aspartate, but not kainate) potentiated the effects of glucose deprivation, antagonists (MK-801, MCPG, ifenprodil, and L-AP3) at these receptors blocked the glucose deprivation-induced release process. Taken together, these studies have demonstrated that under conditions of glucose deprivation, as may happen during ischemic events in vivo, the retinal glutamatergic nerve endings and/or glial cells promote the efflux of [3H]D-aspartate into the extracellular environment. This process appears to be receptor-mediated and dependent on extracellular Ca2+ and is similar to previous reports pertaining to brain tissues.
Collapse
Affiliation(s)
- Sunny E Ohia
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, USA.
| | | | | | | | | | | | | |
Collapse
|
9
|
Saransaari P, Oja SS. Enhanced release of adenosine under cell-damaging conditions in the developing and adult mouse hippocampus. Neurochem Res 2003; 28:1409-17. [PMID: 12938864 DOI: 10.1023/a:1024956701683] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The inhibitory neuromodulator adenosine has been thought to act as an endogenous neuroprotectant against cerebral ischemia and neuronal damage. The release of preloaded [3H]adenosine from hippocampal slices from developing (7-day-old) and adult (3-month-old) mice was characterized using a superfusion system under various cell-damaging conditions, including hypoxia, hypoglycemia, ischemia, oxidative stress, and the presence of free radicals and metabolic poisons. The release of adenosine was greatly potentiated under the above conditions at both ages, with free radicals, metabolic poisons, and ischemia generally having the strongest stimulatory effects. Depolarization by K+ ions (50 mM) could then evoke more release of adenosine only in the immature hippocampus. Omission of Ca2+ from the superfusion media had no effect on the ischemia-induced release in the adults, indicating that it occurs by a Ca2+-independent system. In contrast, the release in the immature hippocampus was partially dependent on extracellular Ca2+. Furthermore, the ischemia-induced adenosine release was reduced in Na+-deficient media and enhanced by ouabain at both ages, pointing to the involvement of Na+-dependent transporters. The release was also reduced by Cl- channel blockers, thus indicating that a part of the evoked release occurs through anion channels. Another inhibitory neuromodulator and cell volume regulator, taurine, was seen to enhance adenosine release in ischemia at both ages. The simultaneous release of taurine and adenosine under cell-damaging conditions could constitute an important protective mechanism against excessive amounts of excitatory amino acids, counteracting their harmful effects and preventing excitation from reaching neurotoxic levels.
Collapse
Affiliation(s)
- Pirjo Saransaari
- Tampere Brain Research Center, Medical School, FIN-33014 University of Tampere, Finland.
| | | |
Collapse
|
10
|
Saransaari P, Oja SS. Mechanisms of adenosine release in the developing and adult mouse hippocampus. Neurochem Res 2002; 27:911-8. [PMID: 12396102 DOI: 10.1023/a:1020343631833] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Adenosine is a neuromodulator known to inhibit the synaptic release of neurotransmitters, e.g., glutamate, and to hyperpolarize postsynaptic neurons. The release of adenosine is markedly enhanced under ischemic conditions. It may then act as an endogenous neuroprotectant against cerebral ischemia and excitotoxic neuronal damage. The mechanisms by which adenosine is released from nervous tissue are not fully known, particularly in the immature brain. We now characterized the release of [3H]adenosine from hippocampal slices from developing (7-day-old) and adult (3-month-old) mice using a superfusion system. The properties of the release differed only partially in the immature and mature hippocampus. The K(+)-evoked release was Ca2+ and Na+ dependent. Anion channels were also involved. Ionotropic glutamate receptor agonists potentiated the release in a receptor-mediated manner. Activation of metabotropic glutamate receptors enhanced the release in developing mice, with group II receptors alone being effective. The evoked adenosine release apparently provides neuroprotective effects against excitotoxicity under cell-damaging conditions. Taurine had no effect on adenosine release in adult mice, but depressed the release concentration dependently in the immature hippocampus.
Collapse
Affiliation(s)
- Pirjo Saransaari
- Tampere Brain Research Center, Medical School, University of Tampere, Finland.
| | | |
Collapse
|
11
|
Zaar K, Köst HP, Schad A, Völkl A, Baumgart E, Fahimi HD. Cellular and subcellular distribution of D-aspartate oxidase in human and rat brain. J Comp Neurol 2002; 450:272-82. [PMID: 12209855 DOI: 10.1002/cne.10320] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The unusual amino acid D-aspartate is present in significant amounts in brain and endocrine glands and is supposed to be involved in neurotransmission and neurosecretion (Wolosker et al. [2000] Neuroscience 100:183-189). D-aspartate oxidase is the only enzyme known to metabolize D-aspartate and could regulate its level in different regions of the brain. We examined the cellular and subcellular distribution of this enzyme and its mRNA in human and rat brain by immunohistochemistry, in situ hybridization, and immunoelectron microscopy. D-aspartate oxidase protein and mRNA are ubiquitous. The protein shows a granular pattern, particularly within neurons and to a significantly lesser extent in astrocytes and oligodendrocytes. No evidence for a synaptic association was observed. Whereas between most positive neurons only gradual differences were observed, in the hypothalamic paraventricular nucleus, neurons with high enzyme content were found next to others with no labeling. cDNA cloning of D-aspartate oxidase corroborates an inherent targeting signal sequence for protein import into peroxisomes. Immunoelectron microscopy showed that the protein is localized in single membrane-bound organelles, apparently peroxisomes.
Collapse
Affiliation(s)
- Kurt Zaar
- Department of Anatomy and Cell Biology II, Division of Medical Cell Biology, University of Heidelberg, D-69115 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Janáky R, Dohovics R, Hermann A, Oja SS, Saransaari P. Effects of metabotropic glutamate receptor agonists and antagonists on D-aspartate release from mouse cerebral cortical and striatal slices. Neurochem Res 2001; 26:1217-24. [PMID: 11874203 DOI: 10.1023/a:1013963222332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The cytosolic release of L-glutamate has been held to be responsible for the increase in extracellular glutamate to toxic levels in the brain. The mechanism and regulation of this release was now studied in cerebral cortical and striatal slices with D-[3H]aspartate, a non-metabolized analogue of L-glutamate and a poor substrate for vesicular uptake. L-Glutamate and D-aspartate strongly stimulated the release in a concentration-dependent manner. Of the ionotropic glutamate receptor agonists, only kainate enhanced the basal release in the striatum. Of the metabotropic glutamate receptor ligands, the group I agonist (S)-3,5-dihydroxyphenylglycine (S-DHPG) failed to affect the basal release but inhibited the D-aspartate-evoked release in the striatum. The group I antagonist (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA) had no effect on the basal release in either preparation but enhanced the L-glutamate-evoked release and inhibited the D-aspartate-evoked release in the striatum, not however in the cerebral cortex. The group II agonist (2S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV) and the group II antagonist (2S)-2-ethylglutamate (EGLU) were without effect on the basal, D-aspartate- and L-glutamate-evoked releases of D-[3H]aspartate in either preparation. The group III agonist L-serine-O-phosphate (L-SOP) failed to affect the basal release but reduced the D-aspartate-evoked release in the striatum. The group III antagonist (RS)alpha-methylserine-O-phosphate (MSOP) failed to affect the basal release but increased the glutamate-evoked release and inhibited the D-aspartate-evoked release in the striatum. Both L-trans-pyrrolidine-2,4-dicarboxylate (L-trans-PDC) and (2S,1'S,2'R)-2-carboxycyclopropyl)glycine (L-CCG-III), transportable inhibitors of the high-affinity glutamate uptake, enhanced the basal release, more strongly in the striatum than in the cerebral cortex. L-CCG-III also increased the L-glutamate-evoked release in the striatum. Nontransportable dihydrokainate enhanced the basal release much less and failed to affect the glutamate-evoked release. The results indicate that the release of glutamate from cytosolic pools is carrier-mediated via homoexchange. This process is regulated in the striatum by metabotropic group I and group III receptors in a manner different from the regulation of the vesicular release of glutamate from presynaptic terminals.
Collapse
Affiliation(s)
- R Janáky
- Brain Research Center, University of Tampere Medical School, Finland.
| | | | | | | | | |
Collapse
|
13
|
Saransaari P, Oja SS. Characteristics of hippocampal glycine release in cell-damaging conditions in the adult and developing mouse. Neurochem Res 2001; 26:845-52. [PMID: 11565618 DOI: 10.1023/a:1011624421505] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The release of preloaded [3H]glycine from hippocampal slices from 7-day-old and 3-month-old (adult) mice was studied in different cell-damaging conditions, including hypoxia, hypoglycemia, ischemia, oxidative stress and the presence of free radicals and metabolic poisons, using a superfusion system. Glycine release was greatly enhanced in all the above conditions in both age groups, with the exception of hypoxia in developing mice. This coincides with the increased susceptibility to seizures and excitotoxicity during postnatal development. The ischemia-induced release of glycine was Ca2+-independent at both ages. The release was potentiated by exogenously applied glycine but not in Na+-free conditions, indicating the involvement of Na+-dependent transporters operating outwards. The Cl- channel blockers 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonate and diisothiocyanostilbene-2,2'-disulphonate generally reduced the ischemia-induced release, suggesting that this occurs through anion channels in both developing and adult mice. Furthermore, in the adult hippocampus riluzole and amiloride inhibited the release, indicating that Na+ channels also contribute to the ischemia-evoked release. Since glycine is an essential factor in glutamate-induced Ca2+ channel opening at the N-methyl-D-aspartate receptor, the elevated levels of glycine, together with the increased release of excitatory amino acids, must obviously collaborate in the development of ischemic neuronal damage.
Collapse
Affiliation(s)
- P Saransaari
- Tampere Brain Research Center, Medical School, University of Tampere, Finland.
| | | |
Collapse
|
14
|
Callahan BT, Cord BJ, Yuan J, McCann UD, Ricaurte GA. Inhibitors of Na(+)/H(+) and Na(+)/Ca(2+) exchange potentiate methamphetamine-induced dopamine neurotoxicity: possible role of ionic dysregulation in methamphetamine neurotoxicity. J Neurochem 2001; 77:1348-62. [PMID: 11389186 DOI: 10.1046/j.1471-4159.2001.00341.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although the neurotoxic potential of methamphetamine (METH) is well established, underlying mechanisms have yet to be identified. In the present study, we sought to determine whether ionic dysregulation was a feature of METH neurotoxicity. In particular, we reasoned that if METH impairs the function of Na(+)/H(+) and/or Na(+)/Ca(2+) antiporters by compromising the inward Na(+) gradient [via prolonged DA transporter (DAT) activation and Na(+)/K(+) ATPase inhibition], then amiloride (AMIL) and other inhibitors of Na(+)/H(+) and/or Na(+)/Ca(2+) exchange would potentiate METH neurotoxicity. To test this hypothesis, mice were treated with METH alone or in combination with AMIL or one of its analogs; 1 week later, the animals were killed for studies of dopamine (DA) neuronal integrity. AMIL markedly potentiated the toxic effect of METH on DA neurons. Potentiation was not caused by increased core temperature, enhanced DAT activity or higher METH brain levels. The DAT inhibitor, WIN-35,428, protected completely against METH-induced DA neurotoxicity in AMIL pretreated animals, suggesting that the potentiating effects of AMIL require a METH/DAT interaction. Findings with METH and AMIL were extended to six other AMIL analogs (MIA, EIPA, DIMA, BENZ, BEP, DiCBNZ), another species (rats), and neuronal type (5-HT neurons). These results support the notion that ionic dysregulation may play a role in METH neurotoxicity.
Collapse
Affiliation(s)
- B T Callahan
- Department of Neurology and Psychiatry, Johns Hopkins Medical Institutions, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|