1
|
O'Mahony ET, Arian CM, Aryeh KS, Wang K, Thummel KE, Kelly EJ. Human intestinal enteroids: Nonclinical applications for predicting oral drug disposition, toxicity, and efficacy. Pharmacol Ther 2025:108879. [PMID: 40398537 DOI: 10.1016/j.pharmthera.2025.108879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/19/2025] [Accepted: 05/15/2025] [Indexed: 05/23/2025]
Abstract
The application of human enteroid systems presents a significant opportunity within the drug development pipeline, highlighting considerable potential for advancements in the characterization and evaluation of new molecular entities. Derived from LGR5+ crypt-based columnar cells, enteroid systems more accurately recapitulate the microanatomy and physiological processes of the human intestinal mucosa compared to traditionally used systems. They contain the complement of major mucosal epithelial cell types, maintain the genetic identity of the donor and intestinal segment they were derived from, and exhibit biological functions and specific activities that are seen in vivo. In this review, we examine the applications of human enteroid systems in nonclinical drug development and compare findings to existing and emerging in vitro models of the small intestine. Specifically, we explore enteroid systems in the context of predicting oral drug disposition, focusing on apparent permeability, intestinal first-pass metabolism, and drug interactions, as well as their utility in assessing drug-induced gastrointestinal toxicity and screening therapeutic efficacy against enteric diseases. Additionally, we highlight aspects of enteroid systems that warrant further study.
Collapse
Affiliation(s)
- Eimear T O'Mahony
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States of America
| | - Christopher M Arian
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States of America
| | - Kayenat S Aryeh
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States of America
| | - Kai Wang
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States of America
| | - Kenneth E Thummel
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States of America; Center of Excellence for Natural Product Drug Interaction Research, Spokane, WA, United States of America
| | - Edward J Kelly
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA, United States of America; Kidney Research Institute, University of Washington, Seattle, WA, United States of America.
| |
Collapse
|
2
|
Lloberas N, Vidal-Alabró A, Colom H. Customizing Tacrolimus Dosing in Kidney Transplantation: Focus on Pharmacogenetics. Ther Drug Monit 2025; 47:141-151. [PMID: 39774592 DOI: 10.1097/ftd.0000000000001289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/22/2024] [Indexed: 01/11/2025]
Abstract
ABSTRACT Different polymorphisms in genes encoding metabolizing enzymes and drug transporters have been associated with tacrolimus pharmacokinetics. In particular, studies on CYP3A4 and CYP3A5, and their combined cluster have demonstrated their significance in adjusting tacrolimus dosing to minimize under- and overexposure thereby increasing the proportion of patients who achieve tacrolimus therapeutic target. Many factors influence the pharmacokinetics of tacrolimus, contributing to inter-patient variability affecting individual dosing requirements. On the other hand, the growing use of population pharmacokinetic models in solid organ transplantation, including different tacrolimus formulations, has facilitated the integration of pharmacogenetic data and other variables into algorithms to easier implement the personalized dose adjustment in transplant centers. The future of personalized medicine in transplantation lies in implementing these models in clinical practice, with pharmacogenetics as a key factor to account for the high inter-patient variability in tacrolimus exposure. To date, three clinical trials have validated the clinical application of these approaches. The aim of this review is to provide an overview of the current studies regarding the different population pharmacokinetic including pharmacogenetics and those translated to the clinical practice for individualizing tacrolimus dose adjustment in kidney transplantation.
Collapse
Affiliation(s)
- Nuria Lloberas
- Nephrology Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL); and
| | - Anna Vidal-Alabró
- Nephrology Department, Hospital Universitari de Bellvitge-Institut d'Investigació Biomèdica de Bellvitge (IDIBELL); and
| | - Helena Colom
- Biopharmaceutics and Pharmacokinetics Unit, Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Guo Z, Gao J, Liu L, Liu X. Quantitatively Predicting Effects of Exercise on Pharmacokinetics of Drugs Using a Physiologically Based Pharmacokinetic Model. Drug Metab Dispos 2024; 52:1271-1287. [PMID: 39251368 DOI: 10.1124/dmd.124.001809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024] Open
Abstract
Exercise significantly alters human physiological functions, such as increasing cardiac output and muscle blood flow and decreasing glomerular filtration rate (GFR) and liver blood flow, thereby altering the absorption, distribution, metabolism, and excretion of drugs. In this study, we aimed to establish a database of human physiological parameters during exercise and to construct equations for the relationship between changes in each physiological parameter and exercise intensity, including cardiac output, organ blood flow (e.g., muscle blood flow and kidney blood flow), oxygen uptake, plasma pH and GFR, etc. The polynomial equation P = ΣaiHRi was used for illustrating the relationship between the physiological parameters (P) and heart rate (HR), which served as an index of exercise intensity. The pharmacokinetics of midazolam, quinidine, digoxin, and lidocaine during exercise were predicted by a whole-body physiologically based pharmacokinetic (WB-PBPK) model and the developed database of physiological parameters following administration to 100 virtual subjects. The WB-PBPK model simulation results showed that most of the observed plasma drug concentrations fell within the 5th-95th percentiles of the simulations, and the estimated peak concentrations (Cmax) and area under the curve (AUC) of drugs were also within 0.5-2.0 folds of observations. Sensitivity analysis showed that exercise intensity, exercise duration, medication time, and alterations in physiological parameters significantly affected drug pharmacokinetics and the net effect depending on drug characteristics and exercise conditions. In conclusion, the pharmacokinetics of drugs during exercise could be quantitatively predicted using the developed WB-PBPK model and database of physiological parameters. SIGNIFICANCE STATEMENT: This study simulated real-time changes of human physiological parameters during exercise in the WB-PBPK model and comprehensively investigated pharmacokinetic changes during exercise following oral and intravenous administration. Furthermore, the factors affecting pharmacokinetics during exercise were also revealed.
Collapse
Affiliation(s)
- Zeyu Guo
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Jingjing Gao
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Li Liu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
4
|
Elmeniar AM, Osman MA, El-Gizawy SA, Modi D, Charbe NB, El-Kattan AF, El-Tanani M, Haggag YA, Tambuwala MM. In situ evaluation of the impact of metformin or verapamil coadministration with vildagliptin on its regional absorption from the rabbit's intestine. Biopharm Drug Dispos 2024; 45:71-82. [PMID: 38400763 DOI: 10.1002/bdd.2384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/15/2024] [Accepted: 01/25/2024] [Indexed: 02/26/2024]
Abstract
This research aims to identify regional differences in vildagliptin absorption across the intestinal membrane. Furthermore, it was to investigate the effect of verapamil or metformin on vildagliptin absorptive clearance. The study utilized an in situ rabbit intestinal perfusion technique to determine vildagliptin oral absorption from duodenum, jejunum, ileum, and ascending colon. This was conducted both with and without perfusion of metformin or verapamil. The findings revealed that the vildagliptin absorptive clearance per unit length varied by site and was in the order as follows: ileum < jejunum < duodenum < ascending colon, implying that P-gp is significant in the reduction of vildagliptin absorption. Also, the arrangement cannot reverse intestinal P-gp, but the observations suggest that P-gp is significant in reducing vildagliptin absorption. Verapamil co-perfusion significantly increased the vildagliptin absorptive clearance by 2.4 and 3.2 fold through the jejunum and ileum, respectively. Metformin co-administration showed a non-significant decrease in vildagliptin absorptive clearance through all tested segments. Vildagliptin absorption was site-dependent and may be related to the intestinal P-glycoprotein content. This may aid in understanding the important elements that influence vildagliptin absorption, besides drug-drug interactions that can occur in type 2 diabetic patients taking vildagliptin in conjunction with other drugs that can modify the P-glycoprotein level.
Collapse
Affiliation(s)
- Ahmed M Elmeniar
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science & Technology, Belkas, Egypt
| | - Mohamed A Osman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sanaa A El-Gizawy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Dimple Modi
- Department of Pharmaceutical Sciences, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Nitin B Charbe
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | | | - Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | - Yusuf A Haggag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Murtaza M Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
- Lincoln Medical School - Universities of Nottingham and Lincoln, University of Lincoln, Lincolnshire, UK
| |
Collapse
|
5
|
Shi Y, Reker D, Byrne JD, Kirtane AR, Hess K, Wang Z, Navamajiti N, Young CC, Fralish Z, Zhang Z, Lopes A, Soares V, Wainer J, von Erlach T, Miao L, Langer R, Traverso G. Screening oral drugs for their interactions with the intestinal transportome via porcine tissue explants and machine learning. Nat Biomed Eng 2024; 8:278-290. [PMID: 38378821 DOI: 10.1038/s41551-023-01128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 10/01/2023] [Indexed: 02/22/2024]
Abstract
In vitro systems that accurately model in vivo conditions in the gastrointestinal tract may aid the development of oral drugs with greater bioavailability. Here we show that the interaction profiles between drugs and intestinal drug transporters can be obtained by modulating transporter expression in intact porcine tissue explants via the ultrasound-mediated delivery of small interfering RNAs and that the interaction profiles can be classified via a random forest model trained on the drug-transporter relationships. For 24 drugs with well-characterized drug-transporter interactions, the model achieved 100% concordance. For 28 clinical drugs and 22 investigational drugs, the model identified 58 unknown drug-transporter interactions, 7 of which (out of 8 tested) corresponded to drug-pharmacokinetic measurements in mice. We also validated the model's predictions for interactions between doxycycline and four drugs (warfarin, tacrolimus, digoxin and levetiracetam) through an ex vivo perfusion assay and the analysis of pharmacologic data from patients. Screening drugs for their interactions with the intestinal transportome via tissue explants and machine learning may help to expedite drug development and the evaluation of drug safety.
Collapse
Affiliation(s)
- Yunhua Shi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Reker
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - James D Byrne
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Ameya R Kirtane
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kaitlyn Hess
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhuyi Wang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Natsuda Navamajiti
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biomedical Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Cameron C Young
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zachary Fralish
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Zilu Zhang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Aaron Lopes
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Vance Soares
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jacob Wainer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Thomas von Erlach
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lei Miao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Traverso
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
6
|
Dvořáčková E, Pilková A, Matoulek M, Slanař O, Hartinger JM. Bioavailability of Orally Administered Drugs After Bariatric Surgery. Curr Obes Rep 2024; 13:141-153. [PMID: 38172482 DOI: 10.1007/s13679-023-00548-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE OF REVIEW Oral drug absorption after bariatric surgery is likely to be altered, but the impact of different bariatric surgery procedures on individual drugs is not uniform. The aim of this article is to describe factors influencing the bioavailability of orally administered drugs after bariatric surgery and to provide readers with practical recommendations for drug dosing. We also discuss the medications that may be harmful after bariatric surgery. RECENT FINDINGS The fundamental factors for enteral drug absorption are the production of gastric acid; the preserved length of the intestine, i.e., the size of the absorption surface and/or the preserved enterohepatic circulation; and the length of common loop where food and drugs are mixed with digestive enzymes and bile acids. Bypassing of metabolizing enzymes or efflux pumps and changes in intestinal motility can also play an important role. Significant changes of drug absorption early after the anatomic alteration may also be gradually ameliorated due to gradual intestinal adaptation. The most affected drugs are those with low or variable bioavailability and those undergoing enterohepatic circulation. Attention should also be paid to oral drug formulations, especially in the early postoperative period, when immediate-release and liquid formulations are preferred. The changes in oral bioavailability are especially clinically meaningful in patients treated with drugs possessing narrow therapeutic index (e.g., oral anticoagulants, levothyroxine, and anticonvulsants) or in acute conditions (e.g., anti-infectives); nevertheless, it may also influence the therapeutic value of chronic therapy (e.g., antidepressants. antihypertensives, antiplatelets, statins, PPIs, contraceptives, and analgesics); therapeutic effect of chronic therapy is further influenced by pharmacokinetic alterations resulting from weight loss. Therapeutic drug monitoring, periodical clinical evaluation, and adequate dose adjustments are necessary. Due to safety reasons, patients should avoid oral bisphosphonates, regular use of non-steroidal anti-inflammatory drugs, and, if possible, corticosteroids after bariatric surgery.
Collapse
Affiliation(s)
- Eliška Dvořáčková
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
- Department of Clinical Pharmacy, Hospital Na Františku, Prague, Czech Republic
| | - Alena Pilková
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Martin Matoulek
- Third Internal Department of Endocrinology and Metabolism, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Jan Miroslav Hartinger
- Institute of Pharmacology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.
| |
Collapse
|
7
|
Kvitne KE, Hovd M, Johnson LK, Wegler C, Karlsson C, Artursson P, Andersson S, Sandbu R, Hjelmesæth J, Skovlund E, Jansson-Löfmark R, Christensen H, Åsberg A, Robertsen I. Digoxin Pharmacokinetics in Patients with Obesity Before and After a Gastric Bypass or a Strict Diet Compared with Normal Weight Individuals. Clin Pharmacokinet 2024; 63:109-120. [PMID: 37993699 PMCID: PMC10786955 DOI: 10.1007/s40262-023-01320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND AND OBJECTIVE Several drugs on the market are substrates for P-glycoprotein (P-gp), an efflux transporter highly expressed in barrier tissues such as the intestine. Body weight, weight loss, and a Roux-en-Y gastric bypass (RYGB) may influence P-gp expression and activity, leading to variability in the drug response. The objective of this study was therefore to investigate digoxin pharmacokinetics as a measure of the P-gp phenotype in patients with obesity before and after weight loss induced by an RYGB or a strict diet and in normal weight individuals. METHODS This study included patients with severe obesity preparing for an RYGB (n = 40) or diet-induced weight loss (n = 40) and mainly normal weight individuals scheduled for a cholecystectomy (n = 18). Both weight loss groups underwent a 3-week low-energy diet (<1200 kcal/day) followed by an additional 6 weeks of <800 kcal/day induced by an RYGB (performed at week 3) or a very-low-energy diet. Follow-up time was 2 years, with four digoxin pharmacokinetic investigations at weeks 0, 3, and 9, and year 2. Hepatic and jejunal P-gp levels were determined in biopsies obtained from the patients undergoing surgery. RESULTS The RYGB group and the diet group had a comparable weight loss in the first 9 weeks (13 ± 2.3% and 11 ± 3.6%, respectively). During this period, we observed a minor increase (16%) in the digoxin area under the concentration-time curve from zero to infinity in both groups: RYGB: 2.7 µg h/L [95% confidence interval (CI) 0.67, 4.7], diet: 2.5 µg h/L [95% CI 0.49, 4.4]. In the RYGB group, we also observed that the time to reach maximum concentration decreased after surgery: from 1.0 ± 0.33 hours at week 3 to 0.77 ± 0.08 hours at week 9 (-0.26 hours [95% CI -0.47, -0.05]), corresponding to a 25% reduction. Area under the concentration-time curve from zero to infinity did not change long term (week 0 to year 2) in either the RYGB (1.1 µg h/L [-0.94, 3.2]) or the diet group (0.94 µg h/L [-1.2, 3.0]), despite a considerable difference in weight loss from baseline (RYGB: 30 ± 7%, diet: 3 ± 6%). At baseline, the area under the concentration-time curve from zero to infinity was -5.5 µg h/L [95% CI -8.5, -2.5] (-26%) lower in patients with obesity (RYGB plus diet) than in normal weight individuals scheduled for a cholecystectomy. Further, patients undergoing an RYGB had a 0.05 fmol/µg [95% CI 0.00, 0.10] (29%) higher hepatic P-gp level than the normal weight individuals. CONCLUSIONS Changes in digoxin pharmacokinetics following weight loss induced by a pre-operative low-energy diet and an RYGB or a strict diet (a low-energy diet plus a very-low-energy diet) were minor and unlikely to be clinically relevant. The lower systemic exposure of digoxin in patients with obesity suggests that these patients may have increased biliary excretion of digoxin possibly owing to a higher expression of P-gp in the liver.
Collapse
Affiliation(s)
- Kine Eide Kvitne
- Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway.
| | - Markus Hovd
- Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | - Line Kristin Johnson
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway
| | - Christine Wegler
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Cecilia Karlsson
- Late-Stage Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Artursson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Shalini Andersson
- Oligonucleotide Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Rune Sandbu
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway
| | - Jøran Hjelmesæth
- Department of Endocrinology, Obesity and Nutrition, Vestfold Hospital Trust, Tønsberg, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Eva Skovlund
- Department of Public Health and Nursing, Norwegian University of Science and Technology, NTNU, Trondheim, Norway
| | - Rasmus Jansson-Löfmark
- DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Hege Christensen
- Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| | - Anders Åsberg
- Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
- Department of Transplantation Medicine, Oslo University Hospital, Oslo, Norway
| | - Ida Robertsen
- Department of Pharmacy, University of Oslo, Blindern, P.O. Box 1068, 0316, Oslo, Norway
| |
Collapse
|
8
|
Wu Y, Wang X, Yang L, Kang S, Yan G, Han Y, Fang H, Sun H. Potential of alisols as cancer therapeutic agents: Investigating molecular mechanisms, pharmacokinetics and metabolism. Biomed Pharmacother 2023; 168:115722. [PMID: 37865991 DOI: 10.1016/j.biopha.2023.115722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/24/2023] Open
Abstract
Albeit remarkable achievements in anti-cancer endeavors, the prevention and treatment of cancer remain unresolved challenges. Hence, there is an urgent need to explore new and efficacious natural compounds with potential anti-cancer therapeutic agents. One such group of compounds is alisols, tetracyclic triterpene alcohols extracted from alisma orientale. Alisols play a significant role in cancer therapy as they can suppress cancer cell proliferation and migration by regulating signaling pathways such as mTOR, Bax/Bcl-2, CHOP, caspase, NF-kB and IRE1. Pharmacokinetic studies showed that alisols can be absorbed entirely, rapidly, and evenly distributed in vivo. Moreover, alisols are low in toxicity and relatively safe to take. Remarkably, each alisol can be converted into many compounds with different pathways to their anti-cancer effects in the body. Thus, alisols are regarded as promising anti-cancer agents with minimal side effects and low drug resistance. This review will examine and discuss alisols' anti-cancer molecular mechanism, pharmacokinetics and metabolism. Based on a comprehensive analysis of nearly 20 years of research, we evaluate the therapeutic potential of alisols for various types of cancer and offer insights and strategies for developing new cancer treatments.
Collapse
Affiliation(s)
- Yinqi Wu
- State key laboratory of Integration and Innovation of Classical formula and modern Chinese medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xijun Wang
- State key laboratory of Integration and Innovation of Classical formula and modern Chinese medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Shuyu Kang
- State key laboratory of Integration and Innovation of Classical formula and modern Chinese medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Guangli Yan
- State key laboratory of Integration and Innovation of Classical formula and modern Chinese medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ying Han
- State key laboratory of Integration and Innovation of Classical formula and modern Chinese medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Heng Fang
- State key laboratory of Integration and Innovation of Classical formula and modern Chinese medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hui Sun
- State key laboratory of Integration and Innovation of Classical formula and modern Chinese medicine, National Chinmedomics Research Center, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| |
Collapse
|
9
|
Macedo MH, Torras N, García-Díaz M, Barrias C, Sarmento B, Martínez E. The shape of our gut: Dissecting its impact on drug absorption in a 3D bioprinted intestinal model. BIOMATERIALS ADVANCES 2023; 153:213564. [PMID: 37482042 DOI: 10.1016/j.bioadv.2023.213564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/13/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
The small intestine is a complex organ with a characteristic architecture and a major site for drug and nutrient absorption. The three-dimensional (3D) topography organized in finger-like protrusions called villi increases surface area remarkably, granting a more efficient absorption process. The intestinal mucosa, where this process occurs, is a multilayered and multicell-type tissue barrier. In vitro intestinal models are routinely used to study different physiological and pathological processes in the gut, including compound absorption. Still, standard models are typically two-dimensional (2D) and represent only the epithelial barrier, lacking the cues offered by the 3D architecture and the stromal components present in vivo, often leading to inaccurate results. In this work, we studied the impact of the 3D architecture of the gut on drug transport using a bioprinted 3D model of the intestinal mucosa containing both the epithelial and the stromal compartments. Human intestinal fibroblasts were embedded in a previously optimized hydrogel bioink, and enterocytes and goblet cells were seeded on top to mimic the intestinal mucosa. The embedded fibroblasts thrived inside the hydrogel, remodeling the surrounding extracellular matrix. The epithelial cells fully covered the hydrogel scaffolds and formed a uniform cell layer with barrier properties close to in vivo. In particular, the villus-like model revealed overall increased permeability compared to a flat counterpart composed by the same hydrogel and cells. In addition, the efflux activity of the P-glycoprotein (P-gp) transporter was significantly reduced in the villus-like scaffold compared to a flat model, and the genetic expression of other drugs transporters was, in general, more relevant in the villus-like model. Globally, this study corroborates that the presence of the 3D architecture promotes a more physiological differentiation of the epithelial barrier, providing more accurate data on drug absorbance measurements.
Collapse
Affiliation(s)
- Maria Helena Macedo
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Núria Torras
- IBEC - Institute for Bioengineering of Catalonia, BIST - The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - María García-Díaz
- IBEC - Institute for Bioengineering of Catalonia, BIST - The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Cristina Barrias
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Rua Alfredo, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto Nacional de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra, Portugal
| | - Elena Martínez
- IBEC - Institute for Bioengineering of Catalonia, BIST - The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain; CIBER-BBN - Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Avenida Monforte de Lemos 3-5, 28029 Madrid, Spain; Electronics and Biomedical Engineering Department, Universitat de Barcelona, Martí I Franquès 1, 08028 Barcelona, Spain.
| |
Collapse
|
10
|
Szatmári P, Ducza E. Changes in Expression and Function of Placental and Intestinal P-gp and BCRP Transporters during Pregnancy. Int J Mol Sci 2023; 24:13089. [PMID: 37685897 PMCID: PMC10487423 DOI: 10.3390/ijms241713089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
ABC transporters are ubiquitous in the human body and are responsible for the efflux of drugs. They are present in the placenta, intestine, liver and kidney, which are the major organs that can affect the pharmacokinetic and pharmacologic properties of drugs. P-gp and BCRP transporters are the best-characterized transporters in the ABC superfamily, and they have a pivotal role in the barrier tissues due to their efflux mechanism. Moreover, during pregnancy, drug efflux is even more important because of the developing fetus. Recent studies have shown that placental and intestinal ABC transporters have great importance in drug absorption and distribution. Placental and intestinal P-gp and BCRP show gestational-age-dependent expression changes, which determine the drug concentration both in the mother and the fetus during pregnancy. They may have an impact on the efficacy of antibiotic, antiviral, antihistamine, antiemetic and oral antidiabetic therapies. In this review, we would like to provide an overview of the pharmacokinetically relevant expression alterations of placental and intestinal ABC transporters during pregnancy.
Collapse
Affiliation(s)
| | - Eszter Ducza
- Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary;
| |
Collapse
|
11
|
Henkel L, Jehn U, Thölking G, Reuter S. Tacrolimus-why pharmacokinetics matter in the clinic. FRONTIERS IN TRANSPLANTATION 2023; 2:1160752. [PMID: 38993881 PMCID: PMC11235362 DOI: 10.3389/frtra.2023.1160752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 08/07/2023] [Indexed: 07/13/2024]
Abstract
The calcineurin inhibitor (CNI) Tacrolimus (Tac) is the most prescribed immunosuppressant drug after solid organ transplantation. After renal transplantation (RTx) approximately 95% of recipients are discharged with a Tac-based immunosuppressive regime. Despite the high immunosuppressive efficacy, its adverse effects, narrow therapeutic window and high intra- and interpatient variability (IPV) in pharmacokinetics require therapeutic drug monitoring (TDM), which makes treatment with Tac a major challenge for physicians. The C/D ratio (full blood trough level normalized by daily dose) is able to classify patients receiving Tac into two major metabolism groups, which were significantly associated with the clinical outcomes of patients after renal or liver transplantation. Therefore, the C/D ratio is a simple but effective tool to identify patients at risk of an unfavorable outcome. This review highlights the challenges of Tac-based immunosuppressive therapy faced by transplant physicians in their daily routine, the underlying causes and pharmacokinetics (including genetics, interactions, and differences between available Tac formulations), and the latest data on potential solutions to optimize treatment of high-risk patients.
Collapse
Affiliation(s)
- Lino Henkel
- Department of Medicine D, University of Münster, Münster, Germany
| | - Ulrich Jehn
- Department of Medicine D, University of Münster, Münster, Germany
| | - Gerold Thölking
- Department of Medicine D, University of Münster, Münster, Germany
- Department of Internal Medicine and Nephrology, University Hospital of Münster Marienhospital Steinfurt, Steinfurt, Germany
| | - Stefan Reuter
- Department of Medicine D, University of Münster, Münster, Germany
| |
Collapse
|
12
|
George DJ, Saad F, Cookson MS, Saltzstein DR, Tutrone R, Bossi A, Brown B, Selby B, Lu S, Buckley D, Tombal B, Shore ND. Impact of Concomitant Prostate Cancer Medications on Efficacy and Safety of Relugolix Versus Leuprolide in Men With Advanced Prostate Cancer. Clin Genitourin Cancer 2023; 21:383-392.e2. [PMID: 37062659 DOI: 10.1016/j.clgc.2023.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND To characterize the impact of concomitant prostate cancer treatments with the use of relugolix, the oral GnRH receptor antagonist, in advanced prostate cancer, a subgroup and pharmacokinetic/pharmacodynamic analyses of the HERO study was undertaken. PATIENTS AND METHODS Overall, 934 patients were randomized 2:1 to receive relugolix 120 mg orally once daily or leuprolide injections every 12 weeks for 48 weeks. In the setting of rising PSA, patients could receive enzalutamide or docetaxel 2 months after study initiation. Assessments included sustained testosterone suppression to castrate levels (<50 ng/dL) through 48 weeks and safety parameters. Subgroups analyzed included patients with or without concomitant enzalutamide or docetaxel. A sensitivity analysis of the primary endpoint was performed excluding patients who received concomitant therapies that may affect testosterone. Pharmacokinetic/pharmacodynamic analyses of 20 participants in the relugolix treatment group assessed the net effect of enzalutamide on exposure to relugolix. RESULTS Overall, 125 patients (13.4%) took concomitant therapies that could impact testosterone levels. Enzalutamide (n = 23) was the most frequently used therapy in the relugolix (2.7%) and leuprolide groups (1.9%). Docetaxel (n = 13) was used by 1.3% and 1.6% of patients in the relugolix and leuprolide groups, respectively. All other relevant concomitant therapy were used in <1% of population. Sensitivity analysis showed concomitant therapy did not impact the testosterone levels. Castration rates were similar with and without concomitant use of enzalutamide or docetaxel. No clinically relevant differences in adverse events were observed between subgroups in either treatment group. No differences in relugolix Ctrough or testosterone concentrations were observed, suggesting that any induction or inhibition properties of enzalutamide on relugolix metabolism result in a neutral net effect on relugolix exposure and testosterone suppression. CONCLUSION Treatment with relugolix was associated with similar efficacy and safety profiles with and without concomitant enzalutamide or docetaxel. Standard-of-care use of relugolix in combination with these agents is supported by these data.
Collapse
Affiliation(s)
- Daniel J George
- Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC
| | - Fred Saad
- University of Montreal Hospital Centre, Montreal, QC, Canada
| | - Michael S Cookson
- Department of Urology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | | | | | - Alberto Bossi
- Department of Radiation Oncology, Gustave Roussy Cancer Institute, Villejuif, France
| | | | | | | | | | - Bertrand Tombal
- Institut de Recherche Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Neal D Shore
- Carolina Urologic Research Center, Myrtle Beach, SC
| |
Collapse
|
13
|
Yu W, Liu X, Cai D, Zheng J, Lao B, Huang M, Zhong G. Regional distributions of curcumin and tetrahydrocurcumin in the liver and small intestine of rats when orally co-administered with quercetin and paeoniflorin. Biopharm Drug Dispos 2023; 44:183-191. [PMID: 36638836 DOI: 10.1002/bdd.2346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/27/2022] [Accepted: 12/27/2022] [Indexed: 01/15/2023]
Abstract
Curcumin (CUR), derived from the dietary spice turmeric, is a polyphenolic compound with various biological and pharmacological activities. Tetrahydrocurcumin (THC) is one of the major reductive metabolites of curcumin. A pharmacokinetic study using ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) for the simultaneous determination of curcumin, THC, quercetin (QR), and paeoniflorin (PF) in rat plasma had been performed. In this study, the regional distributions of curcumin and tetrahydrocurcumin in the liver and the three segments of small intestine (duodenum, jejunum, and ileum) of rats when orally co-administered with quercetin and paeoniflorin were carried out. Drug concentrations were determined using UHPLC-MS/MS. The results showed that curcumin was well distributed in the small intestine, while the distributions of tetrahydrocurcumin in the liver, duodenum, jejunum were similar, but much more abundant in the ileum. When orally co-administered with quercetin and paeoniflorin, the tissue to plasma concentration ratios (Kp values) of curcumin in the three segments of the small intestine were increased, indicating that the presence of quercetin and paeoniflorin increases the distribution of curcumin in these regions. Moreover, the half-life (t1/2 ) of THC in the liver was significantly prolonged, and the Kp value of THC in the liver was increased and the Kp values in the small intestine were decreased, suggesting that the combination of quercetin and paeoniflorin might suppress the metabolism of curcumin in the small intestine. In brief, the combination had an effect on the distributions of curcumin and tetrahydrocurcumin in the liver and small intestine of rats.
Collapse
Affiliation(s)
- Weilan Yu
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangzhou Chest Hospital, Guangzhou, Guangdong Province, China
| | - Xiaolin Liu
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, Guangdong Province, China
| | - Dake Cai
- Guangdong Province Engineering Technology Research Institute of Traditional Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Juntao Zheng
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, Guangdong Province, China
| | - Biaochang Lao
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Hospital of South China University of Technology, Guangzhou, Guangdong Province, China
| | - Min Huang
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, Guangdong Province, China
| | - Guoping Zhong
- Institute of Clinical Pharmacology, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, Guangdong Province, China
| |
Collapse
|
14
|
Elewa SH, Osman MA, Essa EA, Sultan AA. Intestinal absorption pathways of lisinopril: Mechanistic investigations. Biopharm Drug Dispos 2022; 43:233-246. [PMID: 36299167 DOI: 10.1002/bdd.2336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/26/2022] [Accepted: 10/14/2022] [Indexed: 12/29/2022]
Abstract
Lisinopril is an antihypertensive drug with poor intestinal permeability. Enhancement of intestinal absorption depends on a clear understanding of the permeation pathways and absorption mechanisms. Unfortunately, these are not fully elucidated for lisinopril. Accordingly, the aim was to determine lisinopril permeation pathways and obstacles limiting membrane transport with subsequent nomination of appropriate permeation enhancers. This employed an in situ rabbit intestinal perfusion technique, which revealed site-dependent absorptive clearance (PeA/L) from a lisinopril simple solution (5 μg/ml), with paracellular absorption playing a role. Regional drug permeability ranked as colon> duodenum> jejunum> ileum opposing intestinal expression rank of P-glycoprotein (P-gp) efflux transporters. Duodenal and jejunal perfusion of a higher lisinopril concentration (50 μg/ml) reflected saturable absorption, suggesting carrier-mediated transport. The effect of piperine and verapamil as P-gp inhibitors on intestinal absorption of lisinopril was investigated. Coperfusion with either piperine or verapamil significantly enhanced lisinopril absorption, with enhancement being dominant in the ileum segment. This supported the contribution of P-gp transporters to poor lisinopril permeability. On the other hand, coperfusion of lisinopril with zinc acetate dihydrate significantly multiplied lisinopril PeA/L by 2.3- and 6.6-fold in duodenum and ileum segments, respectively, through magnifying intestinal water flux. The study explored the barriers limiting lisinopril intestinal absorption. Moreover, the study exposed clinically relevant lisinopril interactions with common coadministered cargos that should be considered for an appropriate lisinopril regimen. However, this requires further in vivo verification.
Collapse
Affiliation(s)
- Sarah H Elewa
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Mohamed A Osman
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Ebtessam A Essa
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Amal A Sultan
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| |
Collapse
|
15
|
Fayed ND, Essa EA, El Maghraby GM. Menthol augmented niosomes for enhanced intestinal absorption of lopinavir. Pharm Dev Technol 2022; 27:956-964. [PMID: 36227222 DOI: 10.1080/10837450.2022.2136195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Lopinavir is effective in treatment of HIV infection but experiences low oral bioavailability due to poor solubility, pre-systemic metabolism, and P-gp intestinal efflux. Co-processing with menthol enhanced its dissolution and intestinal permeability. Niosomes comprising Span 60, cholesterol and poloxamer 407 were formulated in absence and presence of menthol. These were evaluated for size, morphology, entrapment efficiency (EE%), lopinavir release and intestinal absorption. The later employed in situ rabbit intestinal absorption model. Niosomes were spherical with vesicle size of 140.2 ± 23 and 148.2 ± 27nm for standard and menthol containing niosomes, respectively. The EE% values were 94.4% and 96.3% for both formulations, respectively. Niosomes underwent slow release during the time course of absorption with menthol hastening lopinavir release, but the release did not exceed 9%. Niosmoal encapsulation enhanced lopinavir intestinal absorption compared with drug solution. This was reflected from the fraction absorbed from duodenum which was 24.15%, 73.09% and 83.23% for solution, standard niosomes and menthol containing vesicles, respectively. These values were 34.32%, 80.8% and 86.56% for the same formulations in case of jejuno-ileum. Lopinavir absorption from niosomes didn't depend on release supporting intact vesicle absorption. The study introduced menthol containing niosomes as carriers for enhanced lopinavir intestinal absorption.
Collapse
Affiliation(s)
- Noha D Fayed
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Ebtesam A Essa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
16
|
Alrubia S, Mao J, Chen Y, Barber J, Rostami-Hodjegan A. Altered Bioavailability and Pharmacokinetics in Crohn's Disease: Capturing Systems Parameters for PBPK to Assist with Predicting the Fate of Orally Administered Drugs. Clin Pharmacokinet 2022; 61:1365-1392. [PMID: 36056298 PMCID: PMC9553790 DOI: 10.1007/s40262-022-01169-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 12/12/2022]
Abstract
Backgrond and Objective Crohn’s disease (CD) is a chronic inflammatory bowel disease that affects a wide age range. Hence, CD patients receive a variety of drugs over their life beyond those used for CD itself. The changes to the integrity of the intestine and its drug metabolising enzymes and transporters (DMETs) can alter the oral bioavailability of drugs. However, there are other changes in systems parameters determining the fate of drugs in CD, and understanding these is essential for dose adjustment in patients with CD. Methods The current analysis gathered all the available clinical data on the kinetics of drugs in CD (by March 2021), focusing on orally administered small molecule drugs. A meta-analysis of the systems parameters affecting oral drug pharmacokinetics was conducted. The systems information gathered on intestine, liver and blood proteins and other physiological parameters was incorporated into a physiologically based pharmacokinetic (PBPK) platform to create a virtual population of CD patients, with a view for guiding dose adjustment in the absence of clinical data in CD. Results There were no uniform trends in the reported changes in reported oral bioavailability. The nature of the drug as well as the formulation affected the direction and magnitude of variation in kinetics in CD patients relative to healthy volunteers. Even for the same drug, the reported changes in exposure varied, possibly due to a lack of distinction between the activity states of CD. The highest alteration was seen with S-verapamil and midazolam, 8.7- and 5.3-fold greater exposure, respectively, in active CD patients relative to healthy volunteers. Only one report was available on liver DMETs in CD, and indicated reduced CYP3A4 activity. In a number of reports, mRNA expression of DMETs in the ileum and colon of CD patients was measured, focussing on P-glycoprotein (p-gp) transporter and CYP3A4 enzyme, and showed contradictory results. No data were available on protein expression in duodenum and jejunum despite their dominant role in oral drug absorption. Conclusion There are currently inadequate dedicated clinical or quantitative proteomic studies in CD to enable predictive PBPK models with high confidence and adequate verification. The PBPK models for CD with the available systems parameters were able to capture the major physiological influencers and the gaps to be filled by future research. Quantification of DMETs in the intestine and the liver in CD is warranted, alongside well-defined clinical drug disposition studies with a number of index drugs as biomarkers of changes in DMETs in these patients, to avoid large-scale dedicated studies for every drug to determine the effects of disease on the drug’s metabolism and disposition and the consequential safety and therapeutic concerns. Supplementary Information The online version contains supplementary material available at 10.1007/s40262-022-01169-4.
Collapse
Affiliation(s)
- Sarah Alrubia
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK.,Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Jialin Mao
- Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Yuan Chen
- Drug Metabolism and Pharmacokinetics, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Jill Barber
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK
| | - Amin Rostami-Hodjegan
- Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, UK. .,Certara UK Ltd, Simcyp Division, Level 2-Acero, 1 Concourse Way, Sheffield, UK.
| |
Collapse
|
17
|
Sultan AA, El Nashar NF, Ashmawy SM, El Maghraby GM. Cubosomes for Enhancing Intestinal Absorption of Fexofenadine Hydrochloride: In situ and in vivo Investigation. Int J Nanomedicine 2022; 17:3543-3560. [PMID: 35983479 PMCID: PMC9379123 DOI: 10.2147/ijn.s370235] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose The aim of this work was to probe cubosomes for enhanced intestinal absorption and oral bioavailability of poorly absorbable fexofenadine HCl (FEX-HCl). Materials and Methods Two cubosomal systems were fabricated utilizing glyceryl mono-oleate, a lyotropic mono lamellar lipid as oil phase and poloxamer407 as stabilizer at weight ratios of 8:2 and 7:3. The morphology of cubosomes was researched using transmission electron microscopy (TEM) and particle size was measured using photon correlation spectroscopy. FEX-HCl release was monitored in vitro. The effect of cubosomal encapsulation on intestinal absorption was assessed using in situ rabbit intestinal perfusion technique. Carrageenan induced rat paw edema model was utilized to monitor in vivo anti-inflammatory effect before and after cubosomal encapsulation. Results TEM revealed the existence of spherical and polygonal nanostructures arranged in honeycomb organization. Size measurement reflected nanoparticles with reduced size at higher poloxamer concentration. Release studies revealed liberation of FEX-HCl from cubosomes based on Higuchi kinetics model. The intestinal permeability data indicated incomplete absorption of FEX-HCl from simple aqueous solution with P-glycoprotein efflux contributing to this poor intestinal absorption. Incorporation of FEX-HCl in cubosomes enhanced membrane transport parameters. The intestinal absorption did not correlate with drug release suggesting that drug release is not the rate limiting with possible intact cubosomal transport. Cubosomal encapsulation of FEX-HCl significantly enhanced its in vivo anti-inflammatory efficacy compared to the aqueous FEX-HCl dispersion. Conclusion Cubosomes are promising novel carriers for enhancing intestinal absorption of FEX-HCl. Intact FEX-HCl-cubosomal absorption is possible via trans-lymphatic pathway but this requires further investigations.
Collapse
Affiliation(s)
- Amal A Sultan
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Nourhan F El Nashar
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Shimaa M Ashmawy
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| |
Collapse
|
18
|
Azman M, Sabri AH, Anjani QK, Mustaffa MF, Hamid KA. Intestinal Absorption Study: Challenges and Absorption Enhancement Strategies in Improving Oral Drug Delivery. Pharmaceuticals (Basel) 2022; 15:ph15080975. [PMID: 36015123 PMCID: PMC9412385 DOI: 10.3390/ph15080975] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022] Open
Abstract
The oral route is the most common and practical means of drug administration, particularly from a patient’s perspective. However, the pharmacokinetic profile of oral drugs depends on the rate of drug absorption through the intestinal wall before entering the systemic circulation. However, the enteric epithelium represents one of the major limiting steps for drug absorption, due to the presence of efflux transporters on the intestinal membrane, mucous layer, enzymatic degradation, and the existence of tight junctions along the intestinal linings. These challenges are more noticeable for hydrophilic drugs, high molecular weight drugs, and drugs that are substrates of the efflux transporters. Another challenge faced by oral drug delivery is the presence of first-pass hepatic metabolism that can result in reduced drug bioavailability. Over the years, a wide range of compounds have been investigated for their permeation-enhancing effect in order to circumvent these challenges. There is also a growing interest in developing nanocarrier-based formulation strategies to enhance the drug absorption. Therefore, this review aims to provide an overview of the challenges faced by oral drug delivery and selected strategies to enhance the oral drug absorption, including the application of absorption enhancers and nanocarrier-based formulations based on in vitro, in vivo, and in situ studies.
Collapse
Affiliation(s)
- Maisarah Azman
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam 42300, Selangor, Malaysia
| | - Akmal H. Sabri
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Mohd Faiz Mustaffa
- Department of Pharmacology and Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam 42300, Selangor, Malaysia
| | - Khuriah Abdul Hamid
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam 42300, Selangor, Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRINS), Universiti Teknologi MARA Cawangan Selangor, Puncak Alam 42300, Selangor, Malaysia
- Correspondence:
| |
Collapse
|
19
|
Fayed ND, Arafa MF, Essa EA, El Maghraby GM. Lopinavir-menthol co-crystals for enhanced dissolution rate and intestinal absorption. J Drug Deliv Sci Technol 2022; 74:103587. [PMID: 35845293 PMCID: PMC9272570 DOI: 10.1016/j.jddst.2022.103587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/27/2022] [Accepted: 07/08/2022] [Indexed: 12/25/2022]
Abstract
Lopinavir is an antiretroviral, antiparasitic agent and recently utilized in treatment of COVID-19. Unfortunately, lopinavir exhibited poor oral bioavailability due to poor dissolution, extensive pre-systemic metabolism, and significant P-glycoprotein intestinal efflux. Accordingly, the aim was to enhance dissolution rate and intestinal absorption of lopinavir. This employed co-processing with menthol which is believed to modify crystalline structures and inhibit intestinal efflux. Lopinavir was mixed with menthol at different molar ratios before ethanol assisted kneading. Formulations were evaluated using FTIR spectroscopy, differential scanning calorimetry (DSC), X-ray powder diffraction (XRD) and dissolution studies. Optimum ratio was utilized to assess lopinavir intestinal permeability. This employed in situ rabbit intestinal perfusion technique. FTIR, DSC and XRD indicated formation of lopinavir-menthol co-crystals at optimum molar ratio of 1:2. Additional menthol underwent phase separation due to possible self-association. Co-crystallization significantly enhanced lopinavir dissolution rate compared with pure drug to increase the dissolution efficiency from 24.96% in case of unprocessed lopinavir to 91.43% in optimum formulation. Lopinavir showed incomplete absorption from duodenum and jejuno-iliac segments with lower absorptive clearance from jejuno-ileum reflecting P-gp efflux. Co-perfusion with menthol increased lopinavir intestinal permeability. The study introduced menthol as co-crystal co-former for enhanced dissolution and augmented intestinal absorption of lopinavir.
Collapse
|
20
|
Investigation of the effect of verapamil on the regional absorption of sofosbuvir from rabbit intestine in situ. Daru 2022; 30:49-58. [PMID: 35023081 PMCID: PMC9114277 DOI: 10.1007/s40199-021-00429-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 12/05/2021] [Indexed: 01/16/2023] Open
Abstract
PURPOSE Sofosbuvir, a nucleotide antiviral drug, is a Biopharmaceutics Classification System (BCS) class III prodrug suffering from limited intestinal absorption due to its high hydrophilicity and low intestinal permeability. This research aims to investigate the luminal stability of Sofosbuvir, the influence of anatomical site on its intestinal absorption and the effects of verapamil on such absorption. METHOD The study utilized in situ rabbit intestinal perfusion technique to examine absorption of Sofosbuvir from duodenum, jejunum, ileum and ascending colon. This was conducted both with and without verapamil. RESULTS The luminal stability study showed that Sofosbuvir was subjected to premature degradation with varying fractions degraded from the different intestinal segments. The in situ perfusion data showed incomplete absorption of Sofosbuvir from small and large intestinal segments. The recorded values of the absorptive clearance per unit length (Pe.A/L) of Sofosbuvir were 0.026, 0.0075, 0.0026, & 0.054 ml/min.cm for duodenum, jejunum, ileum, and ascending colon, respectively. The Pe.A/L values were ordered as colon > duodenum > jejunum > ileum. This is the opposite rank of P-gp content in the different intestinal segments. The recorded values of the length required for complete Sofosbuvir absorption (L95%) were 29.58, 128.47, 949.2 and, 13.63 cm for duodenum, jejunum, ileum, and ascending colon, respectively. Co-perfusion with verapamil significantly increased Pe.A/L and reduced the L95% of Sofosbuvir from both jejunum and ileum (P-value < 0.05). CONCLUSION The results indicated that the absorptive clearance of Sofosbuvir was site dependent and associated with the content of P-glycoprotein, in addition to the expected drug interactions that can occur in polymedicated hepatitis C virus (HCV) infected patients.
Collapse
|
21
|
Ashmawy SM, Eltahan DA, Osman MA, Essa EA. Influence of Piperine and Omeprazole on The Regional Absorption of Daclatasvir from Rabbit Intestine. Biopharm Drug Dispos 2022; 43:33-44. [PMID: 34997607 DOI: 10.1002/bdd.2308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/14/2021] [Accepted: 01/02/2022] [Indexed: 11/11/2022]
Abstract
The study assessed the site dependent intestinal absorption of daclatasvir and investigated the effects of piperine and omeprazole on such absorption utilizing in situ rabbit intestinal perfusion technique. The intestinal absorption of daclatasvir was assessed in four segments: duodenum, jejunum, ileum, and colon. The effect of co-perfusion with omeprazole was monitored through the tested anatomical sites. The effect of piperine, a P-glycoprotein (P-gp) inhibitor on daclatasvir absorption from jejunum and ileum was tested. The results showed that daclatasvir was incompletely absorbed from the rabbit small and large intestine. The absorptive clearance per unit length (PeA/L) was site dependent and was ranked as colon > duodenum > jejunum > ileum. This rank is the opposite of the rank of P-gp intestinal content suggesting possible influence for P-gp. Co-perfusion with omeprazole increased PeA/L and this was evidenced also with reduced the L95% of daclatasvir from both small and large intestinal segments. Significant enhancement in daclatasvir absorption through jejunum and ileum was shown in presence of piperine. Daclatasvir showed site dependent intestinal absorption in a manner suggesting its affection by P-gp efflux. This effect was inhibited by piperine. Co-administration of daclatasvir with omeprazole can enhance intestinal absorption a phenomenon which requires extension to human pharmacokinetic investigation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shimaa M Ashmawy
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, 31111, Egypt
| | - Dina A Eltahan
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, 31111, Egypt
| | - Mohamed A Osman
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, 31111, Egypt
| | - Ebtessam A Essa
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, 31111, Egypt
| |
Collapse
|
22
|
Hakeam HA, Alkhani M, Alyahya Z, Alawaji Z, Ofori S. Direct Acting Oral Anticoagulants Following Gastrointestinal Tract Surgery. J Cardiovasc Pharmacol 2021; 78:867-874. [PMID: 34882113 DOI: 10.1097/fjc.0000000000001142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/11/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Direct-acting oral anticoagulants (DOACs) vary in bioavailability and sites of absorption in the gastrointestinal tract (GIT). Data on DOAC use after major GIT surgery are limited. The aim of this case series was to report the impact of surgical resection or bypass of the GIT on rivaroxaban and apixaban peak plasma concentrations. This was a case series of patients who received rivaroxaban or apixaban after GIT surgery, during the period of July 1, 2019, to December 31, 2020. Peak plasma concentrations of rivaroxaban and apixaban were assessed for the expected concentrations. Of the 27 assessed patients, 18 (66.7%) received rivaroxaban, and 9 (33.3%) received apixaban. After rivaroxaban therapy, 4 of 5 patients (80%) who underwent gastrectomy, and 3 of 3 patients (100%) who underwent duodenum and proximal jejunum exclusion had peak plasma concentrations of rivaroxaban lower than the effective range, whereas 11 of 11 patients (100%) who underwent distal bowel or ileostomy had peak rivaroxaban plasma within the effective range. After apixaban therapy, 5 of 6 patients (83.3%) who underwent total or partial gastrectomy achieved effective peak concentrations. All the patients who underwent proximal and distal bowel resection or bypass had peak concentrations of apixaban within the effective range. In conclusion, surgical resection or bypass of the upper GIT could affect DOAC absorption and subsequently peak plasma concentrations. This effect was more observed among rivaroxaban recipients. An injectable anticoagulant or vitamin K antagonist may be preferred if DOAC concentrations cannot be measured after GIT surgery.
Collapse
Affiliation(s)
- Hakeam A Hakeam
- Pharmaceutical Care Division, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Mohammed Alkhani
- Department of Vascular Surgery, Hospices Civils de Lyon, Lyon, France
| | - Zyad Alyahya
- Department of Surgery, Salford Royal NHS Foundation Trust, Manchester, United Kingdom
| | - Ziyad Alawaji
- College of Medicine, Qassim University, Burydah, Saudi Arabia ; and
| | - Sandra Ofori
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
23
|
Srivastava K, Patel N, Tabbara M, Liew A, Zaghloul I, Migliore MM, Mekary RA. Thromboembolism, Bleeding, and Mortality Incidence of Direct Oral Anticoagulants Versus Warfarin Postbariatric Surgery. Am J Med 2021; 134:1403-1412.e2. [PMID: 34273283 DOI: 10.1016/j.amjmed.2021.06.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND There is no randomized controlled trial comparing direct oral anticoagulants (DOACs) and warfarin following bariatric surgery to date. The mortality, thromboembolism, and bleeding risk of DOACs in comparison with warfarin following bariatric surgery remains unclear. We aimed to provide a clinical comparison between DOACs and warfarin for these 3 prespecified outcomes. METHODS A systematic literature search was performed on November 10, 2019, using PubMed, Embase, clinicaltrial.gov, and Cochrane databases. Studies with adult patients who were on either warfarin or DOACs following bariatric surgery and reported the incidence of thromboembolism, bleeding, or mortality were included. Pooled incidence for these prespecified outcomes and its 95% confidence interval (CI) were calculated for each drug separately using the random-effects model, along with a nonadjusted P value comparing the 2 subgroups. RESULTS A total of 11 studies (805 patients) were included. Comparing DOACs to warfarin, the following pooled incidences were observed for mortality (DOACs: 3.0%; 95% CI 0.4%-18.6% versus warfarin: 1.5%; 95% CI 0.8%-2.9%; P value comparing the 2 subgroups = .38), thromboembolism (DOACs: 4.9%; 95% CI 1%-21.1% versus warfarin: 1.5%; 95% CI 0.8%-2.9%; P value = .18), and bleeding (DOACs: 3.9%; 95% CI 0.7%-18.2% versus warfarin: 11.3%; 95% CI 5.7%-21.4%; P value = .23). CONCLUSION The results of our meta-analysis remain hypothesis-generating, providing rationale for future randomized controlled trial design or well-designed comparative observational studies. Currently, it does not support the change in the current recommendation from warfarin to DOACs following bariatric surgery.
Collapse
Affiliation(s)
- Krutika Srivastava
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences University, Boston, Mass
| | - Neil Patel
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences University, Boston, Mass
| | - Malek Tabbara
- Department of Surgery, Maniwaki Hospital, McGill University, Montreal, Canada
| | - Aaron Liew
- Portiuncula University Hospital and National University of Ireland Galway, Galway, Ireland
| | - Iman Zaghloul
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences University, Boston, Mass
| | - Mattia M Migliore
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences University, Boston, Mass
| | - Rania A Mekary
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences University, Boston, Mass; Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Mass.
| |
Collapse
|
24
|
Yamazaki S, Evers R, De Zwart L. Physiologically-based pharmacokinetic modeling to evaluate in vitro-to-in vivo extrapolation for intestinal P-glycoprotein inhibition. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY 2021; 11:55-67. [PMID: 34668334 PMCID: PMC8752109 DOI: 10.1002/psp4.12733] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/12/2021] [Accepted: 10/12/2021] [Indexed: 11/08/2022]
Abstract
As one of the key components in model‐informed drug discovery and development, physiologically‐based pharmacokinetic (PBPK) modeling linked with in vitro‐to‐in vivo extrapolation (IVIVE) is widely applied to quantitatively predict drug–drug interactions (DDIs) on drug‐metabolizing enzymes and transporters. This study aimed to investigate an IVIVE for intestinal P‐glycoprotein (Pgp, ABCB1)‐mediated DDIs among three Pgp substrates, digoxin, dabigatran etexilate, and quinidine, and two Pgp inhibitors, itraconazole and verapamil, via PBPK modeling. For Pgp substrates, assuming unbound Michaelis‐Menten constant (Km) to be intrinsic, in vitro‐to‐in vivo scaling factors for maximal Pgp‐mediated efflux rate (Jmax) were optimized based on the clinically observed results without co‐administration of Pgp inhibitors. For Pgp inhibitors, PBPK models utilized the reported in vitro values of Pgp inhibition constants (Ki), 1.0 μM for itraconazole and 2.0 μM for verapamil. Overall, the PBPK modeling sufficiently described Pgp‐mediated DDIs between these substrates and inhibitors with the prediction errors of less than or equal to ±25% in most cases, suggesting a reasonable IVIVE for Pgp kinetics in the clinical DDI results. The modeling results also suggest that Pgp kinetic parameters of both the substrates (Km and Jmax) and the inhibitors (Ki) are sensitive to Pgp‐mediated DDIs, thus being key for successful DDI prediction. It would also be critical to incorporate appropriate unbound inhibitor concentrations at the site of action into PBPK models. The present results support a quantitative prediction of Pgp‐mediated DDIs using in vitro parameters, which will significantly increase the value of in vitro studies to design and run clinical DDI studies safely and effectively.
Collapse
Affiliation(s)
- Shinji Yamazaki
- Drug Metabolism & Pharmacokinetics, Janssen Research & Development, LLC, San Diego, California, USA
| | - Raymond Evers
- Drug Metabolism & Pharmacokinetics, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Loeckie De Zwart
- Drug Metabolism & Pharmacokinetics, Janssen Research & Development, Beerse, Belgium
| |
Collapse
|
25
|
Lang J, Vincent L, Chenel M, Ogungbenro K, Galetin A. Reduced physiologically-based pharmacokinetic model of dabigatran etexilate-dabigatran and its application for prediction of intestinal P-gp-mediated drug-drug interactions. Eur J Pharm Sci 2021; 165:105932. [PMID: 34260894 DOI: 10.1016/j.ejps.2021.105932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/01/2021] [Accepted: 06/22/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Dabigatran etexilate (DABE) has been suggested as a clinical probe for intestinal P-glycoprotein (P-gp)-mediated drug-drug interaction (DDI) studies and, as an alternative to digoxin. Clinical DDI data with various P-gp inhibitors demonstrated a dose-dependent inhibition of P-gp with DABE. The aims of this study were to develop a joint DABE (prodrug)-dabigatran reduced physiologically-based-pharmacokinetic (PBPK) model and to evaluate its ability to predict differences in P-gp DDI magnitude between a microdose and a therapeutic dose of DABE. METHODS A joint DABE-dabigatran PBPK model was developed with a mechanistic intestinal model accounting for the regional P-gp distribution in the gastrointestinal tract. Model input parameters were estimated using DABE and dabigatran pharmacokinetic (PK) clinical data obtained after administration of DABE alone or with a strong P-gp inhibitor, itraconazole, and over a wide range of DABE doses (from 375 µg to 400 mg). Subsequently, the model was used to predict extent of DDI with additional P-gp inhibitors and with different DABE doses. RESULTS The reduced DABE-dabigatran PBPK model successfully described plasma concentrations of both prodrug and metabolite following administration of DABE at different dose levels and when co-administered with itraconazole. The model was able to capture the dose dependency in P-gp mediated DDI. Predicted magnitude of itraconazole P-gp DDI was higher at the microdose (predicted vs. observed median fold-increase in AUC+inh/AUCcontrol (min-max) = 5.88 (4.29-7.93) vs. 6.92 (4.96-9.66) ) compared to the therapeutic dose (predicted median fold-increase in AUC+inh/AUCcontrol = 3.48 (2.37-4.84) ). In addition, the reduced DABE-dabigatran PBPK model predicted successfully the extent of DDI with verapamil and clarithromycin as P-gp inhibitors. Model-based simulations of dose staggering predicted the maximum inhibition of P-gp when DABE microdose was concomitantly administered with itraconazole solution; simulations also highlighted dosing intervals required to minimise the DDI risk depending on the DABE dose administered (microdose vs. therapeutic). CONCLUSIONS This study provides a modelling framework for the evaluation of P-gp inhibitory potential of new molecular entities using DABE as a clinical probe. Simulations of dose staggering and regional differences in the extent of intestinal P-gp inhibition for DABE microdose and therapeutic dose provide model-based guidance for design of prospective clinical P-gp DDI studies.
Collapse
Affiliation(s)
- Jennifer Lang
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | - Marylore Chenel
- Institut de Recherches Internationales Servier, Suresnes, France
| | - Kayode Ogungbenro
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Aleksandra Galetin
- Centre for Applied Pharmacokinetic Research, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, United Kingdom.
| |
Collapse
|
26
|
Damanhuri NS, Kumolosasi E, Omar MS, Razak AFA, Mansor AH. The influence of P-glycoprotein expression in the standard treatment of Helicobacter pylori infection in Sprague Dawley rats. Daru 2021; 29:13-22. [PMID: 33405191 PMCID: PMC8149563 DOI: 10.1007/s40199-020-00377-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/27/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND P-glycoprotein (P-gp) is an Adenosine triphosphate (ATP) dependent drug-efflux pump which is located abundantly in the stomach and protects the gut mucosa from xenobiotic. OBJECTIVE The purpose of this study was to investigate the influence of P-gp modulation on the efficacy of treatment regimen. METHOD P-gp modulation in rats was performed by using P-gp inducer (150 mg/kg rifampicin) and P-gp inhibitor (10 mg/kg cyclosporine A) for 14 days prior to be infected with Helicobacter pylori (H. pylori). The rats were further divided into groups, which were normal control, vehicle control, antibiotics and omeprazole, antibiotics only and omeprazole only for another 2 weeks of treatment. The ulcer formation and P-gp expression were determined by using macroscopic evaluation and western blot analysis, respectively. RESULTS The highest P-gp expression was shown in the induced P-gp rats (2.00 ± 0.68) while the lowest P-gp expression was shown in the inhibited P-gp rats (0.45 ± 0.36) compared to the normal P-gp rats. In all groups, the rats which were infected with H. pylori, had a significant increase (p < 0.05) in P-gp expression level and a more severe ulcer formation compared to the healthy rats. The ulcer developed at different levels in the rats with inhibited, induced, or normal P-gp expression. After receiving the standard therapy for H. pylori, it was observed that the healing rate for ulcer was increased to 91% (rats with inhibited P-gp expression), 82% (rats with induced P-gp expression) and 75% in rats with normal P-gp. The use of rifampicin to induce P-gp level was also shown to be effective in eradicating the H. pylori infection. CONCLUSION The synergism in the standard therapy by using two antibiotics (clarithromycin and amoxicillin) and proton pump inhibitor (omeprazole) have shown to effectively eradicate the H. pylori infection. Thus, P-gp expression influenced the effectiveness of the treatment.
Collapse
Affiliation(s)
- Noor Safwah Damanhuri
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Endang Kumolosasi
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Marhanis Salihah Omar
- Quality Use of Medicine Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Amirul Faiz Abd Razak
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ahmad Hasnan Mansor
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Zhang D, Wei C, Hop CECA, Wright MR, Hu M, Lai Y, Khojasteh SC, Humphreys WG. Intestinal Excretion, Intestinal Recirculation, and Renal Tubule Reabsorption Are Underappreciated Mechanisms That Drive the Distribution and Pharmacokinetic Behavior of Small Molecule Drugs. J Med Chem 2021; 64:7045-7059. [PMID: 34010555 DOI: 10.1021/acs.jmedchem.0c01720] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug reabsorption following biliary excretion is well-known as enterohepatic recirculation (EHR). Renal tubular reabsorption (RTR) following renal excretion is also common but not easily assessed. Intestinal excretion (IE) and enteroenteric recirculation (EER) have not been recognized as common disposition mechanisms for metabolically stable and permeable drugs. IE and intestinal reabsorption (IR:EHR/EER), as well as RTR, are governed by dug concentration gradients, passive diffusion, active transport, and metabolism, and together they markedly impact disposition and pharmacokinetics (PK) of small molecule drugs. Disruption of IE, IR, or RTR through applications of active charcoal (AC), transporter knockout (KO), and transporter inhibitors can lead to changes in PK parameters. The impacts of intestinal and renal reabsorption on PK are under-appreciated. Although IE and EER/RTR can be an intrinsic drug property, there is no apparent strategy to optimize compounds based on this property. This review seeks to improve understanding and applications of IE, IR, and RTR mechanisms.
Collapse
Affiliation(s)
- Donglu Zhang
- Department of Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Cong Wei
- Drug Metabolism and Pharmacokinetics, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Cornelis E C A Hop
- Department of Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Matthew R Wright
- Department of Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - Ming Hu
- University of Houston College of Pharmacy, 4849 Calhoun Road, Houston, Texas 77204, United States
| | - Yurong Lai
- Drug Metabolism and Pharmacokinetics, Gilead Sciences, 333 Lakeside Drive, Foster City, California 94404, United States
| | - S Cyrus Khojasteh
- Department of Drug Metabolism and Pharmacokinetics, Genentech, 1 DNA Way, South San Francisco, California 94080, United States
| | - W Griff Humphreys
- Aranmore Pharma Consulting, 11 Andrew Drive, Lawrenceville, New Jersey 08648, United States
| |
Collapse
|
28
|
Hu N, Liu X, Mu Q, Yu M, Wang H, Jiang Y, Chen R, Wang L. The gut microbiota contributes to the modulation of intestinal CYP3A1 and P-gp in streptozotocin-induced type 1 diabetic rats. Eur J Pharm Sci 2021; 162:105833. [PMID: 33826935 DOI: 10.1016/j.ejps.2021.105833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/28/2021] [Accepted: 04/01/2021] [Indexed: 12/19/2022]
Abstract
Hepatic and intestinal CYP3A and P-gp in diabetic rats exhibit opposite expression patterns. However, the underlying mechanisms remain unclear. In this study, CYP3A1 and P-gp protein and mRNA expression levels in liver and different intestinal segments (duodenum, jejunum, ileum and colon) were compared between diabetic and normal rats. The microbiota in the ileum and colon contents was analyzed via 16S rRNA high-throughput sequencing technology. Caco-2 cells were incubated with serum or culture supernatant of colon contents from diabetic and normal rats, and CYP3A4 and ABCB1 mRNA levels were measured. Compared with that in normal rats, hepatic CYP3A1 and P-gp protein expression in diabetic rats was increased. CYP3A1 and P-gp protein was not changed in the duodenum and jejunum but significantly decreased by 29-41% in the ileum and colon of diabetic rats. Cyp3a1 and Abcb1a mRNA expression results were similar to the protein expression results. The composition of some bacteria changed significantly in the ileum and colon of diabetic rats compared with normal rats. CYP3A1 and P-gp protein expression was positively correlated with Lachnoclostridium and unclassified_f_Ruminococcaceae but negatively correlated with Clostridium_sensu_stricto_1, Turicibacter, Ruminococcaceae_UCG-005 and several genera belonging to the family Prevotellaceae. In addition, in vitro cell culture experiments showed that serum from diabetic rats significantly induced CYP3A4 and ABCB1 mRNA expression, while the supernatant of colon contents of diabetic rats significantly reduced CYP3A4 and ABCB1 mRNA expression by 45% and 86% respectively in Caco-2 cells. In conclusion, diabetes exhibited synchronous and regional effects on CYP3A and P-gp expression in the intestinal tract, in which gut microbiota dysbiosis might play an important role.
Collapse
Affiliation(s)
- Nan Hu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu Province, 213003, China.
| | - Xiang Liu
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu Province, 213003, China; Department of Pharmacy and Medicine Pharmacy, Jiangsu College of Nursing, Huaian, Jiangsu Province, 223005, China
| | - Qinfeng Mu
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, 213003, China
| | - Miaomei Yu
- Comprehensive Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, 213003, China
| | - Hui Wang
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, 213003, China
| | - Yan Jiang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu Province, 213003, China
| | - Rong Chen
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu Province, 213003, China
| | - Liying Wang
- Department of Pharmacy, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, Jiangsu Province, 213003, China
| |
Collapse
|
29
|
Murakami T, Bodor E, Bodor N. Factors and dosage formulations affecting the solubility and bioavailability of P-glycoprotein substrate drugs. Expert Opin Drug Metab Toxicol 2021; 17:555-580. [PMID: 33703995 DOI: 10.1080/17425255.2021.1902986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Expression of P-glycoprotein (P-gp) increases toward the distal small intestine, implying that the duodenum is the preferential absorption site for P-gp substrate drugs. Oral bioavailability of poorly soluble P-gp substrate drugs is low and varied but increases with high-fat meals that supply lipoidal components and bile in the duodenum.Areas covered: Absorption properties of P-gp substrate drugs along with factors and oral dosage formulations affecting their solubility and bioavailability were reviewed with PubMed literature searches. An overview is provided from the viewpoint of the 'spring-and-parachute approach' that generates supersaturation of poorly soluble P-gp substrate drugs.Expert opinion: The oral bioavailability of P-gp substrate drugs is difficult to predict because of their low solubility, preferential absorption sites, and overlapping substrate specificities with CYP3A4, along with the scattered intestinal P-gp expression/function. To attain high and steady oral bioavailability of poorly soluble P-gp substrate drugs, physicochemical modification of drugs to improve solubility, or oral dosage formulations that generate long-lasting supersaturation in the duodenum, is preferred. In particular, supersaturable lipid-based drug delivery systems that can increase passive diffusion and/or lymphatic absorption are effective and applicable to many poorly soluble P-gp substrate drugs.
Collapse
Affiliation(s)
| | | | - Nicholas Bodor
- Bodor Laboratories, Miami, Florida, USA.,College of Pharmacy, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
30
|
Steenackers N, Vanuytsel T, Augustijns P, Tack J, Mertens A, Lannoo M, Van der Schueren B, Matthys C. Adaptations in gastrointestinal physiology after sleeve gastrectomy and Roux-en-Y gastric bypass. Lancet Gastroenterol Hepatol 2021; 6:225-237. [PMID: 33581761 DOI: 10.1016/s2468-1253(20)30302-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 01/19/2023]
Abstract
Linked to the growing obesity epidemic, demand for bariatric and metabolic surgery has increased, the most common procedures being sleeve gastrectomy and Roux-en-Y gastric bypass. Originally, bariatric procedures were described as purely restrictive, malabsorptive, or combined restrictive-malabsorptive procedures limiting food intake, nutrient absorption, or both. Nowadays, anatomical alterations are known to affect gastrointestinal physiology, which in turn affects the digestion and absorption of nutrients and drugs. Therefore, understanding gastrointestinal physiology is crucial to prevent postoperative nutritional deficiencies and to optimise postoperative drug therapy. Preclinical and clinical research indicates that sleeve gastrectomy accelerates liquid and solid gastric emptying and small intestinal transit, and increases bile acid serum levels, whereas its effects on gastrointestinal acidity, gastric and pancreatic secretions, surface area, and colonic transit remain largely unknown. Roux-en-Y gastric bypass diminishes gastric acid secretion, accelerates liquid gastric emptying, and increases bile acid serum levels, but its effects on intestinal pH, solid gastric emptying, intestinal transit time, gastric enzyme secretions, and surface area remain largely unknown. In this Review, we summarise current knowledge of the effects of these two procedures on gastrointestinal physiology and assess the knowledge gaps.
Collapse
Affiliation(s)
- Nele Steenackers
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Patrick Augustijns
- Department of Chronic Diseases and Metabolism, and Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Ann Mertens
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Matthias Lannoo
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
31
|
Stresser DM, Sun J, Wilson SS. Evaluation of Tissue Stem Cell-Derived Human Intestinal Organoids, a Physiologically Relevant Model to Evaluate Cytochrome P450 Induction in Gut. Drug Metab Dispos 2021; 49:245-253. [PMID: 33355212 DOI: 10.1124/dmd.120.000281] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/01/2020] [Indexed: 01/17/2023] Open
Abstract
Induction of cytochrome P450 can cause drug-drug interactions and efficacy failure. Induction risk in liver and gut is typically inferred from experiments with plated hepatocytes. Organoids are physiologically relevant, multicellular structures originating from stem cells. Intestinal stem cell-derived organoids retain traits of normal gut physiology, such as an epithelial barrier and cellular diversity. Matched human enteroid and colonoid lines, generated from ileal and colon biopsies from two donors, were cultured in extracellular matrix for 3 days, followed by a single 48-hour treatment with rifampin, omeprazole, CITCO, and phenytoin at concentrations that induce target genes in hepatocytes. After treatment, mRNA was analyzed for induction of target genes. Rifampin induced CYP3A4; estimated EC50 and maximal fold induction were 3.75 µM and 8.96-fold, respectively, for ileal organoids and 1.40 µM and 11.3-fold, respectively, for colon organoids. Ileal, but not colon, organoids exhibited nifedipine oxidase activity, which was induced by rifampin up to 14-fold. The test compounds did not increase mRNA expression of CYP1A2, CYP2B6, multidrug resistance transporter 1 (P-glycoprotein), breast cancer resistance protein, and UDP-glucuronosyltransferase 1A1 in ileal organoids. Whereas omeprazole induced CYP3A4 (up to 5.3-fold, geometric mean, n = 4 experiments), constitutive androstane receptor activators phenytoin and CITCO did not. Omeprazole failed to induce CYP1A2 mRNA but did induce CYP1A1 mRNA (up to 7.7-fold and 15-fold in ileal and colon organoids, respectively, n = 4 experiments). Despite relatively high intra- and interexperimental variability, data suggest that the model yields induction responses that are distinct from hepatocytes and holds promise to enable evaluation of CYP1A1 and CYP3A4 induction in gut. SIGNIFICANCE STATEMENT: An adult intestinal stem cell-derived organoid model to test P450 induction in gut was evaluated. Testing several prototypical inducers for mRNA induction of P450 isoforms, UDP-glucuronosyltransferase 1A1, P-glycoprotein, and breast cancer resistance protein with both human colon and ileal organoids resulted in a range of responses, often distinct from those found in hepatocytes, indicating the potential for further development of this model as a physiologically relevant gut induction test system.
Collapse
Affiliation(s)
- David M Stresser
- AbbVie, Inc., North Chicago, Illinois (D.M.S., J.S.) and AbbVie Cambridge Research Center, Cambridge, Massachusetts (S.S.W.)
| | - Jun Sun
- AbbVie, Inc., North Chicago, Illinois (D.M.S., J.S.) and AbbVie Cambridge Research Center, Cambridge, Massachusetts (S.S.W.)
| | - Sarah S Wilson
- AbbVie, Inc., North Chicago, Illinois (D.M.S., J.S.) and AbbVie Cambridge Research Center, Cambridge, Massachusetts (S.S.W.)
| |
Collapse
|
32
|
Huang CK, Liu CC. Drug Related Complications After Bariatric Surgery. MANAGEMENT OF NUTRITIONAL AND METABOLIC COMPLICATIONS OF BARIATRIC SURGERY 2021:301-312. [DOI: 10.1007/978-981-33-4702-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
33
|
Wani TU, Mir KB, Fazli AA, Raza SN, Khan NA. HPMC/Carbopol based extended release gastroretentive dosage form of losartan potassium: Formulation and in vivo pharmacokinetic evaluation in rabbits. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.102006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Li Z, Zhang J, Zhang Y, Zhou L, Zhao J, Lyu Y, Poon LH, Lin Z, To KKW, Yan X, Zuo Z. Intestinal absorption and hepatic elimination of drugs in high-fat high-cholesterol diet-induced non-alcoholic steatohepatitis rats: exemplified by simvastatin. Br J Pharmacol 2020; 178:582-599. [PMID: 33119943 DOI: 10.1111/bph.15298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/12/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND AND PURPOSE Altered drug pharmacokinetics is a significant concern in non-alcoholic steatohepatitis (NASH) patients. Although high-fat high-cholesterol (HFHC) diet-induced NASH (HFHC-NASH) rats could simulate the typical dysregulation of cholesterol in NASH patients, experimental investigation on the altered drug pharmacokinetics in this model are limited. Thus, the present study comprehensive investigates the nature of such altered pharmacokinetics using simvastatin as the model drug. EXPERIMENTAL APPROACH Pharmacokinetic profiles of simvastatin and its active metabolite simvastatin acid together with compartmental pharmacokinetic modelling were used to identify the key factors involved in the altered pharmacokinetics of simvastatin in HFHC-NASH rats. Experimental investigations via in situ single-pass intestinal perfusion and intrahepatic injection of simvastatin were carried out. Histology, Ces1 activities and mRNA/protein levels of Oatp1b2/CYP2c11/P-gp in the small intestine/liver of healthy and HFHC-NASH rats were compared. KEY RESULTS Reduced intestinal absorption and more extensive hepatic elimination in HFHC-NASH rats resulted in less systemic exposures of simvastatin/simvastatin acid. In the small intestine of HFHC-NASH rats, thicker intestinal wall with more collagen fibres, increased Ces1 activity and up-regulated P-gp protein decreased the permeability of simvastatin, accelerated the hydrolysis of simvastatin and promoted the efflux of simvastatin acid respectively. In the liver of HFHC-NASH rats, higher hepatic P-gp expression accelerated the hepatic elimination of simvastatin. CONCLUSION AND IMPLICATIONS Altered histology, Ces1 activity and P-gp expression in the small intestine/liver were identified to be the major contributing factors leading to less systemic exposure of drugs in HFHC-NASH rats, which may be applicable to NASH patients.
Collapse
Affiliation(s)
- Ziwei Li
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jun Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yufeng Zhang
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Limin Zhou
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | - Jiajia Zhao
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuanfeng Lyu
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Long Hin Poon
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zhixiu Lin
- School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kenneth Kin Wah To
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Xiaoyu Yan
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
35
|
Chaturvedi S, Verma A, Saharan VA. Lipid Drug Carriers for Cancer Therapeutics: An Insight into Lymphatic Targeting, P-gp, CYP3A4 Modulation and Bioavailability Enhancement. Adv Pharm Bull 2020; 10:524-541. [PMID: 33072532 PMCID: PMC7539309 DOI: 10.34172/apb.2020.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
In the treatment of cancer, chemotherapy plays an important role though the efficacy of anti-cancer drug administered orally is limited, due to their poor solubility in physiological medium, inability to cross biological membrane, high Para-glycoprotein (P-gp) mediated drug efflux, and pre-systemic metabolism. These all factors cumulatively reduce drug exposure at the target site leading to multidrug resistance (MDR). Lipid based carriers systems has been explored to overcome solubility and permeability related issues of anti-cancer drugs. The lipid based formulations have also been reported to circumvent the effect of P-gp and CYP3A4. Further long chain triglycerides (LCT) has shown their ability to access Lymphatic route over Medium Chain Triglycerides, as the former has been extensively used for targeting anti-cancer drugs at proliferating cells through lymphatic route. Therefore this review tries to reflect the usefulness of lipid based drug carriers systems (viz. liposome, solid lipid nanoparticle, nano-lipid carriers, self-emulsifying, lipidic pro-drugs) in targeting lymphatic system and overcoming issues related to solubility and permeability of anti-cancer drugs. Moreover, we have also tried to reflect how critically lipid based carriers are important in maximizing therapeutic safety and efficacy of anti-cancer drugs.
Collapse
Affiliation(s)
- Shashank Chaturvedi
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anurag Verma
- Department of Pharmaceutics, School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Vikas Anand Saharan
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| |
Collapse
|
36
|
Rotoli BM, Barilli A, Visigalli R, Ferrari F, Frati C, Lagrasta CA, Di Lascia M, Riccardi B, Puccini P, Dall’Asta V. Characterization of ABC Transporters in EpiAirway™, a Cellular Model of Normal Human Bronchial Epithelium. Int J Mol Sci 2020; 21:ijms21093190. [PMID: 32366035 PMCID: PMC7247561 DOI: 10.3390/ijms21093190] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 02/06/2023] Open
Abstract
The ATP-binding cassette (ABC) transporters P-glycoprotein (MDR1/ABCB1), multidrug resistance-associated protein 1 (MRP1/ABCC1), and breast cancer resistance protein (BCRP/ABCG2) play a crucial role in the translocation of a broad range of drugs; data about their expression and activity in lung tissue are controversial. Here, we address their expression, localization and function in EpiAirway™, a three-dimensional (3D)-model of human airways; Calu-3 cells, a representative in vitro model of bronchial epithelium, are used for comparison. Transporter expression has been evaluated with RT-qPCR and Western blot, the localization with immunocytochemistry, and the activity by measuring the apical-to-basolateral and basolateral-to-apical fluxes of specific substrates in the presence of inhibitors. EpiAirway™ and Calu-3 cells express high levels of MRP1 on the basolateral membrane, while they profoundly differ in terms of BCRP and MDR1: BCRP is detected in EpiAirway™, but not in Calu-3 cells, while MDR1 is expressed and functional only in fully-differentiated Calu-3; in EpiAirway™, MDR1 expression and activity are undetectable, consistently with the absence of the protein in specimens from human healthy bronchi. In summary, EpiAirway™ appears to be a promising tool to study the mechanisms of drug delivery in the bronchial epithelium and to clarify the role of ABC transporters in the modulation of the bioavailability of administered drugs.
Collapse
Affiliation(s)
- Bianca Maria Rotoli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125 Parma, Italy; (A.B.); (R.V.); (F.F.); (V.D.)
- Correspondence: ; Tel.: +39-0521-033785
| | - Amelia Barilli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125 Parma, Italy; (A.B.); (R.V.); (F.F.); (V.D.)
| | - Rossana Visigalli
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125 Parma, Italy; (A.B.); (R.V.); (F.F.); (V.D.)
| | - Francesca Ferrari
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125 Parma, Italy; (A.B.); (R.V.); (F.F.); (V.D.)
| | - Caterina Frati
- Pathology Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126 Parma, Italy; (C.F.); (C.A.L.)
| | - Costanza Annamaria Lagrasta
- Pathology Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci, 14, 43126 Parma, Italy; (C.F.); (C.A.L.)
| | - Maria Di Lascia
- Preclinical Pharmacokinetics, Biochemistry & Metabolism Dept., Chiesi Farmaceutici, Largo Francesco Belloli, 43122 Parma, Italy; (M.D.L.); (B.R.); (P.P.)
| | - Benedetta Riccardi
- Preclinical Pharmacokinetics, Biochemistry & Metabolism Dept., Chiesi Farmaceutici, Largo Francesco Belloli, 43122 Parma, Italy; (M.D.L.); (B.R.); (P.P.)
| | - Paola Puccini
- Preclinical Pharmacokinetics, Biochemistry & Metabolism Dept., Chiesi Farmaceutici, Largo Francesco Belloli, 43122 Parma, Italy; (M.D.L.); (B.R.); (P.P.)
| | - Valeria Dall’Asta
- Laboratory of General Pathology, Department of Medicine and Surgery, University of Parma, Via Volturno, 39, 43125 Parma, Italy; (A.B.); (R.V.); (F.F.); (V.D.)
| |
Collapse
|
37
|
The Segregated Intestinal Flow Model (SFM) for Drug Absorption and Drug Metabolism: Implications on Intestinal and Liver Metabolism and Drug-Drug Interactions. Pharmaceutics 2020; 12:pharmaceutics12040312. [PMID: 32244748 PMCID: PMC7238003 DOI: 10.3390/pharmaceutics12040312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
The properties of the segregated flow model (SFM), which considers split intestinal flow patterns perfusing an active enterocyte region that houses enzymes and transporters (<20% of the total intestinal blood flow) and an inactive serosal region (>80%), were compared to those of the traditional model (TM), wherein 100% of the flow perfuses the non-segregated intestine tissue. The appropriateness of the SFM model is important in terms of drug absorption and intestinal and liver drug metabolism. Model behaviors were examined with respect to intestinally (M1) versus hepatically (M2) formed metabolites and the availabilities in the intestine (FI) and liver (FH) and the route of drug administration. The %contribution of the intestine to total first-pass metabolism bears a reciprocal relation to that for the liver, since the intestine, a gateway tissue, regulates the flow of substrate to the liver. The SFM predicts the highest and lowest M1 formed with oral (po) and intravenous (iv) dosing, respectively, whereas the extent of M1 formation is similar for the drug administered po or iv according to the TM, and these values sit intermediate those of the SFM. The SFM is significant, as this drug metabolism model explains route-dependent intestinal metabolism, describing a higher extent of intestinal metabolism with po versus the much reduced or absence of intestinal metabolism with iv dosing. A similar pattern exists for drug–drug interactions (DDIs). The inhibitor or inducer exerts its greatest effect on victim drugs when both inhibitor/inducer and drug are given po. With po dosing, more drug or inhibitor/inducer is brought into the intestine for DDIs. The bypass of flow and drug to the enterocyte region of the intestine after intravenous administration adds complications to in vitro–in vivo extrapolations (IVIVE).
Collapse
|
38
|
Quantitative analysis of the effect of controlled-release formulation on nonlinear gastrointestinal absorption of P-glycoprotein substrate talinolol using physiologically based pharmacokinetic absorption model. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Mathur P, Rawal S, Patel B, Patel MM. Oral Delivery of Anticancer Agents Using Nanoparticulate Drug Delivery System. Curr Drug Metab 2020; 20:1132-1140. [DOI: 10.2174/1389200220666191007154017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 11/22/2022]
Abstract
Background:Conventionally, anti-cancer agents were administered through the intravenous route. The major drawbacks associated with the intravenous route of administration are: severe side effects, need of hospitalization, nursing care, and palliative treatment. In order to overcome the drawbacks associated with the intravenous route of administration, oral delivery of anti-cancer agents has gained tremendous interest among the scientific fraternity. Oral delivery of anti-cancer agents principally leads to a reduction in the overall cost of treatment, and aids in improving the quality of life of patients. Bioavailability of drugs and inter-subject variability are the major concerns with oral administration of anti-cancer agents. Factors viz. physicochemical and biological barriers (pre-systemic metabolism and transmembrane efflux of the drug) are accountable for hampering oral bioavailability of anti-cancer agents can be efficiently overcome by employing nanocarrier based drug delivery systems. Oral delivery of anticancer agents by employing these drug delivery systems will not only improve the quality of life of patients but will also provide pharmacoeconomic advantage and lead to a reduction in the overall cost of treatment of life-threatening disease like cancer.Objective:This article aims to familiarize the readers with some of the recent advancements in the field of nanobased drug delivery systems for oral delivery of anticancer agents.Conclusion:Advancement in the field of nanotechnology-based drug delivery systems has opened up gateways for the delivery of drugs that are difficult to administer orally. Oral delivery of anti-cancer agents by these drug delivery systems will not only improve the quality of life of patients but will also provide pharmacoeconomic advantage and lead to a reduction in the overall cost of treatment of life-threatening disease like cancer.
Collapse
Affiliation(s)
- Prateek Mathur
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382 481, Gujarat, India
| | - Shruti Rawal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382 481, Gujarat, India
| | - Bhoomika Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382 481, Gujarat, India
| | - Mayur M. Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, SG Highway, Chharodi, Ahmedabad 382 481, Gujarat, India
| |
Collapse
|
40
|
Murakami T, Bodor E, Bodor N. Modulation of expression/function of intestinal P-glycoprotein under disease states. Expert Opin Drug Metab Toxicol 2019; 16:59-78. [DOI: 10.1080/17425255.2020.1701653] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | - Nicholas Bodor
- Bodor Laboratories, Miami, FL, USA
- College of Pharmacy, University of Florida, Gainesville, FL, USA
| |
Collapse
|
41
|
Martinez MN, El-Kattan A, Awji E, Papich M. Reconciling Human-Canine Differences in Oral Bioavailability: Looking beyond the Biopharmaceutics Classification System. AAPS JOURNAL 2019; 21:99. [PMID: 31396733 DOI: 10.1208/s12248-019-0364-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/09/2019] [Indexed: 11/30/2022]
Abstract
The extrapolation of oral bioavailability (F) information between dogs and humans has had an important role in the drug development process, whether it be to support an assessment of potential human pharmaceutical formulations or to identify the bioavailability challenges that may be encountered in dogs. Accordingly, these interspecies extrapolations could benefit from a tool that helps identify those drug characteristics consistent with species similarities in F. Our initial effort to find such a tool led to an exploration of species differences as it pertained to the biopharmaceutics classification system (BCS). However, using a range of compounds, we concluded that solubility and permeability alone could not explain interspecies inconsistencies in estimates of F. Therefore, we have now extended our evaluation to include canine versus human comparisons of F based upon the biopharmaceutics drug disposition classification system (BDDCS) and the extended clearance classification system (ECCS). Using the same data as that in our initial BCS assessments, we conclude that although neither the BDDCS nor the ECCS can reliably improve our ability to determine when F will be similar in humans and dogs, the ECCS provides a mechanism to help define possible causes for observed human-canine inconsistencies.
Collapse
Affiliation(s)
- Marilyn N Martinez
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, Rockville, Maryland, USA.
| | - Ayman El-Kattan
- Drug Metabolism and Pharmacokinetics, IFM Therapeutics, Cambridge, Massachusetts, USA
| | - Elias Awji
- Office of New Animal Drug Evaluation, Center for Veterinary Medicine, Rockville, Maryland, USA
| | - Mark Papich
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
42
|
Stevens LJ, van Lipzig MMH, Erpelinck SLA, Pronk A, van Gorp J, Wortelboer HM, van de Steeg E. A higher throughput and physiologically relevant two-compartmental human ex vivo intestinal tissue system for studying gastrointestinal processes. Eur J Pharm Sci 2019; 137:104989. [PMID: 31301485 DOI: 10.1016/j.ejps.2019.104989] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/14/2019] [Accepted: 07/07/2019] [Indexed: 02/07/2023]
Abstract
A majority of the preclinical intestinal screening models do not properly reflect the complex physiology of the human intestinal tract, resulting in low translational value to the clinical situation. The often used cell lines such as Caco-2 or HT-29 are not well suited to investigate the different processes that predict oral bioavailability in real life, or processes involved in general gut health aspects. Therefore, highly realistic models resembling the human in vivo situation are needed; application of ex vivo intestinal tissue is an interesting and feasible alternative. After previously using porcine intestinal tissue as a predictive model for human intestinal absorption, we now have successfully applied human intestinal tissue into a newly developed InTESTine™ two-compartmental disposable device suitable for standard 6- or 24-well plate format. With this set-up we demonstrated (regional differences in) drug absorption, by using a subset of compounds with known varying Fa (fraction absorbed) values. A rank-order relationship of R2 = 0.85 could be established between the Fa and Papp of these commercially available drugs. Additionally, comparison between the InTESTine system and the established Ussing chamber technology showed a correlation of R2 = 0.94 (10 drugs) with respect to Papp values, indicating good comparison of both models. Besides absorption, intestinal wall metabolism of testosterone (CYP3A4) was determined by showing a linear formation (R2 = 0.99; up to 165 min) of the main metabolites androstenedione and 6Beta-hydroxytestosterone, indicating no loss of metabolic capacity of the intestinal tissue within the system. Enteroendocrine responses were assessed of the satiety hormones GLP-1 and PYY after stimulation with rebaudioside A and casein, resulting in significantly increased secretion to the luminal side as well as to the basolateral side. Incubation with the probiotic strain LGG showed to enhance the viability of the tissue by showing to decrease the LDH secretion compared to blank intestinal tissue. In conclusion, we show that human ex vivo intestinal tissue mounted in the higher throughput InTESTine 6- 24-transwell plate system is easy to handle and a suitable system to study diverse functional GI processes.
Collapse
Affiliation(s)
- Lianne J Stevens
- The Netherlands Organization for Applied Scientific Research (TNO), Utrechtseweg 48, 3704 HE Zeist, the Netherlands.
| | - Marola M H van Lipzig
- The Netherlands Organization for Applied Scientific Research (TNO), Utrechtseweg 48, 3704 HE Zeist, the Netherlands.
| | - Steven L A Erpelinck
- The Netherlands Organization for Applied Scientific Research (TNO), Utrechtseweg 48, 3704 HE Zeist, the Netherlands.
| | - Apollo Pronk
- Diakonessenhuis, Bosboomstraat 1, 3582 KE Utrecht, the Netherlands.
| | - Joost van Gorp
- Diakonessenhuis, Bosboomstraat 1, 3582 KE Utrecht, the Netherlands.
| | - Heleen M Wortelboer
- The Netherlands Organization for Applied Scientific Research (TNO), Utrechtseweg 48, 3704 HE Zeist, the Netherlands.
| | - Evita van de Steeg
- The Netherlands Organization for Applied Scientific Research (TNO), Utrechtseweg 48, 3704 HE Zeist, the Netherlands.
| |
Collapse
|
43
|
Zhou X, Cassidy KC, Hudson L, Mohutsky MA, Sawada GA, Hao J. Enterohepatic circulation of glucuronide metabolites of drugs in dog. Pharmacol Res Perspect 2019; 7:e00502. [PMID: 31333846 PMCID: PMC6609541 DOI: 10.1002/prp2.502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/18/2022] Open
Abstract
The enterohepatic circulation (EHC) of drugs is often the result of the direct glucuronidation, excretion of the metabolite into bile, followed by hydrolysis to the aglycone by the gut microbiome and finally reabsorption of drug into the systemic circulation. The aim of present study to identify key factors in determining the EHC in dog for canagliflozin and DPTQ, two compounds cleared by UDP-glucuronosyltransferase (UGT) mediated O-alkyl glucuronidation and cytochrome P450 (P450) mediated oxidation. The pharmacokinetic profiles of the drugs were compared between bile duct cannulated (BDC) and intact beagle dogs after a single intravenous administration. A long terminal elimination phase was observed for DPTQ but not for canagliflozin in intact dogs, while this long terminal half-life was not seen in BDC animals, suggesting the EHC of DPTQ. Quantification of parent drugs and glucuronide metabolites in bile, urine and feces indicated low recovery of parent in bile and urine and low recovery of conjugated metabolites in urine for both drugs, while biliary excretion of these glucuronide metabolites in BDC dog were low for canagliflozin but much higher for DPTQ. The increased fecal recovery of parent drug in intact dog and the lack of glucuronide metabolites suggested the hydrolysis of DPTQ-glucuronides by gut microbiome. Subsequent characterization of in vitro hepatic metabolism and permeability properties indicated the hepatic fraction metabolized by UGT, hydrolysis of metabolites, and reabsorption of the aglycone were key factors in determining the EHC of DPTQ.
Collapse
Affiliation(s)
- Xin Zhou
- Drug Disposition Lilly Research Laboratories Indianapolis Indiana
| | | | - Loyd Hudson
- Drug Disposition Lilly Research Laboratories Indianapolis Indiana
| | | | - Geri A Sawada
- Drug Disposition Lilly Research Laboratories Indianapolis Indiana
| | - Junliang Hao
- Medicinal Chemistry Lilly Research Laboratories Indianapolis Indiana
| |
Collapse
|
44
|
Simultaneously predict pharmacokinetic interaction of rifampicin with oral versus intravenous substrates of cytochrome P450 3A/P‑glycoprotein to healthy human using a semi-physiologically based pharmacokinetic model involving both enzyme and transporter turnover. Eur J Pharm Sci 2019; 134:194-204. [PMID: 31047967 DOI: 10.1016/j.ejps.2019.04.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/02/2019] [Accepted: 04/26/2019] [Indexed: 01/27/2023]
Abstract
Several reports demonstrated that rifampicin affected pharmacokinetics of victim drugs following oral more than intravenous administration. We aimed to establish a semi-physiologically based pharmacokinetic (semi-PBPK) model involving both enzyme and transporter turnover to simultaneously predict pharmacokinetic interaction of rifampicin with oral versus intravenous substrates of cytochrome P450 (CYP) 3A4/P‑glycoprotein (P-GP) in human. Rifampicin was chosen as the CYP3A /P-GP inducer. Thirteen victim drugs including P-GP substrates (digoxin and talinolol), CYP3A substrates (alfentanil, midazolam, nifedipine, ondansetron and oxycodone), dual substrates of CYP3A/P-GP (quinidine, cyclosporine A, tacrolimus and verapamil) and complex substrates (S-ketamine and tramadol) were chosen to investigate drug-drug interactions (DDIs) with rifampicin. Corresponding parameters were cited from literatures. Before and after multi-dose of oral rifampicin, the pharmacokinetic profiles of victim drugs for oral or intravenous administration to human were predicted using the semi-PBPK model and compared with the observed values. Contribution of both CYP3A and P-GP induction in intestine and liver by rifampicin to pharmacokinetic profiles of victim drugs was investigated. The predicted pharmacokinetic profiles of drugs before and after rifampicin administration accorded with the observations. The predicted pharmacokinetic parameters and DDIs were successful, whose fold-errors were within 2. It was consistent with observations that the DDIs of rifampicin with oral victim drugs were larger than those with intravenous victim drugs. DDIs of rifampicin with CYP3A or P-GP substrates following oral versus intravenous administration to human were successfully predicted using the developed semi-PBPK model.
Collapse
|
45
|
Drug Transport across Porcine Intestine Using an Ussing Chamber System: Regional Differences and the Effect of P-Glycoprotein and CYP3A4 Activity on Drug Absorption. Pharmaceutics 2019; 11:pharmaceutics11030139. [PMID: 30901927 PMCID: PMC6471532 DOI: 10.3390/pharmaceutics11030139] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 11/17/2022] Open
Abstract
Drug absorption across viable porcine intestines was investigated using an Ussing chamber system. The apparent permeability coefficients, Papp,pig, were compared to the permeability coefficients determined in humans in vivo, Peff,human. Eleven drugs from the different Biopharmaceutical Classification System (BCS) categories absorbed by passive diffusion with published Peff,human values were used to test the system. The initial experiments measured Papp,pig for each drug after application in a Krebs–Bicarbonate Ringer (KBR) buffer and in biorelevant media FaSSIF V2 and FeSSIF V2, mimicking fasted and fed states. Strong sigmoidal correlations were observed between Peff,human and Papp,pig. Differences in the segmental Papp,pig of antipyrine, cimetidine and metoprolol confirmed the discrimination between drug uptake in the duodenum, jejunum and ileum (and colon); the results were in good agreement with human data in vivo. The presence of the P-gp inhibitor verapamil significantly increased Papp,pig across the ileum of the P-gp substrates cimetidine and ranitidine (p < 0.05). Clotrimazole, a potent CYP3A4 inhibitor, significantly increased Papp,pig of the CYP3A4 substrates midazolam, verapamil and tamoxifen and significantly decreased the formation of their main metabolites. In conclusion, the results showed that this is a robust technique to predict passive drug permeability under fasted and fed states, to identify regional differences in drug permeability and to demonstrate the activity of P-gp and CYP3A4.
Collapse
|
46
|
Effects of Piperazine Derivative on Paclitaxel Pharmacokinetics. Pharmaceutics 2019; 11:pharmaceutics11010023. [PMID: 30626065 PMCID: PMC6359037 DOI: 10.3390/pharmaceutics11010023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/12/2018] [Accepted: 01/02/2019] [Indexed: 01/31/2023] Open
Abstract
Paclitaxel (PTX) is an anticancer agent that is used to treat many cancers but it has a very low oral bioavailability due, at least in part, to the drug efflux transporter, P-glycoprotein (P-gp). Therefore, this study was performed to enhance oral bioavailability of PTX. In this study, we investigated the effects of several piperazine derivatives on P-gp function in vitro. Compound 4 was selected as the most potent P-gp inhibitor from the in vitro results for examining the pharmacokinetic (PK) changes of PTX in rats. Compound 4 increased the AUCinf of PTX without alterations in the Cmax value. The elimination half-life was extended and the oral clearance decreased. Additionally, the Tmax was delayed or widened in the treatment groups. Therefore, the bioavailability (BA) of PTX was improved 2.1-fold following the co-administration of 5 mg/kg of the derivative. A piperazine derivative, compound 4, which was confirmed as a substantial P-gp inhibitor in vitro increased the BA of PTX up to 2-fold by a lingering absorption, in part due to inhibition of intestinal P-gp and a low oral clearance of PTX. These results suggest that co-administering compound 4 may change the PK profile of PTX by inhibiting P-gp activity in the body.
Collapse
|
47
|
Xue Y, Ma C, Hanna I, Pan G. Intestinal Transporter-Associated Drug Absorption and Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:361-405. [DOI: 10.1007/978-981-13-7647-4_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Abstract
The transport of specific molecules across lipid membranes is an essential function of all living organisms. The processes are usually mediated by specific transporters. One of the largest transporter families is the ATP-binding cassette (ABC) family. More than 40 ABC transporters have been identified in human, which are divided into 7 subfamilies (ABCA to ABCG) based on their gene structure, amino acid sequence, domain organization, and phylogenetic analysis. Of them, at least 11 ABC transporters including P-glycoprotein (P-GP/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2) are involved in multidrug resistance (MDR) development. These ABC transporters are expressed in various tissues such as the liver, intestine, kidney, and brain, playing important roles in absorption, distribution, and excretion of drugs. Some ABC transporters are also involved in diverse cellular processes such as maintenance of osmotic homeostasis, antigen processing, cell division, immunity, cholesterol, and lipid trafficking. Several human diseases such as cystic fibrosis, sitosterolemia, Tangier disease, intrahepatic cholestasis, and retinal degeneration are associated with mutations in corresponding transporters. This chapter will describe function and expression of several ABC transporters (such as P-GP, BCRP, and MRPs), their substrates and inhibitors, as well as their clinical significance.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
49
|
Tang H, Mayersohn M. Porcine Prediction of Pharmacokinetic Parameters in People: A Pig in a Poke? Drug Metab Dispos 2018; 46:1712-1724. [PMID: 30171162 DOI: 10.1124/dmd.118.083311] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022] Open
Abstract
The minipig has become an animal of considerable interest in preclinical drug development. It has been used in toxicology research and in examining/establishing regulatory guidelines as a nonrodent animal model. We have reviewed some basic issues that one would want to consider in the development and testing of any animal model for humans. The pig is a reasonable alternative to the dog, but there are some clear limitations and unexplained disparities in the literature, which require further study; primary among these is the need for standardization in choice of breed and sex and routine protocols. The minipig offers numerous advantages over other established animal models, and it has similarities to the human with regard to anatomy, physiology, and biochemistry. The gastrointestinal tract is structurally and functionally similar to humans. This appears to be true for enzymes and transporters in the gut as well, but more study is needed. One major concern is assessment of oral drug absorption, especially with regard to potential food effects due to gastric emptying differences, yet this does not appear to be a consistent observation. Hepatic metabolism seems to reflect enzymatic patterns in humans, with some differences. Kidney function seems similar to humans but requires further study. We have analyzed literature data that suggest the pig would offer a reasonable model for human oral bioavailability and for allometric predictions of clearance. The minipig appears to be the model for dermal absorption in humans, and we discuss this in terms of literature data and our own in-house experience.
Collapse
Affiliation(s)
- Huadong Tang
- Guangzhou Dazhou Biomedicine, Guangzhou, China (H.T., M.M.); and Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, Arizona (M.M.)
| | - Michael Mayersohn
- Guangzhou Dazhou Biomedicine, Guangzhou, China (H.T., M.M.); and Department of Pharmacy Practice and Science, College of Pharmacy, University of Arizona, Tucson, Arizona (M.M.)
| |
Collapse
|
50
|
Ashmawy SM, El-Gizawy SA, El Maghraby GM, Osman MA. Regional difference in intestinal drug absorption as a measure for the potential effect of P-glycoprotein efflux transporters. J Pharm Pharmacol 2018; 71:362-370. [PMID: 30362574 DOI: 10.1111/jphp.13036] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/29/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The aim of this research was to assess regional difference in the intestinal absorption of ranitidine HCl as an indicator for the potential effect of P-glycoprotein (P-gp) efflux transporters. METHODS In situ rabbit intestinal perfusion was used to investigate absorption of ranitidine HCl, a substrate for P-gp efflux from duodenum, jejunum, ileum and colon. This was conducted both in the presence and absence of piperine as P-gp inhibitor. KEY FINDINGS Ranitidine HCl was incompletely absorbed from rabbit intestine. The length normalized absorptive clearance (PeA/L) of ranitidine HCl was ranked as colon > duodenum > jejunum > ileum. This is the reverse order of the magnitude of P-gp expression. Coperfusion of piperine with ranitidine HCl significantly increased the PeA/L of ranitidine HCl from jejunum and ileum with no significant change on the absorption from duodenum and colon. This was confirmed by significant reduction in the length required for complete ranitidine HCl absorption from jejunum and ileum in presence piperine. CONCLUSIONS The results indicate that P-gp transporters play a major role in determining regional difference in intestinal absorption of ranitidine HCl. Thus, the regional absorption of drugs may be taken as an indirect indication for the role of P-gp in intestinal absorption.
Collapse
Affiliation(s)
- Shimaa M Ashmawy
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Sanaa A El-Gizawy
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| | - Mohamed A Osman
- Department of Pharmaceutical Technology, College of Pharmacy, University of Tanta, Tanta, Egypt
| |
Collapse
|