1
|
Bazgir F, Nau J, Nakhaei-Rad S, Amin E, Wolf MJ, Saucerman JJ, Lorenz K, Ahmadian MR. The Microenvironment of the Pathogenesis of Cardiac Hypertrophy. Cells 2023; 12:1780. [PMID: 37443814 PMCID: PMC10341218 DOI: 10.3390/cells12131780] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/22/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Pathological cardiac hypertrophy is a key risk factor for the development of heart failure and predisposes individuals to cardiac arrhythmia and sudden death. While physiological cardiac hypertrophy is adaptive, hypertrophy resulting from conditions comprising hypertension, aortic stenosis, or genetic mutations, such as hypertrophic cardiomyopathy, is maladaptive. Here, we highlight the essential role and reciprocal interactions involving both cardiomyocytes and non-myocardial cells in response to pathological conditions. Prolonged cardiovascular stress causes cardiomyocytes and non-myocardial cells to enter an activated state releasing numerous pro-hypertrophic, pro-fibrotic, and pro-inflammatory mediators such as vasoactive hormones, growth factors, and cytokines, i.e., commencing signaling events that collectively cause cardiac hypertrophy. Fibrotic remodeling is mediated by cardiac fibroblasts as the central players, but also endothelial cells and resident and infiltrating immune cells enhance these processes. Many of these hypertrophic mediators are now being integrated into computational models that provide system-level insights and will help to translate our knowledge into new pharmacological targets. This perspective article summarizes the last decades' advances in cardiac hypertrophy research and discusses the herein-involved complex myocardial microenvironment and signaling components.
Collapse
Affiliation(s)
- Farhad Bazgir
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| | - Julia Nau
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| | - Saeideh Nakhaei-Rad
- Stem Cell Biology, and Regenerative Medicine Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Ehsan Amin
- Institute of Neural and Sensory Physiology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Matthew J. Wolf
- Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA;
| | - Jeffry J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA;
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, University of Würzburg, Leibniz Institute for Analytical Sciences, 97078 Würzburg, Germany;
| | - Mohammad Reza Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (F.B.); (J.N.)
| |
Collapse
|
2
|
Canadian Contributions in Fibroblast Biology. Cells 2022; 11:cells11152272. [PMID: 35892569 PMCID: PMC9331635 DOI: 10.3390/cells11152272] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Fibroblasts are stromal cells found in virtually every tissue and organ of the body. For many years, these cells were often considered to be secondary in functional importance to parenchymal cells. Over the past 2 decades, focused research into the roles of fibroblasts has revealed important roles for these cells in the homeostasis of healthy tissue, and has demonstrated that activation of fibroblasts to myofibroblasts is a key step in disease initiation and progression in many tissues, with fibrosis now recognized as not only an outcome of disease, but also a central contributor to tissue dysfunction, particularly in the heart and lungs. With a growing understanding of both fibroblast and myofibroblast heterogeneity, and the deciphering of the humoral and mechanical cues that impact the phenotype of these cells, fibroblast biology is rapidly becoming a major focus in biomedical research. In this review, we provide an overview of fibroblast and myofibroblast biology, particularly in the heart, and including a discussion of pathophysiological processes such as fibrosis and scarring. We then discuss the central role of Canadian researchers in moving this field forwards, particularly in cardiac fibrosis, and highlight some of the major contributions of these individuals to our understanding of fibroblast and myofibroblast biology in health and disease.
Collapse
|
3
|
From dissection of fibrotic pathways to assessment of drug interactions to reduce cardiac fibrosis and heart failure. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100036. [PMID: 34909666 PMCID: PMC8663973 DOI: 10.1016/j.crphar.2021.100036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiac fibrosis is characterized by extracellular matrix deposition in the cardiac interstitium, and this contributes to cardiac contractile dysfunction and progression of heart failure. The main players involved in this process are the cardiac fibroblasts, which, in the presence of pro-inflammatory/pro-fibrotic stimuli, undergo a complete transformation acquiring a more proliferative, a pro-inflammatory and a secretory phenotype. This review discusses the cellular effectors and molecular pathways implicated in the pathogenesis of cardiac fibrosis and suggests potential strategies to monitor the effects of specific drugs designed to slow down the progression of this disease by specifically targeting the fibroblasts.
Collapse
|
4
|
Villacorta H. Cardiotrophin-1 in Patients with Acute Coronary Syndromes: Does it Have a Role? INTERNATIONAL JOURNAL OF CARDIOVASCULAR SCIENCES 2021. [DOI: 10.36660/ijcs.20210189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
5
|
Ushakov A, Ivanchenko V, Gagarina A. Regulation of Myocardial Extracellular Matrix Dynamic Changes in Myocardial Infarction and Postinfarct Remodeling. Curr Cardiol Rev 2020; 16:11-24. [PMID: 31072294 PMCID: PMC7393593 DOI: 10.2174/1573403x15666190509090832] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/22/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
The article represents literature review dedicated to molecular and cellular mechanisms underlying clinical manifestations and outcomes of acute myocardial infarction. Extracellular matrix adaptive changes are described in detail as one of the most important factors contributing to healing of damaged myocardium and post-infarction cardiac remodeling. Extracellular matrix is reviewed as dynamic constantly remodeling structure that plays a pivotal role in myocardial repair. The role of matrix metalloproteinases and their tissue inhibitors in fragmentation and degradation of extracellular matrix as well as in myocardium healing is discussed. This review provides current information about fibroblasts activity, the role of growth factors, particularly transforming growth factor β and cardiotrophin-1, colony-stimulating factors, adipokines and gastrointestinal hormones, various matricellular proteins. In conclusion considering the fact that dynamic transformation of extracellular matrix after myocardial ischemic damage plays a pivotal role in myocardial infarction outcomes and prognosis, we suggest a high importance of further investigation of mechanisms underlying extracellular matrix remodeling and cell-matrix interactions in cardiovascular diseases.
Collapse
Affiliation(s)
- Alexey Ushakov
- Department of Internal Medicine #1 with Clinical Pharmacology Course, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - Vera Ivanchenko
- Department of Internal Medicine #1 with Clinical Pharmacology Course, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| | - Alina Gagarina
- Department of Internal Medicine #1 with Clinical Pharmacology Course, Medical Academy named after S.I. Georgievsky of V.I. Vernadsky Crimean Federal University, Simferopol, Russian Federation
| |
Collapse
|
6
|
Liau B, Jackman CP, Li Y, Bursac N. Developmental stage-dependent effects of cardiac fibroblasts on function of stem cell-derived engineered cardiac tissues. Sci Rep 2017; 7:42290. [PMID: 28181589 PMCID: PMC5299411 DOI: 10.1038/srep42290] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/09/2017] [Indexed: 12/31/2022] Open
Abstract
We investigated whether the developmental stage of mouse cardiac fibroblasts (CFs) influences the formation and function of engineered cardiac tissues made of mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs). Engineered cardiac tissue patches were fabricated by encapsulating pure mESC-CMs, mESC-CMs + adult CFs, or mESC-CMs + fetal CFs in fibrin-based hydrogel. Tissue patches containing fetal CFs exhibited higher velocity of action potential propagation and contractile force amplitude compared to patches containing adult CFs, while pure mESC-CM patches did not form functional syncytium. The functional improvements in mESC-CM + fetal CF patches were associated with differences in structural remodeling and increased expression of proteins involved in cardiac function. To determine role of paracrine signaling, we cultured pure mESC-CMs within miniature tissue "micro-patches" supplemented with media conditioned by adult or fetal CFs. Fetal CF-conditioned media distinctly enhanced CM spreading and contractile activity, which was shown by pathway inhibitor experiments and Western blot analysis to be mediated via MEK-ERK signaling. In mESC-CM monolayers, CF-conditioned media did not alter CM spreading or MEK-ERK activation. Collectively, our studies show that 3D co-culture of mESC-CMs with embryonic CFs is superior to co-culture with adult CFs for in vitro generation of functional myocardium. Ensuring consistent developmental stages of cardiomyocytes and supporting non-myocytes may be a critical factor for promoting functional maturation of engineered cardiac tissues.
Collapse
Affiliation(s)
- Brian Liau
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Yanzhen Li
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nenad Bursac
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
7
|
The role of cardiac fibroblasts in post-myocardial heart tissue repair. Exp Mol Pathol 2016; 101:231-240. [DOI: 10.1016/j.yexmp.2016.09.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/30/2016] [Accepted: 09/07/2016] [Indexed: 12/22/2022]
|
8
|
Cardiotrophin-1 promotes cardiomyocyte differentiation from mouse induced pluripotent stem cells via JAK2/STAT3/Pim-1 signaling pathway. JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2016; 12:591-9. [PMID: 26788034 PMCID: PMC4712363 DOI: 10.11909/j.issn.1671-5411.2015.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND The induced pluripotent stem cell (iPSC) has shown great potential in cellular therapy of myocardial infarction (MI), while its application is hampered by the low efficiency of cardiomyocyte differentiation. The present study was designed to investigate the effects of cardiotrophin-1 (CT-1) on cardiomyocyte differentiation from mouse induced pluripotent stem cells (miPSCs) and the underlying mechanisms involved. METHODS The optimal treatment condition for cardiomyocyte differentiation from miPSCs was established with ideal concentration (10 ng/mL) and duration (from day 3 to day 14) of CT-1 administration. Up-regulated expression of cardiac specific genes that accounted for embryonic cardiogenesis was observed by quantitative RT-PCR. Elevated amount of α-myosin heavy chain (α-MHC) and cardiac troponin I (cTn I) positive cells were detected by immunofluorescence staining and flow cytometry analysis in CT-1 group. RESULTS Transmission electron microscopic analysis revealed that cells treated with CT-1 showed better organized sacromeric structure and more mitochondria, which are morphological characteristic of matured cardiomyocytes. Western blot demonstrated that CT-1 promotes cardiomyocyte differentiation from miPSCs partly via JAK2/STAT3/Pim-1 pathway as compared with control group. CONCLUSIONS These findings suggested that CT-1 could enhance the cardiomyocyte differentiation as well as the maturation of mouse induced pluripotent stem cell derived cardiomyocytes by regulating JAK2/STAT3/Pim-1signaling pathway.
Collapse
|
9
|
Zheng ZZ, Tian Fu X, Liang J, Bing Guo Z. CT-1 induces angiogenesis by regulating the ADMA/DDAH Pathway. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2015; 159:540-6. [DOI: 10.5507/bp.2015.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/18/2015] [Indexed: 11/23/2022] Open
|
10
|
Abstract
Myocardial infarction is defined as sudden ischemic death of myocardial tissue. In the clinical context, myocardial infarction is usually due to thrombotic occlusion of a coronary vessel caused by rupture of a vulnerable plaque. Ischemia induces profound metabolic and ionic perturbations in the affected myocardium and causes rapid depression of systolic function. Prolonged myocardial ischemia activates a "wavefront" of cardiomyocyte death that extends from the subendocardium to the subepicardium. Mitochondrial alterations are prominently involved in apoptosis and necrosis of cardiomyocytes in the infarcted heart. The adult mammalian heart has negligible regenerative capacity, thus the infarcted myocardium heals through formation of a scar. Infarct healing is dependent on an inflammatory cascade, triggered by alarmins released by dying cells. Clearance of dead cells and matrix debris by infiltrating phagocytes activates anti-inflammatory pathways leading to suppression of cytokine and chemokine signaling. Activation of the renin-angiotensin-aldosterone system and release of transforming growth factor-β induce conversion of fibroblasts into myofibroblasts, promoting deposition of extracellular matrix proteins. Infarct healing is intertwined with geometric remodeling of the chamber, characterized by dilation, hypertrophy of viable segments, and progressive dysfunction. This review manuscript describes the molecular signals and cellular effectors implicated in injury, repair, and remodeling of the infarcted heart, the mechanistic basis of the most common complications associated with myocardial infarction, and the pathophysiologic effects of established treatment strategies. Moreover, we discuss the implications of pathophysiological insights in design and implementation of new promising therapeutic approaches for patients with myocardial infarction.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Division of Cardiology, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
11
|
Sawaki D, Hou L, Tomida S, Sun J, Zhan H, Aizawa K, Son BK, Kariya T, Takimoto E, Otsu K, Conway SJ, Manabe I, Komuro I, Friedman SL, Nagai R, Suzuki T. Modulation of cardiac fibrosis by Krüppel-like factor 6 through transcriptional control of thrombospondin 4 in cardiomyocytes. Cardiovasc Res 2015; 107:420-30. [PMID: 25987545 DOI: 10.1093/cvr/cvv155] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 04/01/2015] [Indexed: 12/19/2022] Open
Abstract
AIMS Krüppel-like factors (KLFs) are a family of transcription factors which play important roles in the heart under pathological and developmental conditions. We previously identified and cloned Klf6 whose homozygous mutation in mice results in embryonic lethality suggesting a role in cardiovascular development. Effects of KLF6 on pathological regulation of the heart were investigated in the present study. METHODS AND RESULTS Mice heterozygous for Klf6 resulted in significantly diminished levels of cardiac fibrosis in response to angiotensin II infusion. Intriguingly, a similar phenotype was seen in cardiomyocyte-specific Klf6 knockout mice, but not in cardiac fibroblast-specific knockout mice. Microarray analysis revealed increased levels of the extracellular matrix factor, thrombospondin 4 (TSP4), in the Klf6-ablated heart. Mechanistically, KLF6 directly suppressed Tsp4 expression levels, and cardiac TSP4 regulated the activation of cardiac fibroblasts to regulate cardiac fibrosis. CONCLUSION Our present studies on the cardiac function of KLF6 show a new mechanism whereby cardiomyocytes regulate cardiac fibrosis through transcriptional control of the extracellular matrix factor, TSP4, which, in turn, modulates activation of cardiac fibroblasts.
Collapse
Affiliation(s)
- Daigo Sawaki
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Lianguo Hou
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Shota Tomida
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junqing Sun
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan The Key Laboratory of Biomedical Information Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Hong Zhan
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenichi Aizawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan Jichi Medical University, Tochigi, Japan
| | - Bo-Kyung Son
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Taro Kariya
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiki Takimoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kinya Otsu
- Cardiovascular Division, King's College London, London, UK
| | - Simon J Conway
- Program in Developmental Biology and Neonatal Medicine, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ichiro Manabe
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Issei Komuro
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Scott L Friedman
- Division of Liver Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Toru Suzuki
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan Jichi Medical University, Tochigi, Japan Department of Cardiovascular Sciences, University of Leicester, Leicester, UK National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| |
Collapse
|
12
|
Stimulation of cardiomyogenesis from mouse embryonic stem cells by nuclear translocation of cardiotrophin-1. Int J Cardiol 2015; 193:23-33. [PMID: 26005169 DOI: 10.1016/j.ijcard.2015.05.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 01/07/2023]
Abstract
BACKGROUND Cardiotrophin-1 (CT-1) controls cardiomyogenesis of mouse embryonic stem (ES) cells. OBJECTIVES To investigate the signaling pathway underlying the action of CT-1 on cardiac cell differentiation. METHODS Protein expression was analyzed by western blot technique and cardiac areas by immunohistochemistry. Calcium, reactive oxygen species (ROS) and nitric oxide (NO) were assessed by microfluorometry using fluo-4, H2DCF, and DAF-2DA, respectively. Gene inactivation of CT-1 was achieved by siRNA technology. RESULTS CT-1 as well as its receptor gp 130 were transiently upregulated during differentiation of ES cells. Exogenous CT-1 enhanced cardiomyogenesis, increased the cardiac transcription factors MEF2c, Nkx-2.5, TEAD3 and GATA4, the cardiac proteins α-actinin, MLC2a, MYH7, MLC1a, MLC2v and HCN4 as well as vascular endothelial growth factor (VEGF), platelet-derived growth factor-BB (PDGF-BB), fibroblast growth factor-2 (FGF-2) and atrial natriuretic peptide (ANP). CT-1 downregulation by small interfering RNA (siRNA) inhibited cardiomyogenesis and decreased VEGF, PDGF-BB, FGF-2 and ANP expression. CT-1 raised intracellular calcium which was abolished by the intracellular calcium chelator BAPTA, AM and thapsigargin. Moreover, CT-1 treatment increased ROS, followed by NO generation and NOS3 activation. During ES cell differentiation CT-1 was translocated to the cell nucleus. Exogenous CT-1 induced nuclear translocation of endogenous CT-1, which was inhibited by BAPTA, the NOS inhibitor L-N(G)-Nitroarginine methyl ester (l-NAME), the radical scavenger N-(2-mercaptopropionyl)-glycine (NMPG) as well as the janus kinase 2 (JAK2) inhibitor AG490 and the PI3 kinase (PI3K) inhibitor LY294002. CONCLUSIONS Nuclear translocation of CT-1 regulates cardiomyogenesis of ES cells and involves calcium, NO, ROS as well as CT-1 regulated signaling pathways.
Collapse
|
13
|
Roche PL, Filomeno KL, Bagchi RA, Czubryt MP. Intracellular Signaling of Cardiac Fibroblasts. Compr Physiol 2015; 5:721-60. [DOI: 10.1002/cphy.c140044] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Abstract
Both experimental and clinical evidence accumulated over the last couple of decades has linked inflammatory activation to the initiation and progression of chronic heart failure (HF). Circulating levels of inflammatory mediators are associated with cardiac function and inform risk prediction in patients, but the effect of anti-inflammatory therapy in HF remains uncertain. Interleukin (IL)-6 type cytokines are central to the inflammatory response, and convey their signals through the ubiquitously expressed glycoprotein (gp) 130 receptor subunit. IL-6-type/gp130 signaling therefore represents an inflammatory nexus, with inherent potential for disease modification. This review focuses on the current knowledge of IL-6/gp130 signaling in relation to HF, with a particular emphasis on the role of soluble gp130 (sgp130), a signaling pathway modulator. Biological aspects of sgp130 and IL-6 signaling are discussed, as are potential novel therapeutic approaches to modulate this central inflammatory signaling pathway.
Collapse
|
15
|
Heying R, Qing M, Schumacher K, Sokalska-Duhme M, Vazquez-Jimenez JF, Seghaye MC. Myocardial cardiotrophin-1 is differentially induced in congenital cardiac defects depending on hypoxemia. Future Cardiol 2014; 10:53-62. [DOI: 10.2217/fca.13.99] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
ABSTRACT: Aim: Cardiotrophin-1 (CT-1) is upregulated by hypoxemia and hemodynamic overload and is characterized by potent hypertrophic and protective properties on cardiac cells. This study aimed to investigate whether CT-1 is differentially induced in the myocardium of infants with congenital cardiac defects depending on hypoxemia. Methods & results: Infants with Tetralogy of Fallot (n = 8) or with large nonrestrictive ventricular septal defect (n = 8) undergoing corrective surgery were investigated. Expression of CT-1 was assessed at mRNA and protein levels in the right atrial and ventricular myocardium. The activation of the STAT-3 and VEGF were measured. Degradation of cardiac troponin-I served as a marker of myocardial damage. CT-1 was detected in all patients with levels negatively correlating to the arterial oxygen saturation. Higher CT-1 expression in Tetralogy of Fallot patients was associated with activation of the JAK/STAT pathway and higher cardiac troponin-I degradation. Conclusion: CT-1 may mediate myocardial hypertrophy and dysfunction in infants with congenital cardiac defects, particularly in those with hypoxemia.
Collapse
Affiliation(s)
- Ruth Heying
- Department of Pediatric Cardiology, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Ma Qing
- Department of Pediatric Cardiology, Aachen University, Aachen, Germany
| | - Katharina Schumacher
- Department of Pediatric Cardiology, Aachen University, Aachen, Germany
- Department of Pediatrics, University Hospital Liège, Liège, Belgium
| | | | | | - Marie-Christine Seghaye
- Department of Pediatric Cardiology, Aachen University, Aachen, Germany
- Department of Pediatrics, University Hospital Liège, Liège, Belgium
| |
Collapse
|
16
|
López B, González A, Querejeta R, Larman M, Rábago G, Díez J. Association of cardiotrophin-1 with myocardial fibrosis in hypertensive patients with heart failure. Hypertension 2013; 63:483-9. [PMID: 24366078 DOI: 10.1161/hypertensionaha.113.02654] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Cardiotrophin-1 has been shown to be profibrogenic in experimental models. The aim of this study was to analyze whether cardiotrophin-1 is associated with left ventricular end-diastolic stress and myocardial fibrosis in hypertensive patients with heart failure. Endomyocardial biopsies from patients (n=31) and necropsies from 7 control subjects were studied. Myocardial cardiotrophin-1 protein and mRNA and the fraction of myocardial volume occupied by collagen were increased in patients compared with controls (P<0.001). Cardiotrophin-1 overexpression in patients was localized in cardiomyocytes. Cardiotrophin-1 protein was correlated with collagen type I and III mRNAs (r=0.653, P<0.001; r=0.541, P<0.01) and proteins (r=0.588, P<0.001; r=0.556, P<0.005) in all subjects and with left ventricular end-diastolic wall stress (r=0.450; P<0.05) in patients. Plasma cardiotrophin-1 and N-terminal pro-brain natriuretic peptide and serum biomarkers of myocardial fibrosis (carboxy-terminal propeptide of procollagen type I and amino-terminal propeptide of procollagen type III) were increased (P<0.001) in patients compared with controls. Plasma cardiotrophin-1 was correlated with N-terminal pro-brain natriuretic peptide (r=0.386; P<0.005), carboxy-terminal propeptide of procollagen type I (r=0.550; P<0.001), and amino-terminal propeptide of procollagen type III (r=0.267; P<0.05) in all subjects. In vitro, cardiotrophin-1 stimulated the differentiation of human cardiac fibroblast to myofibroblasts (P<0.05) and the expression of procollagen type I (P<0.05) and III (P<0.01) mRNAs. These findings show that an excess of cardiotrophin-1 is associated with increased collagen in the myocardium of hypertensive patients with heart failure. It is proposed that exaggerated cardiomyocyte production of cardiotrophin-1 in response to increased left ventricular end-diastolic stress may contribute to fibrosis through stimulation of fibroblasts in heart failure of hypertensive origin.
Collapse
Affiliation(s)
- Begoña López
- Área de Ciencias Cardiovasculares, CIMA, Avenida Pío XII 55, 31008 Pamplona, Spain.
| | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Association of cardiotrophin-1 with left ventricular systolic properties in asymptomatic hypertensive patients. J Hypertens 2013; 31:587-94. [PMID: 23429662 DOI: 10.1097/hjh.0b013e32835ca903] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Cardiotrophin-1 (CT-1) induces hypertrophic growth and contractile dysfunction in cardiomyocytes. This cross-sectional study was aimed to analyze CT-1 associations with echocardiographically assessed left ventricular systolic properties taking into account the influence of left ventricular growth [i.e. left ventricular hypertrophy (LVH) and inappropriate left ventricular mass (iLVM)] in asymptomatic hypertensive patients. METHODS Serum CT-1 was measured by ELISA in 278 asymptomatic hypertensive patients with a left ventricular ejection fraction more than 50% and in 25 age and sex-matched normotensive patients. RESULTS Serum CT-1 was increased in hypertensive patients as compared to normotensive patients. CT-1 was directly correlated with parameters of left ventricular mass (LVM) and inversely correlated with parameters assessing myocardial systolic function and left ventricular chamber contractility in hypertensive patients, these associations being independent of a number of potential confounding factors. Interestingly, the associations of CT-1 with myocardial systolic function were independent of LVM even in patients with LVH or iLVM. In addition, there was a significant increment of serum CT-1 in hypertensive patients with LVH or iLVM, especially in those in whom LVH or iLVM were accompanied by impaired myocardial systolic function, as compared to the remaining hypertensive patients and normotensive patients. Plasma amino-terminal pro-brain natriuretic peptide was not correlated with any of the assessed left ventricular systolic parameters in either group of patients. CONCLUSION These findings suggest that serum CT-1 is associated with myocardial systolic dysfunction in asymptomatic hypertensive patients, independently of LVM, even in those patients with pathologic left ventricular growth.
Collapse
|
19
|
He Q, Wang M, Harris N, Han X. Tafazzin knockdown interrupts cell cycle progression in cultured neonatal ventricular fibroblasts. Am J Physiol Heart Circ Physiol 2013; 305:H1332-43. [PMID: 23997105 DOI: 10.1152/ajpheart.00084.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mutation of the mitochondrial protein tafazzin causes dilated cardiomyopathy in Barth syndrome. Previous studies have shown that tafazzin knockdown promotes hypertrophy of neonatal cardiac myocytes. The current investigation was designed to show whether tafazzin knockdown affects cardiac fibroblast proliferation and collagen secretion, which contribute to fibrosis in dilated cardiomyopathy. In primary cultures of neonatal ventricular fibroblasts (NVFs) transduced with a tafazzin short hairpin RNA adenovirus, tafazzin knockdown increased production of reactive oxygen species and activation of mitogen-activated protein kinases and induced protein and DNA synthesis via cell cycle regulators. It also reduced intracellular ATP, activated AMPK, and caused multinucleation, hypertrophy, and enhanced collagen secretion. We concluded that tafazzin knockdown interrupts the NVF cell cycle and this in turn may contribute to fibrosis and dilated cardiomyopathy in Barth syndrome.
Collapse
Affiliation(s)
- Quan He
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, Florida; and
| | | | | | | |
Collapse
|
20
|
Ho TJ, Huang CC, Huang CY, Lin WT. Fasudil, a Rho-kinase inhibitor, protects against excessive endurance exercise training-induced cardiac hypertrophy, apoptosis and fibrosis in rats. Eur J Appl Physiol 2011; 112:2943-55. [PMID: 22160250 DOI: 10.1007/s00421-011-2270-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2011] [Accepted: 11/28/2011] [Indexed: 01/08/2023]
Abstract
Excessive endurance exercise training (EEET) is accompanied by cardiac remodeling, changes in ventricular function and increased heart failure risk. Fasudil, a potent Rho-kinase inhibitor, has been demonstrated to blunt cardiomyocyte hypertrophy, cardiac remodeling, and heart failure progression in pre-clinical trials and has been approved for clinical use in Japan. We examined the in vivo bioefficacy of fasudil against EEET-induced cardiac remodeling and the underlying molecular mechanisms. Male Sprague-Dawley rats were randomly divided into three groups: sedentary control (SC), EEET, and EEET with fasudil treatment (EEET-F). Rats in EEET and EEET-F groups ran on a motorized treadmill for 12 weeks. The results revealed that EEET increased myocardial hypertrophy (LV weight/tibial length), myocyte cross-sectional area, hypertrophy-related pathways (IL6/STAT3-MEK5-ERK5, calcineurin-NFATc3, p38 and JNK MAPK), hypertrophic markers (ANP/BNP), pro-apoptotic molecules (cytochrome C, cleaved caspase-3 and PARP), and fibrosis-related pathways (FGF-2-ERK1/2) and fibrosis markers (uPA, MMP-9 and -2). These pathways were then expressed lower in the EEET-F group when compared with the EEET group. The cardiac hypertrophic level, apoptotic pathway and fibrosis signaling were further inhibited in the fasudil-treated group. We systematically investigated the possible signaling pathways leading to EEET-induced cardiac hypertrophy, apoptosis and fibrosis. We also provide evidence for the novel function of fasudil in suppressing EEET-induced cardiac remodeling and impairment by multiple mechanisms, which suggests that the RhoA signaling pathway contributes to EEET-induced cardiac remodeling and dysfunction.
Collapse
Affiliation(s)
- Tsung-Jung Ho
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan, ROC
| | | | | | | |
Collapse
|
21
|
Takeda N, Manabe I. Cellular Interplay between Cardiomyocytes and Nonmyocytes in Cardiac Remodeling. Int J Inflam 2011; 2011:535241. [PMID: 21941677 PMCID: PMC3175723 DOI: 10.4061/2011/535241] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/28/2011] [Accepted: 06/12/2011] [Indexed: 01/12/2023] Open
Abstract
Cardiac hypertrophy
entails complex structural remodeling involving
rearrangement of muscle fibers, interstitial
fibrosis, accumulation of extracellular matrix,
and angiogenesis. Many of the processes
underlying cardiac remodeling have features in
common with chronic inflammatory processes.
During these processes, nonmyocytes, such as
endothelial cells, fibroblasts, and immune cells,
residing in or infiltrating into the myocardial
interstitium play active roles. This paper
mainly addresses the functional roles of
nonmyocytes during cardiac remodeling. In
particular, we focus on the communication
between cardiomyocytes and nonmyocytes through
direct cell-cell interactions and
autocrine/paracrine-mediated
pathways.
Collapse
Affiliation(s)
- Norifumi Takeda
- Department of Cell and Developmental Biology and Penn Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
22
|
Freed DH, Chilton L, Li Y, Dangerfield AL, Raizman JE, Rattan SG, Visen N, Hryshko LV, Dixon IMC. Role of myosin light chain kinase in cardiotrophin-1-induced cardiac myofibroblast cell migration. Am J Physiol Heart Circ Physiol 2011; 301:H514-22. [DOI: 10.1152/ajpheart.01041.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chemotactic movement of myofibroblasts is recognized as a common means for their sequestration to the site of tissue injury. Following myocardial infarction (MI), recruitment of cardiac myofibroblasts to the infarct scar is a critical step in wound healing. Contractile myofibroblasts express embryonic smooth muscle myosin, α-smooth muscle actin, as well as collagens I and III. We examined the effects of cardiotrophin-1 (CT-1) in the induction of primary rat ventricular myofibroblast motility. Changes in membrane potential (Em) and Ca2+entry were studied to reveal the mechanisms for induction of myofibroblast migration. CT-1-induced cardiac myofibroblast cell migration, which was attenuated through the inhibition of JAK2 (25 μM AG490), and myosin light chain kinase (20 μM ML-7). Inhibition of K+channels (1 mM tetraethylammonium or 100 μM 4-aminopyridine) and nonselective cation channels by 10 μM gadolinium (Gd3+) significantly reduced migration in the presence of CT-1. CT-1 treatment caused a significant increase in myosin light chain phosphorylation, which could be inhibited by incubation in Ca2+-free conditions or by application of AG490, ML-7, and W7 (100 μM; calmodulin inhibitor). Monitoring myofibroblast membrane potential with potentiometric fluorescent DiBAC4( 3 ) dye revealed a biphasic response to CT-1 consisting of an initial depolarization followed by hyperpolarization. Increased intracellular Ca2+, as assessed by fluo 3, occurred immediately after membrane depolarization and attenuated at the time of maximal hyperpolarization. CT-1 exerts chemotactic effects via multiple parallel signaling modalities in ventricular myofibroblasts, including changes in membrane potential, alterations in intracellular calcium, and activation of a number of intracellular signaling pathways. Further study is warranted to determine the precise role of K+currents in this process.
Collapse
Affiliation(s)
- Darren H. Freed
- Departments of 1Physiology and
- Surgery, Faculty of Medicine, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, Canada; and
| | - Lisa Chilton
- School of Veterinary and Biomedical Services, James Cook University, Cairns, Australia
| | - Yun Li
- Departments of 1Physiology and
| | | | - Joshua E. Raizman
- Surgery, Faculty of Medicine, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, Canada; and
| | | | | | | | | |
Collapse
|
23
|
Robador PA, San José G, Rodríguez C, Guadall A, Moreno MU, Beaumont J, Fortuño A, Díez J, Martínez-González J, Zalba G. HIF-1-mediated up-regulation of cardiotrophin-1 is involved in the survival response of cardiomyocytes to hypoxia. Cardiovasc Res 2011; 92:247-55. [PMID: 21771897 DOI: 10.1093/cvr/cvr202] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIMS Cardiotrophin-1 (CT-1) is a cytokine of the interleukin-6 superfamily which is up-regulated in cardiac diseases, in part via hypoxia-dependent mechanisms. However, no evidence for a direct regulation of CT-1 gene (CTF1) promoter by hypoxia inducible factor-1 (HIF-1) has been provided. METHODS AND RESULTS Hypoxia increased CT-1 mRNA levels in the murine adult cardiomyocyte cell line HL-1 in a time-dependent manner. Interestingly, in a murine model (C57BL/6), we show that systemic hypoxia also significantly up-regulated CT-1 in myocardial tissue. The effect of hypoxia on CT-1 expression was mediated through a transcriptional mechanism, since hypoxia increased luciferase activity of constructs containing CTF1 promoter sequences. The increase in CT-1 levels was significantly reduced by drugs that prevent calcium mobilization, such as lercanidipine, or that inhibit the activation of the PI3K/Akt pathway (wortmannin) or mammalian target of rapamycin (rapamycin). The CT-1 elevation was similarly induced by HIF-1α over-expression in co-transfection experiments and prevented by HIF-1α silencing. The direct interaction of HIF-1α with the CTF1 promoter was confirmed through site-directed mutagenesis of hypoxia response elements, electrophoreric mobility shift, and ChIP assays. Hypoxia induced HL-1 apoptosis (measured as annexin-V binding or caspase 3/7 activity) which was increased when CT-1 was silenced in knocked-down cells by lentiviral vectors. CONCLUSION Hypoxia increased CT-1 levels in cardiac cells (in vitro and in vivo) through a direct regulation of CTF1 promoter by HIF-1α. This CT-1 activation by hypoxia may protect cells from apoptosis, thus supporting a protective role for CT-1 as a survival factor for cardiomyocytes.
Collapse
Affiliation(s)
- Pablo A Robador
- Division of Cardiovascular Sciences, Center for Applied Medical Research, University of Navarra, Avda. Pío XII 55, 31008 Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Nakazato K, Naganuma W, Ogawa K, Yaoita H, Mizuno S, Nakamura T, Maruyama Y. Attenuation of ischemic myocardial injury and dysfunction by cardiac fibroblast-derived factor(s). Fukushima J Med Sci 2011; 56:1-16. [PMID: 21485651 DOI: 10.5387/fms.56.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Fibroblasts, the majority of non-cardiomyocytes in the heart, are known to release several kinds of substances such as cytokines and hormones that affect cell and tissue functions. We hypothesized that undefined substance (s) derived from cardiac fibroblasts may have the potential to protect against ischemic myocardium. To assess our hypothesis, using rats, we investigated: (1) the effect of cardiac fibroblast-conditioned medium (CM) on the viability of hypoxic cardiomyocytes in vitro, (2) the effect of CM on left ventricular (LV) function in global ischemia-reperfusion in an ex vive model, (3) the mechanism underlying cardioprotection by CM. Seventy-two hours after starting a hypoxic culture, the viability of cardiomyocytes was higher (P < 0.05) in the CM treated group (41.4%) compared to the control (20.5%). In Langendorff's preparation, 30 min after ischemia-reperfusion, LV end-diastolic pressure was lower, and LV developed pressure and -LVdP/dt were higher (P < 0.01 or P < 0.05) in the CM group than in the control, although coronary flow did not differ between the two groups. Pretreatment with a protein kinase C inhibitor or a mitochondrial ATP-sensitive K+ channel blocker attenuated these changes of LV function in the CM group. Such cardioprotection was achieved by a fraction of the CM having a molecular weight (MW) > 50,000, but not by that of the CM with a lower MW. In addition, a specific antibody against hepatocyte growth factor (HGF, MW is 84,000) did not reduce the cardioprotection afforded by CM. There may be an unknown cardioprotective substance other than HGF in rats, which mimics ischemic preconditioning and has MW > 50,000.
Collapse
Affiliation(s)
- Kazuhiko Nakazato
- Department of Cardiology and Hematology, Fukushima Medical University, Fukushima, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Mackovicova K, Gazova A, Kucerova D, Gajdacova B, Klimas J, Ochodnicky P, Goncalvesova E, Kyselovic J, Krenek P. Enalapril decreases cardiac mass and fetal gene expression without affecting the expression of endothelin-1, transforming growth factor β-1, or cardiotrophin-1 in the healthy normotensive rat. Can J Physiol Pharmacol 2011; 89:197-205. [DOI: 10.1139/y11-014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Angiotensin II can induce cardiac hypertrophy by stimulating the release of growth factors. ACE inhibitors reduce angiotensin II levels and cardiac hypertrophy, but their effects on the healthy heart are largely unexplored. We hypothesized that ACE inhibition decreases left ventricular mass in normotensive animals and that this is associated with altered expression of cardiac fetal genes, growth factors, and endothelial nitric oxide synthase (eNOS). Wistar rats (n = 7 per group) were orally administered with enalapril twice daily for a total daily dose of 5 mg·kg–1·d–1 (ENAP5) or 15 mg·kg–1·d–1 (ENAP15) or vehicle. Systolic blood pressure was measured by the tail-cuff method. Left ventricular expression of cardiac myosin heavy chain-α (MYH6) and -β (MYH7), atrial natriuretic peptide (ANP), endothelin-1 (ET-1), transforming growth factor β-1 (TGFβ-1), cardiotrophin-1 (CT-1), and renal renin were examined by real-time PCR, and eNOS using Western blot. Blood pressure was decreased only in ENAP15 animals (p < 0.05 vs. Control), whereas left ventricular mass decreased after both doses of enalapril (p < 0.05 vs. Control). MYH7 and ANP were reduced in ENAP15, while no changes in ET-1, TGFβ-1, CT-1, and MYH6 mRNA or eNOS protein were observed. Renal renin dose-dependently increased after enalapril treatment. Enalapril significantly decreased left ventricular mass even after 1 week treatment in the normotensive rat. This was associated with a decreased expression of the fetal genes MYH7 and ANP, but not expression of ET-1, CT-1, or TGFβ-1.
Collapse
Affiliation(s)
- Katarina Mackovicova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| | - Andrea Gazova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| | - Dana Kucerova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| | - Beata Gajdacova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| | - Jan Klimas
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| | - Peter Ochodnicky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| | - Eva Goncalvesova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| | - Jan Kyselovic
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| | - Peter Krenek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, Odbojárov 10, 832 32 Bratislava, Slovakia
- Faculty of Medicine, Institute of Pharmacology and Clinical Pharmacology, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Department of Heart Transplantation, The National Institute of Cardiovascular Diseases, Pod Krásnou hôrkou 1, 833 48 Bratislava, Slovakia
| |
Collapse
|
26
|
Abstract
Cardiotrophin (CT)-1 was discovered by coupling expression cloning with an embryonic stem cell-based model of cardiogenesis. Comparison of similarity in amino acid sequence and conformational structure indicates that CT-1 is a member of the interleukin (IL)-6 type cytokine family that shares the transmembrane signaling protein, glycoprotein (gp) 130 as a receptor. These cytokines mediate overlapping pleiotropic actions on a variety of cell types including cardiac myocytes, hepatocytes, megakaryocytes, osteoclasts, and neuronal cells. CT-lmediates its hypertrophic and cytoprotective properties through the Janus kinase/signal transducers and activators of transcription (JAK/STAT), mitogen-activated protein (MAP) kinase, phosphatidylinositol (PI) 3 kinase, and nuclear factor kappa B (NFkappaB) pathways. CT-1 gene and protein are distributed not only in the heart, but also in the pulmonary, renal, gastrointestinal, cerebral, and muscular tissues. CT-1 could also be synthesized and secreted from vascular endothelial cells and adipocytes. CT-1 has hypertrophic actions on the cardiac myocytes, skeletal muscle cells, and smooth muscle cells as well as cytoprotective actions on the cardiac myocytes, neuronal cells, and hepatocytes. CT-1 is circulating in the body, and its plasma concentration is increased in various cardiovascular and renal diseases such as hypertension, congestive heart failure, myocardial infarction, valvular heart disease, metabolic syndrome, and chronic kidney disease. Treatment with CT-1 is beneficial in experimental animal models of cardiovascular diseases. CT-1 specifically protects the cardiac myocytes from ischemic damage when CT-1 is given not only prior to the ischemia, but also given at the time of reoxygenation. Current evidence suggests that CT-1 plays an important role in the regulation of the cardiovascular system.
Collapse
Affiliation(s)
- Michihisa Jougasaki
- Institute for Clinical Research, National Hospital Organization Kagoshima Medical Center, Kagoshima, Japan.
| |
Collapse
|
27
|
Using a cardiac anchor to refine myocardial infarction surgery in the rat. Lab Anim (NY) 2010; 39:313-7. [DOI: 10.1038/laban1010-313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 03/24/2010] [Indexed: 11/09/2022]
|
28
|
Xinyun C, Zhi Z, Bin Z, Li R, Yucheng C, Yafei Y, Tingjie Z, Shengfu L. Effects of cardiotrophin-1 on differentiation and maturation of rat bone marrow mesenchymal stem cells induced with 5-azacytidine in vitro. Int J Cardiol 2010; 143:171-7. [DOI: 10.1016/j.ijcard.2009.02.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 12/09/2008] [Accepted: 02/06/2009] [Indexed: 11/17/2022]
|
29
|
Liao S, Bodmer J, Pietras D, Azhar M, Doetschman T, Schultz JEJ. Biological functions of the low and high molecular weight protein isoforms of fibroblast growth factor-2 in cardiovascular development and disease. Dev Dyn 2009; 238:249-64. [PMID: 18773489 DOI: 10.1002/dvdy.21677] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Fibroblast growth factor 2 (FGF2) consists of multiple protein isoforms (low molecular weight, LMW, and high molecular weight, HMW) produced by alternative translation from the Fgf2 gene. These protein isoforms are localized to different cellular compartments, indicating unique biological activity. FGF2 isoforms in the heart have distinct roles in many pathological circumstances in the heart including cardiac hypertrophy, ischemia-reperfusion injury, and atherosclerosis. These studies suggest distinct biological activities of FGF2 LMW and HMW isoforms both in vitro and in vivo. Yet, due to the limitations that only the recombinant FGF2 LMW isoform is readily available and that the FGF2 antibody is nonspecific with regards to its isoforms, much remains to be determined regarding the role(s) of the FGF2 LMW and HMW isoforms in cellular behavior and in cardiovascular development and pathophysiology. This review summarizes the activities of LMW and HMW isoforms of FGF2 in cardiovascular development and disease.
Collapse
Affiliation(s)
- Siyun Liao
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | | | | | | | |
Collapse
|
30
|
Miyake T, Alli NS, Aziz A, Knudson J, Fernando P, Megeney LA, McDermott JC. Cardiotrophin-1 maintains the undifferentiated state in skeletal myoblasts. J Biol Chem 2009; 284:19679-93. [PMID: 19439412 DOI: 10.1074/jbc.m109.017319] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Skeletal myogenesis is potently regulated by the extracellular milieu of growth factors and cytokines. We observed that cardiotrophin-1 (CT-1), a member of the interleukin-6 (IL-6) family of cytokines, is a potent regulator of skeletal muscle differentiation. The normal up-regulation of myogenic marker genes, myosin heavy chain (MyHC), myogenic regulatory factors (MRFs), and myocyte enhancer factor 2s (MEF2s) were inhibited by CT-1 treatment. CT-1 also represses myogenin (MyoG) promoter activation. CT-1 activated two signaling pathways: signal transducer and activator of transcription 3 (STAT3), and mitogen-activated protein kinase kinase (MEK), a component of the extracellular signal-regulated MAPK (ERK) pathway. In view of the known connection between CT-1 and STAT3 activation, we surprisingly found that pharmacological blockade of STAT3 activity had no effect on the inhibition of myogenesis by CT-1 suggesting that STAT3 signaling is dispensable for myogenic repression. Conversely, MEK inhibition potently reversed the inhibition of myotube formation and attenuated the repression of MRF transcriptional activity mediated by CT-1. Taken together, these data indicate that CT-1 represses skeletal myogenesis through interference with MRF activity by activation of MEK/ERK signaling. In agreement with these in vitro observations, exogenous systemic expression of CT-1 mediated by adenoviral vector delivery increased the number of myonuclei in normal post-natal mouse skeletal muscle and also delayed skeletal muscle regeneration induced by cardiotoxin injection. The expression pattern of CT-1 in embryonic and post-natal skeletal muscle and in vivo effects of CT-1 on myogenesis implicate CT-1 in the maintenance of the undifferentiated state in muscle progenitor cells.
Collapse
Affiliation(s)
- Tetsuaki Miyake
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | | | | | | | | | |
Collapse
|
31
|
Novel insights into the role of cardiotrophin-1 in cardiovascular diseases. J Mol Cell Cardiol 2009; 46:142-8. [DOI: 10.1016/j.yjmcc.2008.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 10/31/2008] [Accepted: 11/05/2008] [Indexed: 01/19/2023]
|
32
|
Stejskal D, Ruzicka V. Cardiotrophin-1. Review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2008; 152:9-19. [PMID: 18795069 DOI: 10.5507/bp.2008.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cardiotrophin-1 is newly discovered chemokin with a lot of functions. Aim of our work was to describe most important of them. METHODS systematically scan of available scientific resources. RESULTS Cardiotrophin-1 stimulates the proliferation of cardiomyocytes. Cardiotrophin-1 expression and plasma values are elevated in individuals with heart failure and have high diagnostic efficacy for the heart failure. Plasma values are also an independent prognostic factor. Preliminary findings suggest that the determination of plasma cardiotrophin-1 may be useful for the follow-up of hypertensive heart disease in routine clinical practice. Cardiotrophin-1 also plays an important cardioprotective effect on myocardial damage, is a potent regulator of signaling in adipocytes in vitro and in vivo and potentiates the elevation the acute-phase proteins. Cardiotrophin-1 may play also an important protective role in other organ systems (such as hematopoietic, neuronal, developmental). CONCLUSION Cardiotrophin is a newly discovered chemokin with a lot of system effects and is stable in system circulation hence permitting its development in the routine clinical investigation.
Collapse
Affiliation(s)
- David Stejskal
- Department of Laboratory Medicine, Sternberk Hospital, Czech Republic.
| | | |
Collapse
|
33
|
Hohensinner PJ, Kaun C, Rychli K, Niessner A, Pfaffenberger S, Rega G, Furnkranz A, Uhrin P, Zaujec J, Afonyushkin T, Bochkov VN, Maurer G, Huber K, Wojta J. The inflammatory mediator oncostatin M induces stromal derived factor‐1 in human adult cardiac cells. FASEB J 2008; 23:774-82. [DOI: 10.1096/fj.08-108035] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- P. J. Hohensinner
- Department of Internal Medicine II and and Thrombosis ResearchMedical University of ViennaViennaAustria
- Ludwig Boltzmann Cluster for Cardiovascular ResearchViennaAustria
| | - C. Kaun
- Department of Internal Medicine II and and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - K. Rychli
- Department of Internal Medicine II and and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - A. Niessner
- Department of Internal Medicine II and and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - S. Pfaffenberger
- Department of Internal Medicine II and and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - G. Rega
- Department of Internal Medicine II and and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - A. Furnkranz
- Third Department of MedicineWilhelminenhospitalViennaAustria
| | - P. Uhrin
- Department of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - J. Zaujec
- Department of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - T. Afonyushkin
- Department of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - V. N. Bochkov
- Department of Vascular Biology and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - G. Maurer
- Department of Internal Medicine II and and Thrombosis ResearchMedical University of ViennaViennaAustria
| | - K. Huber
- Third Department of MedicineWilhelminenhospitalViennaAustria
| | - J. Wojta
- Department of Internal Medicine II and and Thrombosis ResearchMedical University of ViennaViennaAustria
- Ludwig Boltzmann Cluster for Cardiovascular ResearchViennaAustria
| |
Collapse
|
34
|
Abstract
Myocardial infarction is the most common cause of cardiac injury and results in acute loss of a large number of myocardial cells. Because the heart has negligible regenerative capacity, cardiomyocyte death triggers a reparative response that ultimately results in formation of a scar and is associated with dilative remodeling of the ventricle. Cardiac injury activates innate immune mechanisms initiating an inflammatory reaction. Toll-like receptor-mediated pathways, the complement cascade and reactive oxygen generation induce nuclear factor (NF)-kappaB activation and upregulate chemokine and cytokine synthesis in the infarcted heart. Chemokines stimulate the chemotactic recruitment of inflammatory leukocytes into the infarct, while cytokines promote adhesive interactions between leukocytes and endothelial cells, resulting in transmigration of inflammatory cells into the site of injury. Monocyte subsets play distinct roles in phagocytosis of dead cardiomyocytes and in granulation tissue formation through the release of growth factors. Clearance of dead cells and matrix debris may be essential for resolution of inflammation and transition into the reparative phase. Transforming growth factor (TGF)-beta plays a crucial role in cardiac repair by suppressing inflammation while promoting myofibroblast phenotypic modulation and extracellular matrix deposition. Myofibroblast proliferation and angiogenesis result in formation of highly vascularized granulation tissue. As the healing infarct matures, fibroblasts become apoptotic and a collagen-based matrix is formed, while many infarct neovessels acquire a muscular coat and uncoated vessels regress. Timely resolution of the inflammatory infiltrate and spatial containment of the inflammatory and reparative response into the infarcted area are essential for optimal infarct healing. Targeting inflammatory pathways following infarction may reduce cardiomyocyte injury and attenuate adverse remodeling. In addition, understanding the role of the immune system in cardiac repair is necessary in order to design optimal strategies for cardiac regeneration.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Section of Cardiovascular Sciences, Baylor College of Medicine, One Baylor Plaza BCM620, Houston, TX 77030, United States.
| |
Collapse
|
35
|
Rossini A, Zacheo A, Mocini D, Totta P, Facchiano A, Castoldi R, Sordini P, Pompilio G, Abeni D, Capogrossi MC, Germani A. HMGB1-stimulated human primary cardiac fibroblasts exert a paracrine action on human and murine cardiac stem cells. J Mol Cell Cardiol 2008; 44:683-93. [DOI: 10.1016/j.yjmcc.2008.01.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Revised: 01/15/2008] [Accepted: 01/21/2008] [Indexed: 01/23/2023]
|
36
|
Ichiki T, Jougasaki M, Setoguchi M, Imamura J, Nakashima H, Matsuoka T, Sonoda M, Nakamura K, Minagoe S, Tei C. Cardiotrophin-1 stimulates intercellular adhesion molecule-1 and monocyte chemoattractant protein-1 in human aortic endothelial cells. Am J Physiol Heart Circ Physiol 2008; 294:H750-63. [DOI: 10.1152/ajpheart.00161.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1) play critical roles in mediating monocyte adhesion to the vascular endothelium and monocyte migration into the subendothelial regions of the vessels. Inasmuch as cardiotrophin-1 (CT-1), an IL-6-type cytokine, was expressed in human atherosclerotic plaque, we examined whether CT-1 induces monocyte adhesion and migration by stimulating gene and protein expressions of ICAM-1 and MCP-1 in human aortic endothelial cells (HAECs). Immunocytochemistry revealed that CT-1 increased intensity of ICAM-1 and MCP-1 immunoreactivity in HAECs. Adhesion assay and chemotaxis assay revealed that CT-1 increased human monocytic THP-1 cell adhesion to HAECs and promoted chemotaxis in THP-1 cells, which were attenuated by anti-ICAM-1 and anti-MCP-1 antibody, respectively. Western blot analysis showed that CT-1 increased phosphorylation of ERK1/2 MAP kinase, p38 MAP kinase, and Akt and that their inhibitors, PD-98059, SB-203580, and LY-294002, respectively, inhibited phosphorylation. RNase protection assay and ELISA demonstrated that CT-1 increased gene and protein expressions of ICAM-1 and MCP-1. EMSA revealed that CT-1 enhanced NF-κB DNA-binding activity. CT-1-mediated upregulation of ICAM-1 and MCP-1 was suppressed by PD-98059, SB-203580, LY-294002, and parthenolide. The present study demonstrates that CT-1 promotes monocyte adhesion and migration by stimulating ICAM-1 and MCP-1 through mechanisms that involve ERK1/2 MAP kinase, p38 MAP kinase, phosphatidylinositol 3-kinase, and NF-κB pathways and suggests that CT-1 plays an important role in the pathophysiology of vascular inflammation and atherosclerosis.
Collapse
|
37
|
Natal C, Fortuño MA, Restituto P, Bazán A, Colina I, Díez J, Varo N. Cardiotrophin-1 is expressed in adipose tissue and upregulated in the metabolic syndrome. Am J Physiol Endocrinol Metab 2008; 294:E52-60. [PMID: 17940213 DOI: 10.1152/ajpendo.00506.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Adipose tissue is a target for cardiotrophin-1 (CT-1), a cytokine member of the IL-6 family of cytokines that is involved in cardiac growth and dysfunction. However, it is unknown whether adipocytes are a source of CT-1 and whether CT-1 is overexpressed in diseases characterized by increased fat depots [i.e., the metabolic syndrome (MS)]. Thus this work aimed 1) to test whether adipose tissue expresses CT-1 and whether CT-1 expression can be modulated and 2) to compare serum CT-1 levels in subjects with and without MS diagnosed by National Cholesterol Education Program Adult Treatment Panel III criteria. Gene and protein expression of CT-1 was determined by real-time RT-PCR, ELISA, and Western blotting. CT-1 expression progressively increased, along with differentiation time from preadipocyte to mature adipocyte in 3T3-L1 cells. CT-1 expression was enhanced by glucose in a dose-dependent manner in these cells. mRNA and protein CT-1 expression was also demonstrated in human adipose biopsies. Immunostaining showed positive staining in adipocytes. Finally, increased CT-1 serum levels were observed in patients with MS compared with control subjects (127 +/- 9 vs. 106 +/- 4 ng/ml, P < 0.05). Circulating levels of CT-1 were associated with glucose levels (r = 0.2, P < 0.05). Taken together, our data suggest that adipose tissue can be recognized as a source of CT-1, which could account for the high circulating levels of CT-1 in patients with MS.
Collapse
Affiliation(s)
- Cristina Natal
- Division of Cardiovascular Sciences, Center for Applied Medical Research, University of Navarra, Avda Pío XII 55, 31008 Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
38
|
Drobic V, Cunnington RH, Bedosky KM, Raizman JE, Elimban VV, Rattan SG, Dixon IMC. Differential and combined effects of cardiotrophin-1 and TGF-β1 on cardiac myofibroblast proliferation and contraction. Am J Physiol Heart Circ Physiol 2007; 293:H1053-64. [PMID: 17483238 DOI: 10.1152/ajpheart.00935.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myofibroblasts respond to an array of signals from mitogens and cytokines during the course of wound healing following a myocardial infarction (MI), and these signals may coordinate ventricular myofibroblast proliferation. Furthermore, myofibroblasts are contractile and contribute to wound contraction by imparting mechanical tension on surrounding extracellular matrix. Although TGF-β1, CT-1, and PDGF-BB participate in various stages of post-MI wound healing, their combined net effect(s) on myofibroblast function is unknown. We investigated myofibroblast proliferation, expression of cell cycle proteins, and contractile function of cells treated with TGF-β1 and/or CT-1. We confirmed that TGF-β1 (10 ng/ml) suppresses proliferation of these cells, whereas CT-1 (10 ng/ml) and, for comparative purposes, PDGF-BB (1 ng/ml) treatments were associated with proliferation. Specific TGF-β1 treatment ablated CT-1-induced myofibroblast proliferation. TGF-β1 effects were specific, as they were suppressed by either TGF-β-neutralizing antibody or viral Smad7 overexpression. TGF-β1 treatment also increased expression of p27 and decreased expression of cyclin E and Cdk2 in primary cells. CT-1 (10 ng/ml) treatment of myofibroblasts had no effect on collagen gel deformation versus controls, whereas TGF-β1 (10 ng/ml) and PDGF (10 ng/ml) treatments were associated with significant cell contraction; again, TGF-β1-mediated contraction was unaffected by CT-1. Alone, CT-1 and TGF-β1 treatments exert opposing effects on myofibroblast function, whereas in combination TGF-β1-mediated effects supersede those of CT-1 (and PDGF-BB). Thus TGF-β1 and CT-1 exert differential effects on myofibroblast proliferation and contraction in vitro, and we suggest that a balance of these effects may be important for the execution of normal cardiac wound healing.
Collapse
Affiliation(s)
- Vanja Drobic
- Institute of Cardiovascular Science, St. Boniface General Hospital Research Centre, Department of Physiology, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | | | | | | | |
Collapse
|
39
|
Fischer P, Hilfiker-Kleiner D. Survival pathways in hypertrophy and heart failure: the gp130-STAT3 axis. Basic Res Cardiol 2007; 102:279-97. [PMID: 17530315 DOI: 10.1007/s00395-007-0658-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 04/23/2007] [Accepted: 04/24/2007] [Indexed: 12/26/2022]
Abstract
Circulating levels of interleukin (IL)-6 and related cytokines are elevated in patients with congestive heart failure and after myocardial infarction. Serum IL-6 concentrations are related to decreasing functional status of these patients and provide important prognostic information.Moreover, in the failing human heart, multiple components of the IL-6- glycoprotein (gp)130 receptor system are impaired, implicating an important role of this system in cardiac pathophysiology.Experimental studies have shown that the common receptor subunit of IL-6 cytokines is phosphorylated in response to pressure overload and myocardial infarction and that it subsequently activates at least three different downstream signaling pathways, the signal transducers and activators of transcription 1 and 3 (STAT1/3), the Src-homology tyrosine phosphatase 2 (SHP2)-Ras-ERK, and the PI3K-Akt system. Gp130 receptor mediated signaling promotes cardiomyocyte survival, induces hypertrophy, modulates cardiac extracellular matrix and cardiac function. In this regard, the gp130 receptor system and its main downstream mediator STAT3 play a key role in cardioprotection. This review summarizes the current knowledge of IL-6 cytokines, gp130 receptor and STAT3 signaling in the heart exposed to physiological (aging, pregnancy) and pathophysiological stress (ischemia, pressure overload, inflammation and cardiotoxic agents) with a special focus on the potential role of individual IL-6 cytokines.
Collapse
Affiliation(s)
- P Fischer
- Dept. of Cardiology & Angiology, Medical School Hannover, Hannover, Germany
| | | |
Collapse
|
40
|
|
41
|
Calore EE, Perez NM, Herman MM. Morphometric studies of cardiac myocytes of rats chronically treated with an organophosphate. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2007; 66:447-50. [PMID: 16797706 DOI: 10.1016/j.ecoenv.2006.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 04/10/2006] [Accepted: 04/11/2006] [Indexed: 05/10/2023]
Abstract
Organophosphate intoxication induces an acute cholinergic syndrome, but the long-term effects of these compounds in the cardiocirculatory system are not known. The objective of the present work is to investigate if experimental chronic exposition to repetitive sublethal doses of organophosphate methamidophos can induce morphological changes in rat's hearts. Wistar albino adult male rats received a weekly enteral sublethal dose of the organophosphate methamidophos for 12 consecutive weeks. After that we have performed histological and morphometric studies of their hearts. We have observed hypertrophy of cardiac myocites in treated animals, which was confirmed by morphometric studies (measure of smaller diameter of cardiac myocites). One of the possible explanations for the cardiac hypertrophy would be persistent systemic arterial hypertension in treated animals. However, another possible explanation would be direct sympathetic stimulation.
Collapse
Affiliation(s)
- E E Calore
- Pathology Section, Emílio Ribas Institute, São Paulo, Brazil.
| | | | | |
Collapse
|
42
|
Mitchell MD, Laird RE, Brown RD, Long CS. IL-1β stimulates rat cardiac fibroblast migration via MAP kinase pathways. Am J Physiol Heart Circ Physiol 2007; 292:H1139-47. [PMID: 17085539 DOI: 10.1152/ajpheart.00881.2005] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The pro-inflammatory cytokines interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) are elevated following acute myocardial infarction (MI) and have been implicated in the pathophysiology of cardiac disease progression. The cardiac fibroblast represents an important effector cell target for cytokine actions. In particular, cytokine-directed cardiac fibroblast migration is likely to impact both myocardial repair following acute MI and pathological myocardial remodeling in the progression to heart failure. In the present study, we examined the migratory response of neonatal rat cardiac fibroblasts to pro-inflammatory cytokines using modified Boyden chamber assays. On the basis of the knowledge of migration in other cell types, we hypothesized that members of the mitogen-activated protein kinase (MAPK) family may regulate this process. This possibility was addressed with the use of immunoblot detection of active phosphorylated MAPK species and pharmacological inhibitors for individual members of the MAPK cascades. IL-1β stimulated robust and concentration-dependent increases in migration (maximum, 20-fold over control cells). TNF-α had lesser effect (fourfold increase over control). IL-6 did not induce migration. Activation of all three MAPK subfamilies (extracellular signal-regulated kinases, c-Jun NH2-terminal kinases, and p38) was shown to occur in response to cytokine stimulation. Fibroblast migration was attenuated by pharmacological inhibition of each MAPK subfamily. Understanding the regulation of cardiac fibroblast migration may provide insights in the search for therapies aimed at enhancing the functional nature of the remodeling process.
Collapse
Affiliation(s)
- M Darren Mitchell
- Division of Cardiology, B-139, University of Colorado Health Sciences Center, 4200 E. 9th Ave., Denver, CO 80262, USA
| | | | | | | |
Collapse
|
43
|
Gritman K, Van Winkle DM, Lorentz CU, Pennica D, Habecker BA. The lack of cardiotrophin-1 alters expression of interleukin-6 and leukemia inhibitory factor mRNA but does not impair cardiac injury response. Cytokine 2006; 36:9-16. [PMID: 17150369 PMCID: PMC1796948 DOI: 10.1016/j.cyto.2006.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 10/06/2006] [Accepted: 10/10/2006] [Indexed: 02/06/2023]
Abstract
Cardiotrophin-1 (CT-1) was identified as a growth factor for cardiac myocytes and CT-1 protects myocytes from cell death. Adult CT-1(-/-) mice exhibit neural deficits including the loss of preganglionic sympathetic neurons, but their autonomic and cardiac parameters have not been examined. We used these mice to determine if the absence of CT-1 or loss of preganglionic sympathetic input altered heart rate, left ventricular pressure, cardiac contractility (dP/dt), or cell death following ischemia-reperfusion. Basal heart rate was increased in CT-1(-/-) mice, and this difference was abolished by ganglionic block. Left ventricular pressure and dP/dt were unchanged. Dobutamine stimulated similar increases in heart rate and dP/dt in both genotypes, but ventricular pressure was significantly lower in CT-1 nulls. Cardiac expression of interleukin-6 (IL-6) mRNA was increased significantly in CT-1 null mice, while leukemia inhibitory factor (LIF) mRNA was unchanged. Infarct size normalized to area at risk was no different in CT-1(-/-) mice (33.8+/-1.0% vs. 37.7+/-3.2% WT) 24h after ischemia-reperfusion. Induction of IL-6 mRNA after infarct was significantly abrogated in CT-1 null mice compared to wild-type mice, but LIF mRNA-induction remained significant in CT-1 null mice and might contribute to cardiac protection in the absence of CT-1.
Collapse
Affiliation(s)
- Kurt Gritman
- Departments of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239
| | - Donna M. Van Winkle
- Department of Anesthesiology, Oregon Health & Science University, Portland, OR 97239
- Anesthesiology Service, Portland VA Medical Center, Portland, OR 97239
| | - Christina U. Lorentz
- Departments of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239
| | - Diane Pennica
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080
| | - Beth A. Habecker
- Departments of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239
- * Address correspondence to: Beth A. Habecker, Ph.D., Dept. of Physiology & Pharmacology, L334, OHSU, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, TEL 1 (503) 494-0497, FAX 1 (503) 494-4352, Email
| |
Collapse
|
44
|
Abstract
Myocardial infarction triggers an inflammatory cascade that results in healing and replacement of the damaged tissue with scar. Cardiomyocyte necrosis triggers innate immune mechanisms eliciting Toll-like receptor- mediated responses, activating the complement cascade and generating reactive oxygen species. Subsequent activation of NF-kappaB is a critical element in the regulation of cytokine, chemokine, and adhesion molecule expression in the ischemic myocardium. Chemokine induction mediates leukocyte recruitment in the myocardium. Pleiotropic proinflammatory cytokines, such as TNF-alpha, IL-1, and IL-6, are also upregulated in the infarct and exert a wide range of effects on a variety of cell types. Timely repression of proinflammatory gene synthesis is crucial for optimal healing; IL-10 and TGF-beta-mediated pathways may be important for suppression of chemokine and cytokine expression and for resolution of the leukocytic infiltrate. In addition, TGF-beta may be critically involved in inducing myofibroblast differentiation and activation, promoting extracellular matrix protein deposition in the infarcted area. The composition of the extracellular matrix plays an important role in regulating cell behavior. Both structural and matricellular proteins modulate cell signaling through interactions with specific surface receptors. The molecular and cellular changes associated with infarct healing directly influence ventricular remodeling and affect prognosis in patients with myocardial infarction.
Collapse
|
45
|
Jiang ZS, Jeyaraman M, Wen GB, Fandrich RR, Dixon IMC, Cattini PA, Kardami E. High- but not low-molecular weight FGF-2 causes cardiac hypertrophy in vivo; possible involvement of cardiotrophin-1. J Mol Cell Cardiol 2006; 42:222-33. [PMID: 17045289 DOI: 10.1016/j.yjmcc.2006.09.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2006] [Revised: 08/21/2006] [Accepted: 09/01/2006] [Indexed: 12/22/2022]
Abstract
The heart expresses high and low molecular weight (hmw, lmw) fibroblast growth factor 2 (FGF-2) isoforms. While the injury-repair-related activities of lmw-FGF-2 have been studied extensively, those of hmw-FGF-2 have not. Thus, we investigated the effects of hmw-FGF-2 on acute as well as chronic responses to myocardial infarction (MI) induced by irreversible coronary occlusion in the rat. Hmw- or lmw-FGF-2 was injected into the ischemic zone during acute evolving MI. Both isoforms were equally effective in reducing infarct size (at 24 h post-MI) and improving heart function up to 6 weeks post-MI, compared to a vehicle-treated infarcted group. Lmw-FGF-2 alone upregulated vascularization in the infarct. Hmw-FGF-2 elicited significant hypertrophy, compared to the vehicle-treated group, at 4-8 weeks post-MI, assessed by ultrasound, heart morphometry and cardiomyocyte cross-sectional area. In addition, hmw- (but not lmw-) FGF-2-treated hearts displayed increased accumulation of the cytokine cardiotrophin-1 and its signal transducer gp130. In culture, hmw- (but not lmw-) FGF-2 increased cardiomyocyte protein synthesis and cell size as well as upregulated cardiotrophin-1 released by cardiac fibroblasts, pointing to similar activities in vivo. Thus, hmw- and lmw-FGF-2 exert isoform-specific effects in the heart and only hmw-FGF-2 triggers cardiomyocyte hypertrophic growth. Direct effects of hmw-FGF-2 on cardiomyocytes, becoming reinforced and sustained by upregulation of cardiotrophin-1 and acting in concert with other factors, are likely to contribute to post-MI hypertrophy.
Collapse
Affiliation(s)
- Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Nanhua University, Hengyang City, Hunan, PR China
| | | | | | | | | | | | | |
Collapse
|
46
|
Radovan J, Vaclav P, Petr W, Jan C, Michal A, Richard P, Martina P. Changes of collagen metabolism predict the left ventricular remodeling after myocardial infarction. Mol Cell Biochem 2006; 293:71-8. [PMID: 16933032 DOI: 10.1007/s11010-006-2955-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2005] [Accepted: 09/08/2005] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To analyze the predictive value of cardiac collagen metabolism "in vivo" in patients with myocardial infarction (MI) treated with percutaneous coronary intervention (PCI). DESIGN Forty-five patients (age 66 +/- 8.27) underwent biochemical analysis for cardiac collagen metabolism (groups A, B and C); 30 patients with their first MI were treated with successful PCI (group A; n = 30), group B (n = 5) were MI patients with unsuccessful PCI. Group C were patients without MI (n = 10), they underwent elective diagnostic coronary angiography only. The collagen metabolism was analyzed in acute and subacute MI phases by using serum blood markers: the carboxy-terminal propeptide of type I procollagen (PICP), amino-terminal propeptide of type III procollagen (PIIINP) and carboxy-terminal telopeptide of type I collagen (ICTP). Furthermore, the ejection fraction (EF) and left ventricular end-diastolic volume maximal changes in the course of 6 months were measured by echocardiography. RESULTS A significant increase of both PICP and PIIINP on day 4 following MI was detected. Furthermore, PICP and PIIINP level assessed on the 30th day was significantly higher in the PCI unsuccessful group versus successful group. PICP level on day 4 above 110 microg/l and PIIINP level above 4 microg/l was significantly often found in the subgroup of patients with the EF improvement less than 10% or worsening and with significant left ventricular dilatation during 6 months follow-up. Cardiac catheterization itself does not affect collagen metabolism. CONCLUSION We concluded that collagen metabolism markers enable to study in vivo the MI healing and to predict left ventricular functional and volume changes.
Collapse
Affiliation(s)
- Jirmar Radovan
- Cardiocenter, Department of Cardiology, 3rd Medical School, Charles University and University Hospital Kralovske Vinohrady, Prague, Czech Republic, Europe.
| | | | | | | | | | | | | |
Collapse
|
47
|
Ateghang B, Wartenberg M, Gassmann M, Sauer H. Regulation of cardiotrophin-1 expression in mouse embryonic stem cells by HIF-1alpha and intracellular reactive oxygen species. J Cell Sci 2006; 119:1043-52. [PMID: 16507596 DOI: 10.1242/jcs.02798] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiomyogenesis in differentiating mouse embryonic stem (ES) cells is promoted by cardiotrophin-1 (CT-1), a member of the IL-6 interleukin superfamily that acts through the tall gp130 cytokine receptor. We show that prooxidants (menadione, hydrogen peroxide) as well as chemical (CoCl2) and physiological (1% O2) hypoxia increased CT-1 as well as HIF-1alpha protein and mRNA expression in embryoid bodies, indicating that CT-1 expression is regulated by reactive oxygen species (ROS) and hypoxia. Treatment with either prooxidants or chemical hypoxia increased gp130 phosphorylation and protein expression of NADPH oxidase subunits p22-phox, p47-phox, p67-phox, as well as Nox1 and Nox4 mRNA. Consequently, inhibition of NADPH oxidase activity by diphenylen iodonium chloride (DPI) and apocynin abolished prooxidant- and chemical hypoxia-induced upregulation of CT-1. Prooxidants and chemical hypoxia activated ERK1,2, JNK and p38 as well as PI3-kinase. The proxidant- and CoCl2-mediated upregulation of CT-1 was significantly inhibited in the presence of the ERK1,2 antagonist UO126, the JNK antagonist SP600125, the p38 antagonist SKF86002, the PI3-kinase antagonist LY294002, the Jak-2 antagonist AG490 as well as in the presence of free radical scavengers. Moreover, developing embryoid bodies derived from HIF-1alpha-/- ES cells lack cardiomyogenesis, and prooxidants as well as chemical hypoxia failed to upregulate CT-1 expression. Our results demonstrate that CT-1 expression in ES cells is regulated by ROS and HIF-1alpha and imply a crucial role of CT-1 in the survival and proliferation of ES-cell-derived cardiac cells.
Collapse
|
48
|
Lafontant PJ, Burns AR, Donnachie E, Haudek SB, Smith CW, Entman ML. Oncostatin M differentially regulates CXC chemokines in mouse cardiac fibroblasts. Am J Physiol Cell Physiol 2006; 291:C18-26. [PMID: 16452159 DOI: 10.1152/ajpcell.00322.2005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Ischemia-reperfusion injury in the heart is characterized by marked infiltration of neutrophils in the myocardial interstitial space. Studies in human, canine, and murine models have revealed oncostatin M (OSM) expression in infiltrating leukocytes. In an effort to assess possible roles of OSM in the myocardium, we used cardiac fibroblasts (mCFs) isolated from adult mouse heart to determine whether recombinant murine OSM regulates the synthesis and release of MIP2/CXCL2, KC/CXCL1, and LIX/CXCL5, which are three potent neutrophil chemoattractants in the mouse. Our results demonstrate that mCFs express OSM receptors and that, within the IL-6 cytokine family, OSM uniquely induces significant release of KC and LIX in mCFs. In addition, although OSM activates the JAK-signal transducers and activators of transcription and MAPK pathways, we demonstrate that the OSM-mediated CXC chemokine release in mCFs is also dependent on the activation of the phosphatidylinositol 3-kinase pathway.
Collapse
Affiliation(s)
- Pascal J Lafontant
- Department of Medicine, Cardiovascular Sciences, DeBakey Heart Center, The Methodist Hospital, and Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
49
|
Zolk O, Engmann S, Münzel F, Krajcik R. Chronic cardiotrophin-1 stimulation impairs contractile function in reconstituted heart tissue. Am J Physiol Endocrinol Metab 2005; 288:E1214-21. [PMID: 15632104 DOI: 10.1152/ajpendo.00261.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiotrophin-1 (CT-1) is known to promote survival but also to induce an elongated morphology of isolated cardiac myocytes, leading to the hypothesis that CT-1, which is chronically augmented in human heart failure, might induce eccentric cardiac hypertrophy and contractile failure. To address this, we used heart tissues reconstituted from neonatal rat cardiac myocytes (engineered heart tissue, EHT) as multicellular in vitro test systems. CT-1 dose-dependently affected contractile function in EHTs. After treatment with 0.1 nM CT-1 (corresponds to plasma levels in humans) for 10 days, twitch tension significantly decreased to 0.30 +/- 0.04 mN (n = 15) vs. 0.45 +/- 0.04 mN (n = 16) in controls. Furthermore, positive inotropic effects of cumulative concentrations of Ca2+ and isoprenaline were significantly diminished. Maximum isoprenaline-induced increase in twitch tension amounted to 0.27 +/- 0.04 mN (n = 15) vs. 0.47 +/- 0.06 mN (n = 16) in controls (P < 0.001). When EHTs were treated for only 5 days, qualitatively similar results were obtained but changes were less pronounced. Immunostaining of whole mount EHT preparations revealed that after CT-1 treatment, the number of nonmyocytes significantly increased by 98% (1 nM, 10 days), and myocytes did not form compact, longitudinally oriented muscle bundles. Interestingly, expression of the Ca2+-handling protein calsequestrin was markedly reduced (69 +/- 7% of control) by treatment with CT-1 (0.1 nM, 10 days). In summary, long-term exposure to CT-1 induces contractile dysfunction in EHTs. Structural changes due to impaired differentiation and/or remodeling of heart tissue may play an important role.
Collapse
Affiliation(s)
- Oliver Zolk
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstr. 17, 91054 Erlangen, Germany.
| | | | | | | |
Collapse
|
50
|
López B, González A, Lasarte JJ, Sarobe P, Borrás F, Díaz A, Barba J, Tomás L, Lozano E, Serrano M, Varo N, Beloqui O, Fortuño MA, Díez J. Is plasma cardiotrophin-1 a marker of hypertensive heart disease? J Hypertens 2005; 23:625-32. [PMID: 15716706 DOI: 10.1097/01.hjh.0000160221.09468.d3] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study was designed to investigate whether plasma concentration of cardiotrophin-1 (CT-1), a cytokine that induces cardiomyocyte hypertrophy and stimulates cardiac fibroblasts, is related to hypertensive heart disease, as defined by the presence of echocardiographically assessed left ventricular hypertrophy (LVH). METHODS The study was performed in 31 normotensive subjects and 111 patients with never-treated essential hypertension (54 without LVH and 57 with LVH). Causes of LVH other than hypertension were excluded after a complete medical workup. A novel enzyme-linked immunosorbent assay was developed to measure plasma CT-1. RESULTS Plasma CT-1 was increased (P < 0.001) in hypertensives compared with normotensives. The value of CT-1 was higher (P < 0.001) in hypertensives with LVH than in hypertensives without LVH. Some 31% of patients without LVH exhibited values of CT-1 above the upper normal limit in normotensives. A direct correlation was found between CT-1 and left ventricular mass index (r = 0.319, P < 0.001) in all subjects. Receiver operating characteristic curves showed that a cutoff of 39 fmol/ml for CT-1 provided 75% specificity and 70% sensitivity for predicting LVH with a relative risk of 6.21 (95% confidence interval, 2.95 to 13.09). CONCLUSIONS These results show an association between LVH and the plasma concentration of CT-1 in essential hypertension. Although preliminary, these findings suggest that the determination of CT-1 may be an easy and reliable method for the initial screening and diagnosis of hypertensive heart disease.
Collapse
Affiliation(s)
- Begoña López
- Area of Cardiovascular Pathophysiology, Centre for Applied Medical Research, School of Medicine, University of Navarra, Navarra, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|