1
|
Candela Andrade M, Hoffmann SM, Slunsky P, De Rus Aznar I, Brunnberg L. Ultrasonographic examination of the patellar ligament after capsular and fascial imbrication for the treatment of cranial cruciate ligament rupture in dogs. Front Vet Sci 2025; 12:1544445. [PMID: 40201082 PMCID: PMC11977418 DOI: 10.3389/fvets.2025.1544445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/10/2025] [Indexed: 04/10/2025] Open
Abstract
Introduction Cranial cruciate ligament (CCL) rupture is the most common orthopedic condition in dogs, with many surgical options available for its treatment. Thickening of the patellar ligament after capsular and fascial imbrication (CFI) is a frequently reported complication, but its clinical significance remains unclear. Method This prospective study evaluated patellar ligament structural and thickness changes after CCL repair using CFI. Forty-six dogs with CCL ruptures treated at the Small Animal Clinic of Freie Universität Berlin between July 2013 and April 2015 were included. Clinical, radiographic, and sonographic assessments were performed pre-surgery and at 2-3 months and 8-10 months post-surgery. Parameters assessed included lameness scores, joint effusion, stability, extension pain, muscular atrophy, and arthritis. Uninjured contralateral joints from 20 dogs served as controls. Results Postoperative improvements included reduced lameness scores, joint effusion, instability, and extension pain. Patellar ligament thickness increased from 1.6 mm pre-surgery to 5.4 mm at 2-3 months, then decreased to 3.9 mm by 8-10 months. Structural changes peaked at the first follow-up (52.9%) and decreased by the second (6.4%). No significant correlations were found between ligament changes and clinical outcomes, patient demographics, or adjunct treatments like NSAIDs or physical therapy. Conclusion Patellar ligament alterations following CFI appear temporary and largely unrelated to clinical signs, patient factors, or treatment variables. These findings suggest that such changes do not significantly impact postoperative outcomes, underscoring the reliability of CFI as a treatment option for CCL rupture in dogs.
Collapse
Affiliation(s)
| | | | - Pavel Slunsky
- AniCura Small Animal Clinic Augsburg, Augsburg, Germany
| | - Ignacio De Rus Aznar
- Shoulder Surgery Unit, Orthoapedic and Traumatology Department, CEMTRO Clinic, Madrid, Spain
| | - Leo Brunnberg
- Small Animal Clinic, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
2
|
Engler LG, Giustina MD, Giovanela M, Roesch-Ely M, Gately N, Major I, Crespo JS, Devine DM. Exploring the Synergy of Metallic Antimicrobial Agents in Ternary Blends of PHB/PLA/PCL. J Biomed Mater Res A 2025; 113:e37857. [PMID: 39789772 DOI: 10.1002/jbm.a.37857] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 01/30/2025]
Abstract
This study provides a comprehensive investigation of antimicrobial additives (ZnO/AgNPs and SiO2/AgNPs) on the properties of biodegradable ternary blends composed of poly(hydroxybutyrate) (PHB), poly(lactic acid) (PLA), and polycaprolactone (PCL) by examining the morphology, thermal stability, crystallinity index, and cell viability of these blends. Overall, transmission electron microscopy (TEM) analysis revealed that AgNPs and SiO2 exhibited comparable sizes, whereas ZnO was significantly larger, which influences their release profiles and interactions with the blends. The addition of antimicrobials influences the rheology of the blends, acting as compatibilizers by reducing the intermolecular forces between biopolymers. Scanning electron microscopy (SEM) analysis revealed a matrix-core-shell structure, indicating enhanced interfacial interaction among the immiscible biopolymers, as predicted by their spreading coefficient. From thermal evaluations, PCL promotes overall thermal stability, where T5 (the temperature at which the sample loses 5% of its weight through thermal degradation) was more than 22% higher than T5 of blends, and the antimicrobials investigated tend to act as barriers to heat penetration, thereby influencing the degradation mechanism of the blends. Additionally, antimicrobials tend to increase material crystallinity, suggesting their nucleating effect. Both PLA and PCL have shown high viability for cell growth and proliferation. The 30/50/20 (PHB/PLA/PCL wt%) blends were conducive to cell adhesion and proliferation, achieving cell viability rates up to 85% irrespective of the antimicrobial concentration. SEM analysis also confirmed the presence of viable cells and attachment of organic cell structures over the surface of the produced materials. In conclusion, this study highlights the potential of biodegradable ternary blends containing antimicrobial NPs, particularly for use in medical devices such as ureteral stents.
Collapse
Affiliation(s)
- Leonardo G Engler
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone, Ireland
- Universdade de Caxias do Sul, Programa de Pós-graduação em Engenharia e Ciência dos Materiais, Caxias do Sul, Brazil
| | - Marina Della Giustina
- Universdade de Caxias do Sul, Programa de Pós-graduação em Engenharia e Ciência dos Materiais, Caxias do Sul, Brazil
| | - Marcelo Giovanela
- Universdade de Caxias do Sul, Programa de Pós-graduação em Engenharia e Ciência dos Materiais, Caxias do Sul, Brazil
| | - Mariana Roesch-Ely
- Universdade de Caxias do Sul, Programa de Pós-graduação em Engenharia e Ciência dos Materiais, Caxias do Sul, Brazil
| | - Noel Gately
- Applied Polymer Technologies Gateway, Technological University of the Shannon: Midlands Midwest, Athlone, Ireland
| | - Ian Major
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone, Ireland
| | - Janaina S Crespo
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone, Ireland
- Universdade de Caxias do Sul, Programa de Pós-graduação em Engenharia e Ciência dos Materiais, Caxias do Sul, Brazil
- Applied Polymer Technologies Gateway, Technological University of the Shannon: Midlands Midwest, Athlone, Ireland
| | - Declan M Devine
- PRISM Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone, Ireland
| |
Collapse
|
3
|
Tsujimoto S, Omura T, Komiyama K, Kabe T, Maehara A, Murayama A, Hirata H, Suzuki M, Kasuya KI, Takahashi D, Iwata T. Evaluation of the Highly Ordered Structure, Ligature, and Enzymatic Degradation of Poly[( R)-3-hydroxybutyrate- co-4-hydroxybutyrate] Elastic Porous Fibers. Biomacromolecules 2024; 25:7861-7868. [PMID: 39504501 DOI: 10.1021/acs.biomac.4c01144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
We prepared biocompatible elastic fibers with high porosity and high tensile strength from poly[(R)-3-hydroxybutyrate-co-4-hydroxybutyrate], which is a microbial polyester that can be produced from renewable carbon resources by isothermal crystallization. It was possible to control the pore size by adjusting the isothermal crystallization time. Most of the pores were approximately less than 10 μm in diameter, did not penetrate, and were distributed discontinuously throughout the fibers. The elasticity of the fibers was apparently attributable to the generation of tie molecules with planar zigzag conformations between lamellar crystals and to the deformation of the pores. The ligature area occupied by the porous fibers in surgical knots was reduced by 75% compared with that of nonporous fibers. This is expected to make the ligature more difficult to untie and reduce the feeling of foreign matter. X-ray tomography revealed that the porous fibers had a relatively small fiber diameter owing to the collapse of the porous area. The rate of enzymatic degradation of the porous fibers was more than four times that of nonporous fibers. These results suggest that this elastic porous fiber will have many applications, including in the medical and marine material fields.
Collapse
Affiliation(s)
- Sakura Tsujimoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Graduate School of Industrial Technology, Nihon University, 1-2-1 izumi-cho, Narashino-city, Chiba 275-8575, Japan
| | - Taku Omura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Katsuya Komiyama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Taizo Kabe
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akira Maehara
- Niigata Research Laboratory, Mitsubishi Gas Chemical Co., Inc., 182, Tayuhama, Kita-ku, Niigata-city, Niigata 950-3112, Japan
| | - Atsuhiko Murayama
- Department of Human Enhancement & Hand Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Shouwa-ku, Nagoya-shi, Aichi 466-8550, Japan
| | - Hitoshi Hirata
- Department of Personalized Medical Technology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya-shi, Aichi 466-8550, Japan
| | - Miwa Suzuki
- Gunma University Center for Food Science and Wellness (GUCFW), Maebashi, Gunma 371-8510, Japan
| | - Ken-Ichi Kasuya
- Gunma University Center for Food Science and Wellness (GUCFW), Maebashi, Gunma 371-8510, Japan
- Green Polymer Research Laboratory, Graduate School of Science and Technology, Gunma University, Kiryu, Gunma 376-8515, Japan
| | - Daisuke Takahashi
- Graduate School of Industrial Technology, Nihon University, 1-2-1 izumi-cho, Narashino-city, Chiba 275-8575, Japan
| | - Tadahisa Iwata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
4
|
Ireddy ATS, Ghorabe FDE, Shishatskaya EI, Ryltseva GA, Dudaev AE, Kozodaev DA, Nosonovsky M, Skorb EV, Zun PS. Benchmarking Unsupervised Clustering Algorithms for Atomic Force Microscopy Data on Polyhydroxyalkanoate Films. ACS OMEGA 2024; 9:21595-21611. [PMID: 38764678 PMCID: PMC11097174 DOI: 10.1021/acsomega.4c02502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/21/2024]
Abstract
Surface of polyhydroxyalkanoate (PHA) films of varying monomer compositions are analyzed using atomic force microscopy (AFM) and unsupervised machine learning (ML) algorithms to investigate and classify films based on global attributes such as the scan size, film thickness, and monomer type. The experiment provides benchmarked results for 12 of the most widely used clustering algorithms via a hybrid investigation approach while highlighting the impact of using the Fourier transform (FT) on high-dimensional vectorized data for classification on various pools of data. Our findings indicate that the use of a one-dimensional (1D) FT of vectorized data produces the most accurate outcome. The experiment also provides insights into case-by-case investigations of algorithm performances and the impact of various data pools. Lastly, we show an early version of our tool aimed at investigating surfaces using ML approaches and discuss the results of our current experiment to configure future improvements.
Collapse
Affiliation(s)
- Ashish T. S. Ireddy
- Infochemistry
Scientific Centre, ITMO University, 9 Lomonosova St., 191002 St. Petersburg, Russia
| | - Fares D. E. Ghorabe
- Infochemistry
Scientific Centre, ITMO University, 9 Lomonosova St., 191002 St. Petersburg, Russia
| | | | - Galina A. Ryltseva
- Siberian
Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | - Alexey E. Dudaev
- Siberian
Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia
| | | | - Michael Nosonovsky
- Infochemistry
Scientific Centre, ITMO University, 9 Lomonosova St., 191002 St. Petersburg, Russia
- University
of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53217, United States
| | - Ekaterina V. Skorb
- Infochemistry
Scientific Centre, ITMO University, 9 Lomonosova St., 191002 St. Petersburg, Russia
| | - Pavel S. Zun
- Infochemistry
Scientific Centre, ITMO University, 9 Lomonosova St., 191002 St. Petersburg, Russia
| |
Collapse
|
5
|
Teno J, Pardo-Figuerez M, Evtoski Z, Prieto C, Cabedo L, Lagaron JM. Development of Ciprofloxacin-Loaded Electrospun Yarns of Application Interest as Antimicrobial Surgical Suture Materials. Pharmaceutics 2024; 16:220. [PMID: 38399274 PMCID: PMC10891768 DOI: 10.3390/pharmaceutics16020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Surgical site infections (SSI) occur very frequently during post-operative procedures and are often treated with oral antibiotics, which may cause some side effects. This type of infection could be avoided by encapsulating antimicrobial/anti-inflammatory drugs within the surgical suture materials so that they can more efficiently act on the site of action during wound closure, avoiding post-operative bacterial infection and spreading. This work was aimed at developing novel electrospun bio-based anti-infective fibre-based yarns as novel suture materials for preventing surgical site infections. For this, yarns based on flying intertwined microfibres (1.95 ± 0.22 µm) were fabricated in situ during the electrospinning process using a specially designed yarn collector. The electrospun yarn sutures (diameter 300-500 µm) were made of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with different contents of 3HV units and contained ciprofloxacin hydrochloride (CPX) as the antimicrobial active pharmaceutical ingredient (API). The yarns were then analysed by scanning electron microscopy, Fourier transform infrared spectroscopy, wide-angle X-ray scattering, differential scanning calorimetry, and in vitro drug release. The yarns were also analysed in terms of antimicrobial and mechanical properties. The material characterization indicated that the varying polymer molecular architecture affected the attained polymer crystallinity, which was correlated with the different drug-eluting profiles. Moreover, the materials exhibited the inherent stiff behaviour of PHBV, which was further enhanced by the API. Lastly, all the yarn sutures presented antimicrobial properties for a time release of 5 days against both Gram-positive and Gram-negative pathogenic bacteria. The results highlight the potential of the developed antimicrobial electrospun yarns in this study as potential innovative suture materials to prevent surgical infections.
Collapse
Affiliation(s)
- Jorge Teno
- R&D Department, Bioinicia S.L., 46980 Paterna, Spain
| | - Maria Pardo-Figuerez
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), 46980 Paterna, Spain; (M.P.-F.); (Z.E.); (C.P.)
| | - Zoran Evtoski
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), 46980 Paterna, Spain; (M.P.-F.); (Z.E.); (C.P.)
| | - Cristina Prieto
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), 46980 Paterna, Spain; (M.P.-F.); (Z.E.); (C.P.)
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), School of Technology and Experimental Sciences, Universitat Jaume I (UJI), 12006 Castellón, Spain;
| | - Jose M. Lagaron
- Novel Materials and Nanotechnology Group, Institute of Agrochemistry and Food Technology (IATA), Spanish Council for Scientific Research (CSIC), 46980 Paterna, Spain; (M.P.-F.); (Z.E.); (C.P.)
| |
Collapse
|
6
|
Han X, Han Y, Jin Y, Wang Z, Tian H, Huang J, Guo M, Men S, Lei H, Kumar R, Hu J. Microcrystalline cellulose grafted hyperbranched polyester with roll comb structure for synergistic toughening and strengthening of microbial PHBV/bio-based polyester elastomer composites. Int J Biol Macromol 2023; 242:124608. [PMID: 37116850 DOI: 10.1016/j.ijbiomac.2023.124608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
The brittle feature of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is the major challenge that strongly restricts its application at present. Successfully synthesized bio-based engineering polyester elastomers (BEPE) were combined with PHBV to create entirely bio-composites with the intention of toughening PHBV. Herein, the 2,2-Bis(hydroxymethyl)-propionic acid (DMPA) was grafted onto microcrystalline cellulose (MCC) and then further transformed into hyperbranched polyester structure via polycondensation. The modified MCC, named MCHBP, had plenty of terminal hydroxyl groups, which get dispersed between PHBV and BEPE. Besides, a large number of terminal hydroxyl groups of MCHBP can interact with the carbonyl groups of PHBV or BEPE in a wide range of hydrogen bonds, and subsequently increase the adhesion and stress transfer between the PHBV and BEPE. The tensile toughness and the elongation at break of the PHBV/BEPE composites with 0.5phr MCHBP were improved by 559.7 % and 221.8 % in comparison to those of PHBV/BEPE composites. Results also showed that MCHBP can play a heterogeneous nucleation effect on the crystallization of PHBV. Therefore, this research can address the current issue of biopolymers' weak mechanical qualities and may have uses in food packaging.
Collapse
Affiliation(s)
- Xiaolong Han
- School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Yi Han
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing 100029, PR China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing 100029, PR China
| | - Yujuan Jin
- School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Zhao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing 100029, PR China; Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing 100029, PR China
| | - Huafeng Tian
- School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China.
| | - Jiawei Huang
- School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Maolin Guo
- School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China
| | - Shuang Men
- Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China; Institute of Cosmetic Regulatory Science, Beijing Technology and Business University, Beijing 100048, PR China
| | - Haibo Lei
- College of Basic Science, Tianjin Agricultural University, Tianjin 300392, China
| | - Rakesh Kumar
- Department of Biotechnology, Central University of South Bihar, Gaya 824236, India
| | - Jing Hu
- School of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, PR China; Beijing Key Laboratory of Quality Evaluation Technology for Hygiene and Safety of Plastics, Beijing Technology and Business University, Beijing 100048, PR China.
| |
Collapse
|
7
|
Ray S, Jin JO, Choi I, Kim M. Recent trends of biotechnological production of polyhydroxyalkanoates from C1 carbon sources. Front Bioeng Biotechnol 2023; 10:907500. [PMID: 36686222 PMCID: PMC9852868 DOI: 10.3389/fbioe.2022.907500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 12/06/2022] [Indexed: 01/09/2023] Open
Abstract
Growing concerns over the use of limited fossil fuels and their negative impacts on the ecological niches have facilitated the exploration of alternative routes. The use of conventional plastic material also negatively impacts the environment. One such green alternative is polyhydroxyalkanoates, which are biodegradable, biocompatible, and environmentally friendly. Recently, researchers have focused on the utilization of waste gases particularly those belonging to C1 sources derived directly from industries and anthropogenic activities, such as carbon dioxide, methane, and methanol as the substrate for polyhydroxyalkanoates production. Consequently, several microorganisms have been exploited to utilize waste gases for their growth and biopolymer accumulation. Methylotrophs such as Methylobacterium organophilum produced highest amount of PHA up to 88% using CH4 as the sole carbon source and 52-56% with CH3OH. On the other hand Cupriavidus necator, produced 71-81% of PHA by utilizing CO and CO2 as a substrate. The present review shows the potential of waste gas valorization as a promising solution for the sustainable production of polyhydroxyalkanoates. Key bottlenecks towards the usage of gaseous substrates obstructing their realization on a large scale and the possible technological solutions were also highlighted. Several strategies for PHA production using C1 gases through fermentation and metabolic engineering approaches are discussed. Microbes such as autotrophs, acetogens, and methanotrophs can produce PHA from CO2, CO, and CH4. Therefore, this article presents a vision of C1 gas into bioplastics are prospective strategies with promising potential application, and aspects related to the sustainability of the system.
Collapse
Affiliation(s)
- Subhasree Ray
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea,Department of Life Science, School of Basic Science and Research, Sharda University, Greater Noida, India,*Correspondence: Myunghee Kim, ; Subhasree Ray,
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea
| | - Myunghee Kim
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea,Department of Food Science and Technology, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Myunghee Kim, ; Subhasree Ray,
| |
Collapse
|
8
|
Pulingam T, Appaturi JN, Parumasivam T, Ahmad A, Sudesh K. Biomedical Applications of Polyhydroxyalkanoate in Tissue Engineering. Polymers (Basel) 2022; 14:2141. [PMID: 35683815 PMCID: PMC9182786 DOI: 10.3390/polym14112141] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering technology aids in the regeneration of new tissue to replace damaged or wounded tissue. Three-dimensional biodegradable and porous scaffolds are often utilized in this area to mimic the structure and function of the extracellular matrix. Scaffold material and design are significant areas of biomaterial research and the most favorable material for seeding of in vitro and in vivo cells. Polyhydroxyalkanoates (PHAs) are biopolyesters (thermoplastic) that are appropriate for this application due to their biodegradability, thermo-processability, enhanced biocompatibility, mechanical properties, non-toxicity, and environmental origin. Additionally, they offer enormous potential for modification through biological, chemical and physical alteration, including blending with various other materials. PHAs are produced by bacterial fermentation under nutrient-limiting circumstances and have been reported to offer new perspectives for devices in biological applications. The present review discusses PHAs in the applications of conventional medical devices, especially for soft tissue (sutures, wound dressings, cardiac patches and blood vessels) and hard tissue (bone and cartilage scaffolds) regeneration applications. The paper also addresses a recent advance highlighting the usage of PHAs in implantable devices, such as heart valves, stents, nerve guidance conduits and nanoparticles, including drug delivery. This review summarizes the in vivo and in vitro biodegradability of PHAs and conducts an overview of current scientific research and achievements in the development of PHAs in the biomedical sector. In the future, PHAs may replace synthetic plastics as the material of choice for medical researchers and practitioners.
Collapse
Affiliation(s)
- Thiruchelvi Pulingam
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (T.P.); (A.A.)
| | | | | | - Azura Ahmad
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (T.P.); (A.A.)
| | - Kumar Sudesh
- School of Biological Sciences, Universiti Sains Malaysia, Penang 11800, Malaysia; (T.P.); (A.A.)
| |
Collapse
|
9
|
Amara AAAF. Natural Polymer Types and Applications. BIOMOLECULES FROM NATURAL SOURCES 2022:31-81. [DOI: 10.1002/9781119769620.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
10
|
Mal N, Satpati G, Raghunathan S, Davoodbasha M. Current strategies on algae-based biopolymer production and scale-up. CHEMOSPHERE 2022; 289:133178. [PMID: 34890607 DOI: 10.1016/j.chemosphere.2021.133178] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/15/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
The craving for an alternative to the existing plastic products gives rise to the concept of algae-based bioplastic production, which appears to be excellently biodegradable and cost-effective. The significant assortment of algal biopolymers draws great attention to stop the surge of plastic waste and to mitigate the burning problems of environmental pollution. The polyhydroxyalkanoates (PHA) are naturally-occurring biopolymers found in the form of esters accumulated within a number of microbes, which provides the pillar for several biomolecules. This review summarizes the global scenario as well as the precise technique of algae-based PHA extraction and bioplastic production. In addition, different techniques for valorisation of PHA production, its biodegradability and its commercial applications are also taken into consideration.
Collapse
Affiliation(s)
- Navonil Mal
- Department of Botany, University of Calcutta, Kolkata, 700019, West Bengal, India
| | - GourGopal Satpati
- Department of Botany, Bangabasi Evening College, University of Calcutta, Kolkata, 700009, West Bengal, India.
| | - Sathya Raghunathan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India.
| | - MubarakAli Davoodbasha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India; Centre for Micro Algal and Nano Biotechnology (CeMANT), Crescent Innovation and Incubation Council (CIIC), B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India; Division of Bioengineering, Incheon National University, Republic of Korea.
| |
Collapse
|
11
|
Guo W, Yang K, Qin X, Luo R, Wang H, Huang R. Polyhydroxyalkanoates in tissue repair and regeneration. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2022.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
12
|
Ansari S, Sami N, Yasin D, Ahmad N, Fatma T. Biomedical applications of environmental friendly poly-hydroxyalkanoates. Int J Biol Macromol 2021; 183:549-563. [PMID: 33932421 DOI: 10.1016/j.ijbiomac.2021.04.171] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023]
Abstract
Biological polyesters of hydroxyacids are known as polyhydroxyalkanoates (PHA). They have proved to be an alternative, environmentally friendly and attractive candidate for the replacement of petroleum-based plastics in many applications. Many bacteria synthesize these compounds as an intracellular carbon and energy compound usually under unbalanced growth conditions. Biodegradability and biocompatibility of different PHA has been studied in cell culture systems or in an animal host during the last few decades. Such investigations have proposed that PHA can be used as biomaterials for applications in conventional medical devices such as sutures, patches, meshes, implants, and tissue engineering scaffolds as well. Moreover, findings related to encapsulation capability and degradation kinetics of some PHA polymers has paved their way for development of controlled drug delivery systems. The present review discusses about bio-plastics, their characteristics, examines the key findings and recent advances highlighting the usage of bio-plastics in different medical devices. The patents concerning to PHA application in biomedical field have been also enlisted that will provide a brief overview of the status of research in bio-plastic. This would help medical researchers and practitioners to replace the synthetic plastics aids that are currently being used. Simultaneously, it could also prove to be a strong step in reducing the plastic pollution that surged abruptly due to the COVID-19 medical waste.
Collapse
Affiliation(s)
- Sabbir Ansari
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Neha Sami
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Durdana Yasin
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Nazia Ahmad
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Tasneem Fatma
- Cyanobacterial Biotechnology Laboratory, Department of Biosciences, Jamia Millia Islamia (Central University), New Delhi 110025, India.
| |
Collapse
|
13
|
Mohamed S, May Amelia TS, Abdullah Amirul AA, Abdul Wahid ME, Bhubalan K. Preliminary study on serum immunoglobulin G responses following intramuscular inoculation of adjuvanted polyhydroxyalkanoate microparticles with Pasteurella multocida vaccine in white rats. Biologicals 2021; 71:51-54. [PMID: 33858743 DOI: 10.1016/j.biologicals.2021.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 02/28/2021] [Accepted: 03/31/2021] [Indexed: 11/15/2022] Open
Abstract
A natural biodegradable polymer, polyhydroxyalkanoate (PHA), was adjuvanted with a vaccine seed to observe the biomaterial's ability in enhancing an immune response in rats. The adjuvant potential of PHA was tested using the whole-killed Pasteurella multocida B:2 (PMB2) vaccine in Sprague Dawley (SD) rats to detect changes in serum immunoglobulin G (IgG) and immunoglobulin M (IgM) responses. A common PHA, poly(3-hydroxybutyrate) [P(3HB)], from Bacillus megaterium UMTKB-1 was constructed into microparticles using the solvent evaporation method. Twelve SD rats were divided into four treatment groups: 1) non-treatment as negative control, 2) P(3HB) adjuvant, 3) PMB2 vaccine, and 4) adjuvanted-P(3HB)/PMB2 vaccine groups, which were intramuscularly vaccinated twice. Immunoglobulins IgG and IgM levels were used as markers of the immune response induced by the adjuvanted-P(3HB)/PMB2 vaccine and analysed over an eight-week study period. The group vaccinated specifically with adjuvanted-P(3HB)/PMB2 vaccine had higher concentrations of immunoglobulins compared to other treatment groups, hence demonstrating the potential of the adjuvant to enhance immune response. Findings showed a need to delay the delivery of the second booster dose to determine the appropriate regime for the adjuvanted-P(3HB)/PMB2 vaccine.
Collapse
Affiliation(s)
- Shazwani Mohamed
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Tan Suet May Amelia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Al-Ashraf Abdullah Amirul
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia; Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPharm), NIBM, 11700, Penang, Malaysia; Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, 11900, Penang, Malaysia
| | - Mohd Effendy Abdul Wahid
- Faculty of Fisheries and Food Sciences, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Kesaven Bhubalan
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPharm), NIBM, 11700, Penang, Malaysia; Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
14
|
Rai P, Mehrotra S, Priya S, Gnansounou E, Sharma SK. Recent advances in the sustainable design and applications of biodegradable polymers. BIORESOURCE TECHNOLOGY 2021; 325:124739. [PMID: 33509643 DOI: 10.1016/j.biortech.2021.124739] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
The progression of plastic pollution is a global concern. "Reuse, reduce and recycle" offers a solution to the burdening issue, although not enough to curb the rampant use of plastics. Biodegradable plastics are gaining acceptability in agriculture and food packaging industries; nevertheless, they occupy a rather small section of the plastic market. This review summarizes recent advances in the development of biodegradable plastics and their safe degradation potentials. Here, biodegradable plastics have been categorized and technology and developments in the field of biopolymers, their applicability, degradation and role in sustainable development has been reviewed. Also, the use of natural polymers with improved mechanical and physical properties that brings them at par with their counterparts has been discussed. Biodegradable polymers add value to the industries that would help in achieving sustainable development and consequently reinforce green economy, reducing the burden of greenhouse gases in the environment and valorisation of waste biomass.
Collapse
Affiliation(s)
- Pawankumar Rai
- Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Srishti Mehrotra
- Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Smriti Priya
- Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Edgard Gnansounou
- Bioenergy and Energy Planning Research Group, Ecole Polytechnique Federale de Lausanne (EFPL), Lausanne, Switzerland
| | - Sandeep K Sharma
- Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
15
|
Tung Oil-Based Production of High 3-Hydroxyhexanoate-Containing Terpolymer Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate-co-3-Hydroxyhexanoate) Using Engineered Ralstonia eutropha. Polymers (Basel) 2021; 13:polym13071084. [PMID: 33805577 PMCID: PMC8036412 DOI: 10.3390/polym13071084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/21/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) are attractive new bioplastics for the replacement of plastics derived from fossil fuels. With their biodegradable properties, they have also recently been applied to the medical field. As poly(3-hydroxybutyrate) produced by wild-type Ralstonia eutropha has limitations with regard to its physical properties, it is advantageous to synthesize co- or terpolymers with medium-chain-length monomers. In this study, tung oil, which has antioxidant activity due to its 80% α-eleostearic acid content, was used as a carbon source and terpolymer P(53 mol% 3-hydroxybytyrate-co-2 mol% 3-hydroxyvalerate-co-45 mol% 3-hydroxyhexanoate) with a high proportion of 3-hydroxyhexanoate was produced in R. eutropha Re2133/pCB81. To avail the benefits of α-eleostearic acid in the tung oil-based medium, we performed partial harvesting of PHA by using a mild water wash to recover PHA and residual tung oil on the PHA film. This resulted in a film coated with residual tung oil, showing antioxidant activity. Here, we report the first application of tung oil as a substrate for PHA production, introducing a high proportion of hydroxyhexanoate monomer into the terpolymer. Additionally, the residual tung oil was used as an antioxidant coating, resulting in the production of bioactive PHA, expanding the applicability to the medical field.
Collapse
|
16
|
Hinchliffe JD, Parassini Madappura A, Syed Mohamed SMD, Roy I. Biomedical Applications of Bacteria-Derived Polymers. Polymers (Basel) 2021; 13:1081. [PMID: 33805506 PMCID: PMC8036740 DOI: 10.3390/polym13071081] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
Plastics have found widespread use in the fields of cosmetic, engineering, and medical sciences due to their wide-ranging mechanical and physical properties, as well as suitability in biomedical applications. However, in the light of the environmental cost of further upscaling current methods of synthesizing many plastics, work has recently focused on the manufacture of these polymers using biological methods (often bacterial fermentation), which brings with them the advantages of both low temperature synthesis and a reduced reliance on potentially toxic and non-eco-friendly compounds. This can be seen as a boon in the biomaterials industry, where there is a need for highly bespoke, biocompatible, processable polymers with unique biological properties, for the regeneration and replacement of a large number of tissue types, following disease. However, barriers still remain to the mass-production of some of these polymers, necessitating new research. This review attempts a critical analysis of the contemporary literature concerning the use of a number of bacteria-derived polymers in the context of biomedical applications, including the biosynthetic pathways and organisms involved, as well as the challenges surrounding their mass production. This review will also consider the unique properties of these bacteria-derived polymers, contributing to bioactivity, including antibacterial properties, oxygen permittivity, and properties pertaining to cell adhesion, proliferation, and differentiation. Finally, the review will select notable examples in literature to indicate future directions, should the aforementioned barriers be addressed, as well as improvements to current bacterial fermentation methods that could help to address these barriers.
Collapse
Affiliation(s)
| | | | | | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S1 3JD, UK; (J.D.H.); (A.P.M.); (S.M.D.S.M.)
| |
Collapse
|
17
|
|
18
|
Choi SY, Cho IJ, Lee Y, Kim YJ, Kim KJ, Lee SY. Microbial Polyhydroxyalkanoates and Nonnatural Polyesters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907138. [PMID: 32249983 DOI: 10.1002/adma.201907138] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/20/2020] [Indexed: 06/11/2023]
Abstract
Microorganisms produce diverse polymers for various purposes such as storing genetic information, energy, and reducing power, and serving as structural materials and scaffolds. Among these polymers, polyhydroxyalkanoates (PHAs) are microbial polyesters synthesized and accumulated intracellularly as a storage material of carbon, energy, and reducing power under unfavorable growth conditions in the presence of excess carbon source. PHAs have attracted considerable attention for their wide range of applications in industrial and medical fields. Since the first discovery of PHA accumulating bacteria about 100 years ago, remarkable advances have been made in the understanding of PHA biosynthesis and metabolic engineering of microorganisms toward developing efficient PHA producers. Recently, nonnatural polyesters have also been synthesized by metabolically engineered microorganisms, which opened a new avenue toward sustainable production of more diverse plastics. Herein, the current state of PHAs and nonnatural polyesters is reviewed, covering mechanisms of microbial polyester biosynthesis, metabolic pathways, and enzymes involved in biosynthesis of short-chain-length PHAs, medium-chain-length PHAs, and nonnatural polyesters, especially 2-hydroxyacid-containing polyesters, metabolic engineering strategies to produce novel polymers and enhance production capabilities and fermentation, and downstream processing strategies for cost-effective production of these microbial polyesters. In addition, the applications of PHAs and prospects are discussed.
Collapse
Affiliation(s)
- So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - In Jin Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Youngjoon Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeo-Jin Kim
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- BioProcess Engineering Research Center and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
19
|
Ortiz R, Basnett P, Roy I, Quintana I. Picosecond Laser Ablation of Polyhydroxyalkanoates (PHAs): Comparative Study of Neat and Blended Material Response. Polymers (Basel) 2020; 12:E127. [PMID: 31948096 PMCID: PMC7022290 DOI: 10.3390/polym12010127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 11/16/2022] Open
Abstract
Polyhydroxyalkanoates (PHAs) have emerged as a promising biodegradable and biocompatible material for scaffold manufacturing in the tissue engineering field and food packaging. Surface modification is usually required to improve cell biocompatibility and/or reduce bacteria proliferation. Picosecond laser ablation was applied for surface micro structuring of short- and medium-chain length-PHAs and its blend. The response of each material as a function of laser energy and wavelength was analyzed. Picosecond pulsed laser modified the surface topography without affecting the material properties. UV wavelength irradiation showed halved ablation thresholds compared to VIS wavelength, revealing a greater photochemical nature of the ablation process at UV wavelength. Nevertheless, the ablation rate and, therefore, ablation efficiency did not show a clear dependence on beam wavelength. The different mechanical behavior of the considered PHAs did not lead to different ablation thresholds on each polymer at a constant wavelength, suggesting the interplay of the material mechanical parameters to equalize ablation thresholds. Blended-PHA showed a significant reduction in the ablation threshold under VIS irradiation respect to the neat PHAs. Picosecond ablation was proved to be a convenient technique for micro structuring of PHAs to generate surface microfeatures appropriate to influence cell behavior and improve the biocompatibility of scaffolds in tissue engineering.
Collapse
Affiliation(s)
- Rocío Ortiz
- Physics of Surfaces and Materials Unit, TEKNIKER, Iñaki Goenaga 5, 20600 Eibar, Spain;
| | - Pooja Basnett
- Applied Biotechnology Research Group, Department of Life Sciences, Faculty of Science and Technology, University of Westminster, London W1W 6UW, UK;
| | - Ipsita Roy
- Department of Materials Science and Engineering, University of Sheffield, North Campus, Broad Lane, Sheffield S3 7HQ, UK
| | - Iban Quintana
- Physics of Surfaces and Materials Unit, TEKNIKER, Iñaki Goenaga 5, 20600 Eibar, Spain;
| |
Collapse
|
20
|
Poly hydroxyalkanoates (PHA): Role in bone scaffolds. J Oral Biol Craniofac Res 2019; 10:389-392. [PMID: 31754599 DOI: 10.1016/j.jobcr.2019.10.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/07/2019] [Indexed: 11/20/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are prokaryotic macromolecules accumulated within the cytoplasm as granules. Due to their suitable mechanical properties, biocompatibility, degradation time, ability to be blended, surface modified, and form copolymers, it is widely used in medical devices and as scaffolds in bone tissue engineering. This review describes in brief the production and extraction sources, physico-chemical characteristic, mechanical properties, degradation rate and applications of various PHAs and its copolymers with special emphasis to its role as scaffolds in bone tissue engineering.
Collapse
|
21
|
Formulation and characterization of a novel PHBV nanocomposite for bone defect filling and infection treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:110004. [PMID: 31500052 DOI: 10.1016/j.msec.2019.110004] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/07/2019] [Accepted: 07/19/2019] [Indexed: 01/12/2023]
Abstract
Biodegradable materials that combine bioactivity with sustained drug release have been proved promising for the treatment and prophylaxis of bone infection. In this work, injection-molded nanocomposites were formulated from poly(3-hydroxybutyrate-co-3-6%hydroxyvalerate) (PHBV), nanodiamond (nD) and nanohydroxyapatite (nHA) loaded with vancomycin (VC). The components were compounded using a rotary evaporator (PHBV/nHA/VC/nD-R) or a spray-dryer (PHBV/nHA/VC/nD-SD). The nanoparticles acted as a nucleating agent, increasing PHBV crystallinity from 57.1% to up to 73.3% (PHBV/nHA/VC/nD-SD). The nHA particles were found to be well distributed on the formulations fracture surface observed by SEM-EDS micrographs. PHBV/nHA/VC/nD-SD presented higher glass transition temperature (18.1 vs 14.8 °C) and stronger interface than PHBV/nHA/VC/nD-R, as determined by dynamic mechanical analysis (DMA). Furthermore, the incorporation of nanoparticles increased PHBV flexural elastic modulus by 34% and match the reported for human bone. Both systems were able to present a sustained release of VC for 22 days, reaching 7.1 ± 1.3%(PHBV/nHA/VC/nD-R) and 4.8 ± 0.6% (PHBV/nHA/VC/nD-SD). VC presented antibacterial activity even after being processed at 178 °C in an injection molding machine. Moreover, in vitro assays showed a good adhesion and growth of cells on the specimens and suggested a non-cytotoxic and non-cytostatic behavior. These findings indicate that these systems can be further explored as bone defect filling material.
Collapse
|
22
|
Elmowafy E, Abdal-Hay A, Skouras A, Tiboni M, Casettari L, Guarino V. Polyhydroxyalkanoate (PHA): applications in drug delivery and tissue engineering. Expert Rev Med Devices 2019; 16:467-482. [PMID: 31058550 DOI: 10.1080/17434440.2019.1615439] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The applications of naturally obtained polymers are tremendously increased due to them being biocompatible, biodegradable, environmentally friendly and renewable in nature. Among them, polyhydroxyalkanoates are widely studied and they can be utilized in many areas of human life research such as drug delivery, tissue engineering, and other medical applications. AREAS COVERED This review provides an overview of the polyhydroxyalkanoates biosynthesis and their possible applications in drug delivery in the range of micro- and nano-size. Moreover, the possible applications in tissue engineering are covered considering macro- and microporous scaffolds and extracellular matrix analogs. EXPERT COMMENTARY The majority of synthetic plastics are non-biodegradable so, in the last years, a renewed interest is growing to develop alternative processes to produce biologically derived polymers. Among them, PHAs present good properties such as high immunotolerance, low toxicity, biodegradability, so, they are promisingly using as biomaterials in biomedical applications.
Collapse
Affiliation(s)
- Enas Elmowafy
- a Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy , Ain Shams University , Cairo , Egypt
| | - Abdalla Abdal-Hay
- b Dentistry and Oral Health School , The University of Queensland , Qld , Australia
| | - Athanasios Skouras
- c Department of Biomolecular Sciences , University of Urbino , Urbino (PU) , Italy.,d Department of Life Sciences , School of Sciences, European University Cyprus , Nicosia , Cyprus
| | - Mattia Tiboni
- c Department of Biomolecular Sciences , University of Urbino , Urbino (PU) , Italy
| | - Luca Casettari
- c Department of Biomolecular Sciences , University of Urbino , Urbino (PU) , Italy
| | - Vincenzo Guarino
- e Institute of Polymers, composites and Biomaterials , National Research Council of Italy , Naples , Italy
| |
Collapse
|
23
|
Chemo-enzymatic routes towards the synthesis of bio-based monomers and polymers. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.01.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Biotechnological wound dressings based on bacterial cellulose and degradable copolymer P(3HB/4HB). Int J Biol Macromol 2019; 131:230-240. [PMID: 30872059 DOI: 10.1016/j.ijbiomac.2019.03.068] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/29/2019] [Accepted: 03/10/2019] [Indexed: 12/21/2022]
Abstract
Hybrid wound dressings have been constructed using two biomaterials: bacterial cellulose (BC) and copolymer of 3-hydroxybutyric and 4-hydroxybutyric acids [P(3HB/4HB)] - a biodegradable polymer of microbial origin. Some of the experimental membranes were loaded with drugs promoting wound healing and epidermal cells differentiated from multipotent adipose-derived mesenchymal stem cells. A study has been carried out to investigate the structure and physical/mechanical properties of the membranes. The in vitro study showed that the most effective scaffolds for growing fibroblasts were composite BC/P(3HB/4HB) films loaded with actovegin. Two types of the experimental biotechnological wound dressings - BC/P(3HB/4HB)/actovegin and BC/P(3HB/4HB)/fibroblasts - were tested in vivo, on laboratory animals with model third-degree skin burns. Wound planimetry, histological examination, and biochemical and molecular methods of detecting factors of angiogenesis, inflammation, type I collagen, and keratin 10 and 14 were used to monitor wound healing. Experimental wound dressings promoted healing more effectively than VoskoPran - a commercial wound dressing.
Collapse
|
25
|
Belyamani I, Kim K, Rahimi SK, Sahukhal GS, Elasri MO, Otaigbe JU. Creep, recovery, and stress relaxation behavior of nanostructured bioactive calcium phosphate glass-POSS/polymer composites for bone implants studied under simulated physiological conditions. J Biomed Mater Res B Appl Biomater 2019; 107:2419-2432. [PMID: 30835946 DOI: 10.1002/jbm.b.34335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 01/13/2019] [Accepted: 01/19/2019] [Indexed: 11/10/2022]
Abstract
The creep and recovery and the stress relaxation behaviors of poly(butylene adipate-co-terephthalate) (PBAT) and polyhydroxyalkanoates (PHA) binary blends incorporating 30 wt % of a mixture of trisilanolisobutyl polyhedral oligomeric silsesquioxanes (POSS) and calcium phosphate glass (CaP-g) were investigated under simulated physiological and human body temperature conditions. The synergistic effect of PHA and CaP-g/POSS filler remarkably improved the creep behavior of the PBAT matrix and decreased its residual strain, consequently enhancing its elastic recovery. A considerable increase of the relaxation modulus of the hybrid materials was also observed upon incorporation of PHA and CaP-g/POSS. The relaxation modulus of the neat PBAT sample increased from ~60 MPa to ~1600 MPa after addition of 30 wt % CaP-g/POSS and 70 wt % PHA. However, after exposure of the composites to the simulated human body conditions for 14 days, a drop of dynamic mechanical properties of the studied material systems was observed along with formation of a desirable calcium phosphate phase on the material surface. The long-term (i.e., up to 7 × 105 s) viscoelastic behavior of the studied materials was successfully predicted using the time-temperature superposition principle and the obtained creep strain and the relaxation modulus master curves were satisfactorily fitted to the Findley power law equation and the generalized Maxwell model, respectively. This study demonstrates a facile method for tailoring CaP-g/POSS bioactive glasses composition for bone-like apatite formation on biopolymer surfaces. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2419-2432, 2019.
Collapse
Affiliation(s)
- Imane Belyamani
- Department of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, Mississippi 39406
| | - Kyoungtae Kim
- Department of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, Mississippi 39406
| | - Shahab Kashani Rahimi
- Department of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, Mississippi 39406
| | - Gyan S Sahukhal
- Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive #5018, Hattiesburg, Mississippi 39406
| | - Mohamed O Elasri
- Department of Biological Sciences, The University of Southern Mississippi, 118 College Drive #5018, Hattiesburg, Mississippi 39406
| | - Joshua U Otaigbe
- Department of Polymer Science and Engineering, The University of Southern Mississippi, 118 College Drive #5050, Hattiesburg, Mississippi 39406
| |
Collapse
|
26
|
Singh AK, Srivastava JK, Chandel AK, Sharma L, Mallick N, Singh SP. Biomedical applications of microbially engineered polyhydroxyalkanoates: an insight into recent advances, bottlenecks, and solutions. Appl Microbiol Biotechnol 2019; 103:2007-2032. [DOI: 10.1007/s00253-018-09604-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 01/10/2023]
|
27
|
El-Fattah AA, Mansour A. Viscoelasticity, mechanical properties, and in vitro biodegradation of injectable chitosan-poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/nanohydroxyapatite composite hydrogel. BULLETIN OF MATERIALS SCIENCE 2018; 41:141. [DOI: 10.1007/s12034-018-1663-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/26/2018] [Indexed: 09/02/2023]
|
28
|
Biodegradable polyhydroxybutyrate/poly-ε-caprolactone fibrous membranes modified by silica composite hydrol for super hydrophobic and outstanding antibacterial application. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.02.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Koller M. Biodegradable and Biocompatible Polyhydroxy-alkanoates (PHA): Auspicious Microbial Macromolecules for Pharmaceutical and Therapeutic Applications. Molecules 2018; 23:E362. [PMID: 29419813 PMCID: PMC6017587 DOI: 10.3390/molecules23020362] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 11/16/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are bio-based microbial biopolyesters; their stiffness, elasticity, crystallinity and degradability are tunable by the monomeric composition, selection of microbial production strain, substrates, process parameters during production, and post-synthetic processing; they display biological alternatives for diverse technomers of petrochemical origin. This, together with the fact that their monomeric and oligomeric in vivo degradation products do not exert any toxic or elsewhere negative effect to living cells or tissue of humans or animals, makes them highly stimulating for various applications in the medical field. This article provides an overview of PHA application in the therapeutic, surgical and tissue engineering area, and reviews strategies to produce PHA at purity levels high enough to be used in vivo. Tested applications of differently composed PHA and advanced follow-up products as carrier materials for controlled in vivo release of anti-cancer drugs or antibiotics, as scaffolds for tissue engineering, as guidance conduits for nerve repair or as enhanced sutures, implants or meshes are discussed from both a biotechnological and a material-scientific perspective. The article also describes the use of traditional processing techniques for production of PHA-based medical devices, such as melt-spinning, melt extrusion, or solvent evaporation, and emerging processing techniques like 3D-printing, computer-aided wet-spinning, laser perforation, and electrospinning.
Collapse
Affiliation(s)
- Martin Koller
- Office of Research Management and Service, c/o Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28/III, 8010 Graz, Austria.
- Association for Resource Efficient and Sustainable Technologies-ARENA, Inffeldgasse 21b, 8010 Graz, Austria.
| |
Collapse
|
30
|
Cheng J, Nordeste R, Trainer MA, Charles TC. Methods for the Isolation of Genes Encoding Novel PHA Metabolism Enzymes from Complex Microbial Communities. Methods Mol Biol 2017; 1539:237-248. [PMID: 27900694 DOI: 10.1007/978-1-4939-6691-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Development of different PHAs as alternatives to petrochemically derived plastics can be facilitated by mining metagenomic libraries for diverse PHA cycle genes that might be useful for synthesis of bio-plastics. The specific phenotypes associated with mutations of the PHA synthesis pathway genes in Sinorhizobium meliloti and Pseudomonas putida, allows the use of powerful selection and screening tools to identify complementing novel PHA synthesis genes. Identification of novel genes through their function rather than sequence facilitates the functional proteins that may otherwise have been excluded through sequence-only screening methodology. We present here methods that we have developed for the isolation of clones expressing novel PHA metabolism genes from metagenomic libraries.
Collapse
Affiliation(s)
- Jiujun Cheng
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada, N2L 3G1
| | - Ricardo Nordeste
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada, N2L 3G1
| | - Maria A Trainer
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada, N2L 3G1
| | - Trevor C Charles
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, Canada, N2L 3G1.
| |
Collapse
|
31
|
Shishatskaya EI, Nikolaeva ED, Vinogradova ON, Volova TG. Experimental wound dressings of degradable PHA for skin defect repair. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:165. [PMID: 27655431 DOI: 10.1007/s10856-016-5776-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
The present study reports construction of wound dressing materials from degradable natural polymers such as hydroxy derivatives of carboxylic acids (PHAs) and 3-hydroxybutyrate/4-hydroxybutyrate [P(3HB/4HB)] as copolymer. The developed polymer films and electrospun membranes were evaluated for its wound healing properties with Grafts-elastic nonwoven membranes carrying fibroblast cells derived from adipose tissue multipotent mesenchymal stem cells. The efficacy of nonwoven membranes of P(3HB/4HB) carrying the culture of allogenic fibroblasts was assessed against model skin defects in Wistar rats. The morphological, histological and molecular studies revealed the presence of fibroblasts on dressing materials which facilitated wound healing, vascularization and regeneration. Further it was also observed that cells secreted extracellular matrix proteins which formed a layer on the surface of membranes and promoted the migration of epidermal cells from the neighboring tissues surrounding the wound. The wounds under the P(3HB/4HB) membrane carrying cells healed 1.4 times faster than the wounds under the cell-free membrane and 3.5 times faster than the wounds healing under the eschar (control).The complete wound healing process was achieved at Day 14. Thus the study highlights the importance of nonwoven membranes developed from degradable P(3HB/4HB) polymers in reducing inflammation, enhancing angiogenic properties of skin and facilitating better wound healing process.
Collapse
Affiliation(s)
- Ekaterina I Shishatskaya
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, 50-50 Akademgorodok, Krasnoyarsk, 660036, Russia
- Siberian Federal University, 79 Svobodniy Ave., Krasnoyarsk, 660041, Russia
| | - Elena D Nikolaeva
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, 50-50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | - Olga N Vinogradova
- Siberian Federal University, 79 Svobodniy Ave., Krasnoyarsk, 660041, Russia
| | - Tatiana G Volova
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, 50-50 Akademgorodok, Krasnoyarsk, 660036, Russia.
- Siberian Federal University, 79 Svobodniy Ave., Krasnoyarsk, 660041, Russia.
| |
Collapse
|
32
|
Puwanun S, Bye FJ, Ireland MM, MacNeil S, Reilly GC, Green NH. Production and Characterization of a Novel, Electrospun, Tri-Layer Polycaprolactone Membrane for the Segregated Co-Culture of Bone and Soft Tissue. Polymers (Basel) 2016; 8:E221. [PMID: 30979316 PMCID: PMC6431928 DOI: 10.3390/polym8060221] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 11/16/2022] Open
Abstract
Composite tissue-engineered constructs combining bone and soft tissue have applications in regenerative medicine, particularly dentistry. This study generated a tri-layer, electrospun, poly-ε-caprolactone membrane, with two microfiber layers separated by a layer of nanofibers, for the spatially segregated culture of mesenchymal progenitor cells (MPCs) and fibroblasts. The two cell types were seeded on either side, and cell proliferation and spatial organization were investigated over several weeks. Calcium deposition by MPCs was detected using xylenol orange (XO) and the separation between fibroblasts and the calcified matrix was visualized by confocal laser scanning microscopy. SEM confirmed that the scaffold consisted of two layers of micron-diameter fibers with a thin layer of nano-diameter fibers in-between. Complete separation of cell types was maintained and calcified matrix was observed on only one side of the membrane. This novel tri-layer membrane is capable of supporting the formation of a bilayer of calcified and non-calcified connective tissue.
Collapse
Affiliation(s)
- Sasima Puwanun
- Faculty of Dentistry, Naresuan University, Phitsanulok 65000, Thailand.
| | - Frazer J Bye
- Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK.
| | - Moira M Ireland
- Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK.
| | - Sheila MacNeil
- Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK.
| | - Gwendolen C Reilly
- INSIGNEO Institute for in silico Medicine, University of Sheffield, Sheffield S10 2TN, UK.
| | - Nicola H Green
- Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK.
| |
Collapse
|
33
|
Goonoo N, Bhaw-Luximon A, Passanha P, Esteves SR, Jhurry D. Third generation poly(hydroxyacid) composite scaffolds for tissue engineering. J Biomed Mater Res B Appl Biomater 2016; 105:1667-1684. [PMID: 27080439 DOI: 10.1002/jbm.b.33674] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 03/10/2016] [Accepted: 03/20/2016] [Indexed: 12/13/2022]
Abstract
Bone tissue engineering based on scaffolds is quite a complex process as a whole gamut of criteria needs to be satisfied to promote cellular attachment, proliferation and differentiation: biocompatibility, right surface properties, adequate mechanical performance, controlled bioresorbability, osteoconductivity, angiogenic cues, and vascularization. Third generation scaffolds are more of composite types to maximize biological-mechanical-chemical properties. In the present review, our focus is on the performance of micro-organism-derived polyhydroxyalkanoates (PHAs)-polyhydroxybutyrate (PHB) and polyhydroxybutyrate-co-valerate (PHBV)-composite scaffolds with ceramics and natural polymers for tissue engineering applications with emphasis on bone tissue. We particularly emphasize on how material properties of the composites affect scaffold performance. PHA-based composites have demonstrated their biocompatibility with a range of tissues and their capacity to induce osteogenesis due to their piezoelectric properties. Electrospun PHB/PHBV fiber mesh in combination with human adipose tissue-derived stem cells (hASCs) were shown to improve vascularization in engineered bone tissues. For nerve and skin tissue engineering applications, natural polymers such as collagen and chitosan remain the gold standard but there is scope for development of scaffolds combining PHAs with other natural polymers which can address some of the limitations such as brittleness, lack of bioactivity and slow degradation rate presented by the latter. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1667-1684, 2017.
Collapse
Affiliation(s)
- Nowsheen Goonoo
- Centre for Biomedical and Biomaterials Research, University of Mauritius, MSIRI Building, Réduit, Mauritius
| | - Archana Bhaw-Luximon
- Centre for Biomedical and Biomaterials Research, University of Mauritius, MSIRI Building, Réduit, Mauritius
| | - Pearl Passanha
- Sustainable Environment Research Centre, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, Wales, CF37 1DL, UK
| | - Sandra R Esteves
- Sustainable Environment Research Centre, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, Wales, CF37 1DL, UK
| | - Dhanjay Jhurry
- Centre for Biomedical and Biomaterials Research, University of Mauritius, MSIRI Building, Réduit, Mauritius
| |
Collapse
|
34
|
Dobrovolskaya IP, Lebedeva IO, Yudin VE, Popryadukhin PV, Ivan’kova EM, Elokhovskii VY. Electrospinning of composite nanofibers based on chitosan, poly(ethylene oxide), and chitin nanofibrils. POLYMER SCIENCE SERIES A 2016. [DOI: 10.1134/s0965545x1602005x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Yang J, Zhu H, Zhang C, Jiang Q, Zhao Y, Chen P, Wang D. Transesterification induced mechanical properties enhancement of PLLA/PHBV bio-alloy. POLYMER 2016. [DOI: 10.1016/j.polymer.2015.12.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
An J, Wang K, Chen S, Kong M, Teng Y, Wang L, Song C, Kong D, Wang S. Biodegradability, cellular compatibility and cell infiltration of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in comparison with poly(ε-caprolactone) and poly(lactide-co-glycolide). J BIOACT COMPAT POL 2015. [DOI: 10.1177/0883911515569006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Poly(3-hydroxybutyrate-co-4-hydroxybutyrate), poly(ε-caprolactone), and poly(1actide-co-glycolide) films were prepared by solution casting and electrospinning. The degradability of cast films was evaluated in vitro and in vivo by recording the weight remaining, observing the morphology, and measuring change in molecular weight and Mw/ Mn polydispersity. In addition, cell proliferation on electrospun films was tested by MTT assay, and cell infiltration into electrospun films was assessed through subcutaneous implantation in rats. By analyzing data obtained from these tests, we discovered that the degradation rates of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymers were between those of poly(ε-caprolactone) and poly(1actide-co-glycolide) and could be controlled by adjusting 4-hydroxybutyrate content. Moreover, tissue responses to materials made from poly(3-hydroxybutyrate-co-4-hydroxybutyrate) were milder compared with those elicited by poly(ε-caprolactone) and poly(1actide-co-glycolide), and poly(3-hydroxybutyrate-co-4-hydroxybutyrate) films exhibited a good and moderate cell infiltration. Therefore, our data demonstrate that poly(3-hydroxybutyrate-co-4-hydroxybutyrate) copolymers are promising candidates for the construction of scaffolds designed for various types of tissue regeneration with special biodegradability requirements.
Collapse
Affiliation(s)
- Jun An
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, P.R. China
| | - Kai Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, P.R. China
| | - Siyuan Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, P.R. China
| | - Meimei Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, P.R. China
| | - Yuxin Teng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, P.R. China
- Department of Biomedical Engineering, Hajim School of Engineering and Applied Sciences, University of Rochester, Rochester, NY, USA
| | - Lianyong Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, P.R. China
| | - Cunjiang Song
- Department of Microbiology, Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, P.R. China
| | - Shufang Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin, P.R. China
| |
Collapse
|
37
|
Abstract
This review summarizes the state-of-the-art knowledge of the usage of poly(hydroxy alkanoate)s in medical and sanitary applications. Depending on the monomers incorporated into the polymers and copolymers, this class of polymers exhibits a broad range of (thermo-)plastic properties, enabling their processing by, e.g., solution casting or melt extrusion. In this review, strategies for the polymer analogous modification of these materials and their surfaces are highlighted and correlated with the potential applications of the corresponding materials and blends. While the commercial availability of purified PHAs is addressed in brief, special focus is put on the (bio-)degradability of these polymers and ways to influence the degradation mechanism and/or the duration of degradation.
Collapse
Affiliation(s)
- K. P. Luef
- Graz University of Technology, Institute for Chemistry and Technology of Materials, NAWI Graz, Stremayrgasse 9/V, 8010 Graz, Austria
- Polymer Competence Center Leoben, Roseggerstrasse 12, 8700 Leoben, Austria
| | - F. Stelzer
- Graz University of Technology, Institute for Chemistry and Technology of Materials, NAWI Graz, Stremayrgasse 9/V, 8010 Graz, Austria
| | - F. Wiesbrock
- Polymer Competence Center Leoben, Roseggerstrasse 12, 8700 Leoben, Austria
| |
Collapse
|
38
|
Napathorn SC. Biocompatibilities and biodegradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)s produced by a model metabolic reaction-based system. BMC Microbiol 2014; 14:285. [PMID: 25495195 PMCID: PMC4279891 DOI: 10.1186/s12866-014-0285-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 11/04/2014] [Indexed: 01/28/2023] Open
Abstract
Background This study evaluated the biocompatibilities of random and putative block poly(3-hydroxybutyrate-co-3-hydroxyvalerate)s (PHBVs) produced by a metabolic reaction-based system. The produced PHBVs were fractionated, and the copolymer sequence distributions were analyzed using 1H and 13C NMR spectroscopy. The thermal properties were analyzed using differential scanning calorimetry (DSC). Mechanical tests were conducted using a universal testing machine. The in vitro cytotoxicities of films composed of random PHBVs and putative block PHBVs were investigated against three types of mammalian cells. The surfaces of the copolymer films and the morphologies of the cells were qualitatively monitored using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Results Films composed of poly(3-hydroxybutyrate) (PHB), random PHBVs, putative block PHBVs, polystyrene and polyvinylchloride were prepared and characterized. The diad and triad sequence distributions indicated that the PHBVs produced via the fed-batch cultivation using two different feed systems resulted in two types of copolymers: random PHBVs and putative block PHBVs. The monomer compositions and sequence distributions strongly affected the thermal and mechanical properties. The mechanical integrity and characteristics of the film surfaces changed with the HV content. Notably, the random PHBVs possessed different mechanical properties than the putative block PHBVs. The biocompatibilities of these films were evaluated in vitro against three types of mammalian cells: L292 mouse connective tissue, human dermal fibroblast and Saos-2 human osteosarcoma cells. None of the PHBV films exhibited cytotoxic responses to the three types of mammalian cells. Erosion of the PHA film surfaces was observed by scanning electron microscopy and atomic force microscopy. The production of transforming growth factor-β-1 and interleukin-8 was also examined with regards to the usefulness of PHB and PHBV as biomaterials for regenerative tissue. The production of IL-8, which is induced by PHB and PHBVs, may be used to improve and enhance the wound-healing process because of deficiencies of IL-8 in the wound area, particularly in problematic wounds. Conclusion Taken together, the results support the use of PHB and the random and putative block PHBVs produced in this study as potential biomaterials in tissue engineering applications for connective tissue, bone and dermal fibroblast reconstruction.
Collapse
Affiliation(s)
- Suchada Chanprateep Napathorn
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
39
|
Kunert-Keil C, Botzenhart U, Gedrange T, Gredes T. Interrelationship between bone substitution materials and skeletal muscle tissue. Ann Anat 2014; 199:73-8. [PMID: 25159858 DOI: 10.1016/j.aanat.2014.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/18/2014] [Accepted: 07/30/2014] [Indexed: 01/25/2023]
Abstract
Bone density and quantity are primary conditions for the insertion and stability of dental implants. In cases of a lack of adequate maxillary or mandibulary bone, bone augmentation will be necessary. The use of synthetic bioactive bone substitution materials is of increasing importance as alternatives to autogenously bone grafts. It is well known that bone can influence muscle function and muscle function can influence bone structures. Muscles have a considerable potential of adaptation and muscle tissue surrounding an inserted implant or bone surrogate can integrate changes in mechanical load of the muscle and hereupon induce signaling cascades with protein synthesis and arrangement of the cytoskeleton. The Musculus latissimus dorsi is very often used for the analyses of the in vivo biocompatibility of newly designed biomaterials. Beside macroscopically and histologically examination, biocompatibility can be assessed by analyses of the biomaterial influence of gene expression. This review discusses changes in the fiber type distribution, myosin heavy chain isoform composition, histological appearance and vascularization of the skeletal muscle after implantation of bone substitution materials. Especially, the effects of bone surrogates should be described at the molecular-biological and cellular level.
Collapse
Affiliation(s)
- Christiane Kunert-Keil
- Department of Orthodontics, Carl Gustav Carus Campus, Technische Universität Dresden, Fetscherstr. 74, Haus 28, D-01307 Dresden, Germany.
| | - Ute Botzenhart
- Department of Orthodontics, Carl Gustav Carus Campus, Technische Universität Dresden, Fetscherstr. 74, Haus 28, D-01307 Dresden, Germany
| | - Tomasz Gedrange
- Department of Orthodontics, Carl Gustav Carus Campus, Technische Universität Dresden, Fetscherstr. 74, Haus 28, D-01307 Dresden, Germany
| | - Tomasz Gredes
- Department of Orthodontics, Carl Gustav Carus Campus, Technische Universität Dresden, Fetscherstr. 74, Haus 28, D-01307 Dresden, Germany
| |
Collapse
|
40
|
Biazar E. Polyhydroxyalkanoates as Potential Biomaterials for Neural Tissue Regeneration. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2014.886227] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Ashby RD, Solaiman DK. Sophorolipid-induced dimpling and increased porosity in solvent-cast short-chain polyhydroxyalkanoate films: Impact on thermomechanical properties. J Appl Polym Sci 2014. [DOI: 10.1002/app.40609] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Richard D. Ashby
- U. S. Department of Agriculture; Eastern Regional Research Center, Agricultural Research Service; Wyndmoor Pennsylvania 19038
| | - Daniel K.Y. Solaiman
- U. S. Department of Agriculture; Eastern Regional Research Center, Agricultural Research Service; Wyndmoor Pennsylvania 19038
| |
Collapse
|
42
|
Valappil SP, Misra SK, Boccaccini AR, Roy I. Biomedical applications of polyhydroxyalkanoates, an overview of animal testing andin vivoresponses. Expert Rev Med Devices 2014; 3:853-68. [PMID: 17280548 DOI: 10.1586/17434440.3.6.853] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Polyhydroxyalkanoates (PHAs) have been established as biodegradable polymers since the second half of the twentieth century. Altering monomer composition of PHAs allows the development of polymers with favorable mechanical properties, biocompatibility and desirable degradation rates, under specific physiological conditions. Hence, the medical applications of PHAs have been explored extensively in recent years. PHAs have been used to develop devices, including sutures, nerve repair devices, repair patches, slings, cardiovascular patches, orthopedic pins, adhesion barriers, stents, guided tissue repair/regeneration devices, articular cartilage repair devices, nerve guides, tendon repair devices, bone-marrow scaffolds, tissue engineered cardiovascular devices and wound dressings. So far, various tests on animal models have shown polymers, from the PHA family, to be compatible with a range of tissues. Often, pyrogenic contaminants copurified with PHAs limit their pharmacological application rather than the monomeric composition of the PHAs and thus the purity of the PHA material is critical. This review summarizes the animal testing, tissue response, in vivo molecular stability and challenges of using PHAs for medical applications. In future, PHAs may become the materials of choice for various medical applications.
Collapse
Affiliation(s)
- Sabeel P Valappil
- Department of Molecular & Applied Biosciences, University of Westminster, 115 New Cavendish Street, London, UK.
| | | | | | | |
Collapse
|
43
|
Reichert C, Götz W, Reimann S, Keilig L, Hagner M, Bourauel C, Jäger A. Resorption behavior of a nanostructured bone substitute: in vitro investigation and clinical application. J Orofac Orthop 2013; 74:165-74. [DOI: 10.1007/s00056-012-0136-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/02/2012] [Indexed: 11/30/2022]
|
44
|
Wang L, Du J, Cao D, Wang Y. Recent Advances and the Application of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) as Tissue Engineering Materials. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2013. [DOI: 10.1080/10601325.2013.802540] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
45
|
Brigham CJ, Reimer EN, Rha C, Sinskey AJ. Examination of PHB Depolymerases in Ralstonia eutropha: Further Elucidation of the Roles of Enzymes in PHB Homeostasis. AMB Express 2012; 2:26. [PMID: 22537946 PMCID: PMC3430594 DOI: 10.1186/2191-0855-2-26] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Accepted: 04/26/2012] [Indexed: 11/29/2022] Open
Abstract
Polyhydroxyalkanoates (PHA) are biodegradable polymers that are attractive materials for use in tissue engineering and medical device manufacturing. Ralstonia eutropha is regarded as the model organism for PHA biosynthesis. We examined the effects of PHA depolymerase (PhaZ) expression on PHA homeostasis in R. eutropha strains. In order to analyze the impact of PhaZs on R. eutropha granule architecture, we performed electron microscopy on several phaZ knockout strains and the wild type strain grown under PHA production conditions. Analysis of the acquired micrographs was based on stereology: the ratio of granule area and cell area was determined, along with total granule count per full-size cell image. Cells bearing a phaZ2 knockout mutation alone or in conjunction with a phaZ1 mutation were found to have a high granule volume per cell volume and a higher granule count compared to wild type. A phaZ quadruple knockout strain appeared to have a low granule volume per cell volume and a low granule count per cell. Cells bearing a phaZ3 knockout were found to have a higher granule count than the wild type, whereas granule volume per cell volume was similar. Accordingly, we hypothesize that PhaZs have not only an impact on PHA degradation but also on the 3-dimensional granule architecture. Based on our data, PhaZ2 is postulated to affect granule density. This work increased our knowledge about PHA depolymerases in R. eutropha, including enzymes that had previously been uncharacterized.
Collapse
Affiliation(s)
- Christopher J Brigham
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | - ChoKyun Rha
- Biomaterials Science and Engineering Laboratory, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Anthony J Sinskey
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Division of Health Sciences Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Engineering Systems Division, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
46
|
Shishatskaya E, Goreva A, Kalacheva G, Volova T. Biocompatibility and Resorption of Intravenously Administered Polymer Microparticles in Tissues of Internal Organs of Laboratory Animals. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 22:2185-203. [DOI: 10.1163/092050610x537138] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Ekaterina Shishatskaya
- a Institute of Biophysics SB RAS, Akademgorodok, Krasnoyarsk 660036, Russia, Siberian Federal University, Svobodnyi Avenue, Krasnoyarsk 660041, Russia.
| | - Anastasiya Goreva
- b Institute of Biophysics SB RAS, Akademgorodok, Krasnoyarsk 660036, Russia
| | - Galina Kalacheva
- c Institute of Biophysics SB RAS, Akademgorodok, Krasnoyarsk 660036, Russia
| | - Tatiana Volova
- d Institute of Biophysics SB RAS, Akademgorodok, Krasnoyarsk 660036, Russia, Siberian Federal University, Svobodnyi Avenue, Krasnoyarsk 660041, Russia
| |
Collapse
|
47
|
Shishatskaya EI, Khlusov IA, Volova TG. A hybrid PHB–hydroxyapatite composite for biomedical application: production, in vitro and in vivo investigation. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 17:481-98. [PMID: 16800151 DOI: 10.1163/156856206776986242] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Samples of a hybrid composite of polyhydroxybutyrate (PHB), a biodegradable polyester, and hydroxyapatite (HA), with different PHB/HA ratios, have been prepared using mechanical-physical method. Electron microscopy, X-ray structure analysis and differential thermal analysis have been used to investigate the structure and physicochemical properties of the composite, depending on the PHB/HA ratio. The properties of the surface of the HA-loaded composite are significantly different from those of the pure polymer. As the HA percentage in the composite increases, free interface energy, the cohesive force, i.e., the strength of the adhesive bond between the composite surface and the water phase, and surface wettability increase. The HA percentage of the composite does not influence its melting temperature, but affects the temperature for the onset of decomposition: as the HA content increases from 0 to 10% (w/w), Td decreases from 260 degrees C to 225 degrees C. The degree of crystallinity of PHB/HA increases from 77% to 89% with an increase in the HA fraction from 10% to 50%. Functional properties of the composites have been investigated in vitro and in vivo. The best parameters of growth and differentiation of murine marrow osteoblasts are registered on PHB/HA samples containing 10% and 20% HA. In ectopic bone formation assay it has been proven that the hybrid PHB/HA composites can function as scaffolds and that bone tissue develops on their surface and in pores.
Collapse
Affiliation(s)
- E I Shishatskaya
- Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 60036, Russia
| | | | | |
Collapse
|
48
|
Giavaresi G, Tschon M, Daly JH, Liggat JJ, Sutherland DS, Agheli H, Fini M, Torricelli P, Giardino R. In vitro and in vivo response to nanotopographically-modified surfaces of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and polycaprolactone. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 17:1405-23. [PMID: 17260511 DOI: 10.1163/156856206778937226] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Colloidal lithography and embossing master are new techniques of producing nanotopography, which have been recently applied to improve tissue response to biomaterials by modifying the surface topography on a nano-scale dimension. A natural polyester (Biopol), 8% 3-hydroxyvalerate-component (D400G) and a conventional biodegradable polycaprolactone (PCL) were studied, both nanostructured and native forms, in vitro and in vivo. Nanopits (100-nm deep, 120-nm diameter) on the D400G surface were produced by the embossing master technique (Nano-D400G), while nanocylinders (160-nm height, 100-nm diameter) on the PCL surface were made by the colloidal lithography technique (Nano-PCL). L929 fibroblasts were seeded on polyesters, and cell proliferation, cytotoxic effect, synthetic and cytokine production were assessed after 72 h and 7 days. Then, under general anesthesia, 3 Sprague-Dawley rats received dorsal subcutaneous implants of nanostructured and native polyesters. At 1, 4 and 12 weeks the animals were pharmacologically euthanized and implants with surrounding tissue studied histologically and histomorphometrically. In vitro results showed significant differences between D400G and PCL in Interleukin-6 production at 72 h. At 7 days, significant (P < 0.05) differences were found in Interleukin-1beta and tumor necrosis factor-alpha release for Nano-PCL when compared to Nano-D400G, and for PCL in comparison with D400G. In vivo results indicated that Nano-D400G implants produced a greater extent of inflammatory tissue than Nano-PCL at 4 weeks. The highest vascular densities were observed for Nano-PCL at 4 and 12 weeks. Chemical and topographical factors seem to be responsible for the different behaviour, and from the obtained results a prevalence of chemistry on in vitro data and nanotopography on soft tissue response in vivo are hypothesized, although more detailed investigations are necessary in this field.
Collapse
Affiliation(s)
- Gianluca Giavaresi
- Department of Experimental Surgery, Research Institute 'Codivilla-Putti', Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, I-40136 Bologna, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Shishatskaya EI, Volova TG, Gordeev SA, Puzyr AP. Degradation of P(3HB) and P(3HB-co-3HV) in biological media. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 16:643-57. [PMID: 16001722 DOI: 10.1163/1568562053783678] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The biodegradability of oriented fibers made of polyhydroxybutyrate (P(3HB)) and its co-polymer with beta-hydroxyvalerate (P(3HB-co-3HV)) was investigated in buffer solutions and in biological media in vitro and in vivo. The fibers of both polymer types demonstrated resistance to hydrolytic degradation in buffer solutions at 38 degrees C and pH from 4.5 to 7.0 (for up to 180 days). It has been found that the biodegradation of the fibers in vitro in blood and serum and in vivo is accompanied by weight losses and minor changes in the microstructure with no significant losses in the tensile strength over a long time (up to 180 days). The biodegradation rate of the less crystalline co-polymer P(3HB-co-3HV) fibers was 1.4-2.0-times higher than that of the homopolymer P(3HB). It has also been shown that the degradation of the fibers in vivo is influenced both by tissue fluid enzymes and cells (macrophages and foreign-body giant cells). The fibers were eroded on the surface only with no gross defects and no dramatic effects on their mechanical performance.
Collapse
Affiliation(s)
- E I Shishatskaya
- Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences, Akademgorodok, Krasnoyarsk 60036, Russia
| | | | | | | |
Collapse
|
50
|
Evaluation of immobilized lipases on poly-hydroxybutyrate beads to catalyze biodiesel synthesis. Int J Biol Macromol 2012; 50:503-11. [DOI: 10.1016/j.ijbiomac.2012.01.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/10/2012] [Accepted: 01/12/2012] [Indexed: 11/23/2022]
|