1
|
Noguchi Y, Onodera Y, Miyamoto T, Maruoka M, Kosako H, Suzuki J. In vivo CRISPR screening directly targeting testicular cells. CELL GENOMICS 2024; 4:100510. [PMID: 38447574 PMCID: PMC10943590 DOI: 10.1016/j.xgen.2024.100510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 12/10/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024]
Abstract
CRISPR-Cas9 short guide RNA (sgRNA) library screening is a powerful approach to understand the molecular mechanisms of biological phenomena. However, its in vivo application is currently limited. Here, we developed our previously established in vitro revival screening method into an in vivo one to identify factors involved in spermatogenesis integrity by utilizing sperm capacitation as an indicator. By introducing an sgRNA library into testicular cells, we successfully pinpointed the retinal degeneration 3 (Rd3) gene as a significant factor in spermatogenesis. Single-cell RNA sequencing (scRNA-seq) analysis highlighted the high expression of Rd3 in round spermatids, and proteomics analysis indicated that Rd3 interacts with mitochondria. To search for cell-type-specific signaling pathways based on scRNA-seq and proteomics analyses, we developed a computational tool, Hub-Explorer. Through this, we discovered that Rd3 modulates oxidative stress by regulating mitochondrial distribution upon ciliogenesis induction. Collectively, our screening system provides a valuable in vivo approach to decipher molecular mechanisms in biological processes.
Collapse
Affiliation(s)
- Yuki Noguchi
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan
| | - Yasuhito Onodera
- Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, N15W7 Kita-ku, Sapporo, Hokkaido 060-8638, Japan
| | - Tatsuo Miyamoto
- Department of Molecular and Cellular Physiology, Yamaguchi University, Graduate School of Medicine, 1-1-1 Minami-Kogushi, Ube, Yamaguchi 755-8505, Japan
| | - Masahiro Maruoka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan; Center for Integrated Biosystems, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Jun Suzuki
- Graduate School of Biostudies, Kyoto University, Konoe-cho, Yoshida, Sakyoku, Kyoto 606-8501, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Honmachi, Sakyoku, Kyoto 606-8501, Japan; Center for Integrated Biosystems, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
2
|
Ngo ATL, Le HM, Trinh NTH, Jun APG, Bach TQ, Bui HTH, Hoang VT, Bui AV, Nguyen LT, Hoang DM. Clinically relevant preservation conditions for mesenchymal stem/stromal cells derived from perinatal and adult tissue sources. J Cell Mol Med 2021; 25:10747-10760. [PMID: 34708529 PMCID: PMC8581317 DOI: 10.1111/jcmm.17016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
The interplay between mesenchymal stem/stromal cells (MSCs) and preservation conditions is critical to maintain the viability and functionality of these cells before administration. We observed that Ringer lactate (RL) maintained high viability of bone marrow–derived MSCs for up to 72 h at room temperature (18°C–22°C), whereas adipose‐derived and umbilical cord‐derived MSCs showed the highest viability for 72 h at a cold temperature (4°C–8°C). These cells maintained their adherence ability with an improved recovery rate and metabolic profiles (glycolysis and mitochondrial respiration) similar to those of freshly harvested cells. Growth factor and cytokine analyses revealed that the preserved cells released substantial amounts of leukaemia inhibitory factors (LIFs), hepatocyte growth factor (HGF) and vascular endothelial growth factor‐A (VEGF‐A), as well as multiple cytokines (eg IL‐4, IL‐6, IL‐8, MPC‐1 and TNF‐α). Our data provide the simplest clinically relevant preservation conditions that maintain the viability, stemness and functionality of MSCs from perinatal and adult tissue sources.
Collapse
Affiliation(s)
- Anh T L Ngo
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Health Care System, Hanoi, Vietnam
| | - Hang M Le
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Health Care System, Hanoi, Vietnam
| | - Nhung T H Trinh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Adriel Peng Guo Jun
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Trung Q Bach
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Hue T H Bui
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Health Care System, Hanoi, Vietnam
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Anh V Bui
- Vinmec Institute of Applied Science and Regenerative Medicine, Vinmec Health Care System, Hanoi, Vietnam
| | - Liem T Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| | - Duc M Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, Hanoi, Vietnam
| |
Collapse
|
3
|
Ahmadiankia N. In vitro and in vivo studies of cancer cell behavior under nutrient deprivation. Cell Biol Int 2020; 44:1588-1597. [PMID: 32339363 DOI: 10.1002/cbin.11368] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 04/15/2020] [Accepted: 04/25/2020] [Indexed: 12/16/2022]
Abstract
Cancer cells are confronted with nutrient deprivation because of high proliferation rate, especially at the early stage of their development. There is a frequent assumption that nutrient deprivation decreases the basal activity of cancer cells. Contrarily, there are recent evidence suggesting that cancer cells are able to modulate signaling pathways to adapt with new condition and continue their survival. This property of cancer cells is believed to be one of the prerequisites for cancer progression and chemoresistance. Moreover, recent experiments show that serum starvation in vitro as a mimic situation of nutrient deprivation in vivo triggers different signaling pathways leading to changes in cancer cell behavior, which may interfere with experimental results. Considering these facts, a better understanding of the effect of nutrient deprivation on cancer cell behavior will help us to give more accurate conclusions regarding results of in vitro studies and also to develop new strategies to treat different cancers in vivo.
Collapse
Affiliation(s)
- Naghmeh Ahmadiankia
- Cancer Prevention Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
4
|
Erkan H, Telci D, Dilek O. Design of Fluorescent Probes for Bioorthogonal Labeling of Carbonylation in Live Cells. Sci Rep 2020; 10:7668. [PMID: 32376913 PMCID: PMC7203098 DOI: 10.1038/s41598-020-64790-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
With the rapid development of chemical biology, many diagnostic fluorophore-based tools were introduced to specific biomolecules by covalent binding. Bioorthogonal reactions have been widely utilized to manage challenges faced in clinical practice for early diagnosis and treatment of several tumor samples. Herein, we designed a small molecule fluorescent-based biosensor, 2Hydrazine-5nitrophenol (2Hzin5NP), which reacts with the carbonyl moiety of biomolecules through bioorthogonal reaction, therefore can be utilized for the detection of biomolecule carbonylation in various cancer cell lines. Our almost non-fluorescent chemical probe has a fast covalent binding with carbonyl moieties at neutral pH to form a stable fluorescent hydrazone product leading to a spectroscopic alteration in live cells. Microscopic and fluorometric analyses were used to distinguish the exogenous and endogenous ROS induced carbonylation profile in human dermal fibroblasts along with A498 primary site and ACHN metastatic site renal cell carcinoma (RRC) cell lines. Our results showed that carbonylation level that differs in response to exogenous and endogenous stress in healthy and cancer cells can be detected by the newly synthesized bioorthogonal fluorescent probe. Our results provide new insights into the development of novel bioorthogonal probes that can be utilized in site-specific carbonylation labeling to enhance new diagnostic approaches in cancer.
Collapse
Affiliation(s)
- Hazel Erkan
- Department of Biotechnology, Yeditepe University, Istanbul, 34755, Turkey
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Department of Biophysics, Medical University of Graz, Neue Stiftingtalstrasse, 6/4 8010, Graz, Austria
| | - Dilek Telci
- Department of Biotechnology, Yeditepe University, Istanbul, 34755, Turkey.
| | - Ozlem Dilek
- Department of Chemistry, University of Saint Joseph, West Hartford, 06117, Connecticut, USA.
| |
Collapse
|
5
|
Brill AL, Fischer TT, Walters JM, Marlier A, Sewanan LR, Wilson PC, Johnson EK, Moeckel G, Cantley LG, Campbell SG, Nerbonne JM, Chung HJ, Robert ME, Ehrlich BE. Polycystin 2 is increased in disease to protect against stress-induced cell death. Sci Rep 2020; 10:386. [PMID: 31941974 PMCID: PMC6962458 DOI: 10.1038/s41598-019-57286-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Polycystin 2 (PC2 or TRPP1, formerly TRPP2) is a calcium-permeant Transient Receptor Potential (TRP) cation channel expressed primarily on the endoplasmic reticulum (ER) membrane and primary cilia of all cell and tissue types. Despite its ubiquitous expression throughout the body, studies of PC2 have focused primarily on its role in the kidney, as mutations in PC2 lead to the development of autosomal dominant polycystic kidney disease (ADPKD), a debilitating condition for which there is no cure. However, the endogenous role that PC2 plays in the regulation of general cellular homeostasis remains unclear. In this study, we measure how PC2 expression changes in different pathological states, determine that its abundance is increased under conditions of cellular stress in multiple tissues including human disease, and conclude that PC2-deficient cells have increased susceptibility to cell death induced by stress. Our results offer new insight into the normal function of PC2 as a ubiquitous stress-sensitive protein whose expression is up-regulated in response to cell stress to protect against pathological cell death in multiple diseases.
Collapse
Affiliation(s)
- Allison L Brill
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, 06510, United States of America
| | - Tom T Fischer
- Department of Pharmacology, Yale University, New Haven, CT, 06510, United States of America.,Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Jennifer M Walters
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| | - Arnaud Marlier
- Department of Internal Medicine, Yale University, New Haven, CT, 06510, United States of America
| | - Lorenzo R Sewanan
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, United States of America
| | - Parker C Wilson
- Department of Pathology, Yale University, New Haven, CT, 06510, United States of America.,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, MO, 63110, United States of America
| | - Eric K Johnson
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, United States of America
| | - Gilbert Moeckel
- Department of Pathology, Yale University, New Haven, CT, 06510, United States of America
| | - Lloyd G Cantley
- Department of Internal Medicine, Yale University, New Haven, CT, 06510, United States of America
| | - Stuart G Campbell
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06510, United States of America
| | - Jeanne M Nerbonne
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, MO, 63110, United States of America.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, 63110, United States of America
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, United States of America
| | - Marie E Robert
- Department of Pathology, Yale University, New Haven, CT, 06510, United States of America
| | - Barbara E Ehrlich
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, 06510, United States of America. .,Department of Pharmacology, Yale University, New Haven, CT, 06510, United States of America.
| |
Collapse
|
6
|
Yoon SJ, Choi JI, Min SK, Shin HS. Evaluation of the Effect of C-phycocyanin on Cultured Rat Primary Hippocampal Astrocytes Undergoing Trophic Factor Deprivation. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0102-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Yang P, Ling L, Sun W, Yang J, Zhang L, Chang G, Guo J, Sun J, Sun L, Lu D. Ginsenoside Rg1 inhibits apoptosis by increasing autophagy via the AMPK/mTOR signaling in serum deprivation macrophages. Acta Biochim Biophys Sin (Shanghai) 2018; 50:144-155. [PMID: 29324976 DOI: 10.1093/abbs/gmx136] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Indexed: 01/12/2023] Open
Abstract
Ginsenoside Rg1 (Rg1) has been widely used in a broad range of cardiovascular and cerebral-vascular diseases because of its unique therapeutic properties. However, the underlying mechanisms of Rg1 in the treatment of atherosclerosis have not been fully explored. This study sought to determine the precise molecular mechanisms on how Rg1 might be involved in regulating apoptosis in serum deprivation-induced Raw264.7 macrophages and primary bone marrow-derived macrophages. Results demonstrated that Rg1 treatment effectively suppressed apoptosis and the expression of phosphorylation level of mTOR induced by serum deprivation in Raw264.7 macrophages; the expressions of autophagic flux-related proteins including Atg5, Beclin1, microtubule-associated protein 1 light chain 3 (LC3), p62/SQSMT1, and the phosphorylation level of AMPK were concomitantly up-regulated. 3-Methyl-adennine (3-MA), the most widely used autophagy inhibitor, strongly up-regulated the expression of cleaved caspase-3, and blocked the anti-apoptosis function of Rg1 in macrophages. Importantly, autophagic flux was activated by Rg1, while Beclin1 knockdown partially abolished the anti-apoptosis of Rg1. Moreover, compound C, an AMPK inhibitor, partially decreased the expressions of phosphorylation of mTOR, Atg5, Beclin1, LC3, and p62/SQSMT1, which were increased by Rg1. AICAR, an AMPK inducer, promoted the protein expressions of phosphorylation of mTOR, Atg5, Beclin1, LC3, and p62/SQSMT1. In conclusion, Rg1 significantly suppressed apoptosis induced by serum deprivation in macrophages. Furthermore, Rg1 could effectively induce the autophagic flux by attenuating serum deprivation-induced apoptosis in Raw264.7 macrophages through activating the AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Ping Yang
- Department of Anatomy and Histology, School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Lu Ling
- Department of Cardiology, the Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Wenjing Sun
- Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China
| | - Junquan Yang
- Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China
| | - Ling Zhang
- Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China
| | - Guoji Chang
- Department of Cardiology, the Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Jiazhi Guo
- Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China
| | - Jun Sun
- School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Lin Sun
- Department of Cardiology, the Second Affiliated Hospital, Kunming Medical University, Kunming 650101, China
| | - Di Lu
- Biomedical Engineering Research Center, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
8
|
Tangtrongsup S, Kisiday JD. Modulating the oxidative environment during mesenchymal stem cells chondrogenesis with serum increases collagen accumulation in agarose culture. J Orthop Res 2018; 36:506-514. [PMID: 28548680 DOI: 10.1002/jor.23618] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/19/2017] [Indexed: 02/04/2023]
Abstract
Chondrogenesis of mesenchymal stem cells (MSCs) is induced in culture conditions that have been associated with oxidative stress, although the extent to which the oxidative environment affects differentiation and extracellular matrix (ECM) accumulation is not known. The objectives of this study were to evaluate the oxidative environment during MSCs chondrogenesis in conventional serum-free medium, and the effect of serum-supplementation on intracellular reactive oxygen species (ROS) and chondrogenesis. Young adult equine MSCs were seeded into agarose and cultured in chondrogenic medium, with or without 5% fetal bovine serum (FBS), for up to 15 days. Samples were evaluated for intracellular ROS, the antioxidant glutathione, ECM and gene expression measures of chondrogenesis, and carbonylation as an indicator of oxidative damage. Intracellular ROS increased with time in culture, and was lower in medium supplemented with FBS. Glutathione decreased ∼12-fold during early chondrogenesis (p < 0.0001), and was not affected by FBS (p = 0.25). After 15 days of culture, FBS supplementation increased hydroxyproline accumulation ∼80% (p = 0.0002); otherwise, measures of chondrogenesis were largely unaffected. Protein carbonylation in chondrogenic MSCs cultures was not significantly different between serum-free and FBS cultures (p = 0.72). Supplementation with adult equine serum increased hydroxyproline accumulation by 45% over serum-free culture (p = 0.0006). In conclusion, this study characterized changes in the oxidative environment during MSC chondrogenesis, and suggested that lowering ROS may be an effective approach to increase collagen accumulation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:506-514, 2018.
Collapse
Affiliation(s)
- Suwimol Tangtrongsup
- Department of Clinical Sciences, Orthopaedic Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins 80523, Colorado
| | - John D Kisiday
- Department of Clinical Sciences, Orthopaedic Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins 80523, Colorado
| |
Collapse
|
9
|
Domingues PH, Nanduri LSY, Seget K, Venkateswaran SV, Agorku D, Viganó C, von Schubert C, Nigg EA, Swanton C, Sotillo R, Bosio A, Storchová Z, Hardt O. Cellular Prion Protein PrP C and Ecto-5'-Nucleotidase Are Markers of the Cellular Stress Response to Aneuploidy. Cancer Res 2017; 77:2914-2926. [PMID: 28377454 DOI: 10.1158/0008-5472.can-16-3052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/23/2017] [Accepted: 03/20/2017] [Indexed: 11/16/2022]
Abstract
Aneuploidy is a hallmark of most human tumors, but the molecular physiology of aneuploid cells is not well characterized. In this study, we screened cell surface biomarkers of approximately 300 proteins by multiparameter flow cytometry using multiple aneuploid model systems such as cell lines, patient samples, and mouse models. Several new biomarkers were identified with altered expression in aneuploid cells, including overexpression of the cellular prion protein CD230/PrPC and the immunosuppressive cell surface enzyme ecto-5'-nucleotidase CD73. Functional analyses associated these alterations with increased cellular stress. An increased number of CD73+ cells was observed in confluent cultures in aneuploid cells relative to their diploid counterparts. An elevated expression in CD230/PrPC was observed in serum-deprived cells in association with increased generation of reactive oxygen species. Overall, our work identified biomarkers of aneuploid karyotypes, which suggest insights into the underlying molecular physiology of aneuploid cells. Cancer Res; 77(11); 2914-26. ©2017 AACR.
Collapse
Affiliation(s)
| | - Lalitha S Y Nanduri
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany.,Amrita Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Katarzyna Seget
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Martinsried, Germany.,Department of Molecular Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Sharavan V Venkateswaran
- Division of Molecular Thoracic Oncology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - David Agorku
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | | | | | - Erich A Nigg
- Biozentrum, University of Basel, Basel, Switzerland
| | - Charles Swanton
- Translational Cancer Therapeutics Laboratory, Francis Crick Institute, London, United Kingdom
| | - Rocío Sotillo
- Division of Molecular Thoracic Oncology, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | | | - Zuzana Storchová
- Group Maintenance of Genome Stability, Max Planck Institute of Biochemistry, Martinsried, Germany.,Department of Molecular Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Olaf Hardt
- Miltenyi Biotec GmbH, Bergisch Gladbach, Germany.
| |
Collapse
|
10
|
Wang S, Zhang C, Niyazi S, Zheng L, Li J, Zhang W, Xu M, Rong R, Yang C, Zhu T. A novel cytoprotective peptide protects mesenchymal stem cells against mitochondrial dysfunction and apoptosis induced by starvation via Nrf2/Sirt3/FoxO3a pathway. J Transl Med 2017; 15:33. [PMID: 28202079 PMCID: PMC5309997 DOI: 10.1186/s12967-017-1144-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 02/08/2017] [Indexed: 01/11/2023] Open
Abstract
Background Mesenchymal stem cell (MSC) has been widely explored in the past decade as a cell-based treatment for various diseases. However, poor survival of adaptively transferred MSCs limits their clinical therapeutic potentials, which is largely ascribed to the nutrient starvation. In this study, we determined whether a novel kidney protective peptide CHBP could protect MSCs against starvation and invested the underlying mechanisms. Methods MSCs were subjected to serum deprivation and CHBP of graded concentrations was administered. Cell viability and apoptosis were detected by CCK-8, Annexin V/PI assay and Hoechst staining. ROS generation, mitochondrial membrane potential indicated by JC-1 and mitochondrial mass were measured by flow cytometry. The location of cytochrome c within cells was observed under fluorescence microscopy. Expressions of Nrf2, Sirt3, and FoxO3a were analyzed by western blot. In addition, preconditioning MSCs with CHBP was applied to test the possible protection against starvation. Finally, the effect of CHBP on the differentiation and self-renewal capacity of MSCs was also examined. Results CHBP improved cell viability and suppressed apoptosis in a dose dependent manner. Starvation resulted in the mitochondrial dysfunction and treatment of CHBP could alleviate mitochondrial stress by diminishing oxidative injury of ROS, restoring mitochondrial membrane potential and maintaining mitochondrial membrane integrity. Importantly, Nrf2/Sirt3/FoxO3a pathway was activated by CHBP and Sirt3 knockdown partially abolished the protection of CHBP. Moreover, MSCs pretreated with CHBP were more resistant to starvation. Under normal condition, CHBP exerted little effects on the differential and self-renewal capacity of MSCs. Conclusions The present study demonstrated the efficient protection of CHBP upon MSCs against starvation-induced mitochondrial dysfunction and apoptosis and indicated possible involvement of Nrf2/Sirt3/FoxO3a pathway in the protective effect.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Chao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Sidikejiang Niyazi
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Long Zheng
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Jiawei Li
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Weitao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Ruiming Rong
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.,Department of Transfusion, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China. .,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.
| | - Tongyu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China. .,Shanghai Key Laboratory of Organ Transplantation, Shanghai, China. .,Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Nagakannan P, Iqbal MA, Yeung A, Thliveris JA, Rastegar M, Ghavami S, Eftekharpour E. Perturbation of redox balance after thioredoxin reductase deficiency interrupts autophagy-lysosomal degradation pathway and enhances cell death in nutritionally stressed SH-SY5Y cells. Free Radic Biol Med 2016; 101:53-70. [PMID: 27693380 DOI: 10.1016/j.freeradbiomed.2016.09.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/24/2016] [Accepted: 09/25/2016] [Indexed: 01/25/2023]
Abstract
Oxidative damage and aggregation of cellular proteins is a hallmark of neuronal cell death after neurotrauma and chronic neurodegenerative conditions. Autophagy and ubiquitin protease system are involved in degradation of protein aggregates, and interruption of their function is linked to apoptotic cell death in these diseases. Oxidative modification of cysteine groups in key molecular proteins has been linked to modification of cellular systems and cell death in these conditions. Glutathione and thioredoxin systems provide reducing protons that can effectively reverse protein modifications and promote cell survival. The central role of Thioredoxin in inhibition of apoptosis is well identified. Additionally, its involvement in initiation of autophagy has been suggested recently. We therefore aimed to investigate the involvement of Thioredoxin system in autophagy-apoptosis processes. A model of serum deprivation in SH-SY5Y was used that is associated with autophagy and apoptosis. Using pharmacological and RNA-editing technology we show that Thioredoxin reductase deficiency in this model enhances oxidative stress and interrupts the early protective autophagy and promotes apoptosis. This was associated with decreased protein-degradation in lysosomes due to altered lysosomal acidification and accumulation of autophagosomes as well as impairment in proteasome pathway. We further confirmed that the extent of oxidative stress is a determining factor in autophagy- apoptosis interplay, as upregulation of cellular reducing capacity by N-acetylcysteine prevented impairment in autophagy and proteasome systems thus promoted cell viability. Our study provides evidence that excessive oxidative stress inhibits protein degradation systems and affects the final stages of autophagy by inhibiting autolysosome maturation: a novel mechanistic link between protein aggregation and conversion of autophagy to apoptosis that can be applicable to neurodegenerative diseases.
Collapse
Affiliation(s)
- Pandian Nagakannan
- Spinal Cord Research Center, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mohamed Ariff Iqbal
- Spinal Cord Research Center, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Albert Yeung
- Spinal Cord Research Center, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - James A Thliveris
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mojgan Rastegar
- Department of Biochemistry & Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Eftekhar Eftekharpour
- Spinal Cord Research Center, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
12
|
Berthe A, Flament S, Grandemange S, Zaffino M, Boisbrun M, Mazerbourg S. Δ2-Troglitazone promotes cytostatic rather than pro-apoptotic effects in breast cancer cells cultured in high serum conditions. Cell Cycle 2016; 15:3402-3412. [PMID: 27753533 DOI: 10.1080/15384101.2016.1245248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
We have previously shown that Δ2-Troglitazone (Δ2-TGZ) displayed anticancer effects on breast cancer cell lines grown in low serum conditions (1% fetal calf serum (FCS)). The present study was performed in order to characterize the effects of Δ2-TGZ in high serum containing medium and to determine if starvation could influence the response of breast cancer cells to this compound, keeping in mind the potential interest for breast cancer therapy. We observed that in high serum conditions (10% FCS), a 48 h treatment with Δ2-TGZ induced a decrease in cell numbers in MDA-MB-231 and MCF-7 breast cancer cell lines. The IC50 values were higher than in low serum conditions. Furthermore, in contrast to our previous results obtained in 1% FCS conditions, we observed that in 10% FCS-containing medium, MCF-7 cells were more sensitive to Δ2-TGZ than MDA-MB-231 cells. Δ2-TGZ also induced endoplasmic reticulum (ER) stress mainly in MDA-MB-231 cells. Besides, in high serum conditions, Δ2-TGZ induced a G0/G1 cell cycle arrest, an inhibition of BrdU incorporation and a reduced level of cyclin D1. We observed a limited cleavage of PARP and a limited proportion of cells in sub-G1 phase. Thus, in high serum conditions, Δ2-TGZ displayed cytostatic effects rather than apoptosis as previously reported in 1% FCS-containing medium. Our results are in accordance with studies suggesting that serum starvation could potentiate the action of diverse anti-cancer agents.
Collapse
Affiliation(s)
- Audrey Berthe
- a Université de Lorraine, CRAN , UMR 7039, Vandœuvre-lès-Nancy , France.,b CNRS, CRAN , UMR 7039, Vandœuvre-lès-Nancy , France
| | - Stéphane Flament
- a Université de Lorraine, CRAN , UMR 7039, Vandœuvre-lès-Nancy , France.,b CNRS, CRAN , UMR 7039, Vandœuvre-lès-Nancy , France
| | - Stéphanie Grandemange
- a Université de Lorraine, CRAN , UMR 7039, Vandœuvre-lès-Nancy , France.,b CNRS, CRAN , UMR 7039, Vandœuvre-lès-Nancy , France
| | - Marie Zaffino
- a Université de Lorraine, CRAN , UMR 7039, Vandœuvre-lès-Nancy , France.,b CNRS, CRAN , UMR 7039, Vandœuvre-lès-Nancy , France
| | - Michel Boisbrun
- c Université de Lorraine, SRSMC , UMR 7565, Vandœuvre-lès-Nancy , France.,d CNRS, SRSMC , UMR 7565, Vandœuvre-lès-Nancy , France
| | - Sabine Mazerbourg
- a Université de Lorraine, CRAN , UMR 7039, Vandœuvre-lès-Nancy , France.,b CNRS, CRAN , UMR 7039, Vandœuvre-lès-Nancy , France
| |
Collapse
|
13
|
Badr H, Kozai D, Sakaguchi R, Numata T, Mori Y. Different Contribution of Redox-Sensitive Transient Receptor Potential Channels to Acetaminophen-Induced Death of Human Hepatoma Cell Line. Front Pharmacol 2016; 7:19. [PMID: 26903865 PMCID: PMC4746322 DOI: 10.3389/fphar.2016.00019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/21/2016] [Indexed: 01/30/2023] Open
Abstract
Acetaminophen (APAP) is a safe analgesic antipyretic drug at prescribed doses. Its overdose, however, can cause life-threatening liver damage. Though, involvement of oxidative stress is widely acknowledged in APAP-induced hepatocellular death, the mechanism of this increased oxidative stress and the associated alterations in Ca2+ homeostasis are still unclear. Among members of transient receptor potential (TRP) channels activated in response to oxidative stress, we here identify that redox-sensitive TRPV1, TRPC1, TRPM2, and TRPM7 channels underlie Ca2+ entry and downstream cellular damages induced by APAP in human hepatoma (HepG2) cells. Our data indicate that APAP treatment of HepG2 cells resulted in increased reactive oxygen species (ROS) production, glutathione (GSH) depletion, and Ca2+ entry leading to increased apoptotic cell death. These responses were significantly suppressed by pretreatment with the ROS scavengers N-acetyl-L-cysteine (NAC) and 4,5-dihydroxy-1,3-benzene disulfonic acid disodium salt monohydrate (Tiron), and also by preincubation of cells with the glutathione inducer Dimethylfumarate (DMF). TRP subtype-targeted pharmacological blockers and siRNAs strategy revealed that suppression of either TRPV1, TRPC1, TRPM2, or TRPM7 reduced APAP-induced ROS formation, Ca2+ influx, and cell death; the effects of suppression of TRPV1 or TRPC1, known to be activated by oxidative cysteine modifications, were stronger than those of TRPM2 or TRPM7. Interestingly, TRPV1 and TRPC1 were labeled by the cysteine-selective modification reagent, 5,5′-dithiobis (2-nitrobenzoic acid)-2biotin (DTNB-2Bio), and this was attenuated by pretreatment with APAP, suggesting that APAP and/or its oxidized metabolites act directly on the modification target cysteine residues of TRPV1 and TRPC1 proteins. In human liver tissue, TRPV1, TRPC1, TRPM2, and TRPM7 channels transcripts were localized mainly to hepatocytes and Kupffer cells. Our findings strongly suggest that APAP-induced Ca2+ entry and subsequent hepatocellular death are regulated by multiple redox-activated cation channels, among which TRPV1 and TRPC1 play a prominent role.
Collapse
Affiliation(s)
- Heba Badr
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Kyoto, Japan
| | - Daisuke Kozai
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Kyoto, Japan
| | - Reiko Sakaguchi
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto UniversityKyoto, Japan; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences, Kyoto UniversityKyoto, Japan
| | - Tomohiro Numata
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto UniversityKyoto, Japan; Laboratory of Environmental Systems Biology, Department of Technology and Ecology, Hall of Global Environmental Studies, Kyoto UniversityKyoto, Japan
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto UniversityKyoto, Japan; World Premier International Research Initiative-Institute for Integrated Cell-Material Sciences, Kyoto UniversityKyoto, Japan; Laboratory of Environmental Systems Biology, Department of Technology and Ecology, Hall of Global Environmental Studies, Kyoto UniversityKyoto, Japan
| |
Collapse
|
14
|
Autophagic lysosomal reformation depends on mTOR reactivation in H2O2-induced autophagy. Int J Biochem Cell Biol 2016; 70:76-81. [DOI: 10.1016/j.biocel.2015.11.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 12/19/2022]
|
15
|
Kurauchi M, Niwano Y, Shirato M, Kanno T, Nakamura K, Egusa H, Sasaki K. Cytoprotective effect of short-term pretreatment with proanthocyanidin on human gingival fibroblasts exposed to harsh environmental conditions. PLoS One 2014; 9:e113403. [PMID: 25405354 PMCID: PMC4236161 DOI: 10.1371/journal.pone.0113403] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/23/2014] [Indexed: 12/03/2022] Open
Abstract
Our previous study showed that exposing mouse fibroblasts to proanthocyanidin (PA) for only 1 min accelerated cell proliferation in a concentration-dependent manner. In this study, exposing human gingival fibroblasts (HGFs) to PA for 1 min similarly accelerated the proliferative response of the cells. Besides the accelerated proliferative response, PA showed a cytoprotective effect on HGFs exposed to harsh environmental conditions; short-term exposure of HGFs in the mitotic phase to pure water or physiological saline resulted in a lower recovery of viable cells. Pretreatment and concomitant treatment with PA improved the low recovery of cells exposed to pure water or physiological saline. In addition, HGFs exposed to PA for 1 min proliferated well even after being cultured in serum-free medium. In 100% confluent HGFs, being cultured in serum-free medium resulted in a high intracellular reactive oxygen species (ROS) level, but pretreatment with PA prevented the cells from increasing intracellular ROS. Thus, the results suggest that a short-term PA treatment exerts cytoprotective effects on HGFs exposed to harsh environmental conditions by improving the intracellular oxidative stress response.
Collapse
Affiliation(s)
- Michiko Kurauchi
- Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai, Japan
| | - Yoshimi Niwano
- Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai, Japan
| | - Midori Shirato
- Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai, Japan
| | - Taro Kanno
- Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai, Japan
| | - Keisuke Nakamura
- Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai, Japan
| | - Hiroshi Egusa
- Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai, Japan
| | - Keiichi Sasaki
- Tohoku University Graduate School of Dentistry, Aoba-ku, Sendai, Japan
| |
Collapse
|
16
|
Tan DX, Zheng X, Kong J, Manchester LC, Hardeland R, Kim SJ, Xu X, Reiter RJ. Fundamental issues related to the origin of melatonin and melatonin isomers during evolution: relation to their biological functions. Int J Mol Sci 2014; 15:15858-90. [PMID: 25207599 PMCID: PMC4200856 DOI: 10.3390/ijms150915858] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/15/2014] [Accepted: 08/27/2014] [Indexed: 12/29/2022] Open
Abstract
Melatonin and melatonin isomers exist and/or coexist in living organisms including yeasts, bacteria and plants. The levels of melatonin isomers are significantly higher than that of melatonin in some plants and in several fermented products such as in wine and bread. Currently, there are no reports documenting the presence of melatonin isomers in vertebrates. From an evolutionary point of view, it is unlikely that melatonin isomers do not exist in vertebrates. On the other hand, large quantities of the microbial flora exist in the gut of the vertebrates. These microorganisms frequently exchange materials with the host. Melatonin isomers, which are produced by these organisms inevitably enter the host's system. The origins of melatonin and its isomers can be traced back to photosynthetic bacteria and other primitive unicellular organisms. Since some of these bacteria are believed to be the precursors of mitochondria and chloroplasts these cellular organelles may be the primary sites of melatonin production in animals or in plants, respectively. Phylogenic analysis based on its rate-limiting synthetic enzyme, serotonin N-acetyltransferase (SNAT), indicates its multiple origins during evolution. Therefore, it is likely that melatonin and its isomer are also present in the domain of archaea, which perhaps require these molecules to protect them against hostile environments including extremely high or low temperature. Evidence indicates that the initial and primary function of melatonin and its isomers was to serve as the first-line of defence against oxidative stress and all other functions were acquired during evolution either by the process of adoption or by the extension of its antioxidative capacity.
Collapse
Affiliation(s)
- Dun-Xian Tan
- Department of Cellular and Structural Biology, the University of Texas, Health Science Center, San Antonio, TX 78229, USA.
| | - Xiaodong Zheng
- Institute for Horticultural Plants, China Agricultural University, Beijing 100083, China.
| | - Jin Kong
- Institute for Horticultural Plants, China Agricultural University, Beijing 100083, China.
| | - Lucien C Manchester
- Department of Cellular and Structural Biology, the University of Texas, Health Science Center, San Antonio, TX 78229, USA.
| | - Ruediger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen 37073, Germany.
| | - Seok Joong Kim
- Department of Cellular and Structural Biology, the University of Texas, Health Science Center, San Antonio, TX 78229, USA.
| | - Xiaoying Xu
- Department of Cellular and Structural Biology, the University of Texas, Health Science Center, San Antonio, TX 78229, USA.
| | - Russel J Reiter
- Department of Cellular and Structural Biology, the University of Texas, Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|
17
|
Galimov ER, Chernyak BV, Sidorenko AS, Tereshkova AV, Chumakov PM. Prooxidant properties of p66shc are mediated by mitochondria in human cells. PLoS One 2014; 9:e86521. [PMID: 24618848 PMCID: PMC3950296 DOI: 10.1371/journal.pone.0086521] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 12/10/2013] [Indexed: 12/13/2022] Open
Abstract
p66shc is a protein product of an mRNA isoform of SHC1 gene that has a pro-oxidant and pro-apoptotic activity and is implicated in the aging process. Mitochondria were suggested as a major source of the p66shc-mediated production of reactive oxygen species (ROS), although the underlying mechanisms are poorly understood. We studied effects of p66shc on oxidative stress induced by hydrogen peroxide or by serum deprivation in human colon carcinoma cell line RKO and in diploid human dermal fibroblasts (HDFs). An shRNA-mediated knockdown of p66shc suppressed and an overexpression of a recombinant p66shc stimulated the production of ROS in the both models. This effect was not detected in the mitochondrial DNA-depleted ρ0-RKO cells that do not have the mitochondrial electron transport chain (ETC). The p66shc-dependent accumulation of mitochondrial ROS was detected with HyPer-mito, a mitochondria-targeted fluorescent protein sensor for hydrogen peroxide. The fragmentation of mitochondria induced by mitochondrial ROS was significantly reduced in the p66shc deficient RKO cells. Mitochondria-targeted antioxidants SkQ1 and SkQR1 also decreased the oxidative stress induced by hydrogen peroxide or by serum deprivation. Together the data indicate that the p66shc-dependant ROS production during oxidative stress has mitochondrial origin in human normal and cancer cells.
Collapse
Affiliation(s)
- Evgeny R. Galimov
- Belozersky Institute of Physical and Chemical Biology, Moscow State University, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris V. Chernyak
- Belozersky Institute of Physical and Chemical Biology, Moscow State University, Moscow, Russia
| | - Alena S. Sidorenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alesya V. Tereshkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Peter M. Chumakov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
- Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, United States of America
- Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
18
|
Tapia-Limonchi R, Díaz I, Cahuana GM, Bautista M, Martín F, Soria B, Tejedo JR, Bedoya FJ. Impact of exposure to low concentrations of nitric oxide on protein profile in murine and human pancreatic islet cells. Islets 2014; 6:e995997. [PMID: 25658244 PMCID: PMC4398281 DOI: 10.1080/19382014.2014.995997] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Homeostatic levels of nitric oxide (NO) protect efficiently against apoptotic death in both human and rodent pancreatic β cells, but the protein profile of this action remains to be determined. We have applied a 2 dimensional LC-MS-MALDI-TOF/TOF-based analysis to study the impact of protective NO in rat insulin-producing RINm5F cell line and in mouse and human pancreatic islets (HPI) exposed to serum deprivation condition. 24 proteins in RINm5F and 22 in HPI were identified to undergo changes in at least one experimental condition. These include stress response mitochondrial proteins (UQCRC2, VDAC1, ATP5C1, ATP5A1) in RINm5F cells and stress response endoplasmic reticulum proteins (HSPA5, PDIA6, VCP, GANAB) in HPI. In addition, metabolic and structural proteins, oxidoreductases and chaperones related with protein metabolism are also regulated by NO treatment. Network analysis of differentially expressed proteins shows their interaction in glucocorticoid receptor and NRF2-mediated oxidative stress response pathways and eNOS signaling. The results indicate that exposure to exogenous NO counteracts the impact of serum deprivation on pancreatic β cell proteome. Species differences in the proteins involved are apparent.
Collapse
Affiliation(s)
- Rafael Tapia-Limonchi
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Irene Díaz
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Gladys M Cahuana
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Mario Bautista
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Franz Martín
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Bernat Soria
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)-Fundación Progreso y Salud; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Juan R Tejedo
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
| | - Francisco J Bedoya
- Andalusian Center for Molecular Biology and
Regenerative Medicine (CABIMER)- Pablo de Olavide University; Biomedical Research
Network (CIBER) of Diabetes and Related Metabolic Diseases; RED-TERCEL;
Seville, Spain
- Correspondence to: Francisco J. Bedoya;
| |
Collapse
|
19
|
Qu Y, Oyan AM, Liu R, Hua Y, Zhang J, Hovland R, Popa M, Liu X, Brokstad KA, Simon R, Molven A, Lin B, Zhang WD, McCormack E, Kalland KH, Ke XS. Generation of prostate tumor-initiating cells is associated with elevation of reactive oxygen species and IL-6/STAT3 signaling. Cancer Res 2013; 73:7090-100. [PMID: 24101153 DOI: 10.1158/0008-5472.can-13-1560] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
How prostate cancer is initiated remains a topic of debate. In an effort to establish a human model of prostate carcinogenesis, we adapted premalignant human prostate EPT2-D5 cells to protein-free medium to generate numerous tight prostate spheres (D5HS) in monolayer culture. In contrast to EPT2-D5 cells, the newly generated D5HS efficiently formed large subcutaneous tumors and subsequent metastases in vivo, showing the tumorigenicity of D5HS spheres. A striking production of interleukin (IL)-6 mRNA and protein was found in D5HS cells. The essential roles of IL-6 and the downstream STAT3 signaling in D5HS tumor sphere formation were confirmed by neutralizing antibody, chemical inhibitors, and fluorescent pathway reporter. In addition, elevated reactive oxygen species (ROS) produced upon protein depletion was required for the activation of IL-6/STAT3 in D5HS. Importantly, a positive feedback loop was found between ROS and IL-6 during tumor sphere formation. The association of ROS/IL-6/STAT3 to the carcinogenesis of human prostate cells was further examined in xenograft tumors and verified by limiting dilution implantations. Collectively, we have for the first time established human prostate tumor-initiating cells based on physiologic adaption. The intrinsic association of ROS and IL-6/STAT3 signaling in human prostate carcinogenesis shed new light on this relationship and define therapeutic targets in this setting.
Collapse
Affiliation(s)
- Yi Qu
- Authors' Affiliations: The Gade Institute, Broegelmann Research Laboratory, Department of Clinical Science, Department of Medicine, University of Bergen; Departments of Microbiology and Pathology, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital; KinN Therapeutics AS, Bergen, Norway; College of Pharmacy, Second Military Medical University, Shanghai, PR China; Institute of Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Zhejiang-California International NanoSystems Institute, Zhejiang University, Hangzhou, PR China; Swedish Medical Center; and Department of Urology, University of Washington, Seattle, Washington
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bizzarri M, Proietti S, Cucina A, Reiter RJ. Molecular mechanisms of the pro-apoptotic actions of melatonin in cancer: a review. Expert Opin Ther Targets 2013; 17:1483-96. [DOI: 10.1517/14728222.2013.834890] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
5-HT2A serotonin receptor agonist DOI alleviates cytotoxicity in neuroblastoma cells: role of the ERK pathway. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:64-72. [PMID: 23380172 DOI: 10.1016/j.pnpbp.2013.01.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/26/2013] [Accepted: 01/27/2013] [Indexed: 11/21/2022]
Abstract
Disturbances of serotonergic signaling, including the serotonin 2A (5-HT2A) receptor, have been implicated in neuropsychiatric and neurodegenerative disorders. The aim of the present study was to characterize the effect of a 5-HT2A receptor agonist on cytotoxicity in a neuronal cell line and address the involved mechanism. HTR2A mRNA and protein expression in human neuroblastoma SK-N-SH cells was confirmed. Cells were subjected to serum deprivation and cell viability was monitored continuously with xCELLigence. In a dose-response study the 5-HT2A agonist (±)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI) (25 nM to 5 μM) protected against serum deprivation cytotoxicity. The selective 5-HT2A receptor antagonist MDL 11,939, the general protein tyrosine kinase inhibitor genistein, and the extracellular signal-regulated kinase (ERK) pathway MEK inhibitor U0126, all attenuated DOI's protective effect. An antibody array suggested that 1 μM DOI affected phosphorylation of several tyrosine kinases. Western blot further confirmed that DOI transiently increased ERK phosphorylation, indicating its activation. Finally, protective concentrations of DOI increased cellular mitochondrial mass, an effect prevented by pretreatment with U0126. In conclusion, our results suggest that DOI protects SK-N-SH cells against serum deprivation through ERK pathway activation. They imply 5-HT2A receptor modulation as a potential target for neuroprotection.
Collapse
|
22
|
Seo MK, Cho HY, Lee CH, Koo KA, Park YK, Lee JG, Lee BJ, Park SW, Kim YH. Antioxidant and Proliferative Activities of Bupleuri Radix Extract Against Serum Deprivation in SH-SY5Y Cells. Psychiatry Investig 2013; 10:81-8. [PMID: 23483021 PMCID: PMC3590436 DOI: 10.4306/pi.2013.10.1.81] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 11/06/2012] [Accepted: 11/06/2012] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE Bupleuri Radix (BR) is a major component of several Oriental herbal medicines used to treat stress and mental illness. There are evidences that antidepressant drugs modulate oxidative damage implicated in the pathophysiology of neuropsychiatric disorder, including depression. The aim of the present study was to investigate antioxidant and proliferative effects of BR against oxidative stress induced by serum deprivation in SH-SY5Y cells. METHODS We examined the antioxidant effects of BR on a number of measures, including cell viability, formation of reactive oxygen species (ROS), superoxide dismutase (SOD) activity and levels of both Bcl-2 and Bax. We also investigated the effects of BR on cell proliferation using the bromodeoxyuridine (BrdU) assay, and used Western blot analysis to measure changes in expression of the cell cycle phase regulators. RESULTS 1) Serum deprivation significantly induced the loss of cell viability, the formation of ROS, the reduction of SOD activity, down-regulation of Bcl-2 expression and up-regulation of Bax expression. However, BR extract reversed these effects in dose-dependent manner. 2) Serum deprivation significantly reduced cell proliferation. Western blot analysis revealed that serum deprivation significantly decreased cyclinD1 and phosphorylated retinoblastoma (pRb) expression, and increased p27 expression. On the other hand, BR dose dependently reversed these effects. CONCLUSION This study suggests that aqueous extract of BR may exert potent antioxidant effects and also play an important role in regulating cell cycle progression during neurogenesis. These effects of BR may be a potentially important mechanism of antidepressant underlying the observed antioxidant and proliferative effects.
Collapse
Affiliation(s)
- Mi Kyoung Seo
- Department of Psychiatry, Inje University School of Medicine, Busan, Republic of Korea
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Hye Yeon Cho
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Chan Hong Lee
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Kyung Ah Koo
- Department of Biological Science, University of the Science in Philadelphia, Philadelphia, PA, USA
| | - Yong Ki Park
- College of Oriental Medicine, Dongguk University, Gyeongju, Republic of Korea
| | - Jung Goo Lee
- Department of Psychiatry, Inje University School of Medicine, Busan, Republic of Korea
- Department of Psychiatry, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Bong Ju Lee
- Department of Psychiatry, Inje University School of Medicine, Busan, Republic of Korea
- Department of Psychiatry, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea
| | - Sung Woo Park
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Young Hoon Kim
- Department of Psychiatry, Inje University School of Medicine, Busan, Republic of Korea
- Department of Psychiatry, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| |
Collapse
|
23
|
Liu SY, Chen CL, Yang TT, Huang WC, Hsieh CY, Shen WJ, Tsai TT, Shieh CC, Lin CF. Albumin prevents reactive oxygen species-induced mitochondrial damage, autophagy, and apoptosis during serum starvation. Apoptosis 2012; 17:1156-69. [DOI: 10.1007/s10495-012-0758-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Cecarini V, Bonfili L, Cuccioloni M, Mozzicafreddo M, Rossi G, Buizza L, Uberti D, Angeletti M, Eleuteri AM. Crosstalk between the ubiquitin-proteasome system and autophagy in a human cellular model of Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2012; 1822:1741-51. [PMID: 22867901 DOI: 10.1016/j.bbadis.2012.07.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/11/2012] [Accepted: 07/26/2012] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease is the most common progressive neurodegenerative disorder characterized by the abnormal deposition of amyloid plaques, likely as a consequence of an incorrect processing of the amyloid-β precursor protein (AβPP). Dysfunctions in both the ubiquitin-proteasome system and autophagy have also been observed. Recently, an extensive cross-talk between these two degradation pathways has emerged, but the exact implicated processes are yet to be clarified. In this work, we gained insight into such interplay by analyzing human SH-SY5Y neuroblastoma cells stably transfected either with wild-type AβPP gene or 717 valine-to-glycine AβPP-mutated gene. The over-expression of the AβPP mutant isoform correlates with an increase in oxidative stress and a remodeled pattern of protein degradation, with both marked inhibition of proteasome activities and impairment in the autophagic flux. To compensate for this altered scenario, cells try to promote the autophagy activation in a HDAC6-dependent manner. The treatment with amyloid-β(42) oligomers further compromises proteasome activity and also contributes to the inhibition of cathepsin-mediated proteolysis, finally favoring the neuronal degeneration and suggesting the existence of an Aβ(42) threshold level beyond which proteasome-dependent proteolysis becomes definitely dysfunctional.
Collapse
Affiliation(s)
- Valentina Cecarini
- School of Biosciences and Biotechnology, University of Camerino, 62032 Camerino, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Roy S, Tripathy M, Mathur N, Jain A, Mukhopadhyay A. Hypoxia improves expansion potential of human cord blood-derived hematopoietic stem cells and marrow repopulation efficiency. Eur J Haematol 2012; 88:396-405. [PMID: 22268587 DOI: 10.1111/j.1600-0609.2012.01759.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES In bone marrow, hematopoietic stem cells (HSCs) reside in the most hypoxic endosteum niche, whereas the proliferating progenitors are located near the relatively oxygen-rich vascular region. High oxygen tension is potentially detrimental to HSCs. The objective of this investigation was to compare cellular, functional, and molecular responses of human umbilical cord blood (UCB)-derived hematopoietic stem and progenitor cells in culture under hypoxic and normoxic conditions. METHODS CD133-enriched UCB cells were cultured in growth factor containing serum-free and serum-supplemented medium under 5% O(2) (hypoxia) or 21% O(2) (normoxia) for 10 d. The phenotypes of expanded cells were analyzed by flow cytometry and the engraftability by SCID-repopulation assay. The expression of hypoxia-inducible factor (HIF)-1α and some of its target genes was analyzed by real-time RT-PCR. RESULTS In hypoxic culture, CD34(+) CD38(-) cells were expanded about 27-fold, which was significantly (P < 0.01) higher than that obtained in normoxic culture. Serum-free culture did not support the growth of cells in the presence of 21% O(2) . Myeloid colony-forming potential of cells was significantly (P < 0.05) increased in 5% O(2) compared with 21% O(2) culture. SCID-repopulation efficiency seems to be better preserved in the cells cultured under hypoxic conditions. Hypoxia significantly (P < 0.05) induced the expression of HIF-1α, vascular endothelial growth factor (VEGF), and ABCG2 genes and also upregulated CXCR4 receptor expression. CONCLUSIONS Low oxygen tension enhanced the proliferation of UCB-derived HSC/progenitor cells and maintenance of SCID-repopulating cells than normoxia. These expanded cells are expected to be beneficial in the patients who lack human leukocyte antigen (HLA)-matched donors.
Collapse
Affiliation(s)
- Sushmita Roy
- Stem Cell Biology Laboratory, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | |
Collapse
|
26
|
Galimov ER, Sidorenko AS, Tereshkova AV, Pletyushkina OY, Chernyak BV, Chumakov PM. The effect of p66shc protein on the resistance of the RKO colon cancer cell line to oxidative stress. Mol Biol 2012. [DOI: 10.1134/s0026893312010062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
27
|
Lin CH, Chen PS, Kuo SC, Huang LJ, Gean PW, Chiu TH. The role of mitochondria-mediated intrinsic death pathway in gingerdione derivative I6-induced neuronal apoptosis. Food Chem Toxicol 2011; 50:1073-81. [PMID: 22166790 DOI: 10.1016/j.fct.2011.11.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/30/2011] [Accepted: 11/28/2011] [Indexed: 11/28/2022]
Abstract
Neuronal death induced by I6 displayed apoptotic characteristics but the precise mechanism has not been fully elucidated. In the present studies, I6 at 24 h after intraperitoneal administration significantly decreased the density of surviving neurons and increased caspase-3 activity in frontal cortex, suggesting that peripherally administered I6 may cross BBB to induce CNS toxicity. In rat embryonic primary cortical cells, I6-induced reduction of mitochondrial viability and neuronal apoptosis was inhibited by vitamin E. In addition, I6-induced reactive oxygen species (ROS) caused the disruption of mitochondria membrane potential (MMP), the release of cytochrome c, the activation of caspase-9 and caspase-3, and cleavage of poly(ADP-ribose) polymerase (PARP), resulting in activation of mitochondrial-mediated intrinsic death pathway. Pre-treatment with antioxidant vitamin E or N-acetylcysteine (NAC) completely abolished the I6-induced generation of ROS, loss of MMP, release of cytochrome c, activation of caspase-9 and caspase-3, and cleavage of PARP. Carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP), a mitochondrial uncoupler, significantly reduced I6-induced neuronal death as well as caspase-3 activation and PARP cleavage. These results suggest that I6 induces neuronal death by promoting intracellular ROS production to cause a loss of MMP that result in release of cytochrome c and activation of mitochondria-mediated intrinsic death pathway.
Collapse
Affiliation(s)
- Chia-Ho Lin
- Department of Pharmacology, College of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | | | | | | | | | | |
Collapse
|
28
|
Bae YS, Oh H, Rhee SG, Yoo YD. Regulation of reactive oxygen species generation in cell signaling. Mol Cells 2011; 32:491-509. [PMID: 22207195 PMCID: PMC3887685 DOI: 10.1007/s10059-011-0276-3] [Citation(s) in RCA: 467] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 12/12/2011] [Indexed: 12/19/2022] Open
Abstract
Reactive oxygen species (ROS) including superoxide anion and hydrogen peroxide (H(2)O(2)) are thought to be byproducts of aerobic respiration with damaging effects on DNA, protein, and lipid. A growing body of evidence indicates, however, that ROS are involved in the maintenance of redox homeostasis and various cellular signaling pathways. ROS are generated from diverse sources including mitochondrial respiratory chain, enzymatic activation of cytochrome p450, and NADPH oxidases further suggesting involvement in a complex array of cellular processes. This review summarizes the production and function of ROS. In particular, how cytosolic and membrane proteins regulate ROS generation for intracellular redox signaling will be detailed.
Collapse
Affiliation(s)
- Yun Soo Bae
- Department of Life Science, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Hyunjin Oh
- Department of Life Science, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Sue Goo Rhee
- Department of Life Science, Division of Life and Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Young Do Yoo
- Laboratory of Molecular Cell Biology, Graduate School of Medicine, Korea University College of Medicine, Korea University, Seoul 136-705, Korea
| |
Collapse
|
29
|
Song C, Kanthasamy A, Jin H, Anantharam V, Kanthasamy AG. Paraquat induces epigenetic changes by promoting histone acetylation in cell culture models of dopaminergic degeneration. Neurotoxicology 2011; 32:586-95. [PMID: 21777615 DOI: 10.1016/j.neuro.2011.05.018] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 04/22/2011] [Accepted: 05/23/2011] [Indexed: 11/15/2022]
Abstract
Environmental neurotoxic exposure to agrochemicals has been implicated in the etiopathogenesis of Parkinson's disease (PD). The widely used herbicide paraquat is among the few environmental chemicals potentially linked with PD. Since epigenetic changes are beginning to emerge as key mechanisms in neurodegenerative diseases, herein we examined the effects of paraquat on histone acetylation, a major epigenetic change in chromatin that can regulate gene expression, chromatin remodeling, cell survival and cell death. Exposure of N27 dopaminergic cells to paraquat induced histone H3 acetylation in a time-dependent manner. However, paraquat did not alter acetylation of another core histone H4. Paraquat-induced histone acetylation was associated with decreased total histone deacetylase (HDAC) activity and HDAC4 and 7 protein expression levels. To determine if histone acetylation plays a role in paraquat-induced apoptosis, the novel HAT inhibitor anacardic acid was used. Anacardic acid treatment significantly attenuated paraquat-induced caspase-3 enzyme activity, suppressed proteolytic activation and kinase activity of protein kinase C delta (PKCδ) and also blocked paraquat-induced cytotoxicity. Together, these results demonstrate that the neurotoxic agent paraquat induced acetylation of core histones in cell culture models of PD and that the inhibition of HAT activity by anacardic acid protects against apoptotic cell death, indicating that histone acetylation may represent key epigenetic changes in dopaminergic neuronal cells during neurotoxic insults.
Collapse
Affiliation(s)
- C Song
- Department of Biomedical Sciences, Iowa Center for Advanced Neurotoxicology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
30
|
Glutaredoxin 2a, a mitochondrial isoform, plays a protective role in a human cell line under serum deprivation. Mol Biol Rep 2011; 39:3755-65. [PMID: 21735102 DOI: 10.1007/s11033-011-1152-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 06/29/2011] [Indexed: 01/20/2023]
Abstract
The roles of mitochondrial glutaredoxin (Grx2a) under serum deprivation were assessed using the human stable HepG2 cell lines overexpressing or down-regulating Grx2a. The Grx2a-overexpressing stable cells displayed enhanced proliferation, decreased reactive oxygen species (ROS) and caspase-3 activity levels, and increased total GSH level, compared to the vector control cells. These characteristics of the overexpressing stable cells were reversed by down-regulating Grx2a in the same cell line. In the limited serum conditions, the Grx2a-overexpressing stable pcDNA3.0/HA-Grx2a cells exhibited higher cellular viabilities and total GSH level, and showed much lower enhancement in ROS and caspase-3 activity levels than the vector control pcDNA3.0/HA cells. However, the Grx2a-down-regulating stable cells gave rise to diminished cellular viabilities and further decreased total GSH level, and contained significantly higher ROS and caspase-3 activity levels, under serum deprivation than the vector control cells. These results suggest that Grx2a plays proliferative and anti-apoptotic roles under serum deprivation.
Collapse
|
31
|
Effect of vitamin E on hepatic cell proliferation and apoptosis in mice deficient in the p50 subunit of NF-κB after treatment with phenobarbital. Food Chem Toxicol 2011; 49:2706-9. [PMID: 21726593 DOI: 10.1016/j.fct.2011.06.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2011] [Revised: 06/17/2011] [Accepted: 06/19/2011] [Indexed: 12/21/2022]
Abstract
Phenobarbital (PB) is an efficacious and well-studied hepatic tumor promoting agent. Nuclear factor-κB (NF-κB) is a transcription factor activated by reactive oxygen and is involved in cell proliferation and apoptosis. We previously found that PB activates NF-κB and that dietary vitamin E is effective in decreasing PB-induced NF-κB DNA binding. We therefore hypothesized that dietary vitamin E influences PB-induced changes in cell proliferation and apoptosis through its action on NF-κB. NF-κB1 deficient mice (p50-/-) and wild-type B6129 mice were fed a purified diet containing 10 or 250ppm vitamin E (α-tocopherol acetate) for 28days. At that time, half of the wild-type and half of the p50-/- mice were placed on the same diet with 0.05% PB for 10days. Compared to wild-type mice, the p50-/- mice had higher levels of cell proliferation and apoptosis. Cell proliferation was significantly increased by PB, but vitamin E did not affect hepatic cell proliferation. Apoptosis was not changed in mice fed PB, and there was no significant difference in apoptosis between control and high vitamin E treated mice. Thus, vitamin E does not appear to influence cell growth parameters in either wild-type or p50-/- mice.
Collapse
|
32
|
Kwon KJ, Kim JN, Kim MK, Lee J, Ignarro LJ, Kim HJ, Shin CY, Han SH. Melatonin synergistically increases resveratrol-induced heme oxygenase-1 expression through the inhibition of ubiquitin-dependent proteasome pathway: a possible role in neuroprotection. J Pineal Res 2011; 50:110-23. [PMID: 21073519 DOI: 10.1111/j.1600-079x.2010.00820.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Melatonin is an indoleamine secreted by the pineal gland as well as a plant-derived product, and resveratrol (RSV) is a naturally occurring polyphenol synthesized by a variety of plant species; both molecules act as a neuroprotector and antioxidant. Recent studies have demonstrated that RSV reduced the incidence of Alzheimer's disease and stroke, while melatonin supplementation was found to reduce the progression of the cognitive impairment in AD. The heme oxygenase-1 (HO-1) is an inducible and redox-regulated enzyme that provides tissue-specific antioxidant effects. We assessed whether the co-administration of melatonin and RSV shows synergistic effects in terms of their neuroprotective properties through HO-1. RSV significantly increased the expression levels of HO-1 protein in a concentration-dependent manner both in primary cortical neurons and in astrocytes, while melatonin per se did not. Melatonin + RSV showed a synergistic increase in the expression levels of HO-1 protein but not in the HO-1 mRNA level compared to either melatonin or RSV alone, which is mediated by the activation of PI3K-Akt pathway. Treatment of melatonin + RSV significantly attenuated the neurotoxicity induced by H(2) O(2) in primary cortical neurons and also in organotypic hippocampal slice culture. The blockade of HO-1 induction by shRNA attenuated HO-1 induction by melatonin + RSV and hindered the neuroprotective effects against oxidative stress induced by H(2) O(2) . The treatment of MG132 + RSV mimicked the effects of melatonin + RSV, and melatonin + RSV inhibited ubiquitination of HO-1. These data suggest that melatonin potentiates the neuroprotective effect of RSV against oxidative injury, by enhancing HO-1 induction through inhibiting ubiquitination-dependent proteasome pathway, which may provide an effective means to treat neurodegenerative disorders.
Collapse
Affiliation(s)
- Kyoung Ja Kwon
- Departments of Neurology Pharmacology Rehabilitation, Center for Geriatric Neuroscience Research, Institute of Biomedical Science and Technology, School of Medicine, Konkuk University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Nuntagowat C, Leelawat K, Tohtong R. NGAL knockdown by siRNA in human cholangiocarcinoma cells suppressed invasion by reducing NGAL/MMP-9 complex formation. Clin Exp Metastasis 2010; 27:295-305. [PMID: 20373132 DOI: 10.1007/s10585-010-9327-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2009] [Accepted: 03/26/2010] [Indexed: 12/29/2022]
Abstract
We studied the role of Neutrophil Gelatinase-associated Lipocalin (NGAL, lipocalin 2) in regulating the invasiveness of a cholangiocarcinoma cell line, RMCCA-1. RMCCA-1 cells expressed multiple forms of 25, 40, 75 and 115/135 kDa NGAL which were detected in the conditioned medium, whereas only the 25 kDa form was detected in the cell lysates. NGAL expression was induced by serum deprivation. NGAL downregulation by siRNA suppressed NGAL mRNA and protein expression by about 70-80%, concommittant with a significant reduction of in vitro invasiveness, migration and pro-MMP-9 activity, but not cell proliferation. Suppression of pro-MMP-9 activity paralleled a reduction of NGAL/MMP-9 complex in the conditioned medium, although MMP-9 mRNA expression was unaffected. Our data suggest that NGAL promotes the invasiveness of the cholangiocarcinoma cells by forming complex with MMP-9, stabilizing its activity and rendering the cancer cells to be more invasive.
Collapse
Affiliation(s)
- Chalinee Nuntagowat
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama 6 Road, Rajthevi, Bangkok, 10400, Thailand
| | | | | |
Collapse
|
34
|
Thompson B, Sharp P, Elliott R, Al-Mutairi S, Fairweather-Tait SJ. Development of a modified Caco-2 cell model system for studying iron availability in eggs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:3833-3839. [PMID: 20170171 DOI: 10.1021/jf904175d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A modified Caco-2 cell model system was developed for studying iron availability in mixtures of fresh and/or cooked foods subjected to a simulated gastrointestinal digestion. The effect of combining foods containing high levels of ascorbic acid with cooked eggs on ferritin expression in the cells was measured. There was no detectable increase in ferritin with eggs alone, indicating that none of the iron was available for uptake into the cells, but when mixed with orange juice or salad (lettuce, tomatoes, and red pepper) in ratios similar to those found in meals, there was a significant increase in ferritin concentration (p = 0.0012 and p = 9.2 x 10(-10), respectively); the enhancing effect of salad was greater than orange juice (p = 0.028). These results suggest that the iron in eggs will be more readily absorbed when consumed with foods high in ascorbic acid.
Collapse
Affiliation(s)
- Ben Thompson
- School of Medicine, University of East Anglia, Norwich, United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Hsu YY, Liu CM, Tsai HH, Jong YJ, Chen IJ, Lo YC. KMUP-1 attenuates serum deprivation-induced neurotoxicity in SH-SY5Y cells: roles of PKG, PI3K/Akt and Bcl-2/Bax pathways. Toxicology 2009; 268:46-54. [PMID: 19962417 DOI: 10.1016/j.tox.2009.11.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/04/2009] [Accepted: 11/27/2009] [Indexed: 11/19/2022]
Abstract
Aging populations with neurodegenerative disorders will gradually become a greater problem for society. Serum deprivation-induced cell death is recognized as one of the standard models for the study of neurotoxicity. Increasing evidence indicates that cGMP/PKG pathway may play a rescue role in serum deprivation-induced toxicity. The aim of this study was to investigate protective effects of KMUP-1, an enhancer of cGMP/PKG signaling on serum deprivation-induced neurotoxicity in SH-SY5Y neuroblastoma cells. Under normal serum condition, KMUP-1 enhanced protein expression of nNOS, PKG and sGCalpha1, increased intracellular cyclic GMP level, and attenuated PDE5 expression. KMUP-1 also increased expression of BDNF and Bcl-2, but it did not affect Bax expression. The phosphorylation of Akt and CREB induced by KMUP-1 was inhibited by tyrosine kinase (TrK) inhibitor K252a and phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, respectively. Under serum deprivation condition, flow cytometric analysis using Annexin V showed KMUP-1 increased cell viability, but lacked protective effects in the presence of nitric oxide synthase inhibitor l-NAME, PKG inhibitor Rp-8-pCPT-cGMPS or LY294002. KMUP-1 not only enhanced expression of nNOS, sGCalpha1, PKG, p-CREB, p-Akt and Bcl-2, but also attenuated Bax expression in serum deprivation-treated cultures. In conclusion, cGMP/PKG, PI3K/Akt/CREB and Bcl-2/Bax signals play critical roles in the neuroprotective effects of KMUP-1 on serum deprivation-induced toxicity.
Collapse
Affiliation(s)
- Ya-Yun Hsu
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Pandey S, Kekre N, Naderi J, McNulty J. Induction of Apoptotic Cell Death Specifically in Rat and Human Cancer Cells by Pancratistatin. ACTA ACUST UNITED AC 2009; 33:279-95. [PMID: 16152693 DOI: 10.1081/bio-200066621] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
UNLABELLED The major challenge in the battle against cancer is the specific targeting of cancer cells. Most chemotherapeutics and radiotherapies induce cancer cell death by inducing DNA damage. These treatments also cause severe side effects by affecting normal cells causing toxicity and mutations that may predispose them to become cancerous. Some non-genotoxic drugs such as tamoxifen are useful but are of limited applicability. Natural compounds such as paclitaxel have been useful in cancer treatment, but due to its effect as a general microtubule stabilizer and genotoxic agent, it also induces death of normal cells. Pancratistatin is a natural compound isolated from Pancratium littorale that has been shown to have anti-viral and anti-neoplastic activity. The objective in the present study was to elucidate the mechanism of the anti-neoplastic action of pancratistatin and evaluate the specificity of this compound for cancer cells. METHODS We used cancer cell lines and normal human endothelial and fibroblast cells to investigate the effect of pancratistatin treatment. Further, we compared the toxic effects of paclitaxel and VP-16 to that of pancratistatin on non-cancerous cells. RESULTS Pancratistatin induced apoptosis in all the cancer cell lines used in this study at sub-micromolar concentrations. Interestingly, normal human fibroblasts and endothelial cells remained unaffected by pancratistatin treatment under identical conditions whereas paclitaxel and VP-16 were both toxic to these two normal cell lines. CONCLUSION The capability of pancratistatin to selectively induce apoptosis in cancer cells is an exciting finding and makes it a suitable anti-cancer agent. Since pancratistatin shows little structural similarity to any DNA intercalating drug or to paclitaxel derivatives, it appears to be non-genotoxic. Additionally, due to the unprecedented differential cytotoxicity observed in cancerous cells, we believe pancratistatin may act upon a novel target, allowing selective induction of apoptosis in cancer cells.
Collapse
Affiliation(s)
- Siyaram Pandey
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada.
| | | | | | | |
Collapse
|
38
|
Maity P, Bindu S, Dey S, Goyal M, Alam A, Pal C, Reiter R, Bandyopadhyay U. Melatonin reduces indomethacin-induced gastric mucosal cell apoptosis by preventing mitochondrial oxidative stress and the activation of mitochondrial pathway of apoptosis. J Pineal Res 2009; 46:314-23. [PMID: 19220725 DOI: 10.1111/j.1600-079x.2009.00663.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Augmentation of gastric mucosal cell apoptosis due to development of oxidative stress is one of the main pathogenic events in the development of nonsteroidal anti-inflammatory drug (NSAID)-induced gastropathy. Identification of a nontoxic, anti-apoptotic molecule is warranted for therapy against NSAID-induced gastropathy. The objective of the present study was to define the mechanism of the anti-apoptotic effect of melatonin, a nontoxic molecule which scavenges reactive oxygen species. Using an array of experimental approaches, we have shown that melatonin prevents the development of mitochondrial oxidative stress and activation of mitochondrial pathway of apoptosis induced by indomethacin (a NSAID) in the gastric mucosa. Melatonin inhibits the important steps of indomethacin-induced activation of mitochondrial pathway of apoptosis such as upregulation of the expression of Bax and Bak, and the downregulation of Bcl-2 and BclxL. Melatonin also prevents indomethacin-induced mitochondrial translocation of Bax and prevents the collapse of mitochondrial membrane potential. Moreover, melatonin reduces indomethacin-mediated activation of caspase-9 and caspase-3 by blocking the release of cytochrome c and finally rescues gastric mucosal cells from indomethacin-induced apoptosis as measured by the TUNEL assay. Histologic studies of gastric mucosa further document that melatonin almost completely protects against gastric damage induced by indomethacin. Thus, melatonin has significant anti-apoptotic effects to protect gastric mucosa from NSAID-induced apoptosis and gastropathy, which makes its use as potential therapy against gastric damage during NSAID treatment.
Collapse
Affiliation(s)
- Pallab Maity
- Department of Infectious Diseases and Immunology, Indian Institute of Chemical Biology, Kolkata, India
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Boo JH, Song H, Kim JE, Kang DE, Mook-Jung I. Accumulation of phosphorylated beta-catenin enhances ROS-induced cell death in presenilin-deficient cells. PLoS One 2009; 4:e4172. [PMID: 19137062 PMCID: PMC2613523 DOI: 10.1371/journal.pone.0004172] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 12/10/2008] [Indexed: 11/18/2022] Open
Abstract
Presenilin (PS) is involved in many cellular events under physiological and pathological conditions. Previous reports have revealed that PS deficiency results in hyperproliferation and resistance to apoptotic cell death. In the present study, we investigated the effects of PS on β-catenin and cell mortality during serum deprivation. Under these conditions, PS1/PS2 double-knockout MEFs showed aberrant accumulation of phospho-β-catenin, higher ROS generation, and notable cell death. Inhibition of β-catenin phosphorylation by LiCl reversed ROS generation and cell death in PS deficient cells. In addition, the K19/49R mutant form of β-catenin, which undergoes normal phosphorylation but not ubiquitination, induced cytotoxicity, while the phosphorylation deficient S37A β-catenin mutant failed to induce cytotoxicity. These results indicate that aberrant accumulation of phospho-β-catenin underlies ROS-mediated cell death in the absence of PS. We propose that the regulation of β-catenin is useful for identifying therapeutic targets of hyperproliferative diseases and other degenerative conditions.
Collapse
Affiliation(s)
- Jung H. Boo
- Interdisciplinary Program in Brain Science, School of Biological Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hyundong Song
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Ji E. Kim
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - David E. Kang
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
| | - Inhee Mook-Jung
- Interdisciplinary Program in Brain Science, School of Biological Sciences, Seoul National University College of Medicine, Seoul, Korea
- Department of Biochemistry and Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
40
|
Affiliation(s)
- Eleni Dicou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
41
|
Redox-mediated modification of PLZF by SUMO-1 and ubiquitin. Biochem Biophys Res Commun 2008; 369:1209-14. [PMID: 18348865 DOI: 10.1016/j.bbrc.2008.03.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2008] [Accepted: 03/07/2008] [Indexed: 11/22/2022]
Abstract
Earlier, we reported that the transcriptional repressor promyelocytic leukemia zinc-finger protein (PLZF) is sumoylated at position K242, and the sumoylation regulated its biological function. Here, we show that the sumoylation site can be modified by ubiquitin. The stability and nuclear localization of PLZF were regulated by the antagonistic relationship between sumoylation and ubiquitination. We observed the antagonistic effects of ubiquitin and SUMO-1 on PLZF under oxidative stress induced by serum deprivation. Thus, the choice between modification of PLZF by SUMO or ubiquitin was determined by the intracellular level of ROS, which was generated by serum deprivation that inactivated the SUMO-conjugating enzymes Uba2 and Ubc9, and resulted in decrease of sumoylation. The ubiquitination was increased under these conditions. The expression of BID, a known transcriptional target protein of PLZF, was decreased, and the consequent apoptosis was induced by the ROS generated during serum starvation. On the basis of these results, we propose that PLZF post-translational modification is controlled by intracellular ROS, and the biological function of PLZF is regulated by sumoylation and ubiquitination.
Collapse
|
42
|
Jeng JH, Lan WH, Wang JS, Chan CP, Ho YS, Lee PH, Wang YJ, Wang TM, Chen YJ, Chang MC. Signaling mechanism of thrombin-induced gingival fibroblast-populated collagen gel contraction. Br J Pharmacol 2007; 147:188-98. [PMID: 16299551 PMCID: PMC1615859 DOI: 10.1038/sj.bjp.0706462] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
1.--Thrombin is activated during gingival tissue injury and inflammation. Thrombin (platelet)-rich plasma has been used for periodontal regeneration with success. Thrombin and other bacterial proteases also affect the functions of adjacent periodontal cells via stimulation of protease-activated receptors (PARs). 2.--We noted that thrombin (0.1-2 U ml(-1)), human, and frog PAR-1 agonist peptide (20-240 microM) induced the gingival fibroblast (GF)-populated collagen gel contraction within 2 h of exposure. However, PAR-2, PAR-3, and PAR-4 agonist peptide (20-240 microM) showed little effect on collagen gel contraction. U73122 (phospholipase C inhibitor) and 2-APB (IP3 antagonist) were effective in inhibition of GF contraction. 3.--Thrombin-induced GF contraction was inhibited by 5 mM EGTA (an extracellular calcium chelator) and verapamil (an L-type calcium channel blocker). In addition, W7 (10 and 25 microM, a calcium/calmodulin (CaM) inhibitor), ML-7 (50 microM, myosin light chain kinase (MLCK) inhibitor), and HA1077 (100 microM, Rho kinase inhibitor) completely inhibited the thrombin-induced collagen gel contraction. Thrombin also induced the phosphorylation of ERK1/ERK2 and elevated the Rho-GTP levels in GF. 4.--However, U0126 only partially inhibited the thrombin-induced GF contraction. Similarly, wortmannin (100 nM), LY294002 (20 microM) (two PI3K inhibitor) and genistein also showed partial inhibition. Moreover, NAC was not able to suppress the GF contraction, as supported by the slight decrease in reactive oxygen species production in GF by thrombin. 5.--Thrombin also stimulated metalloproteinase-2 (MMP-2) and MMP-3 production in GF. But addition of GM6001 or 1,10-phenanthroline, two MMP inhibitors, could not inhibit the thrombin-induced GF contraction. 6.--These results indicate that thrombin is crucial in the periodontal inflammation and wound healing by promoting GF contraction. This event is mainly mediated via PAR-1 activation, PLC activation, extracellular calcium influx via L-type calcium channel, and the calcium/CaM-MLCK and Rho kinase activation pathway.
Collapse
Affiliation(s)
- Jiiang-Huei Jeng
- Laboratory of Dental Pharmacology and Toxicology, Department of Dentistry, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Wan-Hong Lan
- Laboratory of Dental Pharmacology and Toxicology, Department of Dentistry, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Juo-Song Wang
- Laboratory of Dental Pharmacology and Toxicology, Department of Dentistry, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Chiu-Po Chan
- Department of Dentistry, Chang-Gung Memorial Hospital, Taipei, Taiwan
| | - Yuan-Soon Ho
- Graduate Institute of Biomedical Technology, Taipei Medical College, Taipei, Taiwan
| | - Po-Hsuen Lee
- Team of Biomedical Science, Chang-Gung Institute of Technology, Taoyuan, Taiwan
| | - Ying-Jen Wang
- Department of Environmental Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tong-Mei Wang
- Laboratory of Dental Pharmacology and Toxicology, Department of Dentistry, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Yi-Jane Chen
- Laboratory of Dental Pharmacology and Toxicology, Department of Dentistry, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | - Mei-Chi Chang
- Team of Biomedical Science, Chang-Gung Institute of Technology, Taoyuan, Taiwan
- Author for correspondence:
| |
Collapse
|
43
|
Morelli F, Peluso G, Petillo O, Giannattasio A, Filosa S, Motta CM, Tammaro S, Zatterale A, Calzone R, Budillon A, Cartenì M, de Maria S, Costanza MR, Nigro A, Petrazzuolo M, Buommino E, Rizzo M, Capasso G, Baiano S, Moscatiello F, Ravagnan G, Fuggetta MP, Tajana G, Stiuso P, Metafora BM, Metafora V, Metafora S. The immunomodulatory protein SV-IV protects serum-deprived cells against apoptosis but not against G0/G1 arrest: Possible implications for the survival of implanting embryo. J Cell Physiol 2007; 212:610-25. [PMID: 17458892 DOI: 10.1002/jcp.21058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Serum deprivation induced in human lymphoblastoid Raji cells oxidative stress-associated apoptotic death and G0/G1 cell cycle arrest. Addition into culture medium of the immunomodulatory protein Seminal vesicle protein 4 (SV-IV) protected these cells against apoptosis but not against cycle arrest. The antiapoptotic activity was related to: (1) decrease of endocellular reactive Oxygen species (ROS) (2) increase of mRNAs encoding anti-oxidant enzymes (catalase, G6PD) and antiapoptotic proteins (survivin, cox-1, Hsp70, c-Fos); (3) decrease of mRNAs encoding proapoptotic proteins (c-myc, Bax, caspase-3, Apaf-1). The biochemical changes underlaying these effects were probably induced by a protein tyrosine kinase (PTK) activity triggered by the binding of SV-IV to its putative plasma membrane receptors. The ineffectiveness of SV-IV to abrogate the cycle arrest was accounted for by its downregulating effects on D1,3/E G1-cyclins and CdK2/4 gene expression, ppRb/pRb ratio, and intracellular ROS concentration. In conclusion, these experiments: (1) prove that SV-IV acts as a cell survival factor; (2) suggest the involvement of a PTK in SV-IV signaling; (3) point to cell cycle-linked enzyme inhibition as responsible for cycle arrest; (4) provide a model to dissect the cycle arrest and apoptosis induced by serum withdrawal; (5) imply a possible role of SV-IV in the survival of hemiallogenic implanting embryos.
Collapse
MESH Headings
- Animals
- Antioxidants/metabolism
- Antioxidants/pharmacology
- Apoptosis/drug effects
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Catalase/genetics
- Catalase/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Culture Media, Serum-Free/metabolism
- Cyclin-Dependent Kinases/metabolism
- Cyclins/metabolism
- Cytotoxicity, Immunologic
- DNA Fragmentation
- Embryo Culture Techniques
- Embryo Implantation/drug effects
- Embryonic Development
- G1 Phase/drug effects
- Genomic Instability
- Glucosephosphate Dehydrogenase/genetics
- Glucosephosphate Dehydrogenase/metabolism
- Humans
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/enzymology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Mice
- Mice, Inbred BALB C
- Oxidative Stress
- Phosphorylation
- Protein-Tyrosine Kinases/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Reactive Oxygen Species/metabolism
- Resting Phase, Cell Cycle/drug effects
- Retinoblastoma Protein/metabolism
- Seminal Vesicle Secretory Proteins/metabolism
- Seminal Vesicle Secretory Proteins/pharmacology
- Serum/metabolism
- Signal Transduction
- Time Factors
Collapse
Affiliation(s)
- Francesco Morelli
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, CNR, Via P Castellino 111, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Reyes-Toso CF, Linares LM, Albornoz LE, Obaya-Naredo D, Wallinger ML, Ricci CR, Cardinali DP. Comparative effects of melatonin and vitamin E in restoring aortic relaxation in pancreatectomized rats. J Physiol Biochem 2006; 62:207-12. [PMID: 17451162 DOI: 10.1007/bf03168470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In a previous study we reported the efficacy of melatonin to restore the decreased relaxation response to acetylcholine (ACh) or to sodium nitroprusside (SNP) in aortic rings of rats turned hyperglycemic by subtotal pancreatectomy. The effect was amplified by pre-incubation in a high (44 mmol/l) glucose solution, a situation that resulted in oxidative stress. We hereby compare the effect of another antioxidant, vitamin E, with that of melatonin on ACh response in intact aortic rings or on SNP response in endothelium-denuded aortic rings obtained from pancreatectomized or sham-operated rats. Dose-response curves to ACh or SNP were performed in the presence or absence of melatonin or vitamin E (10-5 mol/1) in 10 or 44 mmol/1 glucose medium. Melatonin was more effective than vitamin E in restoring ACh- or SNP-induced relaxation of aortic rings in a high glucose medium. The differences between the two antioxidants may rely on the ability of melatonin to diffuse readily into intracellular compartments.
Collapse
Affiliation(s)
- C F Reyes-Toso
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155, 1121 Buenos Aires, Argentina.
| | | | | | | | | | | | | |
Collapse
|
45
|
Chen Q, Qian K, Yan C. Cloning of cDNAs with PDCD2(C) domain and their expressions during apoptosis of HEK293T cells. Mol Cell Biochem 2006; 280:185-91. [PMID: 16311922 DOI: 10.1007/s11010-005-8910-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Accepted: 06/17/2005] [Indexed: 10/25/2022]
Abstract
There are only two isoforms of PDCD2 and MGC13096 containing PDCD2(C) domain in human genome. To study the role of PDCD2_C domain in apoptosis, the cDNAs of two isoforms of PDCD2 and MGC13096 were cloned. The RT-PCR products (AY948416, AY948417) of PDCD2 from RNA of human embryonic kidney 293T (HEK293T) and gastric cancer AGS cell line lost common 99 bp when compared with the sequences of NCBI database (NM_002598, NM_144781). The data of expression of PDCD2 and MGC13096 genes in HEK293T cells which induced to undergo apoptosis by various treatments suggested that there was no significant over-regulation of MGC13096 gene and the over-expression of PDCD2 gene did not occur universally. We searched GEO (Gene Expression Omnibus) about PDCD2 and MGC13096. PDCD2 (NM_002598) was over expressed when endothelial cells treated with leukotriene D4 or natural killer cells were activated by IL-2. Perhaps PDCD2_C domain is not universally associated with apoptosis, the function of PDCD2_C domain needs to be studied further.
Collapse
Affiliation(s)
- Qiu Chen
- College of Life Science, Zhejiang University, Hangzhou, P.R. China.
| | | | | |
Collapse
|
46
|
Wang H, Lim PJ, Yin C, Rieckher M, Vogel BE, Monteiro MJ. Suppression of polyglutamine-induced toxicity in cell and animal models of Huntington's disease by ubiquilin. Hum Mol Genet 2006; 15:1025-41. [PMID: 16461334 DOI: 10.1093/hmg/ddl017] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Expanded polyglutamine (polyQ) tracts are associated with the induction of protein aggregation and cause cytotoxicity in nine different neurodegenerative disorders. Here, we report that ubiquilin suppresses polyQ-induced protein aggregation and toxicity in cells and in an animal model of Huntington's disease. Overexpression of ubiquilin in HeLa cells and primary neurons reduced aggregation of polyQ-containing proteins and cell death induced by overexpression of a green fluorescent protein (GFP)-huntingtin fusion protein containing 74 polyQ repeats [GFP-Htt(Q74)], in a dose-dependent manner. Moreover, overexpression of ubiquilin suppressed oxidative stress-induced cell death in HeLa cell lines stably expressing GFP-Htt(Q74). In contrast, knockdown of ubiquilin expression in these cell lines was associated with increases in DNA fragmentation, caspase activation, GFP-fusion protein aggregation, and cell death. Caenorhabditis elegans lines expressing GFP-Htt fusion proteins in body wall muscle displayed a polyQ repeat length-dependent decrease in body movement compared with wild-type animals. RNA interference of the C. elegans ubiquilin gene exacerbated the motility defect, whereas overexpression of ubiquilin prevented, and could rescue, loss of worm movement induced by overexpression of GFP-Htt(Q55). These results suggest that ubiquilin might be a novel therapeutic target for treating polyQ diseases.
Collapse
Affiliation(s)
- Hongmin Wang
- Medical Biotechnology Center, Institute for Neurodegenerative Diseases, University of Maryland Biotechnology Institute, 725 West Lombard Street, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
47
|
Csernansky JG, Martin MV, Czeisler B, Meltzer MA, Ali Z, Dong H. Neuroprotective effects of olanzapine in a rat model of neurodevelopmental injury. Pharmacol Biochem Behav 2006; 83:208-13. [PMID: 16524622 DOI: 10.1016/j.pbb.2006.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 01/09/2006] [Accepted: 01/25/2006] [Indexed: 11/30/2022]
Abstract
Recent clinical studies have suggested that treatment with atypical antipsychotic drugs, such as olanzapine, may slow progressive changes in brain structure in patients with schizophrenia. To investigate the possible neural basis of this effect, we sought to determine whether treatment with olanzapine would inhibit the loss of hippocampal neurons associated with the administration of the excitotoxin, kainic acid, in neonatal rats. At post-natal day 7 (P7), rats were exposed to kainic acid via intracerebroventricular administration. Neuronal loss within the CA2 and CA3 subfields of the hippocampus and neurogenesis within the dentate gyrus of the hippocampus were then assessed at P14 by Fluoro-Jade B and BrdU labeling, respectively. Daily doses of olanzapine (2, 6, or 12 mg/day), haloperidol (1.2 mg/kg), melatonin (10 mg/kg), or saline were administered between P7 and P14. Melatonin is an anti-oxidant drug and was included in this study as a positive control, since it has been observed to have neuroprotective effects in a variety of animal models. The highest dose of olanzapine and melatonin, but not haloperidol, ameliorated the hippocampal neuronal loss triggered by kainic acid administration. However, drug administration did not have a significant effect on the rate of neurogenesis. These results suggest that olanzapine has neuroprotective effects in a rat model of neurodevelopmental insult, and may be relevant to the observed effects of atypical antipsychotic drugs on brain structure in patients with schizophrenia.
Collapse
Affiliation(s)
- John G Csernansky
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Zhuge J, Cederbaum AI. Serum deprivation-induced HepG2 cell death is potentiated by CYP2E1. Free Radic Biol Med 2006; 40:63-74. [PMID: 16337880 DOI: 10.1016/j.freeradbiomed.2005.08.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2005] [Revised: 08/08/2005] [Accepted: 08/12/2005] [Indexed: 01/16/2023]
Abstract
Induction of oxidative stress plays a key role in serum deprivation-induced apoptosis. CYP2E1 plays an important role in toxicity of many chemicals and ethanol and produces oxidant stress. We investigated whether CYP2E1 expression can sensitize HepG2 cells to toxicity as a consequence of serum deprivation. The models used were HepG2 E47 cells that express human CYP2E1, and C34 HepG2 cells which do not express CYP2E1. E47 cells showed greater growth inhibition and enhanced cell death after serum deprivation, as compared to the C34 cells. DNA ladder and flow cytometry assays indicated that apoptosis occurred at earlier times after serum deprivation in E47 than C34 cells. Serum withdrawal-induced E47 cell death could be rescued by antioxidants, the mitochondrial permeability transition inhibitor cyclosporine A, z-DEVD-fmk, and a CYP2E1 inhibitor 4-methylpyrazole. Increased production of reactive oxygen species (ROS) and lipid peroxidation occurred in E47 cells after serum deprivation, and there was a corresponding decline in the E47 cell mitochondrial membrane potential and reduced glutathione (GSH) levels. We propose that the mechanism of this serum withdrawal plus CYP2E1 toxicity involves increased production of intracellular ROS, lipid peroxidation, and decline of GSH levels, which results in mitochondrial membrane damage and loss of membrane potential, followed by apoptosis. Potentiation of serum deprivation-induced cell death by CYP2E1 may contribute to the sensitivity of the liver to alcohol-induced ischemia and growth factor deprivation.
Collapse
Affiliation(s)
- Jian Zhuge
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, One Gustave L. Place, New York, NY 10029, USA
| | | |
Collapse
|
49
|
Land PW, Aizenman E. Zinc accumulation after target loss: an early event in retrograde degeneration of thalamic neurons. Eur J Neurosci 2005; 21:647-57. [PMID: 15733083 PMCID: PMC2951598 DOI: 10.1111/j.1460-9568.2005.03903.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Accumulation of cytoplasmic zinc is linked with a cascade of events leading to neuronal death. In many in vivo models of zinc-induced cell death, toxic concentrations of synaptically released zinc enter vulnerable neurons via neurotransmitter- or voltage-gated ion channels. In vitro studies demonstrate, in addition, that zinc can be liberated from intracellular stores following oxidative stress and contribute to cell death processes, including apoptosis. Here we describe accumulation of intracellular zinc in an in vivo model of cell death in the absence of presynaptic zinc release. We focused on the lateral geniculate nucleus (LGN) because LGN neurons undergo apoptosis when separated from their target, the primary visual cortex (V1), and the LGN is mostly devoid of zinc-containing presynaptic terminals. Infant and adult rats and adult mice received unilateral ablation of V1, either by aspiration or kainate injection. One to 14 days later, brain sections were stained with selenium autometallography or fluorescently labeled to localize zinc, or stained immunochemically for activated caspase-3. V1 lesions led to zinc accumulation in LGN neurons in infant and adult subjects. Zinc-containing neurons were evident 1-3 days after aspiration lesions, depending on age, but not until 14 days after kainate injection. Zinc accumulation was followed rapidly by immunostaining for activated caspase-3. Our data indicate that like neurotrauma and excitotoxicity, target deprivation leads to accumulation of zinc in apoptotic neurons. Moreover, zinc accumulation in vivo can occur in the absence of presynaptic zinc release. Together these findings suggest that accumulation of intracellular zinc is a ubiquitous component of the cell death cascade in neurons.
Collapse
Affiliation(s)
- Peter W Land
- Department of Neurobiology and Center for Neuroscience, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
50
|
Pillich RT, Scarsella G, Risuleo G. Reduction of apoptosis through the mitochondrial pathway by the administration of acetyl-l-carnitine to mouse fibroblasts in culture. Exp Cell Res 2005; 306:1-8. [PMID: 15878327 DOI: 10.1016/j.yexcr.2005.01.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 12/22/2004] [Accepted: 01/03/2005] [Indexed: 10/25/2022]
Abstract
It is shown in literature that stress, such as deprivation of trophic factors and hypoxia, induces apoptosis in cultured cells and in tissues. In light of these results, we explored the possibility of protecting cells from programmed death by improving the metabolism of the mitochondrion. To this end, acetyl-L-carnitine was administered at various concentrations under conditions of serum deprivation. The choice of this drug was based on the accepted notion that acetyl-L-carnitine is able to stabilize mitochondrial membranes and to increase the supply of energy to the organelle. The results presented here indicate that the drug protects cells from apoptotic death: this is demonstrated by a lower positivity to the TUNEL reaction and by a strong reduction of the apoptotic DNA ladder in serum-deprived cells. The involvement of the mitochondrial apoptotic pathway was assessed by cytochrome C release and immunoreactivity to caspase 3. Moreover, acetyl-L-carnitine stimulates cell proliferation.
Collapse
Affiliation(s)
- Rudolf Tito Pillich
- Dipartimento di Biologia Cellulare e dello Sviluppo, Italy; Dipartimento di Genetica e Biologia Molecolare, Università di Roma La Sapienza, P.le A. Moro, 5-00185 Roma, Italy
| | | | | |
Collapse
|