1
|
Komatsuya K, Ishikawa M, Kikuchi N, Hirabayashi T, Taguchi R, Yamamoto N, Arai M, Kasahara K. Integrin-Dependent Transient Density Increase in Detergent-Resistant Membrane Rafts in Platelets Activated by Thrombin. Biomedicines 2023; 12:69. [PMID: 38255176 PMCID: PMC10813660 DOI: 10.3390/biomedicines12010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Platelet lipid rafts are critical membrane domains for adhesion, aggregation, and clot retraction. Lipid rafts are isolated as a detergent-resistant membrane fraction via sucrose density gradient centrifugation. The platelet detergent-resistant membrane shifted to a higher density on the sucrose density gradient upon thrombin stimulation. The shift peaked at 1 min and returned to the control level at 60 min. During this time, platelets underwent clot retraction and spreading on a fibronectin-coated glass strip. Thrombin induced the transient tyrosine phosphorylation of several proteins in the detergent-resistant membrane raft fraction and the transient translocation of fibrin and myosin to the detergent-resistant membrane raft fraction. The level of phosphatidylserine (36:1) was increased and the level of phosphatidylserine (38:4) was decreased in the detergent-resistant membrane raft fraction via the thrombin stimulation. Furthermore, Glanzmann's thrombasthenia integrin αIIbβ3-deficient platelets underwent no detergent-resistant membrane shift to a higher density upon thrombin stimulation. As the phosphorylation of the myosin regulatory light chain on Ser19 was at a high level in Glanzmann's thrombasthenia resting platelets, thrombin caused no further phosphorylation of the myosin regulatory light chain on Ser19 or clot retraction. These observations suggest that the fibrin-integrin αIIbβ3-myosin axis and compositional change of phosphatidylserine species may be required for the platelet detergent-resistant membrane shift to a higher density upon stimulation with thrombin.
Collapse
Affiliation(s)
- Keisuke Komatsuya
- Biomembrane Group, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (K.K.); (N.K.); (T.H.); (N.Y.)
| | - Masaki Ishikawa
- Laboratory of Clinical Omics Research, Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan;
| | - Norihito Kikuchi
- Biomembrane Group, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (K.K.); (N.K.); (T.H.); (N.Y.)
| | - Tetsuya Hirabayashi
- Biomembrane Group, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (K.K.); (N.K.); (T.H.); (N.Y.)
| | - Ryo Taguchi
- Department of Metabolome, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naomasa Yamamoto
- Biomembrane Group, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (K.K.); (N.K.); (T.H.); (N.Y.)
| | - Morio Arai
- Biomembrane Group, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (K.K.); (N.K.); (T.H.); (N.Y.)
- Sado General Hospital, Niigata 952-1209, Japan
| | - Kohji Kasahara
- Biomembrane Group, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; (K.K.); (N.K.); (T.H.); (N.Y.)
| |
Collapse
|
2
|
Yang J, Xie D, Ma X. Recent Advances in Chemical Synthesis of Amino Sugars. Molecules 2023; 28:4724. [PMID: 37375279 DOI: 10.3390/molecules28124724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Amino sugars are a kind of carbohydrates with one or more hydroxyl groups replaced by an amino group. They play crucial roles in a broad range of biological activities. Over the past few decades, there have been continuing efforts on the stereoselective glycosylation of amino sugars. However, the introduction of glycoside bearing basic nitrogen is challenging using conventional Lewis acid-promoted pathways owing to competitive coordination of the amine to the Lewis acid promoter. Additionally, diastereomeric mixtures of O-glycoside are often produced if aminoglycoside lack a C2 substituent. This review focuses on the updated overview of the way to stereoselective synthesis of 1,2-cis-aminoglycoside. The scope, mechanism, and the applications in the synthesis of complex glycoconjugates for the representative methodologies were also included.
Collapse
Affiliation(s)
- Jian Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Demeng Xie
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xiaofeng Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Mullapudi VB, Craig KC, Guo Z. Synthesis of a Bifunctionalized Glycosylphosphatidylinositol (GPI) Anchor Useful for the Study of GPI Biology. Chemistry 2023; 29:e202203457. [PMID: 36445784 PMCID: PMC10038835 DOI: 10.1002/chem.202203457] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 11/30/2022]
Abstract
A new, bifunctional glycosylphosphatidylinositol (GPI) derivative containing the highly conserved core structure of all natural GPI anchors with a photoactivable diazirine in the lipid chain and clickable alkynes in the glycan was synthesized by a convergent [3+2] glycosylation strategy with late stage protecting group manipulation and regioselective phosphorylation. The challenges of this synthesis were due to the presence of several distinctive functional groups in the synthetic target, which complicated the protection tactics, in addition to the inherent difficulties associated with GPI synthesis. This bifunctional GPI derivative can cross-react with molecules in proximity upon photoactivation and be subsequently labeled with other molecular tags via click reaction. Therefore, it should be a valuable probe for biological studies of GPIs, such as analysis of GPI-interacting membrane proteins, and gaining insights into their functional mechanisms.
Collapse
Affiliation(s)
| | - Kendall C Craig
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
4
|
Komatsuya K, Kikuchi N, Hirabayashi T, Kasahara K. The Regulatory Roles of Cerebellar Glycosphingolipid Microdomains/Lipid Rafts. Int J Mol Sci 2023; 24:ijms24065566. [PMID: 36982638 PMCID: PMC10058044 DOI: 10.3390/ijms24065566] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
Lipid rafts are dynamic assemblies of glycosphingolipids, sphingomyelin, cholesterol, and specific proteins which are stabilized into platforms involved in the regulation of vital cellular processes. Cerebellar lipid rafts are cell surface ganglioside microdomains for the attachment of GPI-anchored neural adhesion molecules and downstream signaling molecules such as Src-family kinases and heterotrimeric G proteins. In this review, we summarize our recent findings on signaling in ganglioside GD3 rafts of cerebellar granule cells and several findings by other groups on the roles of lipid rafts in the cerebellum. TAG-1, of the contactin group of immunoglobulin superfamily cell adhesion molecules, is a phosphacan receptor. Phosphacan regulates the radial migration signaling of cerebellar granule cells, via Src-family kinase Lyn, by binding to TAG-1 on ganglioside GD3 rafts. Chemokine SDF-1α, which induces the tangential migration of cerebellar granule cells, causes heterotrimeric G protein Goα translocation to GD3 rafts. Furthermore, the functional roles of cerebellar raft-binding proteins including cell adhesion molecule L1, heterotrimeric G protein Gsα, and L-type voltage-dependent calcium channels are discussed.
Collapse
|
5
|
Islam KU, Anwar S, Patel AA, Mirdad MT, Mirdad MT, Azmi MI, Ahmad T, Fatima Z, Iqbal J. Global Lipidome Profiling Revealed Multifaceted Role of Lipid Species in Hepatitis C Virus Replication, Assembly, and Host Antiviral Response. Viruses 2023; 15:v15020464. [PMID: 36851679 PMCID: PMC9965260 DOI: 10.3390/v15020464] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Hepatitis C virus (HCV) is a major human pathogen that requires a better understanding of its interaction with host cells. There is a close association of HCV life cycle with host lipid metabolism. Lipid droplets (LDs) have been found to be crucial organelles that support HCV replication and virion assembly. In addition to their role in replication, LDs also have protein-mediated antiviral properties that are activated during HCV infection. Studies have shown that HCV replicates well in cholesterol and sphingolipid-rich membranes, but the ways in which HCV alters host cell lipid dynamics are not yet known. In this study, we performed a kinetic study to check the enrichment of LDs at different time points of HCV infection. Based on the LD enrichment results, we selected early and later time points of HCV infection for global lipidomic study. Early infection represents the window period for HCV sensing and host immune response while later infection represents the establishment of viral RNA replication, virion assembly, and egress. We identified the dynamic profile of lipid species at early and later time points of HCV infection by global lipidomic study using mass spectrometry. At early HCV infection, phosphatidylinositol phospholipids (PIPs), lysophosphatidic acid (LPA), triacyl glycerols (TAG), phosphatidylcholine (PC), and trihexosylceramides (Hex3Cer) were observed to be enriched. Similarly, free fatty acids (FFA), phosphatidylethanolamine (PE), N-acylphosphatidylethanolamines (NAPE), and tri acylglycerols were enriched at later time points of HCV infection. Lipids enriched at early time of infection may have role in HCV sensing, viral attachment, and immune response as LPA and PIPs are important for immune response and viral attachment, respectively. Moreover, lipid species observed at later infection may contribute to HCV replication and virion assembly as PE, FFA, and triacylglycerols are known for the similar function. In conclusion, we identified lipid species that exhibited dynamic profile across early and later time points of HCV infection compared to mock cells, which could be therapeutically relevant in the design of more specific and effective anti-viral therapies.
Collapse
Affiliation(s)
- Khursheed Ul Islam
- Multidisciplinary Center for Advanced Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Saleem Anwar
- Multidisciplinary Center for Advanced Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ayyub A. Patel
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia
| | | | | | - Md Iqbal Azmi
- Multidisciplinary Center for Advanced Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Tanveer Ahmad
- Multidisciplinary Center for Advanced Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Zeeshan Fatima
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
- Amity Institute of Biotechnology, Amity University Haryana, Manesar, Gurugram 122413, India
- Correspondence: (Z.F.); (J.I.)
| | - Jawed Iqbal
- Multidisciplinary Center for Advanced Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
- Correspondence: (Z.F.); (J.I.)
| |
Collapse
|
6
|
Mullapudi VB, Craig KC, Guo Z. Design and Synthesis of a Doubly Functionalized Core Structure of a Glycosylphosphatidylinositol Anchor Containing Photoreactive and Clickable Functional Groups. J Org Chem 2022; 87:9419-9425. [PMID: 35766889 DOI: 10.1021/acs.joc.2c00901] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A bifunctional derivative of the core structure of glycosylphosphatidylinositol (GPI) anchors having a clickable alkynyl group and a photoreactive diazirine group attached to the GPI glucosamine and lipid moieties, respectively, was synthesized from myo-inositol, d-glucosamine, and (R)-1,2-O-acetonized glycerol. The target molecule should be useful for the investigation of GPI-interacting components in the cell membrane that play a key role in the signal transduction and other biological functions of GPI-anchored proteins.
Collapse
Affiliation(s)
- Venkanna Babu Mullapudi
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Kendall C Craig
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| |
Collapse
|
7
|
Gao T, Lott AA, Huang F, Rohokale R, Li Q, Olivos HJ, Chen S, Guo Z. Structural characterization and analysis of different epimers of neutral glycosphingolipid LcGg4 by ion mobility spectrometry-mass spectrometry. Analyst 2022; 147:3101-3108. [PMID: 35695136 DOI: 10.1039/d2an00224h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
LcGg4, a neutral glycosphingolipid (GSL) and cancer antigen, its epimers GalNAc-LcGg4 and GlcNAc-LcGg4, and three lipid forms of GalNAc-LcGg4 were studied by mass spectrometry (MS). It was found that different forms of GalNAc-LcGg4 carrying homologous (d16:1/18:0) and (d18:1/18:0) lipids were easily separated and identified using liquid chromatography (LC)-MS. In addition, like gangliosides, homologous lipid forms of GalNAc-LcGg4 showed the same fragmentation pattern, except for a uniform shift of their glycolipid product ions by a certain m/z number determined by the varied lipid structure. It was also disclosed that LcGg4 and its epimers GalNAc-LcGg4 and GlcNAc-LcGg4, which are different only in the C4-configuration of their non-reducing end sugar residues, gave the same MS/MS product ions in similar relative intensities, as well as the same LC retention time, suggesting the challenge to differentiate epimeric GSLs by LC-MS. However, ion mobility spectrometry (IMS)-MS was able to efficiently separate and distinguish these epimers. This study has demonstrated the promise of IMS-MS for isomeric GSL characterization and the IMS-MS and LC-MS/MS combination for natural GSL analysis.
Collapse
Affiliation(s)
- Tianqi Gao
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Aneirin A Lott
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA.,Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Fanran Huang
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Rajendra Rohokale
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Qingjiang Li
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| | - Hernando J Olivos
- Waters Corporation, 5 Technology Drive, Building B, Milford, MA 01757, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL 32611, USA.,Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32610, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
8
|
Enterohemorrhagic Escherichia coli and a Fresh View on Shiga Toxin-Binding Glycosphingolipids of Primary Human Kidney and Colon Epithelial Cells and Their Toxin Susceptibility. Int J Mol Sci 2022; 23:ijms23136884. [PMID: 35805890 PMCID: PMC9266556 DOI: 10.3390/ijms23136884] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are the human pathogenic subset of Shiga toxin (Stx)-producing E. coli (STEC). EHEC are responsible for severe colon infections associated with life-threatening extraintestinal complications such as the hemolytic-uremic syndrome (HUS) and neurological disturbances. Endothelial cells in various human organs are renowned targets of Stx, whereas the role of epithelial cells of colon and kidneys in the infection process has been and is still a matter of debate. This review shortly addresses the clinical impact of EHEC infections, novel aspects of vesicular package of Stx in the intestine and the blood stream as well as Stx-mediated extraintestinal complications and therapeutic options. Here follows a compilation of the Stx-binding glycosphingolipids (GSLs), globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer) and their various lipoforms present in primary human kidney and colon epithelial cells and their distribution in lipid raft-analog membrane preparations. The last issues are the high and extremely low susceptibility of primary renal and colonic epithelial cells, respectively, suggesting a large resilience of the intestinal epithelium against the human-pathogenic Stx1a- and Stx2a-subtypes due to the low content of the high-affinity Stx-receptor Gb3Cer in colon epithelial cells. The review closes with a brief outlook on future challenges of Stx research.
Collapse
|
9
|
Shared Biological Pathways between Antipsychotics and Omega-3 Fatty Acids: A Key Feature for Schizophrenia Preventive Treatment? Int J Mol Sci 2021; 22:ijms22136881. [PMID: 34206945 PMCID: PMC8269187 DOI: 10.3390/ijms22136881] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
Schizophrenia typically emerges during adolescence, with progression from an ultra-high risk state (UHR) to the first episode of psychosis (FEP) followed by a chronic phase. The detailed pathophysiology of schizophrenia and the factors leading to progression across these stages remain relatively unknown. The current treatment relies on antipsychotics, which are effective for FEP and chronic schizophrenia but ineffective for UHR patients. Antipsychotics modulate dopaminergic and glutamatergic neurotransmission, inflammation, oxidative stress, and membrane lipids pathways. Many of these biological pathways intercommunicate and play a role in schizophrenia pathophysiology. In this context, research of preventive treatment in early stages has explored the antipsychotic effects of omega-3 supplementation in UHR and FEP patients. This review summarizes the action of omega-3 in various biological systems involved in schizophrenia. Similar to antipsychotics, omega-3 supplementation reduces inflammation and oxidative stress, improves myelination, modifies the properties of cell membranes, and influences dopamine and glutamate pathways. Omega-3 supplementation also modulates one-carbon metabolism, the endocannabinoid system, and appears to present neuroprotective properties. Omega-3 has little side effects compared to antipsychotics and may be safely prescribed for UHR patients and as an add-on for FEP patients. This could to lead to more efficacious individualised treatments, thus contributing to precision medicine in psychiatry.
Collapse
|
10
|
Komatsuya K, Kaneko K, Kasahara K. Function of Platelet Glycosphingolipid Microdomains/Lipid Rafts. Int J Mol Sci 2020; 21:ijms21155539. [PMID: 32748854 PMCID: PMC7432685 DOI: 10.3390/ijms21155539] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 01/09/2023] Open
Abstract
Lipid rafts are dynamic assemblies of glycosphingolipids, sphingomyelin, cholesterol, and specific proteins which are stabilized into platforms involved in the regulation of vital cellular processes. The rafts at the cell surface play important functions in signal transduction. Recent reports have demonstrated that lipid rafts are spatially and compositionally heterogeneous in the single-cell membrane. In this review, we summarize our recent data on living platelets using two specific probes of raft components: lysenin as a probe of sphingomyelin-rich rafts and BCθ as a probe of cholesterol-rich rafts. Sphingomyelin-rich rafts that are spatially and functionally distinct from the cholesterol-rich rafts were found at spreading platelets. Fibrin is translocated to sphingomyelin-rich rafts and platelet sphingomyelin-rich rafts act as platforms where extracellular fibrin and intracellular actomyosin join to promote clot retraction. On the other hand, the collagen receptor glycoprotein VI is known to be translocated to cholesterol-rich rafts during platelet adhesion to collagen. Furthermore, the functional roles of platelet glycosphingolipids and platelet raft-binding proteins including G protein-coupled receptors, stomatin, prohibitin, flotillin, and HflK/C-domain protein family, tetraspanin family, and calcium channels are discussed.
Collapse
|
11
|
Jaiswal M, Zhu S, Jiang W, Guo Z. Synthesis and evaluation of N α,N ε-diacetyl-l-lysine-inositol conjugates as cancer-selective probes for metabolic engineering of GPIs and GPI-anchored proteins. Org Biomol Chem 2020; 18:2938-2948. [PMID: 32242600 DOI: 10.1039/d0ob00333f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Two myo-inositol derivatives having an Nα,Nε-diacetyl-l-lysine (Ac2Lys) moiety linked to the inositol 1-O-position through a self-cleavable linker and a metabolically stable 2-azidoethyl group linked to the inositol 3-O- and 4-O-positions, respectively, were designed and synthesized. The Ac2Lys moiety blocking the inositol 1-O-position required for GPI biosynthesis was expected to be removable by a combination of two enzymes, histone deacetylase (HDAC) and cathepsin L (CTSL), abundantly expressed in cancer cells, but not in normal cells, to transform these inositol derivatives into biosynthetically useful products with a free 1-O-position. As a result, it was found that these inositol derivatives could be incorporated into the glycosylphosphatidylinositol (GPI) biosynthetic pathway by cancer cells, but not by normal cells, to express azide-labeled GPIs and GPI-anchored proteins on cell surfaces. Consequently, this study has established a novel strategy and new molecular tools for selective metabolic labeling of cancer cells, which should be useful for various biological studies and applications.
Collapse
Affiliation(s)
- Mohit Jaiswal
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA.
| | - Sanyong Zhu
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA.
| | - Wenjie Jiang
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA.
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA.
| |
Collapse
|
12
|
Roy KR, Khiste SK, Liu Z, Liu YY. Fluorescence HPLC Analysis of the in-vivo Activity of Glucosylceramide Synthase. Bio Protoc 2019; 9:e3269. [PMID: 33654788 DOI: 10.21769/bioprotoc.3269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/23/2019] [Accepted: 05/23/2019] [Indexed: 01/13/2023] Open
Abstract
Almost all functions of cells or organs rely on the activities of cellular enzymes. Indeed, the in-vivo activities that directly represent the cellular effects of enzymes in live organs are critical importance to appreciate the roles enzymes play in modulating physiological or pathological processes, although assessments of such in-vivo enzyme activity are more difficult than typical test-tube assays. Recently, we, for the first time, developed a direct and easy-handling method for HPLC analyzing the in-vivo activity of glucosylceramide synthase (GCS). GCS that converts ceramide into glucosylceramide is a limiting-enzyme in the syntheses of glycosphingolipids and is one cause of cancer drug resistance. In our method developed, rubusoside nanomicelles delivers fluorescence N-[6-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]hexanoyl]-d-erythro-sphingosine (NBD C6-ceramide) into mice, tissues uptake the cell-permeable substrate, and GCS converts it into NBD C6-glucosylceramide in all organs simultaneously. Further, HPLC analyzes the extracted NBD C6-glucosylceramide to assess alterations of the in-vivo GCS activities in tissues. This method can be broadly used to assess the in-vivo GCS activities in any kind of animal models to appreciate either the role GCS plays in diseases or the therapeutic efficacies of GCS inhibitors.
Collapse
Affiliation(s)
- Kartik R Roy
- School of Basic Pharmaceutical and Toxicological Sciences, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Sachin K Khiste
- School of Basic Pharmaceutical and Toxicological Sciences, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Zhijun Liu
- School of Renewable Resources, Louisiana State University Agriculture Center, Baton Rouge, LA 70803, USA
| | - Yong-Yu Liu
- School of Basic Pharmaceutical and Toxicological Sciences, University of Louisiana at Monroe, Monroe, LA 71209, USA
| |
Collapse
|
13
|
Dugger ME, Baker CA. Automated formation of black lipid membranes within a microfluidic device via confocal fluorescence feedback-controlled hydrostatic pressure manipulations. Anal Bioanal Chem 2019; 411:4605-4614. [PMID: 30617393 DOI: 10.1007/s00216-018-1550-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/03/2018] [Accepted: 12/12/2018] [Indexed: 11/27/2022]
Abstract
Black lipid membranes (BLMs) provide a biomimetic model system for studying cellular membrane processes, and are important tools in drug screening and biosensing applications. BLMs offer advantages over liposomes and solid-supported lipid bilayers in applications where access to both leaflets of the bilayer is critical. Reliable and repeatable formation of BLMs presents a major challenge, especially in systems that require interrogation of the membrane via optical microscopy. BLMs for optical interrogation are often formed by the manual painting method, which is tedious and has a high failure rate because it involves manual manipulation of nanoscale liquid films for membrane self-assembly. Here, we describe a fully automated technique for the formation of BLMs within the imaging plane of an inverted fluorescence microscope. The technique utilizes hydrostatic pressure manipulations within a simple microfluidic device, which are feedback controlled via confocal fluorescence monitoring of the BLM formation process. An algorithm for monitoring and precision control of BLM formation is devised and optimized to yield an 80% success rate for the formation of BLMs, with formation times on the order of 78 min. Membranes formed via the automated procedure are confirmed to be fluid and biomimetic via spontaneous insertion of α-hemolysin pores with characteristic conductance of ca. 1 nS. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Marlene E Dugger
- Department of Chemistry, University of Tennessee, Knoxville, 552 Buehler Hall, 1420 Circle Dr., Knoxville, TN, 37996, USA
| | - Christopher A Baker
- Department of Chemistry, University of Tennessee, Knoxville, 552 Buehler Hall, 1420 Circle Dr., Knoxville, TN, 37996, USA.
| |
Collapse
|
14
|
Park DD, Xu G, Wong M, Phoomak C, Liu M, Haigh NE, Wongkham S, Yang P, Maverakis E, Lebrilla CB. Membrane glycomics reveal heterogeneity and quantitative distribution of cell surface sialylation. Chem Sci 2018; 9:6271-6285. [PMID: 30123482 PMCID: PMC6063140 DOI: 10.1039/c8sc01875h] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/26/2018] [Indexed: 12/13/2022] Open
Abstract
Sialic acid distribution was quantified by LC-MS/MS. The number of sialylated glycoforms increases at sites nearest to the transmembrane domain.
Given that unnatural sugar expression is metabolically achieved, the kinetics and disposition of incorporation can lend insight into the temporal and localization preferences of sialylation across the cell surface. However, common detection schemes lack the ability to detail the molecular diversity and distribution of target moieties. Here we employed a mass spectrometric approach to trace the placement of azido sialic acids on membrane glycoconjugates, which revealed substantial variations in incorporation efficiencies between N-/O-glycans, glycosites, and glycosphingolipids. To further explore the propensity for sialylation, we subsequently mapped the native glycome of model epithelial cell surfaces and illustrate that while glycosylation sites span broadly across the extracellular region, a higher number of heterogeneous glycoforms occur on sialylated sites closest to the transmembrane domain. Beyond imaging techniques, this integrative approach provides unprecedented details about the frequency and structure-specific distribution of cell surface sialylation, a critical feature that regulates cellular interactions and homeostatic pathways.
Collapse
Affiliation(s)
- Diane Dayoung Park
- Department of Chemistry , University of California , Davis , CA 95616 , USA.,Department of Surgery , Beth Israel Deaconess Medical Center , Harvard Medical School , Boston , MA 02115 , USA .
| | - Gege Xu
- Department of Chemistry , University of California , Davis , CA 95616 , USA
| | - Maurice Wong
- Department of Chemistry , University of California , Davis , CA 95616 , USA
| | - Chatchai Phoomak
- Department of Biochemistry , Faculty of Medicine , Khon Kaen University , Khon Kaen 40002 , Thailand
| | - Mingqi Liu
- Department of Chemistry , Institutes of Biomedical Sciences , Fudan University , Shanghai 200032 , China
| | - Nathan E Haigh
- Department of Dermatology , University of California , Davis School of Medicine , Sacramento , CA 95817 , USA
| | - Sopit Wongkham
- Department of Biochemistry , Faculty of Medicine , Khon Kaen University , Khon Kaen 40002 , Thailand
| | - Pengyuan Yang
- Department of Chemistry , Institutes of Biomedical Sciences , Fudan University , Shanghai 200032 , China
| | - Emanual Maverakis
- Department of Dermatology , University of California , Davis School of Medicine , Sacramento , CA 95817 , USA
| | - Carlito B Lebrilla
- Department of Chemistry , University of California , Davis , CA 95616 , USA
| |
Collapse
|
15
|
Elolimy AA, Moisá SJ, Brennan KM, Smith AC, Graugnard D, Shike DW, Loor JJ. Skeletal muscle and liver gene expression profiles in finishing steers supplemented with Amaize. Anim Sci J 2018; 89:1107-1119. [PMID: 29808540 DOI: 10.1111/asj.13041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/04/2018] [Indexed: 12/23/2022]
Abstract
Our main objective was to evaluate the effects of feeding α-amylase (Amaize, Alltech Inc., Nicholasville, KY, USA) for 140 days on skeletal muscle and liver gene transcription in beef steers. Steers fed Amaize had lower average daily gain (p = .03) and gain:feed ratio (p = .05). No differences (p > .10) in serum metabolites or carcass traits were detected between the two groups but Amaize steers tended (p < .15) to have increased 12th rib fat depth. Microarray analysis of skeletal muscle revealed 21 differentially expressed genes (DEG), where 14 were up-regulated and seven were down-regulated in Amaize-fed steers. The bioinformatics analysis indicated that metabolic pathways involved in fat formation and deposition, stress response, and muscle function were activated, while myogenesis was inhibited in Amaize-fed steers. The quantitative PCR results for liver revealed a decrease (p < .01) in expression of fatty acid binding protein 1 (FABP1) and 3-hydroxybutyrate dehydrogenase 1 (BDH1) with Amaize. Because these genes are key for intracellular fatty acid transport, oxidation and ketone body production, data suggest a reduction in hepatic lipid catabolism. Future work to investigate potential positive effects of Amaize on cellular stress response, muscle function, and liver function in beef cattle appears warranted.
Collapse
Affiliation(s)
- Ahmed A Elolimy
- Mammalian NutriPhysioGenomics, Department of Animal Sciences, University of Illinois, Urbana, Illinois.,Department of Animal Sciences, University of Illinois, Urbana, Illinois
| | - Sonia J Moisá
- Mammalian NutriPhysioGenomics, Department of Animal Sciences, University of Illinois, Urbana, Illinois.,Department of Animal Sciences, University of Illinois, Urbana, Illinois.,Department of Animal Sciences, Auburn University, Auburn, Alabama
| | - Kristen M Brennan
- Alltech Center for Nutrigenomics and Applied Animal Nutrition, Nicholasville, Kentucky
| | - Allison C Smith
- Alltech Center for Nutrigenomics and Applied Animal Nutrition, Nicholasville, Kentucky
| | - Daniel Graugnard
- Alltech Center for Nutrigenomics and Applied Animal Nutrition, Nicholasville, Kentucky
| | - Daniel W Shike
- Department of Animal Sciences, University of Illinois, Urbana, Illinois
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences, University of Illinois, Urbana, Illinois.,Department of Animal Sciences, University of Illinois, Urbana, Illinois.,Division of Nutritional Sciences, Illinois Informatics Institute, University of Illinois, Urbana, Illinois
| |
Collapse
|
16
|
Herrera JL, Ordoñez-Gutierrez L, Fabrias G, Casas J, Morales A, Hernandez G, Acosta NG, Rodriguez C, Prieto-Valiente L, Garcia-Segura LM, Alonso R, Wandosell FG. Ovarian Function Modulates the Effects of Long-Chain Polyunsaturated Fatty Acids on the Mouse Cerebral Cortex. Front Cell Neurosci 2018; 12:103. [PMID: 29740285 PMCID: PMC5928148 DOI: 10.3389/fncel.2018.00103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/29/2018] [Indexed: 12/31/2022] Open
Abstract
Different dietary ratios of n−6/n−3 long-chain polyunsaturated fatty acids (LC-PUFAs) may alter brain lipid profile, neural activity, and brain cognitive function. To determine whether ovarian hormones influence the effect of diet on the brain, ovariectomized and sham-operated mice continuously treated with placebo or estradiol were fed for 3 months with diets containing low or high n−6/n−3 LC-PUFA ratios. The fatty acid (FA) profile and expression of key neuronal proteins were analyzed in the cerebral cortex, with intact female mice on standard diet serving as internal controls of brain lipidome composition. Diets containing different concentrations of LC-PUFAs greatly modified total FAs, sphingolipids, and gangliosides in the cerebral cortex. Some of these changes were dependent on ovarian hormones, as they were not detected in ovariectomized animals, and in the case of complex lipids, the effect of ovariectomy was partially or totally reversed by continuous administration of estradiol. However, even though differential dietary LC-PUFA content modified the expression of neuronal proteins such as synapsin and its phosphorylation level, PSD-95, amyloid precursor protein (APP), or glial proteins such as glial fibrillary acidic protein (GFAP), an effect also dependent on the presence of the ovary, chronic estradiol treatment was unable to revert the dietary effects on brain cortex synaptic proteins. These results suggest that, in addition to stable estradiol levels, other ovarian hormones such as progesterone and/or cyclic ovarian secretory activity could play a physiological role in the modulation of dietary LC-PUFAs on the cerebral cortex, which may have clinical implications for post-menopausal women on diets enriched with different proportions of n−3 and n−6 LC-PUFAs.
Collapse
Affiliation(s)
- Jose L Herrera
- Departamento de Ciencias Médicas Básica and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Lara Ordoñez-Gutierrez
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | - Gemma Fabrias
- Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Barcelona, Spain
| | - Josefina Casas
- Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Barcelona, Spain
| | - Araceli Morales
- Departamento de Ciencias Médicas Básica and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Guadalberto Hernandez
- Departamento de Ciencias Médicas Básica and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Nieves G Acosta
- Departamento de Biología Animal, Edafología y Geología, and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, Tenerife, Spain
| | - Covadonga Rodriguez
- Departamento de Ciencias Médicas Básica and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Spain.,Departamento de Biología Animal, Edafología y Geología, and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, Tenerife, Spain
| | | | - Luis M Garcia-Segura
- Instituto Cajal (CSIC) and Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Rafael Alonso
- Departamento de Ciencias Médicas Básica and Instituto de Tecnologías Biomédicas, Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, La Laguna, Spain
| | - Francisco G Wandosell
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| |
Collapse
|
17
|
Gao J, Zhou Z, Guo J, Guo Z. Synthesis of biotin-labelled core glycans of GPI anchors and their application in the study of GPI interaction with pore-forming bacterial toxins. Chem Commun (Camb) 2018; 53:6227-6230. [PMID: 28537279 DOI: 10.1039/c7cc03056h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convergent strategy was developed for the first-time synthesis of biotin-labeled GPI core glycans. These GPI conjugates are useful for various biological studies showcased by their application in the scrutiny of pore-forming bacterial toxin-GPI interaction, revealing that the phosphate group at the GPI inositol 1-O-position had a significant impact on GPI-toxin binding.
Collapse
Affiliation(s)
- Jian Gao
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, USA
| | | | | | | |
Collapse
|
18
|
Singh P, Li R. Emerging roles for sphingolipids in cellular aging. Curr Genet 2017; 64:761-767. [PMID: 29260307 DOI: 10.1007/s00294-017-0799-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 02/07/2023]
Abstract
Aging is a gradual loss of physiological functions as organisms' progress in age. Although aging in multicellular organisms is complex, some fundamental mechanisms and pathways may be shared from the single cellular yeast to human. Budding yeast Saccharomyces cerevisiae has been established model system for aging studies. A yeast cell divides asymmetrically to produce two cells that differ in size and age. The one that is smaller coming from bud is a newborn cell that with a full replicative potential head irrespective of the replicative age of its mother-the larger cell from which the bud grows out before division. The age asymmetry between daughter and mother is thought to be dependent on asymmetric segregation of certain factors such as protein aggregates, extrachromosomal DNA (ERCs) and dysfunctional organelles during successive cell divisions of the yeast replicative lifespan (RLS). It is also thought that certain plasma membrane proteins, in particular multidrug-resistant (MDR) proteins, asymmetrically partition between the mother and the bud based on the age of the polypeptides. Functional decline associated with the molecular aging of those proteins contributes to the fitness decline at advance age. In our recent study, we showed that sphingolipids facilitate the age-dependent segregation of MDRs between daughter and mother cell. In this review, we highlight and discuss the potential mechanisms by which sphingolipids regulate the aging process in yeast and cells of vertebrate animals including human.
Collapse
Affiliation(s)
- Pushpendra Singh
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD, 20910, USA. .,US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Drive, Bethesda, MD, 20817, USA.
| | - Rong Li
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
19
|
Hein LK, Rozaklis T, Adams MK, Hopwood JJ, Karageorgos L. Lipid composition of microdomains is altered in neuronopathic Gaucher disease sheep brain and spleen. Mol Genet Metab 2017; 121:259-270. [PMID: 28532689 DOI: 10.1016/j.ymgme.2017.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/15/2017] [Accepted: 05/15/2017] [Indexed: 01/16/2023]
Abstract
Gaucher disease is a lysosomal storage disorder caused by a deficiency in glucocerebrosidase activity that leads to accumulation of glucosylceramide and glucosylsphingosine. Membrane raft microdomains are discrete, highly organized microdomains with a unique lipid composition that provide the necessary environment for specific protein-lipid and protein-protein interactions to take place. In this study we purified detergent resistant membranes (DRM; membrane rafts) from the occipital cortex and spleen from sheep affected with acute neuronopathic Gaucher disease and wild-type controls. We observed significant increases in the concentrations of glucosylceramide, hexosylsphingosine, BMP and gangliosides and decreases in the percentage of cholesterol and phosphatidylcholine leading to an altered DRM composition. Altered sphingolipid/cholesterol homeostasis would dramatically disrupt DRM architecture making them less ordered and more fluid. In addition, significant changes in the length and degree of lipid saturation within the DRM microdomains in the Gaucher brain were also observed. As these DRM microdomains are involved in many cellular events, an imbalance or disruption of the cell membrane homeostasis may impair normal cell function. This disruption of membrane raft microdomains and imbalance within the environment of cellular membranes of neuronal cells may be a key factor in initiating a cascade process leading to neurodegeneration.
Collapse
Affiliation(s)
- Leanne K Hein
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5001, Australia
| | - Tina Rozaklis
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5001, Australia
| | - Melissa K Adams
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5001, Australia
| | - John J Hopwood
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5001, Australia
| | - Litsa Karageorgos
- Lysosomal Diseases Research Unit, South Australian Health and Medical Research Institute, Adelaide, South Australia, 5001, Australia.
| |
Collapse
|
20
|
Incorporation of Fluorescence Ceramide-Based HPLC Assay for Rapidly and Efficiently Assessing Glucosylceramide Synthase In Vivo. Sci Rep 2017; 7:2976. [PMID: 28592871 PMCID: PMC5462733 DOI: 10.1038/s41598-017-03320-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/26/2017] [Indexed: 12/16/2022] Open
Abstract
Glucosylceramide synthase (GCS) is a rate-limiting enzyme catalyzing ceramide glycosylation, thereby regulating cellular ceramide levels and the synthesis of glycosphingolipids (GSLs) in cellular membranes. Alterations of GCS not only affect membrane integrity, but also closely correlate with stem cell pluripotency, cancer drug resistance, GSL storage disorders and other diseases. Enzyme activities measured conventionally with currently available ex-vivo methods do not enable reliable assessment of the roles played by GCS in vivo. We report herein a substrate-incorporation method enabling rapid and efficient assessment of GCS in-vivo activity. Upon nanoparticle-based delivery, fluorescent NBD C6-ceramide was efficiently converted to NBD C6-glucosylceramide in live cells or in mouse tissues, whereupon an HPLC assay enabled detection and quantification of NBD C6-glucosylceramide in the low-femtomolar range. The enzyme kinetics of GCS in live cells and mouse liver were well-described by the Michaelis-Menten model. GCS activities were significantly higher in drug-resistant cancer cells and in tumors overexpressing GCS, but reduced after silencing GCS expression or inhibiting this enzyme. Our studies indicate that this rapid and efficient method provides a valuable means for accurately assessing the roles played by GCS in normal vs. pathological states, including ones involving cancer drug resistance.
Collapse
|
21
|
Zhu S, Guo Z. Chemical Synthesis of GPI Glycan-Peptide Conjugates by Traceless Staudinger Ligation. Org Lett 2017; 19:3063-3066. [PMID: 28541706 DOI: 10.1021/acs.orglett.7b01132] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A new strategy has been developed for GPI glycan-peptide conjugate synthesis based upon a traceless Staudinger reaction between a peptide phosphinothioester and a GPI glycan azide. The strategy was first studied and optimized with simple peptides and GPI glycans, which offered excellent yields of the desired conjugates in both organic and aqueous solvents. It was then used to successfully synthesize an analogue of the human CD52 antigen containing the whole CD52 peptide sequence and the conserved trimannose motif of all GPI anchors.
Collapse
Affiliation(s)
- Sanyong Zhu
- Department of Chemistry, University of Florida , 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Zhongwu Guo
- Department of Chemistry, University of Florida , 214 Leigh Hall, Gainesville, Florida 32611, United States
| |
Collapse
|
22
|
SDF-1α/CXCR4 Signaling in Lipid Rafts Induces Platelet Aggregation via PI3 Kinase-Dependent Akt Phosphorylation. PLoS One 2017; 12:e0169609. [PMID: 28072855 PMCID: PMC5224795 DOI: 10.1371/journal.pone.0169609] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/18/2016] [Indexed: 01/05/2023] Open
Abstract
Stromal cell-derived factor-1α (SDF-1α)-induced platelet aggregation is mediated through its G protein-coupled receptor CXCR4 and phosphatidylinositol 3 kinase (PI3K). Here, we demonstrate that SDF-1α induces phosphorylation of Akt at Thr308 and Ser473 in human platelets. SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the CXCR4 antagonist AMD3100 or the PI3K inhibitor LY294002. SDF-1α also induces the phosphorylation of PDK1 at Ser241 (an upstream activator of Akt), GSK3β at Ser9 (a downstream substrate of Akt), and myosin light chain at Ser19 (a downstream element of the Akt signaling pathway). SDF-1α-induced platelet aggregation is inhibited by pretreatment with the Akt inhibitor MK-2206 in a dose-dependent manner. Furthermore, SDF-1α-induced platelet aggregation and Akt phosphorylation are inhibited by pretreatment with the raft-disrupting agent methyl-β-cyclodextrin. Sucrose density gradient analysis shows that 35% of CXCR4, 93% of the heterotrimeric G proteins Gαi-1, 91% of Gαi-2, 50% of Gβ and 4.0% of PI3Kβ, and 4.5% of Akt2 are localized in the detergent-resistant membrane raft fraction. These findings suggest that SDF-1α/CXCR4 signaling in lipid rafts induces platelet aggregation via PI3K-dependent Akt phosphorylation.
Collapse
|
23
|
Erb SJ, Schappi JM, Rasenick MM. Antidepressants Accumulate in Lipid Rafts Independent of Monoamine Transporters to Modulate Redistribution of the G Protein, Gαs. J Biol Chem 2016; 291:19725-19733. [PMID: 27432886 DOI: 10.1074/jbc.m116.727263] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Indexed: 12/22/2022] Open
Abstract
Depression is a significant public health problem for which currently available medications, if effective, require weeks to months of treatment before patients respond. Previous studies have shown that the G protein responsible for increasing cAMP (Gαs) is increasingly localized to lipid rafts in depressed subjects and that chronic antidepressant treatment translocates Gαs from lipid rafts. Translocation of Gαs, which shows delayed onset after chronic antidepressant treatment of rats or of C6 glioma cells, tracks with the delayed onset of therapeutic action of antidepressants. Because antidepressants appear to specifically modify Gαs localized to lipid rafts, we sought to determine whether structurally diverse antidepressants accumulate in lipid rafts. Sustained treatment of C6 glioma cells, which lack 5-hydroxytryptamine transporters, showed marked concentration of several antidepressants in raft fractions, as revealed by increased absorbance and by mass fingerprint. Closely related molecules without antidepressant activity did not concentrate in raft fractions. Thus, at least two classes of antidepressants accumulate in lipid rafts and effect translocation of Gαs to the non-raft membrane fraction, where it activates the cAMP-signaling cascade. Analysis of the structural determinants of raft localization may both help to explain the hysteresis of antidepressant action and lead to design and development of novel substrates for depression therapeutics.
Collapse
Affiliation(s)
- Samuel J Erb
- From the Departments of Biopharmaceutical Sciences
| | | | - Mark M Rasenick
- From the Departments of Biopharmaceutical Sciences, .,Physiology and Biophysics, and.,Psychiatry, University of Illinois at Chicago, Chicago, Illinois 60612 and.,the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| |
Collapse
|
24
|
Yoshihara D, Noguchi T, Roy B, Sakamoto J, Yamamoto T, Shinkai S. Ratiometric Sensing of d-Glucose in a Combined Approach of Aggregation-induced Emission (AIE) and Dynamic Covalent Bond Formation. CHEM LETT 2016. [DOI: 10.1246/cl.160240] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Brocca P, Rondelli V, Mallamace F, Di Bari MT, Deriu A, Lohstroh W, Del Favero E, Corti M, Cantu' L. Water response to ganglioside GM1 surface remodelling. Biochim Biophys Acta Gen Subj 2016; 1861:3573-3580. [PMID: 27155581 DOI: 10.1016/j.bbagen.2016.04.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/20/2016] [Accepted: 04/27/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Gangliosides are biological glycolipids participating in rafts, structural and functional domains of cell membranes. Their headgroups are able to assume different conformations when packed on the surface of an aggregate, more lying or standing. Switching between different conformations is possible, and is a collective event. Switching can be induced, in model systems, by concentration or temperature increase, then possibly involving ganglioside-water interaction. In the present paper, the effect of GM1 ganglioside headgroup conformation on the water structuring and interactions is addressed. METHODS Depolarized Rayleigh Scattering, Raman Scattering, Quasielastic Neutron Scattering and NMR measurements were performed on GM1 ganglioside solutions, focusing on solvent properties. RESULTS All used techniques agree in evidencing differences in the structure and dynamics of solvent water on different time-and-length scales in the presence of either GM1 headgroup conformations. CONCLUSIONS In general, all results indicate that both the structural properties of solvent water and its interactions with the sugar headgroups of GM1 respond to surface remodelling. The extent of this modification is much higher than expected and, interestingly, ganglioside headgroups seem to turn from cosmotropes to chaotropes upon collective rearrangement from the standing- to the lying-conformation. SIGNIFICANCE In a biological perspective, water structure modulation could be one of the physico-chemical elements contributing to the raft strategy, both for rafts formation and persistence and for their functional aspects. In particular, the interaction with approaching bodies could be favoured or inhibited or triggered by complex-sugar-sequence conformational switch. This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo.
Collapse
Affiliation(s)
- P Brocca
- Dept. of Medical Biotechnologies and Traslational Medicine, University of Milano, LITA, Via Fratelli Cervi, 93, 20090 Segrate, Italy
| | - V Rondelli
- Dept. of Medical Biotechnologies and Traslational Medicine, University of Milano, LITA, Via Fratelli Cervi, 93, 20090 Segrate, Italy
| | - F Mallamace
- Dept. of Physics and Earth Sciences, University of Messina, Viale F. Stagno D'Alcontres, 31, 98166 Messina, Italy
| | - M T Di Bari
- Dept. of Physics and Earth Sciences, University of Parma, Parco Area delle Scienze, 7/A, 43124 Parma, Italy
| | - A Deriu
- Dept. of Physics and Earth Sciences, University of Parma, Parco Area delle Scienze, 7/A, 43124 Parma, Italy
| | - W Lohstroh
- Heinz Maier-Leibnitz Zentrum, Technische Universität München, Lichtenbergstraße 1, Garching, Germany
| | - E Del Favero
- Dept. of Medical Biotechnologies and Traslational Medicine, University of Milano, LITA, Via Fratelli Cervi, 93, 20090 Segrate, Italy
| | - M Corti
- Dept. of Medical Biotechnologies and Traslational Medicine, University of Milano, LITA, Via Fratelli Cervi, 93, 20090 Segrate, Italy
| | - L Cantu'
- Dept. of Medical Biotechnologies and Traslational Medicine, University of Milano, LITA, Via Fratelli Cervi, 93, 20090 Segrate, Italy
| |
Collapse
|
26
|
Youssef DTA, Ibrahim SRM, Shaala LA, Mohamed GA, Banjar ZM. New Cerebroside and Nucleoside Derivatives from a Red Sea Strain of the Marine Cyanobacterium Moorea producens. Molecules 2016; 21:324. [PMID: 27005610 PMCID: PMC6272925 DOI: 10.3390/molecules21030324] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 01/12/2023] Open
Abstract
In the course of our ongoing efforts to identify marine-derived bioactive compounds, the marine cyanobacterium Moorea producens was investigated. The organic extract of the Red Sea cyanobacterium afforded one new cerebroside, mooreaside A (1), two new nucleoside derivatives, 3-acetyl-2′-deoxyuridine (2) and 3-phenylethyl-2′-deoxyuridine (3), along with the previously reported compounds thymidine (4) and 2,3-dihydroxypropyl heptacosanoate (5). The structures of the compounds were determined by different spectroscopic studies (UV, IR, 1D, 2D NMR, and HRESIMS), as well as comparison with the literature data. Compounds 1–5 showed variable cytotoxic activity against three cancer cell lines.
Collapse
Affiliation(s)
- Diaa T A Youssef
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Sabrin R M Ibrahim
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al Munawwarah 30078, Saudi Arabia.
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Lamiaa A Shaala
- Natural Products Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
- Suez Canal University Hospital, Suez Canal University, Ismailia 41522, Egypt.
| | - Gamal A Mohamed
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Zainy M Banjar
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
27
|
Dhasaiyan P, Parekh N, Vijai Kumar Reddy T, Sandhya Rani G, Prabhavathi Devi BLA, Prasad BLV. Self-assembly of isomannide-based monoesters of C 18-fatty acids and their cellular uptake studies. RSC Adv 2016. [DOI: 10.1039/c6ra05608c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The self-assembling behavior of oleic, elaidic and stearic acid-isomannide glycolipids is revealed.
Collapse
Affiliation(s)
- Prabhu Dhasaiyan
- Physical and Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune – 411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Nimisha Parekh
- Chemical Engineering and Process Development Division
- CSIR-National Chemical Laboratory
- Pune – 411008
- India
| | - T. Vijai Kumar Reddy
- Centre for Lipid Research
- CSIR-Indian Institute of Chemical Technology
- Hyderabad – 500007
- India
| | - G. Sandhya Rani
- Centre for Lipid Research
- CSIR-Indian Institute of Chemical Technology
- Hyderabad – 500007
- India
| | | | - B. L. V. Prasad
- Physical and Materials Chemistry Division
- CSIR-National Chemical Laboratory
- Pune – 411008
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
28
|
Tomono T, Kojima H, Fukuchi S, Tohsato Y, Ito M. Investigation of glycan evolution based on a comprehensive analysis of glycosyltransferases using phylogenetic profiling. Biophys Physicobiol 2015; 12:57-68. [PMID: 27493855 PMCID: PMC4736839 DOI: 10.2142/biophysico.12.0_57] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/12/2015] [Indexed: 02/06/2023] Open
Abstract
Glycans play important roles in such cell-cell interactions as signaling and adhesion, including processes involved in pathogenic infections, cancers, and neurological diseases. Glycans are biosynthesized by multiple glycosyltransferases (GTs), which function sequentially. Excluding mucin-type O-glycosylation, the non-reducing terminus of glycans is biosynthesized in the Golgi apparatus after the reducing terminus is biosynthesized in the ER. In the present study, we performed genome-wide analyses of human GTs by investigating the degree of conservation of homologues in other organisms, as well as by elucidating the phylogenetic relationship between cephalochordates and urochordates, which has long been controversial in deuterostome phylogeny. We analyzed 173 human GTs and functionally linked glycan synthesis enzymes by phylogenetic profiling and clustering, compiled orthologous genes from the genomes of other organisms, and converted them into a binary sequence based on the presence (1) or absence (0) of orthologous genes in the genomes. Our results suggest that the non-reducing terminus of glycans is biosynthesized by newly evolved GTs. According to our analysis, the phylogenetic profiles of GTs resemble the phylogenetic tree of life, where deuterostomes, metazoans, and eukaryotes are resolved into separate branches. Lineage-specific GTs appear to play essential roles in the divergence of these particular lineages. We suggest that urochordates lose several genes that are conserved among metazoans, such as those expressing sialyltransferases, and that the Golgi apparatus acquires the ability to synthesize glycans after the ER acquires this function.
Collapse
Affiliation(s)
- Takayoshi Tomono
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Hisao Kojima
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Satoshi Fukuchi
- Department of Life Science and Informatics, Faculty of Engineering, Maebashi Institute of Technology, Gunma 371-0816, Japan
| | - Yukako Tohsato
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Masahiro Ito
- Department of Bioinformatics, College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| |
Collapse
|
29
|
Lu L, Gao J, Guo Z. Labeling Cell Surface GPIs and GPI-Anchored Proteins through Metabolic Engineering with Artificial Inositol Derivatives. Angew Chem Int Ed Engl 2015; 54:9679-9682. [PMID: 26102235 PMCID: PMC4536913 DOI: 10.1002/anie.201503814] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Indexed: 11/07/2022]
Abstract
Glycosylphosphatidylinositol (GPI) anchoring of proteins to the cell surface is important for various biological processes, but GPI-anchored proteins are difficult to study. An effective strategy was developed for the metabolic engineering of cell-surface GPIs and GPI-anchored proteins by using inositol derivatives carrying an azido group. The azide-labeled GPIs and GPI-anchored proteins were then tagged with biotin on live cells through a click reaction, which allows further elaboration with streptavidin-conjugated dyes or other molecules. The strategy can be used to label GPI-anchored proteins with various tags for biological studies.
Collapse
Affiliation(s)
- Lili Lu
- National Glycoengineering Research Center, Shandong University, 29 Shanda Nan Lu, Jinan 250010 (China)
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202 (the United States)
| | - Jian Gao
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202 (the United States)
| | - Zhongwu Guo
- National Glycoengineering Research Center, Shandong University, 29 Shanda Nan Lu, Jinan 250010 (China)
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202 (the United States)
| |
Collapse
|
30
|
Lu L, Gao J, Guo Z. Labeling Cell Surface GPIs and GPI-Anchored Proteins through Metabolic Engineering with Artificial Inositol Derivatives. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Sivasubramaniyan K, Harichandan A, Schilbach K, Mack AF, Bedke J, Stenzl A, Kanz L, Niederfellner G, Bühring HJ. Expression of stage-specific embryonic antigen-4 (SSEA-4) defines spontaneous loss of epithelial phenotype in human solid tumor cells. Glycobiology 2015; 25:902-17. [PMID: 25978997 DOI: 10.1093/glycob/cwv032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 05/11/2015] [Indexed: 12/19/2022] Open
Abstract
Stage-specific embryonic antigen-4 (SSEA-4) is a glycosphingolipid, which is overexpressed in some cancers and has been linked to disease progression. However, little is known about the functions of SSEA-4 and the characteristics of SSEA-4 expressing tumor cells. Our studies identified SSEA-4 expression on a subpopulation of cells in many solid tumor cell lines but not in leukemic cell lines. Fluorescence-activated cell sorting-sorted SSEA-4(+) prostate cancer cells formed fibroblast-like colonies with limited cell-cell contacts, whereas SSEA-4(-) cells formed cobblestone-like epithelial colonies. Only colonies derived from SSEA-4(+) cells were enriched for pluripotent embryonic stem cell markers. Moreover, major epithelial cell-associated markers Claudin-7, E-cadherin, ESRP1 and GRHL2 were down-regulated in the SSEA-4(+) fraction of DU145 and HCT-116 cells. Similar to cell lines, SSEA-4(+) primary prostate tumor cells also showed down-regulation of epithelial cell-associated markers. In addition, they showed up-regulation of epithelial-to-mesenchymal transition as well as mesenchymal markers. Furthermore, SSEA-4(+) cells escape from adhesive colonies spontaneously and form invadopodia-like migratory structures, in which SSEA-4, cortactin as well as active pPI3K, pAkt and pSrc are enriched and colocalized. Finally, SSEA-4(+) cells displayed strong tumorigenic ability and stable knockdown of SSEA-4 synthesis resulted in decreased cellular adhesion to different extracellular matrices. In conclusion, we introduce SSEA-4 as a novel marker to identify heterogeneous, invasive subpopulations of tumor cells. Moreover, increased cell-surface SSEA-4 expression is associated with the loss of cell-cell interactions and the gain of a migratory phenotype, suggesting an important role of SSEA-4 in cancer invasion by influencing cellular adhesion to the extracellular matrix.
Collapse
Affiliation(s)
- Kavitha Sivasubramaniyan
- Department of Internal Medicine II, Division of Hematology, Immunology, Oncology, Rheumatology and Pulmonology, University Clinic of Tübingen, Tübingen, Germany
| | - Abhishek Harichandan
- Department of Internal Medicine II, Division of Hematology, Immunology, Oncology, Rheumatology and Pulmonology, University Clinic of Tübingen, Tübingen, Germany Department of Urology, University Clinic of Tübingen, Tübingen, Germany
| | - Karin Schilbach
- Department of Pediatric Stem Cell Transplantation, University Children's Hospital, Tübingen 72076, Germany
| | - Andreas F Mack
- Institute of Clinical Anatomy and Cell Analysis, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Jens Bedke
- Department of Urology, University Clinic of Tübingen, Tübingen, Germany
| | - Arnulf Stenzl
- Department of Urology, University Clinic of Tübingen, Tübingen, Germany
| | - Lothar Kanz
- Department of Internal Medicine II, Division of Hematology, Immunology, Oncology, Rheumatology and Pulmonology, University Clinic of Tübingen, Tübingen, Germany
| | - Gerhard Niederfellner
- Discovery Oncology, Pharma Research and Early Development, Roche Diagnostics GmbH, Penzberg, Germany
| | - Hans-Jörg Bühring
- Department of Internal Medicine II, Division of Hematology, Immunology, Oncology, Rheumatology and Pulmonology, University Clinic of Tübingen, Tübingen, Germany
| |
Collapse
|
32
|
Ersek A, Xu K, Antonopoulos A, Butters TD, Santo AE, Vattakuzhi Y, Williams LM, Goudevenou K, Danks L, Freidin A, Spanoudakis E, Parry S, Papaioannou M, Hatjiharissi E, Chaidos A, Alonzi DS, Twigg G, Hu M, Dwek RA, Haslam SM, Roberts I, Dell A, Rahemtulla A, Horwood NJ, Karadimitris A. Glycosphingolipid synthesis inhibition limits osteoclast activation and myeloma bone disease. J Clin Invest 2015; 125:2279-92. [PMID: 25915583 DOI: 10.1172/jci59987] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 03/19/2015] [Indexed: 01/06/2023] Open
Abstract
Glycosphingolipids (GSLs) are essential constituents of cell membranes and lipid rafts and can modulate signal transduction events. The contribution of GSLs in osteoclast (OC) activation and osteolytic bone diseases in malignancies such as the plasma cell dyscrasia multiple myeloma (MM) is not known. Here, we tested the hypothesis that pathological activation of OCs in MM requires de novo GSL synthesis and is further enhanced by myeloma cell-derived GSLs. Glucosylceramide synthase (GCS) inhibitors, including the clinically approved agent N-butyl-deoxynojirimycin (NB-DNJ), prevented OC development and activation by disrupting RANKL-induced localization of TRAF6 and c-SRC into lipid rafts and preventing nuclear accumulation of transcriptional activator NFATc1. GM3 was the prevailing GSL produced by patient-derived myeloma cells and MM cell lines, and exogenous addition of GM3 synergistically enhanced the ability of the pro-osteoclastogenic factors RANKL and insulin-like growth factor 1 (IGF-1) to induce osteoclastogenesis in precursors. In WT mice, administration of GM3 increased OC numbers and activity, an effect that was reversed by treatment with NB-DNJ. In a murine MM model, treatment with NB-DNJ markedly improved osteolytic bone disease symptoms. Together, these data demonstrate that both tumor-derived and de novo synthesized GSLs influence osteoclastogenesis and suggest that NB-DNJ may reduce pathological OC activation and bone destruction associated with MM.
Collapse
|
33
|
Anugraham M, Everest-Dass AV, Jacob F, Packer NH. A platform for the structural characterization of glycans enzymatically released from glycosphingolipids extracted from tissue and cells. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015. [PMID: 26212272 DOI: 10.1002/rcm.7130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
RATIONALE Glycosphingolipids (GSLs) constitute a highly diverse class of glyco-conjugates which are involved in many aspects of cell membrane function and disease. The isolation, detection and structural characterization of the carbohydrate (glycan) component of GSLs are particularly challenging given their structural heterogeneity and thus rely on the development of sensitive, analytical technologies. METHODS Neutral and acidic GSL standards were immobilized onto polyvinylidene difluoride (PVDF) membranes and glycans were enzymatically released using endoglycoceramidase II (EGCase II), separated by porous graphitized carbon (PGC) liquid chromatography and structurally characterized by negative ion mode electrospray ionization tandem mass spectrometry (PGC-LC/ESI-MS/MS). This approach was then employed for GSLs isolated from 100 mg of serous and endometrioid cancer tissue and from cell line (10(7) cells) samples. RESULTS Glycans were released from GSL standards comprising of ganglio-, asialo-ganglio- and the relatively resistant globo-series glycans, using as little as 1 mU of enzyme and 2 µg of GSL. The platform of analysis was then applied to GSLs isolated from tissue and cell line samples and the released isomeric and isobaric glycan structures were chromatographically resolved on PGC and characterized by comparison with the MS(2) fragment ion spectra of the glycan standards and by application of known structural MS(2) fragment ions. This approach identified several (neo-)lacto-, globo- and ganglio-series glycans and facilitated the discrimination of isomeric structures containing Lewis A, H type 1 and type 2 blood group antigens and sialyl-tetraosylceramides. CONCLUSION We describe a relatively simple, detergent-free, enzymatic release of glycans from PVDF-immobilized GSLs, followed by the detailed structural analysis afforded by PGC-LC-ESI-MS/MS, to offer a versatile method for the analysis of tumour and cell-derived GSL-glycans. The method uses the potential of MS(2) fragmentation in negative ion ESI mode to characterize, in detail, the biologically relevant glycan structures derived from GSLs.
Collapse
Affiliation(s)
- Merrina Anugraham
- Department of Chemistry and Biomolecular Sciences, Biomolecular Frontiers Research Centre, Faculty of Science, Macquarie University, Sydney, 2109, Australia
| | - Arun Vijay Everest-Dass
- Department of Chemistry and Biomolecular Sciences, Biomolecular Frontiers Research Centre, Faculty of Science, Macquarie University, Sydney, 2109, Australia
| | - Francis Jacob
- Gynecological Research Group, Department of Biomedicine, University Hospital Basel, University of Basel, Basel, 4031, Switzerland
| | - Nicolle H Packer
- Department of Chemistry and Biomolecular Sciences, Biomolecular Frontiers Research Centre, Faculty of Science, Macquarie University, Sydney, 2109, Australia
| |
Collapse
|
34
|
Róg T, Vattulainen I. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes? Chem Phys Lipids 2014; 184:82-104. [PMID: 25444976 DOI: 10.1016/j.chemphyslip.2014.10.004] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/24/2014] [Accepted: 10/25/2014] [Indexed: 12/14/2022]
Abstract
Lipids rafts are considered to be functional nanoscale membrane domains enriched in cholesterol and sphingolipids, characteristic in particular of the external leaflet of cell membranes. Lipids, together with membrane-associated proteins, are therefore considered to form nanoscale units with potential specific functions. Although the understanding of the structure of rafts in living cells is quite limited, the possible functions of rafts are widely discussed in the literature, highlighting their importance in cellular functions. In this review, we discuss the understanding of rafts that has emerged based on recent atomistic and coarse-grained molecular dynamics simulation studies on the key lipid raft components, which include cholesterol, sphingolipids, glycolipids, and the proteins interacting with these classes of lipids. The simulation results are compared to experiments when possible.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, Tampere, Finland; MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
35
|
Rožman M, Fabris D, Mrla T, Vukelić Ž. Database and data analysis application for structural characterization of gangliosides and sulfated glycosphingolipids by negative ion mass spectrometry. Carbohydr Res 2014; 400:1-8. [PMID: 25299937 DOI: 10.1016/j.carres.2014.06.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/20/2014] [Accepted: 06/27/2014] [Indexed: 01/12/2023]
Abstract
Gangliosides and sulfated glycosphingolipids, as building and functional components of animal cell membranes, participate in cell-to-cell interactions and signaling, but also in changes of cell architecture due to different pathophysiological events. In order to enable higher throughput and to facilitate structural characterization of gangliosides/sulfo-glycosphingolipids (GSL) and their neutral GSL counterparts by negative ion mass spectrometry (MS) and tandem MS techniques, a database and data analysis application have been developed. In silico developed glycosphingolipid database considers a high diversity of ceramide compositions, several sialic acid types (N-acetylneuraminic acid, N-glycolylneuraminic acid and 2-keto-3-deoxynononic acid) as well as possible additional substitutions/modifications of glycosphingolipids, such as O-acetylation, de-N-acetylation, fucosylation, glucuronosylation, sulfation, attachment of repeating terminal hexose-N-acetylhexosamine- (Hex-HexNAc-)1-6 extension, and possible lactone forms. Data analysis application, named GSL-finder, enables correlation of negative ion MS and/or low-energy tandem MS spectra with the database structures. The GSL-database construction and the GSL-finder application searching rules are explained. Validation conducted on GD1a fraction as well as on complex mixtures of native gangliosides isolated from different mammalian brain tissues (human fetal and adult brain, and calf brain tissue) demonstrated agreement with previous studies. Plain, fast, and automated routine for structural characterization of gangliosides/sulfated glycosphingolipids and their neutral GSL counterparts described here could facilitate and improve mass spectrometric analysis of complex glycosphingolipid mixtures originating from variety of normal and pathological biomaterial, where it is known that distinctive changes in glycosphingolipid composition occur.
Collapse
Affiliation(s)
- Marko Rožman
- Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | - Dragana Fabris
- Department for Chemistry and Biochemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia.
| | - Tomislav Mrla
- Department of Physical Chemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia.
| | - Željka Vukelić
- Department for Chemistry and Biochemistry, School of Medicine, University of Zagreb, Šalata 3, 10000 Zagreb, Croatia.
| |
Collapse
|
36
|
Sassa T, Kihara A. Metabolism of very long-chain Fatty acids: genes and pathophysiology. Biomol Ther (Seoul) 2014; 22:83-92. [PMID: 24753812 PMCID: PMC3975470 DOI: 10.4062/biomolther.2014.017] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 03/03/2014] [Indexed: 01/19/2023] Open
Abstract
Fatty acids (FAs) are highly diverse in terms of carbon (C) chain-length and number of double bonds. FAs with C>20 are called very long-chain fatty acids (VLCFAs). VLCFAs are found not only as constituents of cellular lipids such as sphingolipids and glycerophospholipids but also as precursors of lipid mediators. Our understanding on the function of VLCFAs is growing in parallel with the identification of enzymes involved in VLCFA synthesis or degradation. A variety of inherited diseases, such as ichthyosis, macular degeneration, myopathy, mental retardation, and demyelination, are caused by mutations in the genes encoding VLCFA metabolizing enzymes. In this review, we describe mammalian VLCFAs by highlighting their tissue distribution and metabolic pathways, and we discuss responsible genes and enzymes with reference to their roles in pathophysiology.
Collapse
Affiliation(s)
- Takayuki Sassa
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Akio Kihara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| |
Collapse
|
37
|
Migas UM, Abbey L, Velasco-Torrijos T, McManus JJ. Adding glycolipid functionality to model membranes--phase behaviour of a synthetic glycolipid in a phospholipid membrane. SOFT MATTER 2014; 10:3978-3983. [PMID: 24733306 DOI: 10.1039/c4sm00147h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Glycolipid phase behaviour is less well understood than for many phospholipids, but due to their structural and functional diversity, glycolipids represent an important group of amphiphiles from which biological function is derived. Here we have incorporated a synthetic glycolipid in binary mixtures with DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) into giant unilamellar vesicles (GUVs) at biologically relevant concentrations and observed the phase behaviour of the lipid mixtures for a range of glycolipid concentrations. At low concentrations, the glycolipid is fully dispersed in the GUV membrane. At glycolipid molar concentrations above 10%, the formation of lipid tubules is observed, and is consistent with the formation of a columnar lipid phase. Lipid tubules are observed in aqueous and oil solvents, suggesting that both hexagonal and inverted hexagonal lipid arrangements can be formed. This work may offer insights into the biological function of glycolipids and the challenges in formulating them for use in industrial applications.
Collapse
Affiliation(s)
- Urszula M Migas
- Department of Chemistry, National University of Ireland Maynooth, Maynooth Co. Kildare, Ireland.
| | | | | | | |
Collapse
|
38
|
Newburn EN, Duchemin AM, Neff NH, Hadjiconstantinou M. GM1 ganglioside enhances Ret signaling in striatum. J Neurochem 2014; 130:541-54. [DOI: 10.1111/jnc.12760] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Erin N. Newburn
- Department of Pharmacology; The Ohio State University College of Medicine; Columbus Ohio USA
| | - Anne-Marie Duchemin
- Department of Psychiatry; Division of Molecular Psychopharmacology; The Ohio State University College of Medicine; Columbus Ohio USA
| | - Norton H. Neff
- Department of Pharmacology; The Ohio State University College of Medicine; Columbus Ohio USA
- Department of Psychiatry; Division of Molecular Psychopharmacology; The Ohio State University College of Medicine; Columbus Ohio USA
| | - Maria Hadjiconstantinou
- Department of Pharmacology; The Ohio State University College of Medicine; Columbus Ohio USA
- Department of Psychiatry; Division of Molecular Psychopharmacology; The Ohio State University College of Medicine; Columbus Ohio USA
| |
Collapse
|
39
|
The Mucin Box and Signal/Anchor Sequence of Rat Neutral Ceramidase Recruit Bacterial Sphingomyelinase to the Plasma Membrane. Biosci Biotechnol Biochem 2014; 75:987-90. [DOI: 10.1271/bbb.100767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Obanda DN, Ribnicky DM, Raskin I, Cefalu WT. Bioactives of Artemisia dracunculus L. enhance insulin sensitivity by modulation of ceramide metabolism in rat skeletal muscle cells. Nutrition 2014; 30:S59-66. [PMID: 24985108 DOI: 10.1016/j.nut.2014.03.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/07/2014] [Accepted: 03/09/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE An increase in ectopic lipids in peripheral tissues has been implicated in attenuating insulin action. The botanical extract of Artemisia dracunculus L. (PMI 5011) improves insulin action, yet the precise mechanism is unknown. The aim of this study was to determine whether the mechanism by which the bioactive compounds in PMI 5011 improve insulin signaling is through regulation of ceramide metabolism. METHODS L6 Myotubes were separately preincubated with 250 μM palmitic acid with or without PMI 5011 or four bioactive compounds isolated from PMI 5011 and postulated to be responsible for the effect. The effects on insulin signaling, ceramide, and glucosylceramide profiles were determined. RESULTS Treatment of L6 myotubes with palmitic acid resulted in increased levels of total ceramides and glucosylceramides, and cell surface expression of gangliosides. Palmitic acid also inhibited insulin-stimulated phosphorylation of protein kinase B/Akt and reduced glycogen accumulation. Bioactives from PMI 5011 had no effect on ceramide formation but one active compound (DMC-2) and its synthetic analog significantly reduced glucosylceramide accumulation and increased insulin sensitivity via restoration of Akt phosphorylation. CONCLUSIONS The observations suggest that insulin sensitization by PMI 5011 is partly mediated through moderation of glycosphingolipid accumulation.
Collapse
Affiliation(s)
- Diana N Obanda
- Diabetes and Nutrition Research Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, Louisiana, USA
| | - David M Ribnicky
- Department of Plant Biology and Pathology, Rutgers University, The State University of New Jersey, The Biotech Center, New Brunswick, New Jersey, USA
| | - Ilya Raskin
- Department of Plant Biology and Pathology, Rutgers University, The State University of New Jersey, The Biotech Center, New Brunswick, New Jersey, USA
| | - William T Cefalu
- Diabetes and Nutrition Research Laboratory, Pennington Biomedical Research Center, LSU System, Baton Rouge, Louisiana, USA.
| |
Collapse
|
41
|
Miki T, Kaneda M, Iida K, Hasegawa G, Murakami M, Yamamoto N, Asou H, Kasahara K. An anti-sulfatide antibody O4 immunoprecipitates sulfatide rafts including Fyn, Lyn and the G protein α subunit in rat primary immature oligodendrocytes. Glycoconj J 2013; 30:819-23. [DOI: 10.1007/s10719-013-9487-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 07/07/2013] [Accepted: 07/08/2013] [Indexed: 01/06/2023]
|
42
|
Kouzel IU, Pohlentz G, Storck W, Radamm L, Hoffmann P, Bielaszewska M, Bauwens A, Cichon C, Schmidt MA, Mormann M, Karch H, Müthing J. Association of Shiga toxin glycosphingolipid receptors with membrane microdomains of toxin-sensitive lymphoid and myeloid cells. J Lipid Res 2013; 54:692-710. [PMID: 23248329 PMCID: PMC3617944 DOI: 10.1194/jlr.m031781] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/14/2012] [Indexed: 11/20/2022] Open
Abstract
Glycosphingolipids (GSLs) of the globo-series constitute specific receptors for Shiga toxins (Stxs) released by certain types of pathogenic Escherichia coli strains. Stx-loaded leukocytes may act as transporter cells in the blood and transfer the toxin to endothelial target cells. Therefore, we performed a thorough investigation on the expression of globo-series GSLs in serum-free cultivated Raji and Jurkat cells, representing B- and T-lymphocyte descendants, respectively, as well as THP-1 and HL-60 cells of the monocyte and granulocyte lineage, respectively. The presence of Stx-receptors in GSL preparations of Raji and THP-1 cells and the absence in Jurkat and HL-60 cells revealed high compliance of solid-phase immunodetection assays with the expression profiles of receptor-related glycosyltransferases, performed by qRT-PCR analysis, and Stx2-caused cellular damage. Canonical microdomain association of Stx GSL receptors, sphingomyelin, and cholesterol in membranes of Raji and THP-1 cells was assessed by comparative analysis of detergent-resistant membrane (DRM) and nonDRM fractions obtained by density gradient centrifugation and showed high correlation based on nonparametric statistical analysis. Our comprehensive study on the expression of Stx-receptors and their subcellular distribution provides the basis for exploring the functional role of lipid raft-associated Stx-receptors in cells of leukocyte origin.
Collapse
Affiliation(s)
- Ivan U. Kouzel
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Wiebke Storck
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Lena Radamm
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Petra Hoffmann
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | | | - Andreas Bauwens
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Christoph Cichon
- Institute of Infectiology, University of Münster, D-48149 Münster, Germany
| | | | - Michael Mormann
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, D-48149 Münster, Germany
- Interdisciplinary Center for Clinical Research (IZKF), University of Münster, D-48149 Münster, Germany
| |
Collapse
|
43
|
Bauwens A, Betz J, Meisen I, Kemper B, Karch H, Müthing J. Facing glycosphingolipid-Shiga toxin interaction: dire straits for endothelial cells of the human vasculature. Cell Mol Life Sci 2013; 70:425-57. [PMID: 22766973 PMCID: PMC11113656 DOI: 10.1007/s00018-012-1060-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/25/2012] [Accepted: 06/14/2012] [Indexed: 12/23/2022]
Abstract
The two major Shiga toxin (Stx) types, Stx1 and Stx2, produced by enterohemorrhagic Escherichia coli (EHEC) in particular injure renal and cerebral microvascular endothelial cells after transfer from the human intestine into the circulation. Stxs are AB(5) toxins composed of an enzymatically active A subunit and the pentameric B subunit, which preferentially binds to the glycosphingolipid globotriaosylceramide (Gb3Cer/CD77). This review summarizes the current knowledge on Stx-caused cellular injury and the structural diversity of Stx receptors as well as the initial molecular interaction of Stxs with the human endothelium of different vascular beds. The varying lipoforms of Stx receptors and their spatial organization in lipid rafts suggest a central role in different modes of receptor-mediated endocytosis and intracellular destiny of the toxins. The design and development of tailored Stx neutralizers targeting the oligosaccharide-toxin recognition event has become a very real prospect to ameliorate or prevent life-threatening renal and neurological complications.
Collapse
Affiliation(s)
- Andreas Bauwens
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Josefine Betz
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Iris Meisen
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| | - Björn Kemper
- Center for Biomedical Optics and Photonics, University of Münster, Robert-Koch-Str. 45, 48149 Münster, Germany
| | - Helge Karch
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
| | - Johannes Müthing
- Institute for Hygiene, University of Münster, Robert-Koch-Str. 41, 48149 Münster, Germany
- Interdisciplinary Center for Clinical Research, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| |
Collapse
|
44
|
Sekino-Suzuki N, Yuyama K, Miki T, Kaneda M, Suzuki H, Yamamoto N, Yamamoto T, Oneyama C, Okada M, Kasahara K. Involvement of gangliosides in the process of Cbp/PAG phosphorylation by Lyn in developing cerebellar growth cones. J Neurochem 2013; 124:514-22. [PMID: 23035659 DOI: 10.1111/jnc.12040] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 09/30/2012] [Accepted: 10/01/2012] [Indexed: 02/01/2023]
Abstract
The association of gangliosides with specific proteins in the central nervous system was examined by coimmunoprecipitation with an anti-ganglioside antibody. The monoclonal antibody to the ganglioside GD3 (R24) immunoprecipitated the Csk (C-terminal src kinase)-binding protein (Cbp). Sucrose density gradient analysis showed that Cbp of rat cerebellum was detected in detergent-resistant membrane (DRM) raft fractions. R24 treatment of the rat primary cerebellar cultures induced Lyn activation and tyrosine phosphorylation of Cbp. Treatment with anti-ganglioside GD1b antibody also induced tyrosine phosphorylation. Furthermore, over-expressions of Lyn and Cbp in Chinese hamster ovary (CHO) cells resulted in tyrosine 314 phosphorylation of Cbp, which indicates that Cbp is a substrate for Lyn. Immunoblotting analysis showed that the active form of Lyn and the Tyr314-phosphorylated form of Cbp were highly accumulated in the DRM raft fraction prepared from the developing cerebellum compared with the DRM raft fraction of the adult one. In addition, Lyn and the Tyr314-phosphorylated Cbp were highly concentrated in the growth cone fraction prepared from the developing cerebellum. Immunoelectron microscopy showed that Cbp and GAP-43, a growth cone marker, are localized in the same vesicles of the growth cone fraction. These results suggest that Cbp functionally associates with gangliosides on growth cone rafts in developing cerebella.
Collapse
Affiliation(s)
- Naoko Sekino-Suzuki
- Laboratory of Biomembrane, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mencarelli C, Martinez–Martinez P. Ceramide function in the brain: when a slight tilt is enough. Cell Mol Life Sci 2013; 70:181-203. [PMID: 22729185 PMCID: PMC3535405 DOI: 10.1007/s00018-012-1038-x] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 05/16/2012] [Accepted: 05/21/2012] [Indexed: 12/14/2022]
Abstract
Ceramide, the precursor of all complex sphingolipids, is a potent signaling molecule that mediates key events of cellular pathophysiology. In the nervous system, the sphingolipid metabolism has an important impact. Neurons are polarized cells and their normal functions, such as neuronal connectivity and synaptic transmission, rely on selective trafficking of molecules across plasma membrane. Sphingolipids are abundant on neural cellular membranes and represent potent regulators of brain homeostasis. Ceramide intracellular levels are fine-tuned and alteration of the sphingolipid-ceramide profile contributes to the development of age-related, neurological and neuroinflammatory diseases. The purpose of this review is to guide the reader towards a better understanding of the sphingolipid-ceramide pathway system. First, ceramide biology is presented including structure, physical properties and metabolism. Second, we describe the function of ceramide as a lipid second messenger in cell physiology. Finally, we highlight the relevance of sphingolipids and ceramide in the progression of different neurodegenerative diseases.
Collapse
Affiliation(s)
- Chiara Mencarelli
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| | - Pilar Martinez–Martinez
- Department of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
46
|
A shift in sphingolipid composition from C24 to C16 increases susceptibility to apoptosis in HeLa cells. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1031-7. [PMID: 22579584 DOI: 10.1016/j.bbalip.2012.04.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 04/12/2012] [Accepted: 04/24/2012] [Indexed: 12/29/2022]
Abstract
Sphingolipids, major lipid components of the eukaryotic plasma membrane, have a variety of physiological functions and have been associated with many diseases. They have also been implicated in apoptosis. Sphingolipids are heterogeneous in their acyl chain length, with long-chain (C16) and very long-chain (C24) sphingolipids being predominant in most mammalian tissues. We demonstrate that knockdown of ELOVL1 or CERS2, which catalyze synthesis of C24 acyl-CoAs and C24 ceramide, respectively, drastically reduced C24 sphingolipid levels with a complementary increase in C16 sphingolipids. Under ELOVL1 or CERS2 knockdown conditions, cisplatin-induced apoptosis significantly increased. Enhanced sensitivity to cisplatin-induced apoptosis exhibited close correlation with increases in caspase-3/7 activity. No significant alterations in sphingolipid metabolism such as ceramide generation were apparent with the cisplatin-induced apoptosis, and inhibitors of ceramide generation had no effect on the apoptosis. Apoptosis induced by UV radiation or C6 ceramides also increased in ELOVL1 or CERS2 knockdown cells. Changes in the composition of sphingolipid chain length may affect susceptibility to stimuli-induced apoptosis by affecting the properties of cell membranes, such as lipid microdomain/raft formation.
Collapse
|
47
|
Zhang J, Zhou X. Novel 3-dimensional dendrimer platform for glycolipid microarray. Biosens Bioelectron 2011; 28:355-61. [PMID: 21820887 PMCID: PMC3163748 DOI: 10.1016/j.bios.2011.07.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 07/04/2011] [Accepted: 07/18/2011] [Indexed: 12/11/2022]
Abstract
Glycolipids are important biological molecules that modulate cellular recognitions and pathogen adhesions. In this paper, we report a sensitive glycolipid microarray for non-covalently immobilizing glycolipids on a microarray substrate and we perform a set of immunoassays to explore glycolipid-protein interactions. This substrate utilizes a three-dimensional hydrazide-functionalized dendrimer monolayer attached onto a microscopic glass surface, which possesses the characteristics to adsorb glycoliplids non-covalently and facilitates multivalent attributes on the substrate surface. In the proof-of-concept experiments, gangliosides such as GM1, FucGM1, GM3, GD1b, GT1b, and GQ1b, and a lipoarabinomannan were tested on the substrate and interrogated with toxins and antibodies. The resulting glycolipid microarrays exhibited hypersensitivity and specificity for detection of glycolipid-protein interactions. In particular, a robust and specific binding of a pentameric cholera toxin B subunit to the GM1 glycolipid spotted on the array has demonstrated its superiority in sensitivity and specificity. In addition, this glycolipid microarray substrate was used to detect lipoarabinomannan in buffer within a limit-of-detection of 125 ng/mL. Furthermore, Mycobacterium tuberculosis (Mtb) Lipoarabinomannan was tested in human urine specimens on this platform, which can effectively identify urine samples either infected or not infected with Mtb. The results of this work suggest the possibility of using this glycolipid microarray platform to fabricate glycoconjugate microarrays, which includes free glycans and glycolipids and potential application in detection of pathogen and toxin.
Collapse
Affiliation(s)
- Jian Zhang
- ADA Technologies Inc., 8100 Shaffer Parkway, Suite 130, Littleton, CO 80127, USA.
| | | |
Collapse
|
48
|
Yamashita T. Glycosphingolipid modification: structural diversity, functional and mechanistic integration of diabetes. Diabetes Metab J 2011; 35:309-16. [PMID: 21977449 PMCID: PMC3178690 DOI: 10.4093/dmj.2011.35.4.309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycosphingolipids (GSLs) are present in all mammalian cell plasma membranes and intracellular membrane structures. They are especially concentrated in plasma membrane lipid domains that are specialized for cell signaling. Plasma membranes have typical structures called rafts and caveola domain structures, with large amounts of sphingolipids, cholesterol, and sphingomyelin. GSLs are usually observed in many organs ubiquitously. However, GSLs, including over 400 derivatives, participate in diverse cellular functions. Several studies indicate that GSLs might have an effect on signal transduction related to insulin receptors and epidermal growth factor receptors. GSLs may modulate immune responses by transmitting signals from the exterior to the interior of the cell. Guillain-Barré syndrome is one of the autoimmune disorders characterized by symmetrical weakness in the muscles of the legs. The targets of the immune response are thought to be gangliosides, which are one group of GSLs. Other GSLs may serve as second messengers in several signaling pathways that are important to cell survival or programmed cell death. In the search for clear evidence that GSLs may play critical roles in various biological functions, many researchers have made genetically engineered mice. Before the era of gene manipulation, spontaneous animal models or chemical-induced disease models were used.
Collapse
Affiliation(s)
- Tadashi Yamashita
- Graduate School of Advanced Life Science, Hokkaido University, Sapporo, Japan
- World Class University Program, Kyungpook National University School of Medicine, Daegu, Korea
| |
Collapse
|
49
|
Abstract
The combination of carbohydrate and lipid generates unusual molecules in which the two distinctive halves of the glycoconjugate influence the function of each other. Membrane glycolipids can act as primary receptors for carbohydrate binding proteins to mediate transmembrane signaling despite restriction to the outer bilayer leaflet. The extensive heterogeneity of the lipid moiety plays a significant, but still largely unknown, role in glycosphingolipid function. Potential interplay between glycolipids and their fatty acid isoforms, together with their preferential interaction with cholesterol, generates a complex mechanism for the regulation of their function in cellular physiology.
Collapse
Affiliation(s)
- Clifford A Lingwood
- Research Institute, Hospital for Sick Children, Molecular Structure and Function, Toronto, Ontario M5G 1X8, Canada.
| |
Collapse
|
50
|
Tait S, La Rocca C, Mantovani A. Exposure of human fetal penile cells to different PCB mixtures: transcriptome analysis points to diverse modes of interference on external genitalia programming. Reprod Toxicol 2011; 32:1-14. [DOI: 10.1016/j.reprotox.2011.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Revised: 01/12/2011] [Accepted: 02/09/2011] [Indexed: 10/18/2022]
|