1
|
Dutta S, Shah RB, Singhal S, Dutta SB, Bansal S, Sinha S, Haque M. Metformin: A Review of Potential Mechanism and Therapeutic Utility Beyond Diabetes. Drug Des Devel Ther 2023; 17:1907-1932. [PMID: 37397787 PMCID: PMC10312383 DOI: 10.2147/dddt.s409373] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 06/10/2023] [Indexed: 07/04/2023] Open
Abstract
Metformin has been designated as one of the most crucial first-line therapeutic agents in the management of type 2 diabetes mellitus. Primarily being an antihyperglycemic agent, metformin also has a plethora of pleiotropic effects on various systems and processes. It acts majorly by activating AMPK (Adenosine Monophosphate-Activated Protein Kinase) in the cells and reducing glucose output from the liver. It also decreases advanced glycation end products and reactive oxygen species production in the endothelium apart from regulating the glucose and lipid metabolism in the cardiomyocytes, hence minimizing the cardiovascular risks. Its anticancer, antiproliferative and apoptosis-inducing effects on malignant cells might prove instrumental in the malignancy of organs like the breast, kidney, brain, ovary, lung, and endometrium. Preclinical studies have also shown some evidence of metformin's neuroprotective role in Parkinson's disease, Alzheimer's disease, multiple sclerosis and Huntington's disease. Metformin exerts its pleiotropic effects through varied pathways of intracellular signalling and exact mechanism in the majority of them remains yet to be clearly defined. This article has extensively reviewed the therapeutic benefits of metformin and the details of its mechanism for a molecule of boon in various conditions like diabetes, prediabetes, obesity, polycystic ovarian disease, metabolic derangement in HIV, various cancers and aging.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Rima B Shah
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Shubha Singhal
- Department of Pharmacology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Sudeshna Banerjee Dutta
- Department of Medical Surgical Nursing, Shri Anand Institute of Nursing, Rajkot, Gujarat, 360005, India
| | - Sumit Bansal
- Department of Anaesthesiology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Susmita Sinha
- Department of Physiology, Khulna City Medical College and Hospital, Khulna, Bangladesh
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, 57000, Malaysia
| |
Collapse
|
2
|
Wei M, Zhang T, Ouyang H, Huang Z, Lu B, Li J, Xu H, Wang Z, Ji L. Erianin alleviated liver steatosis by enhancing Nrf2-mediated VE-cadherin expression in vascular endothelium. Eur J Pharmacol 2023; 950:175744. [PMID: 37094711 DOI: 10.1016/j.ejphar.2023.175744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is emerging as the most common chronic liver disease and is closely associated with metabolic syndrome. Endothelial dysfunction was involved in many metabolic diseases, but the concrete participation of hepatic vascular endothelial dysfunction in liver steatosis that is an early stage of NAFLD is still unclear. In this study, the formation of liver steatosis and the elevation of serum insulin content were observed accompanying with the decreased vascular endothelial cadherin (VE-cadherin) expression in hepatic vessels from db/db mice, Goto-Kakizaki (GK) and high-fat diet (HFD)-fed rats. Liver steatosis was obviously enhanced in mice after the application of VE-cadherin neutralizing antibody. In vitro results showed that insulin decreased VE-cadherin expression and caused endothelial barrier breakdown. Furthermore, the alteration of VE-cadherin expression was found to be positively related with the transcriptional activation of nuclear erythroid 2-related factor 2 (Nrf2), and chromatin immunoprecipitation (ChIP) assay displayed that Nrf2 could directly regulate VE-cadherin expression. Insulin reduced Nrf2 activation by decreasing sequestosome-1 (p62/SQSTM1) expression downstream of insulin receptor. Moreover, the p300-mediated Nrf2 acetylation was weakened by enhancing the competitive binding of transcription factor GATA-binding protein 4 (GATA4) to p300. Finally, we found that erianin, a natural compound, could promote VE-cadherin expression by inducing Nrf2 activation, thereby alleviating liver steatosis in GK rats. Our results suggest that hepatic vascular endothelial dysfunction owing to the VE-cadherin deficiency dependent on the reduced Nrf2 activation promoted liver steatosis, and erianin alleviated liver steatosis through enhancing Nrf2-mediated VE-cadherin expression.
Collapse
Affiliation(s)
- Mengjuan Wei
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Tianyu Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Hao Ouyang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Jian Li
- The Department of Pharmaceutics, China Pharmaceutical University, Nanjing, 210009, China; Jinling Pharmaceutical Co., Ltd., Nanjing, 210009, China.
| | - Hong Xu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
3
|
The Polyunsaturated Fatty Acids, EPA and DHA, Ameliorate Myocardial Infarction-induced Heart Failure by Inhibiting p300-HAT Activity in Rats. J Nutr Biochem 2022; 106:109031. [DOI: 10.1016/j.jnutbio.2022.109031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/24/2021] [Accepted: 03/18/2022] [Indexed: 12/25/2022]
|
4
|
Effects of Metformin in Heart Failure: From Pathophysiological Rationale to Clinical Evidence. Biomolecules 2021; 11:biom11121834. [PMID: 34944478 PMCID: PMC8698925 DOI: 10.3390/biom11121834] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/26/2021] [Accepted: 12/01/2021] [Indexed: 12/20/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a worldwide major health burden and heart failure (HF) is the most common cardiovascular (CV) complication in affected patients. Therefore, identifying the best pharmacological approach for glycemic control, which is also useful to prevent and ameliorate the prognosis of HF, represents a crucial issue. Currently, the choice is between the new drugs sodium/glucose co-transporter 2 inhibitors that have consistently shown in large CV outcome trials (CVOTs) to reduce the risk of HF-related outcomes in T2DM, and metformin, an old medicament that might end up relegated to the background while exerting interesting protective effects on multiple organs among which include heart failure. When compared with other antihyperglycemic medications, metformin has been demonstrated to be safe and to lower morbidity and mortality for HF, even if these results are difficult to interpret as they emerged mainly from observational studies. Meta-analyses of randomized controlled clinical trials have not produced positive results on the risk or clinical course of HF and sadly, large CV outcome trials are lacking. The point of force of metformin with respect to new diabetic drugs is the amount of data from experimental investigations that, for more than twenty years, still continues to provide mechanistic explanations of the several favorable actions in heart failure such as, the improvement of the myocardial energy metabolic status by modulation of glucose and lipid metabolism, the attenuation of oxidative stress and inflammation, and the inhibition of myocardial cell apoptosis, leading to reduced cardiac remodeling and preserved left ventricular function. In the hope that specific large-scale trials will be carried out to definitively establish the metformin benefit in terms of HF failure outcomes, we reviewed the literature in this field, summarizing the available evidence from experimental and clinical studies reporting on effects in heart metabolism, function, and structure, and the prominent pathophysiological mechanisms involved.
Collapse
|
5
|
Sunagawa Y, Shimizu K, Katayama A, Funamoto M, Shimizu K, Nurmila S, Shimizu S, Miyazaki Y, Katanasaka Y, Hasegawa K, Morimoto T. Metformin suppresses phenylephrine-induced hypertrophic responses by inhibiting p300-HAT activity in cardiomyocytes. J Pharmacol Sci 2021; 147:169-175. [PMID: 34384564 DOI: 10.1016/j.jphs.2021.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/08/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Heart failure is the final pathway for a wide spectrum of myocardial stress, including hypertension and myocardial infarction. However, the potential effects of metformin on cardiac hypertrophy are still unclear. PURPOSE The purpose of this study was to investigate whether metformin leads to suppression of hypertrophic responses in cardiomyocytes. METHODS AND RESULTS To investigate whether metformin inhibited p300-histone acetyltransferase (HAT), we performed an in vitro HAT assay. Metformin directly inhibited p300-mediated acetylation of histone-H3K9. To examine the effects of metformin on hypertrophic responses, cardiomyocytes prepared from neonatal rats were treated with metformin and stimulated with saline or phenylephrine (PE), a α1-adrenergic agonist for 48 h. PE stimulus showed an increase in cell size, myofibrillar organization, expression of the endogenous atrial natriuretic factor and brain natriuretic peptide genes, and acetylation of histone-H3K9 compared with saline-treated cells. These PE-induced changes were inhibited by metformin. Next, to examine the effect of metformin on p300-mediated hypertrophy, cardiomyocytes were transfected with expression vector of p300. Metformin significantly suppressed p300-induced hypertrophic responses and acetylation of histone-H3K9. CONCLUSIONS The study demonstrates that metformin can suppress PE-induced and p300-mediated hypertrophic responses. Metformin may be useful for the treatment of patients with diabetes and heart failure.
Collapse
Affiliation(s)
- Yoichi Sunagawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto, 612-8555, Japan; Shizuoka General Hospital, Shizuoka, 420-8527, Japan
| | - Kiyotaka Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Ayumi Katayama
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Masafumi Funamoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto, 612-8555, Japan
| | - Kana Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto, 612-8555, Japan
| | - Sari Nurmila
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Satoshi Shimizu
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yusuke Miyazaki
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto, 612-8555, Japan; Shizuoka General Hospital, Shizuoka, 420-8527, Japan
| | - Yasufumi Katanasaka
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto, 612-8555, Japan; Shizuoka General Hospital, Shizuoka, 420-8527, Japan
| | - Koji Hasegawa
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto, 612-8555, Japan
| | - Tatsuya Morimoto
- Division of Molecular Medicine, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan; Division of Translational Research, Clinical Research Institute, Kyoto Medical Center, National Hospital Organization, Kyoto, 612-8555, Japan; Shizuoka General Hospital, Shizuoka, 420-8527, Japan.
| |
Collapse
|
6
|
Curcumin, an Inhibitor of p300-HAT Activity, Suppresses the Development of Hypertension-Induced Left Ventricular Hypertrophy with Preserved Ejection Fraction in Dahl Rats. Nutrients 2021; 13:nu13082608. [PMID: 34444769 PMCID: PMC8397934 DOI: 10.3390/nu13082608] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/25/2021] [Accepted: 07/25/2021] [Indexed: 12/21/2022] Open
Abstract
We found that curcumin, a p300 histone acetyltransferase (HAT) inhibitor, prevents cardiac hypertrophy and systolic dysfunction at the stage of chronic heart failure in Dahl salt-sensitive rats (DS). It is unclear whether curcumin suppresses the development of hypertension-induced left ventricular hypertrophy (LVH) with a preserved ejection fraction. Therefore, in this study, we randomized DS (n = 16) and Dahl salt-resistant (DR) rats (n = 10) at 6 weeks of age to either curcumin or vehicle groups. These rats were fed a high-salt diet and orally administrated with 50 mg/kg/d curcumin or its vehicle for 6 weeks. Both curcumin and vehicle treatment groups exhibited similar degrees of high-salt diet-induced hypertension in DS rats. Curcumin significantly decreased hypertension-induced increase in posterior wall thickness and LV mass index, without affecting the systolic function. It also significantly reduced hypertension-induced increases in myocardial cell diameter, perivascular fibrosis and transcriptions of the hypertrophy-response gene. Moreover, it significantly attenuated the acetylation levels of GATA4 in the hearts of DS rats. A p300 HAT inhibitor, curcumin, suppresses the development of hypertension-induced LVH, without affecting blood pressure and systolic function. Therefore, curcumin may be used for the prevention of development of LVH in patients with hypertension.
Collapse
|
7
|
Qin J, Guo N, Tong J, Wang Z. Function of histone methylation and acetylation modifiers in cardiac hypertrophy. J Mol Cell Cardiol 2021; 159:120-129. [PMID: 34175302 DOI: 10.1016/j.yjmcc.2021.06.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 12/15/2022]
Abstract
Cardiac hypertrophy is an adaptive response of the heart to increased workload induced by various physiological or pathological stimuli. It is a common pathological process in multiple cardiovascular diseases, and it ultimately leads to heart failure. The development of cardiac hypertrophy is accompanied by gene expression reprogramming, a process that is largely dependent on epigenetic regulation. Histone modifications such as methylation and acetylation are dynamically regulated under cardiac stress. These consequently contribute to the pathogenesis of cardiac hypertrophy via compensatory or maladaptive transcriptome reprogramming. Histone methylation and acetylation modifiers play crucial roles in epigenetic remodeling during the pathogenesis of cardiac hypertrophy. Regulation of histone methylation and acetylation modifiers serves as a bridge between signal transduction and downstream gene reprogramming. Exploring the role of histone modifiers in cardiac hypertrophy provides novel therapeutic strategies to treat cardiac hypertrophy and heart failure. In this review, we summarize the recent advancements in functional histone methylation and acetylation modifiers in cardiac hypertrophy, with an emphasis on the underlying mechanisms and the therapeutic potential.
Collapse
Affiliation(s)
- Jian Qin
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ningning Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingjing Tong
- School of Life Sciences, Central China Normal University, Wuhan, China
| | - Zhihua Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Shenzhen, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
8
|
Zúñiga-Muñoz A, García-Niño WR, Carbó R, Navarrete-López LÁ, Buelna-Chontal M. The regulation of protein acetylation influences the redox homeostasis to protect the heart. Life Sci 2021; 277:119599. [PMID: 33989666 DOI: 10.1016/j.lfs.2021.119599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/21/2022]
Abstract
The cellular damage caused by redox imbalance is involved in the pathogenesis of many cardiovascular diseases. Besides, redox imbalance is related to the alteration of protein acetylation processes, causing not only chromatin remodeling but also disturbances in so many processes where protein acetylation is involved, such as metabolism and signal transduction. The modulation of acetylases and deacetylases enzymes aids in maintaining the redox homeostasis, avoiding the deleterious cellular effects associated with the dysregulation of protein acetylation. Of note, regulation of protein acetylation has shown protective effects to ameliorate cardiovascular diseases. For instance, HDAC inhibition has been related to inducing cardiac protective effects and it is an interesting approach to the management of cardiovascular diseases. On the other hand, the upregulation of SIRT protein activity has also been implicated in the relief of cardiovascular diseases. This review focuses on the major protein acetylation modulators described, involving pharmacological and bioactive compounds targeting deacetylase and acetylase enzymes contributing to heart protection through redox homeostasis.
Collapse
Affiliation(s)
- Alejandra Zúñiga-Muñoz
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, 14080 Mexico City, Mexico
| | - Wylly-Ramsés García-Niño
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, 14080 Mexico City, Mexico
| | - Roxana Carbó
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, 14080 Mexico City, Mexico
| | - Luis-Ángel Navarrete-López
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, 14080 Mexico City, Mexico
| | - Mabel Buelna-Chontal
- Department of Cardiovascular Biomedicine, National Institute of Cardiology, Ignacio Chávez, 14080 Mexico City, Mexico.
| |
Collapse
|
9
|
Wen J, Zou W, Wang R, Liu H, Yang Y, Li H, Wei S, Li R, Cai H, Wang J, Zhao Y. Cardioprotective effects of Aconiti Lateralis Radix Praeparata combined with Zingiberis Rhizoma on doxorubicin-induced chronic heart failure in rats and potential mechanisms. JOURNAL OF ETHNOPHARMACOLOGY 2019; 238:111880. [PMID: 31004728 DOI: 10.1016/j.jep.2019.111880] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 03/22/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The combined use of Aconiti Lateralis Radix Praeparata (ALRP) and Zingiberis Rhizoma (ZR) are classic compatibilities in China for the treatment of cardiovascular diseases such as increasing myocardial contractility, anti-arrhythmia, reducing myocardial oxygen consumption, and dilating organ blood vessels, etc, thereby exerting anti-heart failure (HF) effects in traditional Chinese herbal medicine. However, comprehensive approaches for understanding the therapeutic effects and mechanisms underlying chronic heart failure (CHF) from the perspective of energy metabolism have not been pursued. AIM This research was aimed to investigate the effectiveness and potential mechanism of ALRP combined with ZR (1:1) on doxorubicin (DOX)-induced CHF in rats based on an integrated approach that combines network pharmacology analyses and molecular biology. MATERIAL AND METHODS CHF model was established by the intraperitoneal injection of DOX. ALRP and ZR were intragastrically administrated for three weeks. The detection indices including hemodynamic measurements, myocardial injury marker, and myocardial pathological changes were measured. Network pharmacology analysis was used to illustrate the pathways and network of ALRP and ZR against HF. Mitochondrial energy metabolism pathway associated gene and protein levels of PPARα, PGC-1α and Sirt3 in myocardial tissue were detected by real-time PCR and western blotting, respectively. RESULTS The results indicated that ALRP-ZR herbal couple significantly improved the left ventricular function and cardiac enzyme activities in comparison with their single use. Network pharmacology analysis results showed that the pharmacological mechanisms of ALRP-ZR may be related to PPAR energy metabolism pathway. Besides, the outcomes of western-blot and real-time PCR analysis showed that ALRP-ZR significantly upregulates the protein and gene level of PPARα, PGC-1α, and Sirt3. CONCLUSIONS Network pharmacology analysis would be an effective network analyze workflow which was feasible for evaluating the pharmacological effect of a multi-drug complex system. The Chinese herbal couple ALRP-ZR had a better therapeutic effect than their single-use against DOX-induced CHF, which may be related to enhancing left ventricular function by activating the PPARα/PGC-1α/Sirt3 pathway.
Collapse
Affiliation(s)
- Jianxia Wen
- Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Fifth Medical Center, 302 Military Hospital of China, Beijing, 100039, China
| | - Wenjun Zou
- Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Ruilin Wang
- Department of Traditional Chinese Medicine, Fifth Medical Center, 302 Military Hospital of China, Beijing, 100039, China
| | - Honghong Liu
- Integrative Medical Center, Fifth Medical Center, 302 Military Hospital of China, Beijing, 100039, China
| | - Yuxue Yang
- Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Fifth Medical Center, 302 Military Hospital of China, Beijing, 100039, China
| | - Haotian Li
- Department of Pharmacy, Fifth Medical Center, 302 Military Hospital of China, Beijing, 100039, China
| | - Shizhang Wei
- Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Fifth Medical Center, 302 Military Hospital of China, Beijing, 100039, China
| | - Ruisheng Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, 100039, China
| | - Huadan Cai
- Department of Pharmacy, Fifth Medical Center, 302 Military Hospital of China, Beijing, 100039, China
| | - Jian Wang
- Provincial and State Key Laboratory Breeding Base of System Research, Development and Utilization of Chinese Herbal Medicine Resources, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yanling Zhao
- Department of Pharmacy, Fifth Medical Center, 302 Military Hospital of China, Beijing, 100039, China.
| |
Collapse
|
10
|
Biswas S, Chakrabarti S. Increased Extracellular Matrix Protein Production in Chronic Diabetic Complications: Implications of Non-Coding RNAs. Noncoding RNA 2019; 5:E30. [PMID: 30909482 PMCID: PMC6468528 DOI: 10.3390/ncrna5010030] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 12/16/2022] Open
Abstract
Management of chronic diabetic complications remains a major medical challenge worldwide. One of the characteristic features of all chronic diabetic complications is augmented production of extracellular matrix (ECM) proteins. Such ECM proteins are deposited in all tissues affected by chronic complications, ultimately causing organ damage and dysfunction. A contributing factor to this pathogenetic process is glucose-induced endothelial damage, which involves phenotypic transformation of endothelial cells (ECs). This phenotypic transition of ECs, from a quiescent state to an activated dysfunctional state, can be mediated through alterations in the synthesis of cellular proteins. In this review, we discussed the roles of non-coding RNAs, specifically microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), in such processes. We further outlined other epigenetic mechanisms regulating the biogenesis and/or function of non-coding RNAs. Overall, we believe that better understanding of such molecular processes may lead to the development of novel biomarkers and therapeutic strategies in the future.
Collapse
Affiliation(s)
- Saumik Biswas
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A5A5, Canada.
| | - Subrata Chakrabarti
- Department of Pathology and Laboratory Medicine, Western University, London, ON N6A5A5, Canada.
| |
Collapse
|
11
|
Cited2 participates in cardiomyocyte apoptosis and maternal diabetes-induced congenital heart abnormality. Biochem Biophys Res Commun 2016; 479:887-892. [DOI: 10.1016/j.bbrc.2016.09.101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 01/18/2023]
|
12
|
Affiliation(s)
| | - Philip A. Cole
- Department
of Pharmacology
and Molecular Sciences, The Johns Hopkins
University School of Medicine, 725 North Wolfe Street, Hunterian 316, Baltimore, Maryland 21205, United States
| |
Collapse
|
13
|
Affiliation(s)
- Thomas G. Di Salvo
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Nashville TN
| | - Saptarsi M. Haldar
- Case Cardiovascular Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland OH
- Harrington Heart & Vascular Institute, University Hospitals Case Medical Center, Cleveland, OH
| |
Collapse
|
14
|
Aronson BE, Rabello Aronson S, Berkhout RP, Chavoushi SF, He A, Pu WT, Verzi MP, Krasinski SD. GATA4 represses an ileal program of gene expression in the proximal small intestine by inhibiting the acetylation of histone H3, lysine 27. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:1273-82. [PMID: 24878542 DOI: 10.1016/j.bbagrm.2014.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/29/2014] [Accepted: 05/19/2014] [Indexed: 11/17/2022]
Abstract
GATA4 is expressed in the proximal 85% of small intestine where it promotes a proximal intestinal ('jejunal') identity while repressing a distal intestinal ('ileal') identity, but its molecular mechanisms are unclear. Here, we tested the hypothesis that GATA4 promotes a jejunal versus ileal identity in mouse intestine by directly activating and repressing specific subsets of absorptive enterocyte genes by modulating the acetylation of histone H3, lysine 27 (H3K27), a mark of active chromatin, at sites of GATA4 occupancy. Global analysis of mouse jejunal epithelium showed a statistically significant association of GATA4 occupancy with GATA4-regulated genes. Occupancy was equally distributed between down- and up-regulated targets, and occupancy sites showed a dichotomy of unique motif over-representation at down- versus up-regulated genes. H3K27ac enrichment at GATA4-binding loci that mapped to down-regulated genes (activation targets) was elevated, changed little upon conditional Gata4 deletion, and was similar to control ileum, whereas H3K27ac enrichment at GATA4-binding loci that mapped to up-regulated genes (repression targets) was depleted, increased upon conditional Gata4 deletion, and approached H3K27ac enrichment in wild-type control ileum. These data support the hypothesis that GATA4 both activates and represses intestinal genes, and show that GATA4 represses an ileal program of gene expression in the proximal small intestine by inhibiting the acetylation of H3K27.
Collapse
Affiliation(s)
- B E Aronson
- Children's Hospital Boston, and Harvard Medical School, Boston, MA, USA; Academic Medical Center Amsterdam, Emma Children's Hospital, Amsterdam, the Netherlands
| | - S Rabello Aronson
- Center for Complex Network Research (CCNR), Northeastern University, Boston, MA, USA
| | - R P Berkhout
- Erasmus Medical Center, Rotterdam, the Netherlands
| | - S F Chavoushi
- Utrecht University and University Medical Center Utrecht, Utrecht, the Netherlands; Department of Pharmacy, Meander Medical Center, Amersfoort, the Netherlands
| | - A He
- Children's Hospital Boston, and Harvard Medical School, Boston, MA, USA
| | - W T Pu
- Children's Hospital Boston, and Harvard Medical School, Boston, MA, USA
| | - M P Verzi
- Division of the Life Sciences, Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - S D Krasinski
- Children's Hospital Boston, and Harvard Medical School, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.
| |
Collapse
|
15
|
Abstract
Aims/Introduction: In diabetes, increased oxidative stress as a result of damage to the electron transport chain can lead to tissue injury through upregulation of multiple vasoactive factors and extracellular matrix proteins. Benfotiamine, a lipid soluble thiamine derivative, through reducing mitochondrial superoxide production, blocks multiple pathways leading to tissue damage in hyperglycemia. We investigated if treatment with benfotiamine can prevent diabetes‐induced production of vasoactive factors and extracellular matrix proteins, and whether such effects are tissue‐specific. We also examined whether effects of benfotiamine are mediated through a nuclear mechanism. Materials and Methods: Retinal, renal and cardiac tissues from the streptozotocin‐induced diabetic rats were examined after 4 months of follow up. mRNA levels were quantified using real‐time RT‐PCR. Protein levels were quantified using western blot and ELISA. Cellular expressions of 8‐Hydroxy‐2′‐deoxyguanosine, a marker of nuclear DNA damage and Phospho‐H2AX were also examined. Results: Diabetic animals showed hyperglycemia, glucosuria, increased urinary albumin/creatine ratio and loss of bodyweight. In the kidneys, heart and retina, diabetes caused increased production of endothelin‐1, transforming growth factor‐β1, vascular endothelial growth factor and augmented extracellular matrix proteins (collagen, fibronectin [FN] and its splice variant extradomain B containing FN), along with evidence of structural alterations, characteristic of diabetes‐induced tissue damage. Such changes were prevented by benfotiamine. Furthermore, benfotiamine prevented diabetes‐induced oxidative DNA damage and upregulation of p300, a histone acetylator and a transcription coactivator. Conclusions: Data from the present study suggest that benfotiamine is effective in preventing tissue damage in diabetes and at the transcriptional level such effects are mediated through prevention of p300 upregulation. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2010.00077.x, 2010)
Collapse
Affiliation(s)
- Rana Chakrabarti
- Department of Pathology, The University of Western Ontario, London, ON, Canada
| | - Megan Chen
- Department of Pathology, The University of Western Ontario, London, ON, Canada
| | - Weihua Liu
- Department of Pathology, The University of Western Ontario, London, ON, Canada
| | - Shali Chen
- Department of Pathology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
16
|
|
17
|
Selvi BR, Chatterjee S, Modak R, Eswaramoorthy M, Kundu TK. Histone acetylation as a therapeutic target. Subcell Biochem 2013; 61:567-596. [PMID: 23150268 DOI: 10.1007/978-94-007-4525-4_25] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The recent developments in the field of epigenetics have changed the way the covalent modifications were perceived from mere chemical tags to important biological recruiting platforms as well as decisive factors in the process of transcriptional regulation and gene expression. Over the years, the parallel investigations in the area of epigenetics and disease have also shown the significance of the epigenetic modifications as important regulatory nodes that exhibit dysfunction in disease states. In the present scenario where epigenetic therapy is also being considered at par with the conventional therapeutic strategies, this article reviews the role of histone acetylation as an epigenetic mark involved in different biological processes associated with normal as well as abnormal gene expression states, modulation of this acetylation by small molecules and warrants the possibility of acetylation as a therapeutic target.
Collapse
Affiliation(s)
- B Ruthrotha Selvi
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, P.O., Bangalore, 560 064, India
| | | | | | | | | |
Collapse
|
18
|
Microarray expression analysis in delayed cardioprotection: the effect of exercise, AICAR, or metformin and the possible role of AMP-activated protein kinase (AMPK). Mol Cell Biochem 2011; 360:353-62. [PMID: 21964537 DOI: 10.1007/s11010-011-1075-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 09/16/2011] [Indexed: 12/13/2022]
Abstract
AMP-activated protein kinase (AMPK) is an enzyme which may be involved in cardioprotective mechanisms in the ischemic heart. Exercise, AICAR, and metformin, all known activators of AMPK, induce delayed cardioprotection which protects the heart against ischemia-reperfusion injury. The objective was to determine the effect of exercise, AICAR, and metformin on gene expression profile and to demonstrate possible interactions in different genes and functions. Rats were divided into either an exercise, AICAR, metformin, or control group. 3, 12, and 24 h after either a single bout of exercise training, a single injection of AICAR or a single dose of metformin, hearts were removed and gene expression profiles were analyzed in tissue from the left ventricle using Affymetrix gene chip probe arrays. Ingenuity Pathway Analysis (IPA) tool was used to analyze the regulated genes for relevant functions and diseases. Each gene chip identified up to 30,000 different probesets of which Ingenuity identified approximately up to 12,000 genes. A total of 147, 304, and 114 different genes in the left ventricle whose expressions were altered >2.0-fold were identified in the exercise, AICAR, and metformin group, respectively. Seventy eight different genes were overlapping the exercise and AICAR group at 24 h. Ingenuity identified six overlapping genes between the exercise, AICAR, and metformin groups including NR4A3, TNFRSF12A, HBB, PENK, PAP, and MAP4K4. IPA software revealed an overabundance of focus molecules in all three intervention groups involving functions related to cell death, cellular growth and proliferation, gene expression and cancer. Exercise, AICAR, and metformin regulate several genes in the rat myocardium with the majority of overlapping genes observed in the exercise and AICAR group. Changes in gene programming mainly involved inflammatory and opioid systems recognized as cardioprotective pathways. Some of these genes may represent possible candidate genes involved in the molecular mechanisms of AMPK-induced delayed PC.
Collapse
|
19
|
Barry SP, Townsend PA. What causes a broken heart--molecular insights into heart failure. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 284:113-79. [PMID: 20875630 DOI: 10.1016/s1937-6448(10)84003-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our understanding of the molecular processes which regulate cardiac function has grown immeasurably in recent years. Even with the advent of β-blockers, angiotensin inhibitors and calcium modulating agents, heart failure (HF) still remains a seriously debilitating and life-threatening condition. Here, we review the molecular changes which occur in the heart in response to increased load and the pathways which control cardiac hypertrophy, calcium homeostasis, and immune activation during HF. These can occur as a result of genetic mutation in the case of hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM) or as a result of ischemic or hypertensive heart disease. In the majority of cases, calcineurin and CaMK respond to dysregulated calcium signaling and adrenergic drive is increased, each of which has a role to play in controlling blood pressure, heart rate, and left ventricular function. Many major pathways for pathological remodeling converge on a set of transcriptional regulators such as myocyte enhancer factor 2 (MEF2), nuclear factors of activated T cells (NFAT), and GATA4 and these are opposed by the action of the natriuretic peptides ANP and BNP. Epigenetic modification has emerged in recent years as a major influence cardiac physiology and histone acetyl transferases (HATs) and histone deacetylases (HDACs) are now known to both induce and antagonize hypertrophic growth. The newly emerging roles of microRNAs in regulating left ventricular dysfunction and fibrosis also has great potential for novel therapeutic intervention. Finally, we discuss the role of the immune system in mediating left ventricular dysfunction and fibrosis and ways this can be targeted in the setting of viral myocarditis.
Collapse
Affiliation(s)
- Seán P Barry
- Institute of Molecular Medicine, St. James's Hospital, Trinity College Dublin, Dublin 8, Ireland
| | | |
Collapse
|
20
|
Chen S, Feng B, George B, Chakrabarti R, Chen M, Chakrabarti S. Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells. Am J Physiol Endocrinol Metab 2010; 298:E127-37. [PMID: 19903865 DOI: 10.1152/ajpendo.00432.2009] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Sustained hyperglycemia in diabetes causes alteration of a large number of transcription factors and mRNA transcripts, leading to tissue damage. We investigated whether p300, a transcriptional coactivator with histone acetyl transferase activity, regulates glucose-induced activation of transcription factors and subsequent upregulation of vasoactive factors and extracellular matrix (ECM) proteins in human umbilical vein endothelial cells (HUVECs). HUVECs were incubated in varied glucose concentrations and were studied after p300 small interfering RNA (siRNA) transfection, p300 overexpression, or incubation with the p300 inhibitor curcumin. Histone H2AX phosphorylation and lysine acetylation were examined for oxidative DNA damage and p300 activation. Screening for transcription factors was performed with the Luminex system. Alterations of selected transcription factors were validated. mRNA expression of p300, endothelin-1 (ET-1), vascular endothelial growth factor (VEGF), and fibronectin (FN) and its splice variant EDB(+)FN and FN protein production were analyzed. HUVECs in 25 mmol/l glucose showed increased p300 production accompanied by increased binding of p300 to ET-1 and FN promoters, augmented histone acetylation, H2AX phosphorylation, activation of multiple transcription factors, and increased mRNA expression of vasoactive factors and ECM proteins. p300 overexpression showed a glucose-like effect on the mRNA expression of ET-1, VEGF, and FN. Furthermore, siRNA-mediated p300 blockade or chemical inhibitor of p300 prevented such glucose-induced changes. Similar mRNA upregulation was also seen in the organ culture of vascular tissues, which was prevented by p300 siRNA transfection. Data from these studies suggest that glucose-induced p300 upregulation is an important upstream epigenetic mechanism regulating gene expression of vasoactive factors and ECM proteins in endothelial cells and is a potential therapeutic target for diabetic complications.
Collapse
Affiliation(s)
- Shali Chen
- Department of Pathology, University of Western Ontario, Schulich School of Medicine, London, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Han Y, Jeong HM, Jin YH, Kim YJ, Jeong HG, Yeo CY, Lee KY. Acetylation of histone deacetylase 6 by p300 attenuates its deacetylase activity. Biochem Biophys Res Commun 2009; 383:88-92. [PMID: 19344692 DOI: 10.1016/j.bbrc.2009.03.147] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 03/21/2009] [Indexed: 11/18/2022]
Abstract
Protein acetyltransferases and deacetylases affect the activities of each other. This is well documented by the acetylation and inhibition of HDAC1 by p300, a transcriptional co-activator with protein acetyltransferase activity. However, the relationship between HDAC6 and p300 is poorly understood. HDAC6 is a class II histone deacetylase and differs from other members of HDAC family in that it contains two HDAC domains and an ubiquitin-binding motif. HDAC6 is a microtubule-associated deacetylase. It predominantly deacetylates non-histone proteins, including alpha-tubulin, and regulates cell motility. Here, we report that p300 interacts with and acetylates HDAC6 resulting down-regulation of HDAC6 deacetylase activity. Furthermore, we provide evidences that acetylation of HDAC6 by p300 inhibits tubulin deacetylation and suppression of Sp1 transcriptional activity by HDAC6. Our results demonstrate that p300 can inactivate HDAC6 by acetylation, and that p300 may regulate the activity of Sp1 indirectly through HDAC6 in addition to its direct modification of Sp1.
Collapse
Affiliation(s)
- Younho Han
- College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Yongbong-dong, Gwangju, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
Wang L, Tang Y, Cole PA, Marmorstein R. Structure and chemistry of the p300/CBP and Rtt109 histone acetyltransferases: implications for histone acetyltransferase evolution and function. Curr Opin Struct Biol 2008; 18:741-7. [PMID: 18845255 DOI: 10.1016/j.sbi.2008.09.004] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 09/08/2008] [Accepted: 09/14/2008] [Indexed: 01/03/2023]
Abstract
The recent structure and associated biochemical studies of the metazoan-specific p300/CBP and fungal-specific Rtt109 histone acetyltransferases (HATs) have provided new insights into the ancestral relationship between HATs and their functions. These studies point to a common HAT ancester that has evolved around a common structural framework to form HATs with divergent catalytic and substrate-binding properties. These studies also point to the importance of regulatory loops within HATs and autoacetylation in HAT function. Implications for future studies are discussed.
Collapse
Affiliation(s)
- Ling Wang
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
23
|
Han Y, Jin YH, Kim YJ, Kang BY, Choi HJ, Kim DW, Yeo CY, Lee KY. Acetylation of Sirt2 by p300 attenuates its deacetylase activity. Biochem Biophys Res Commun 2008; 375:576-80. [DOI: 10.1016/j.bbrc.2008.08.042] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 08/12/2008] [Indexed: 10/21/2022]
|
24
|
Neuregulin-1 enhances differentiation of cardiomyocytes from embryonic stem cells. Med Biol Eng Comput 2008; 47:41-8. [DOI: 10.1007/s11517-008-0383-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Accepted: 07/25/2008] [Indexed: 10/21/2022]
|
25
|
Feng B, Chen S, Chiu J, George B, Chakrabarti S. Regulation of cardiomyocyte hypertrophy in diabetes at the transcriptional level. Am J Physiol Endocrinol Metab 2008; 294:E1119-26. [PMID: 18413674 DOI: 10.1152/ajpendo.00029.2008] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diabetic cardiomyopathy, structurally characterized by cardiomyocyte hypertrophy and increased extracellular matrix (ECM) protein deposition, eventually leads to heart failure. We investigated the role of transcriptional coactivator p300 and its interaction with myocyte enhancer factor 2 (MEF2) in diabetes-induced cardiomyocyte hypertrophy. Neonatal rat cardiomyocytes were exposed to variable levels of glucose. Cardiomyocytes were analyzed with respect to their size. mRNA expression of p300, MEF2A, MEF2C, atrial natriuretic polypeptide (ANP), brain natriuretic polypeptide (BNP), angiotensinogen (ANG), cAMP-responsive element binding protein-binding protein (CBP), and protein analysis of MEF2 were done with or without p300 blockade. We investigated the hearts of STZ-induced diabetic rats and compared them with age- and sex-matched controls after 1 and 4 mo of followup with or without treatment with p300 blocker curcumin. The results were that cardiomyocytes, exposed to 25 mM glucose for 48 h, showed cellular hypertrophy and augmented mRNA expression of ANP, BNP, and ANG, molecular markers of cardiac hypertrophy. Glucose caused a duration-dependent increase of mRNA and protein expression in MEF2A and MEF2C and transcriptional coactivator p300. Curcumin, a p300 blocker, and p300 siRNA prevented these abnormalities. Similarly, ANP, BNP, and ANG mRNA expression was significantly higher in the hearts of diabetic rats compared with the controls, in association with increased p300, MEF2A, and MEF2C expression. Treatment with p300 blocker curcumin prevented diabetes-induced upregulation of these transcripts. We concluded that data from these studies demonstrate a novel glucose-induced epigenetic mechanism regulating gene expression and cardiomyocyte hypertrophy in diabetes.
Collapse
MESH Headings
- Angiotensinogen/genetics
- Angiotensinogen/metabolism
- Animals
- Animals, Newborn
- Atrial Natriuretic Factor/genetics
- Atrial Natriuretic Factor/metabolism
- Blotting, Western
- Cardiomyopathies/genetics
- Cardiomyopathies/metabolism
- Cardiomyopathies/pathology
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Dose-Response Relationship, Drug
- Female
- Gene Expression Regulation
- Glucose/administration & dosage
- Glucose/metabolism
- MEF2 Transcription Factors
- Male
- Myocytes, Cardiac/pathology
- Myogenic Regulatory Factors/genetics
- Myogenic Regulatory Factors/metabolism
- Natriuretic Peptide, Brain/genetics
- Natriuretic Peptide, Brain/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Transcription, Genetic
- p300-CBP Transcription Factors/antagonists & inhibitors
- p300-CBP Transcription Factors/metabolism
Collapse
Affiliation(s)
- Biao Feng
- Department of Pathology, University of Western Ontario, London, ON, Canada
| | | | | | | | | |
Collapse
|
26
|
Barry SP, Davidson SM, Townsend PA. Molecular regulation of cardiac hypertrophy. Int J Biochem Cell Biol 2008; 40:2023-39. [PMID: 18407781 DOI: 10.1016/j.biocel.2008.02.020] [Citation(s) in RCA: 215] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 02/13/2008] [Accepted: 02/15/2008] [Indexed: 01/05/2023]
Abstract
Heart failure is one of the leading causes of mortality in the western world and encompasses a wide spectrum of cardiac pathologies. When the heart experiences extended periods of elevated workload, it undergoes hypertrophic enlargement in response to the increased demand. Cardiovascular disease, such as that caused by myocardial infarction, obesity or drug abuse promotes cardiac myocyte hypertrophy and subsequent heart failure. A number of signalling modulators in the vasculature milieu are known to regulate heart mass including those that influence gene expression, apoptosis, cytokine release and growth factor signalling. Recent evidence using genetic and cellular models of cardiac hypertrophy suggests that pathological hypertrophy can be prevented or reversed and has promoted an enormous drive in drug discovery research aiming to identify novel and specific regulators of hypertrophy. In this review we describe the molecular characteristics of cardiac hypertrophy such as the aberrant re-expression of the fetal gene program. We discuss the various molecular pathways responsible for the co-ordinated control of the hypertrophic program including: natriuretic peptides, the adrenergic system, adhesion and cytoskeletal proteins, IL-6 cytokine family, MEK-ERK1/2 signalling, histone acetylation, calcium-mediated modulation and the exciting recent discovery of the role of microRNAs in controlling cardiac hypertrophy. Characterisation of the signalling pathways leading to cardiac hypertrophy has led to a wealth of knowledge about this condition both physiological and pathological. The challenge will be translating this knowledge into potential pharmacological therapies for the treatment of cardiac pathologies.
Collapse
Affiliation(s)
- Sean P Barry
- Medical Molecular Biology Unit, Institute of Child Health, University College London, 30 Guilford Street, London WC1N IEH, United Kingdom.
| | | | | |
Collapse
|
27
|
Oka T, Xu J, Molkentin JD. Re-employment of developmental transcription factors in adult heart disease. Semin Cell Dev Biol 2006; 18:117-31. [PMID: 17161634 PMCID: PMC1855184 DOI: 10.1016/j.semcdb.2006.11.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A finite number of transcription factors constitute a combinatorial code that orchestrates cardiac development and the specification and differentiation of myocytes. Many, if not all of these same transcription factors are re-employed in the adult heart in response to disease stimuli that promote hypertrophic enlargement and/or dilated cardiomyopathy, as part of the so-called "fetal gene program". This review will discuss the transcription factors that regulate the hypertrophic growth response of the adult heart, with a special emphasis on those regulators that participate in cardiac development.
Collapse
|
28
|
Abstract
In the life of a cell, there is a constant balance between generation of reactive oxygen species (ROS) and activity of antioxidant defense mechanisms. Besides the damaging effects of ROS on many biomolecules, ROS also play a significant role in signal transduction pathways of growth factors suggesting a role of oxidative species in cell differentiation. ROS have recently been involved in the process of cardiac differentiation of stem cells. Several molecular mechanisms, including ones mediated by the GTPase Rac that underlie the regulatory role of ROS in the process of stem cell differentiation toward a cardiac lineage, are reviewed.
Collapse
|
29
|
Davidson SM, Townsend PA, Carroll C, Yurek-George A, Balasubramanyam K, Kundu TK, Stephanou A, Packham G, Ganesan A, Latchman DS. The transcriptional coactivator p300 plays a critical role in the hypertrophic and protective pathways induced by phenylephrine in cardiac cells but is specific to the hypertrophic effect of urocortin. Chembiochem 2005; 6:162-70. [PMID: 15593114 DOI: 10.1002/cbic.200400246] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Anacardic acid is an alkylsalicylic acid obtained from cashew-nut-shell liquid, and is a potent inhibitor of p300 histone acetyl-transferase (HAT) activity. We have used anacardic acid to prevent the induction of hypertrophy in isolated neonatal rat cardiomyocytes. Hypertrophy was detected as an increase in cell size, the rearrangement of sarcomeres into a striated pattern, and the induction of embryonic genes beta-MHC and ANF. p300 inhibition was equally effective at preventing hypertrophy whether it was induced by treatment with the alpha1-adrenergic agonist, phenylephrine, or by treatment with urocortin, a member of the corticotrophin-releasing-factor family, which stimulates specific G protein-coupled receptors. Spiruchostatin A is a natural-product inhibitor of histone deacetylases (HDAC) similar to the depsipeptide FK228 molecule. We have recently synthesized spiruchostatin A and now show that, although HDACs act in opposition to HATs, spiruchostatin A has the same effect as anacardic acid, that is, it prevents the induction of hypertrophy in response to phenylephrine or urocortin. Pretreatment with either phenylephrine or urocortin reduced the extent of death observed after the exposure of isolated cardiomyocytes to simulated ischaemia and reoxygenation. Inhibition of p300 or HDAC activity eliminated the protection conferred by phenylephrine; however, it did not affect the protection conferred by urocortin. Therefore, it might eventually be possible to use chemical inhibitors such as these in a therapeutic setting to dissociate the protective effect and hypertrophic effect of urocortin, enhancing the survival of cardiomyocytes exposed to transient ischemia, while inhibiting the hypertrophic pathway that would otherwise be induced concurrently.
Collapse
Affiliation(s)
- Sean M Davidson
- Institute of Child Health, University College London, 30 Guilford Street, London WC1N 1EH, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Poizat C, Puri PL, Bai Y, Kedes L. Phosphorylation-dependent degradation of p300 by doxorubicin-activated p38 mitogen-activated protein kinase in cardiac cells. Mol Cell Biol 2005; 25:2673-87. [PMID: 15767673 PMCID: PMC1061628 DOI: 10.1128/mcb.25.7.2673-2687.2005] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
p300 and CBP are general transcriptional coactivators implicated in different cellular processes, including regulation of the cell cycle, differentiation, tumorigenesis, and apoptosis. Posttranslational modifications such as phosphorylation are predicted to select a specific function of p300/CBP in these processes; however, the identification of the kinases that regulate p300/CBP activity in response to individual stimuli and the physiological significance of p300 phosphorylation have not been elucidated. Here we demonstrate that the cardiotoxic anticancer agent doxorubicin (adriamycin) induces the phosphorylation of p300 in primary neonatal cardiomyocytes. Hyperphosphorylation precedes the degradation of p300 and parallels apoptosis in response to doxorubicin. Doxorubicin-activated p38 kinases alpha and beta associate with p300 and are implicated in the phosphorylation-mediated degradation of p300, as pharmacological blockade of p38 prevents p300 degradation. p38 phosphorylates p300 in vitro at both the N and C termini of the protein, and enforced activation of p38 by the constitutively active form of its upstream kinase (MKK6EE) triggers p300 degradation. These data support the conclusion that p38 mitogen-activated protein kinase regulates p300 protein stability and function in cardiomyocytes undergoing apoptosis in response to doxorubicin.
Collapse
Affiliation(s)
- Coralie Poizat
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, 2250 Alcazar St., CSC 245, Los Angeles, CA 90033, USA.
| | | | | | | |
Collapse
|
31
|
Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 2004; 24:8467-76. [PMID: 15367668 PMCID: PMC516756 DOI: 10.1128/mcb.24.19.8467-8476.2004] [Citation(s) in RCA: 454] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The adult heart responds to stress signals by hypertrophic growth, which is often accompanied by activation of a fetal cardiac gene program and eventual cardiac demise. We showed previously that histone deacetylase 9 (HDAC9) acts as a suppressor of cardiac hypertrophy and that mice lacking HDAC9 are sensitized to cardiac stress signals. Here we report that mice lacking HDAC5 display a similar cardiac phenotype and develop profoundly enlarged hearts in response to pressure overload resulting from aortic constriction or constitutive cardiac activation of calcineurin, a transducer of cardiac stress signals. In contrast, mice lacking either HDAC5 or HDAC9 show a hypertrophic response to chronic beta-adrenergic stimulation identical to that of wild-type littermates, suggesting that these HDACs modulate a specific subset of cardiac stress response pathways. We also show that compound mutant mice lacking both HDAC5 and HDAC9 show a propensity for lethal ventricular septal defects and thin-walled myocardium. These findings reveal central roles for HDACs 5 and 9 in the suppression of a subset of cardiac stress signals as well as redundant functions in the control of cardiac development.
Collapse
Affiliation(s)
- Shurong Chang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9148, USA
| | | | | | | | | | | |
Collapse
|
32
|
Mathew S, Mascareno E, Siddiqui MAQ. A ternary complex of transcription factors, Nishéd and NFATc4, and co-activator p300 bound to an intronic sequence, intronic regulatory element, is pivotal for the up-regulation of myosin light chain-2v gene in cardiac hypertrophy. J Biol Chem 2004; 279:41018-27. [PMID: 15272022 DOI: 10.1074/jbc.m403578200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcriptional up-regulation of the myosin light chain-2 (MLC-2v) gene is an established marker for hypertrophic response in cardiomyocytes. Despite the documentation on the role of several cis-elements in the MLC-2v gene and their cognate proteins in transcription, the mechanism that dictates the preferential increase in MLC-2v gene expression during myocardial hypertrophy has not been delineated. Here we describe the properties of a cardiac specific intronic activator element (IRE) that shares sequence homology with the repressor element, the cardiac specific sequence, in the chicken MLC-2v gene. The transcription factor, Nishéd, that recognizes both IRE and the cardiac specific sequence potentiates the transcription of the MLC-2v gene via interaction with another transcription factor, nuclear factor of activated T cells, and the co-activator p300 at the IRE site. Angiotensin II (Ang II), a potent agonist of hypertrophy, causes induction of the MLC-2v gene transcription, which correlates well with the enhanced binding of Nishéd-nuclear factor of the activated T cells-p300 complex to IRE in the gel mobility shift assay. Losartan, an antagonist of Ang II receptor (AT1), abolishes the agonist-dependent stimulation of IRE/protein interaction and the consequent increase in MLC-2v gene transcription. These results together have thus established a transcriptional role of IRE as a direct target sequence of Ang II-mediated signaling that appears to be pivotal in the mechanism underlying the up-regulation of the MLC-2v gene during cardiac hypertrophy.
Collapse
MESH Headings
- Amino Acid Sequence
- Angiotensin II/metabolism
- Animals
- Base Sequence
- Binding, Competitive
- Blotting, Northern
- Blotting, Western
- Cardiac Myosins/chemistry
- Cardiomegaly
- Cell Nucleus/metabolism
- Cells, Cultured
- Chick Embryo
- DNA/chemistry
- DNA, Complementary/metabolism
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Gene Library
- Genes, Reporter
- Introns
- Luciferases/metabolism
- Models, Genetic
- Molecular Sequence Data
- Muscle, Skeletal/metabolism
- Myosin Light Chains/chemistry
- NFATC Transcription Factors
- Nuclear Proteins/physiology
- Oligonucleotides/chemistry
- Precipitin Tests
- Protein Binding
- RNA/chemistry
- RNA, Messenger/metabolism
- Repressor Proteins/metabolism
- Repressor Proteins/physiology
- T-Lymphocytes/metabolism
- Trans-Activators/physiology
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcription, Genetic
- Transfection
- Up-Regulation
Collapse
Affiliation(s)
- Sumy Mathew
- Department of Anatomy and Cell Biology, Center for Cardiovascular and Muscle Research, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| | | | | |
Collapse
|