1
|
Gupta S, Mehra A, Sangwan R. A review on phytochemicals as combating weapon for multidrug resistance in cancer. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024:1-19. [PMID: 39121374 DOI: 10.1080/10286020.2024.2386678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/11/2024]
Abstract
One can recognize multidrug resistance (MDR) and residue as a biggest difficulty in cancer specialist. Chemotherapy-resistant cancer may be successfully treated by combining MDR-reversing phytochemicals with anticancer drugs. Though, clinical application of phytochemicals either alone or in conjunction with chemotherapy is still in its early stages or requires more research to determine their safety and efficacy. In this review we highlighted topics related to MDR in cancer, including an introduction to subject, mechanism of action of efflux pump, specific proteins involved in drug resistance, altered drug targets, increased drug metabolism, and potential role of phytochemicals in overcoming drug resistance.
Collapse
Affiliation(s)
- Sharwan Gupta
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Anuradha Mehra
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rekha Sangwan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
2
|
Raish M, Ahmad A, Karim BA, Jardan YAB, Ahad A, Iqbal M, Alkharfy KM, Al-Jenoobi FI, Mohammed OM. Pharmacokinetics of Dasatinib in Rats: a Potential Food-Drug Interaction with Naringenin. Eur J Drug Metab Pharmacokinet 2024; 49:239-247. [PMID: 38376657 DOI: 10.1007/s13318-024-00881-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND AND OBJECTIVES The novel tyrosine kinase inhibitor (TKI) dasatinib, a multitarget inhibitor of Bcr-Abl and Src family kinases, has been licensed for the treatment of Ph+ acute lymphoblastic leukemia and chronic myeloid leukemia. Many citrus-based foods include the flavonoid naringenin, which is commonly available. Dasatinib is a Cyp3a4, P-gp, and Bcrp1 substrate, which makes it sensitive to potential food-drug interactions. The concurrent use of naringenin may change the pharmacokinetics of dasatinib, which could result in adverse effects and toxicity. The present investigation examined the impact of naringenin on the pharmacokinetics interactions of DAS and proposes a possible interaction mechanism in Wistar rats. METHODS Rats were provided with a single oral dose of dasatinib (25 mg/kg) with or without naringenin pretreatment (150 mg/kg p.o. daily for 7 days, n = 6 in each group). Dasatinib was quantified in plasma by UHPLC MS/MS assay. Noncompartmental analysis was used to compute the pharmacokinetic parameters, and immunoblot was used to assess the protein expression in the hepatic and intestinal tissues. RESULTS Following 7 days of naringenin pretreatment, the plasma mean concentration of dasatinib was enhanced compared with without pretreatment. In rats that were pretreated with naringenin, the pharmacokinetics of the orally administered dasatinib (25 mg/kg) was shown to be significantly different from that of dasatinib given without pretreatment (p < 0.05). There was a significant enhancement in pharmacokinetic parameters elimination half-life (T1/2), time to maximum concentration ( Tmax), maximum concentration )Cmax), area under the concentration-time curve (AUC0-t), area under the moment curve (AUMC0-∞), and mean residence time (MRT) by 28.41%, 50%, 103.54%, 72.64%, 115.08%, and 15.19%, respectively (p < 0.05) and suppression in elimination rate constant (Kel), volume of distribution (Vd), and clearance (CL) by 21.09%, 31.13%, and 46.25%, respectively, in comparison with dasatinib alone group (p < 0.05). The enhancement in dasatinib bioavailability and systemic exposure resulted from the significant inhibition of Cyp3a2, Mdr1/P-gp, and Bcrp1 expression and suppression of the dasatinib hepatic and intestinal metabolism, which enhanced the rate of dasatinib absorption and decreased its elimination. CONCLUSION Concurrent use of naringenin-containing supplements, herbs, or foods with dasatinib may cause serious and potentially life-threatening drug interactions. Further studies are necessary to determine the clinical significance of these findings.
Collapse
Affiliation(s)
- Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Badr Abdul Karim
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Khalid M Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Fahad I Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Omer Mansour Mohammed
- Experimental Animal Care Facility, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Zhang W, Zhang Y, Wen C, Jiang X, Wang L. In vitro Assessment of the Effects of Silybin on CYP2B6-mediated Metabolism. PLANTA MEDICA 2023; 89:1195-1203. [PMID: 37236224 PMCID: PMC10575715 DOI: 10.1055/a-2102-0648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Silybin is a flavonol compound with a variety of physiological properties, such as hepatoprotective, anti-fibrogenic, and hypocholesterolemic effects. Although the in vivo and in vitro effects of silybin are frequently reported, studies on herb-drug interactions have yet to be performed. With the discovery of multiple important substrates of CYP2B6 recently, there is a growing body of evidence indicating that CYP2B6 plays a much larger role in human drug metabolism than previously thought.The purpose of this study is to determine how silybin affects the CYP2B6 enzyme's activity, as well as to clarify the molecular mechanisms for inhibition by silybin. The results showed that silybin inhibited CYP2B6 activity in liver microsomes in a non-competitive manner, with IC50 and Ki values of 13.9 µM and 38.4 µM, respectively. Further investigations revealed that silybin could down-regulate the expression of CYP2B6 protein in HepaRG cells. The hydrogen bond conformation of silybin in the active site of the CYP2B6 isoform was revealed by a molecular docking study. Collectively, our findings verify that silybin is an inhibitor of CYP2B6 and explain the molecular mechanism of inhibition. This can lead to a better understanding of the herb-drug interaction between silybin and the substrates of the CYP2B6 enzyme, as well as a more rational clinical use of silybin.
Collapse
Affiliation(s)
- Wenwen Zhang
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu, China
- Deparment of Pharmacy, Xiʼan Childrenʼs Hospital, The Affiliated Children Hospital of Xiʼan Jiaotong University, Xiʼan, China
| | - Yice Zhang
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu, China
| | - Chengming Wen
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu, China
| | - Xuehua Jiang
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu, China
| | - Ling Wang
- Department of Clinical Pharmacy and Pharmacy Administration, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy,
Sichuan University, Chengdu, China
| |
Collapse
|
4
|
ATP-binding cassette efflux transporters and MDR in cancer. Drug Discov Today 2023; 28:103537. [PMID: 36801375 DOI: 10.1016/j.drudis.2023.103537] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Of the many known multidrug resistance (MDR) mechanisms, ATP-binding cassette (ABC) transporters expelling drug molecules out of cells is a major factor limiting the efficacy of present-day anticancer drugs. In this review, we highlights updated information on the structure, function, and regulatory mechanisms of major MDR-related ABC transporters, such as P-glycoprotein (P-gp), multidrug resistance protein 1 (MRP1), and breast cancer resistance protein (BCRP), and the effect of modulators on their functions. We also provide focused information on different modulators of ABC transporters that could be utilized against the emerging MDR crisis in cancer treatment. Finally, we discuss the importance of ABC transporters as therapeutic targets in light of future strategic planning for translating ABC transporter inhibitors into clinical practice.
Collapse
|
5
|
Gunes Y, Okyar A, Krajcsi P, Fekete Z, Ustuner O. Modulation of monepantel secretion into milk by soy isoflavones. J Vet Pharmacol Ther 2022; 46:185-194. [PMID: 36448496 DOI: 10.1111/jvp.13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/05/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022]
Abstract
Monepantel (MNP), a novel anthelmintic drug from amino-acetonitrile derivatives, is a substrate for breast cancer resistance protein (BCRP). BCRP-mediated milk secretion of drugs can be altered by isoflavones. In this study, we aimed to show how soy isoflavones and BCRP inhibitors genistein (GEN) and daidzein (DAI) can modulate the secretion of MNP into milk. Moreover, we observed that the expression of BCRP in the lactating mammary gland of sheep was significantly higher than in non-lactating sheep using Western blot analysis. These properties of MNP and MNPSO2 (monepantel sulfone, the major active metabolite of MNP), identified as a BCRP substrate in determining the interaction with BCRP, were examined by vesicular transport (VT) inhibition assays. In pharmacokinetic studies, we demonstrated the transport of MNP into milk in three experimental groups: G1 fed standard forage; G2 fed soy-enriched forage; G3 fed standard forage paired with orally administered exogenous GEN and DAI. The concentrations of MNP and MNPSO2 were analyzed by high-performance liquid chromatography. Compared to the control group (3.27 ± 1.13 vs. 5.46 ± 2.23), the AUC (0-840 h) milk/plasma ratio decreased by 40% in the soy-enriched diet group. The concentrations of GEN and DAI were determined using liquid chromatography coupled with tandem mass spectrometry in soy. A VT inhibition assay was conducted to determine the IC50 values for MNP and MNPSO2 as BCRP inhibitors. This study showed that milk excretion of a BCRP substrate, such as monepantel, can be diminished by the presence of isoflavones in the diet.
Collapse
Affiliation(s)
- Yigit Gunes
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine Istanbul University‐Cerrahpasa Istanbul Turkey
| | - Alper Okyar
- Department of Pharmacology, Faculty of Pharmacy Istanbul University Istanbul Turkey
| | - Peter Krajcsi
- Solvo Biotechnology, A Charles River Company, Faculty of Health Sciences Semmelweis University Budapest Hungary
| | | | - Oya Ustuner
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine Istanbul University‐Cerrahpasa Istanbul Turkey
| |
Collapse
|
6
|
Liang XL, Ji MM, Liao ZG, Zhao GW, Tang XL, Dong W. Chemosensitizing effect and mechanism of imperatorin on the anti-tumor activity of doxorubicin in tumor cells and transplantation tumor model. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:145-155. [PMID: 35477542 PMCID: PMC9046893 DOI: 10.4196/kjpp.2022.26.3.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 11/07/2021] [Accepted: 02/02/2022] [Indexed: 11/15/2022]
Abstract
Multidrug resistance of tumors has been a severe obstacle to the success of cancer chemotherapy. The study wants to investigate the reversal effects of imperatorin (IMP) on doxorubicin (DOX) resistance in K562/DOX leukemia cells, A2780/Taxol cells and in NOD/SCID mice, to explore the possible molecular mechanisms. K562/DOX and A2780/Taxol cells were treated with various concentrations of DOX and Taol with or without different concentrations of IMP, respectively. K562/DOX xenograft model was used to assess anti-tumor effect of IMP combined with DOX. MTT assay, Rhodamine 123 efflux assay, RT-PCR, and Western blot analysis were determined in vivo and in vitro. Results showed that IMP significantly enhanced the cytotoxicity of DOX and Taxol toward corresponding resistance cells. In vivo results illustrated both the tumor volume and tumor weight were significantly decreased after 2-week treatment with IMP combined with DOX compared to the DOX alone group. Western blotting and RT-PCR analyses indicated that IMP downregulated the expression of P-gp in K562/DOX xenograft tumors in NOD/SCID mice. We also evaluated glycolysis and glutamine metabolism in K562/DOX cells by measuring glucose consumption and lactate production. The results revealed that IMP could significantly reduce the glucose consumption and lactate production of K562/DOX cells. Furthermore, IMP could also remarkably repress the glutamine consumption, α-KG and ATP production of K562/DOX cells. Thus, IMP may sensitize K562/DOX cells to DOX and enhance the anti-tumor effect of DOX in K562/DOX xenograft tumors in NOD/SCID mice. IMP may be an adjuvant therapy to mitigate the multidrug resistance in leukemia chemotherapy.
Collapse
Affiliation(s)
- Xin-li Liang
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Miao-miao Ji
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Zheng-gen Liao
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Guo-wei Zhao
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xi-lan Tang
- Jiangxi Provincial Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Nanchang 330013, China
| | - Wei Dong
- Key Laboratory of Modern Preparation of Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
7
|
Koltai T, Fliegel L. Role of Silymarin in Cancer Treatment: Facts, Hypotheses, and Questions. J Evid Based Integr Med 2022; 27:2515690X211068826. [PMID: 35018864 PMCID: PMC8814827 DOI: 10.1177/2515690x211068826] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/20/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
The flavonoid silymarin extracted from the seeds of Sylibum marianum is a mixture of 6 flavolignan isomers. The 3 more important isomers are silybin (or silibinin), silydianin, and silychristin. Silybin is functionally the most active of these compounds. This group of flavonoids has been extensively studied and they have been used as hepato-protective substances for the mushroom Amanita phalloides intoxication and mainly chronic liver diseases such as alcoholic cirrhosis and nonalcoholic fatty liver. Hepatitis C progression is not, or slightly, modified by silymarin. Recently, it has also been proposed for SARS COVID-19 infection therapy. The biochemical and molecular mechanisms of action of these substances in cancer are subjects of ongoing research. Paradoxically, many of its identified actions such as antioxidant, promoter of ribosomal synthesis, and mitochondrial membrane stabilization, may seem protumoral at first sight, however, silymarin compounds have clear anticancer effects. Some of them are: decreasing migration through multiple targeting, decreasing hypoxia inducible factor-1α expression, inducing apoptosis in some malignant cells, and inhibiting promitotic signaling among others. Interestingly, the antitumoral activity of silymarin compounds is limited to malignant cells while the nonmalignant cells seem not to be affected. Furthermore, there is a long history of silymarin use in human diseases without toxicity after prolonged administration. The ample distribution and easy accessibility to milk thistle-the source of silymarin compounds, its over the counter availability, the fact that it is a weed, some controversial issues regarding bioavailability, and being a nutraceutical rather than a drug, has somehow led medical professionals to view its anticancer effects with skepticism. This is a fundamental reason why it never achieved bedside status in cancer treatment. However, in spite of all the antitumoral effects, silymarin actually has dual effects and in some cases such as pancreatic cancer it can promote stemness. This review deals with recent investigations to elucidate the molecular actions of this flavonoid in cancer, and to consider the possibility of repurposing it. Particular attention is dedicated to silymarin's dual role in cancer and to some controversies of its real effectiveness.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
8
|
Tvrdý V, Pourová J, Jirkovský E, Křen V, Valentová K, Mladěnka P. Systematic review of pharmacokinetics and potential pharmacokinetic interactions of flavonolignans from silymarin. Med Res Rev 2021; 41:2195-2246. [PMID: 33587317 DOI: 10.1002/med.21791] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/06/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022]
Abstract
Silymarin is an extract from the seeds (fruits) of Silybum marianum that contains flavonolignans and flavonoids. Although it is frequently used as a hepatoprotective agent, its application remains somewhat debatable, in particular, due to the low oral bioavailability of flavonolignans. Moreover, there are claims of its potential interactions with concomitantly used drugs. This review aims at a systematic summary and critical assessment of known information on the pharmacokinetics of particular silymarin flavonolignans. There are two known major reasons for poor systemic oral bioavailability of flavonolignans: (1) rapid conjugation in intestinal cells or the liver and (2) efflux of parent flavonolignans or formed conjugates back to the lumen of the gastrointestinal tract by intestinal cells and rapid excretion by the liver into the bile. The metabolism of phase I appears to play a minor role, in contrast to extensive conjugation and indeed the unconjugated flavonolignans reach low plasma levels after common doses. Only about 1%-5% of the administered dose is eliminated by the kidneys. Many in vitro studies tested the inhibitory potential of silymarin and its components toward different enzymes and transporters involved in the absorption, metabolism, and excretion of xenobiotics. In most cases, effective concentrations are too high to be relevant under real biological conditions. Most human studies showed no silymarin-drug interactions explainable by these suggested interferences. More interactions were found in animal studies, likely due to the much higher doses administered.
Collapse
Affiliation(s)
- Václav Tvrdý
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Jana Pourová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Eduard Jirkovský
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
9
|
Banik A, Ghosh K, Patil UK, Gayen S. Identification of molecular fingerprints of natural products for the inhibition of breast cancer resistance protein (BCRP). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153523. [PMID: 33662771 DOI: 10.1016/j.phymed.2021.153523] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/15/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Extensive research over the past several decades, explored that the natural compounds contain different plant secondary metabolites and have the potential to inhibit breast cancer resistance protein (BCRP). PURPOSE To identify crucial molecular fingerprints of some natural products for the inhibition of breast cancer resistance protein and also to screen out some potent natural BCRP inhibitors. STUDY DESIGN Multiple modelling strategies were applied with three main mottos: (a) Generation of robust classification models to identify the linear and non-linear relationships among the natural compounds and the inhibition of BCRP, (b) Identification of important structural fingerprints that modulate BCRP inhibition and screening of natural database to find the probable hit molecules, (c) Comprehensive ligand-receptor interactions analysis of those against the putative breast cancer resistant protein through molecular docking analysis. METHODS Monte Carlo optimization and SPCI analysis was used to identify important structural fingerprints. QSARCo. and swissADME analysis were used for screening and prediction of hits. Finally, docking analysis was performed for interaction study. RESULTS In this study, some important structural fingerprints of BCRP inhibitors were identified. Additionally, eleven natural anti-cancer compounds were predicted to be active against the BCRP and also satisfy the different drug-likeliness properties. Among them, apigenin was found to have better binding affinities against the putative target as obtained from molecular docking analysis. CONCLUSION This study is an attempt to understand about the molecular fingerprints of natural compounds for the inhibition of BCRP and also to dig out some novel natural inhibitors against BCRP.
Collapse
Affiliation(s)
- Arghya Banik
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr Harisingh Gour University, Sagar 470003, Madhya Pradesh, India
| | - Kalyan Ghosh
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr Harisingh Gour University, Sagar 470003, Madhya Pradesh, India
| | - Umesh K Patil
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr Harisingh Gour University, Sagar 470003, Madhya Pradesh, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr Harisingh Gour University, Sagar 470003, Madhya Pradesh, India.
| |
Collapse
|
10
|
Role of Flavonoids in The Interactions among Obesity, Inflammation, and Autophagy. Pharmaceuticals (Basel) 2020; 13:ph13110342. [PMID: 33114725 PMCID: PMC7692407 DOI: 10.3390/ph13110342] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/19/2022] Open
Abstract
Nowadays, obesity is considered as one of the main concerns for public health worldwide, since it encompasses up to 39% of overweight and 13% obese (WHO) adults. It develops because of the imbalance in the energy intake/expenditure ratio, which leads to excess nutrients and results in dysfunction of adipose tissue. The hypertrophy of adipocytes and the nutrients excess trigger the induction of inflammatory signaling through various pathways, among others, an increase in the expression of pro-inflammatory adipocytokines, and stress of the endoplasmic reticulum (ER). A better understanding of obesity and preventing its complications are beneficial for obese patients on two facets: treating obesity, and treating and preventing the pathologies associated with it. Hitherto, therapeutic itineraries in most cases are based on lifestyle modifications, bariatric surgery, and pharmacotherapy despite none of them have achieved optimal results. Therefore, diet can play an important role in the prevention of adiposity, as well as the associated disorders. Recent results have shown that flavonoids intake have an essential role in protecting against oxidative damage phenomena, and presents biochemical and pharmacological functions beneficial to human health. This review summarizes the current knowledge of the anti-inflammatory actions and autophagic flux of natural flavonoids, and their molecular mechanisms for preventing and/or treating obesity.
Collapse
|
11
|
Tinoush B, Shirdel I, Wink M. Phytochemicals: Potential Lead Molecules for MDR Reversal. Front Pharmacol 2020; 11:832. [PMID: 32636741 PMCID: PMC7317022 DOI: 10.3389/fphar.2020.00832] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Multidrug resistance (MDR) is one of the main impediments in the treatment of cancers. MDR cancer cells are resistant to multiple anticancer drugs. One of the major mechanisms of MDR is the efflux of anticancer drugs by ABC transporters. Increased activity and overexpression of these transporters are important causes of drug efflux and, therefore, resistance to cancer chemotherapy. Overcoming MDR is a fundamental prerequisite for developing an efficient treatment of cancer. To date, various types of ABC transporter inhibitors have been employed but no effective anticancer drug is available at present, which can completely overcome MDR. Phytochemicals can reverse MDR in cancer cells via affecting the expression or activity of ABC transporters, and also through exerting synergistic interactions with anticancer drugs by addressing additional molecular targets. We have listed numerous phytochemicals which can affect the expression and activity of ABC transporters in MDR cancer cell lines. Phytochemicals in the groups of flavonoids, alkaloids, terpenes, carotenoids, stilbenoids, lignans, polyketides, and curcuminoids have been examined for MDR-reversing activity. The use of MDR-reversing phytochemicals with low toxicity to human in combination with effective anticancer agents may result in successful treatment of chemotherapy-resistant cancer. In this review, we summarize and discuss published evidence for natural products with MDR modulation abilities.
Collapse
Affiliation(s)
- Boshra Tinoush
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Iman Shirdel
- Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
12
|
Xu R, Zhu H, Hu L, Yu B, Zhan X, Yuan Y, Zhou P. Characterization of the intestinal absorption of morroniside from Cornus officinalis Sieb. et Zucc via a Caco-2 cell monolayer model. PLoS One 2020; 15:e0227844. [PMID: 32470043 PMCID: PMC7259638 DOI: 10.1371/journal.pone.0227844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/15/2020] [Indexed: 12/27/2022] Open
Abstract
Morroniside is a biologically active polyphenol found in Cornus officinalis Sieb. et Zucc (CO) that exhibits a broad spectrum of pharmacological activities, such as protecting nerves, and preventing diabetic liver damage and renal damage. However, little data are available regarding the mechanism of its intestinal absorption. Here, an in vitro human intestinal epithelial cell model of cultured Caco-2 cells was applied to study the absorption and transport of morroniside. The effects of donor concentration, pH and inhibitors were investigated. The bidirectional permeability of morroniside from the apical (AP) to the basolateral (BL) side and in the reverse direction was studied. When administered at three tested concentrations (5, 25 and 100 μM), the apparent permeability coefficient (Papp) values in the AP-to-BL direction ranged from 1.59 × 10-6 to 2.66 × 10-6 cm/s. In the reverse direction, BL-to-AP, the value was ranged from 2.67 × 10-6 to 4.10 × 10-6 cm/s. The data indicated that morroniside transport was pH-dependent. The permeability of morroniside was affected by treatment with various inhibitors, such as multidrug resistance protein inhibitors MK571 and indomethacin, as well as the breast cancer resistance protein inhibitor apigenin. The mechanisms of the intestinal absorption of morroniside may involve multiple transport pathways, such as the passive diffusion and efflux protein-mediated active transport especially involving multidrug resistance protein 2 and breast cancer resistance protein. After the addition of CO, the Papp values in the AP-to-BL direction increased significantly, therefore, it can be assumed that some ingredients in the CO promote morroniside absorption in the small intestine.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 2/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics
- Caco-2 Cells
- Cell Proliferation/drug effects
- Cornus/chemistry
- Epithelial Cells/drug effects
- Gene Expression Regulation, Neoplastic/drug effects
- Glycosides/pharmacology
- Humans
- Indomethacin/pharmacology
- Intestinal Absorption/drug effects
- Intestinal Absorption/genetics
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasms/drug therapy
- Neoplasms/pathology
- Permeability/drug effects
- Propionates/pharmacology
- Quinolines/pharmacology
- ATP-Binding Cassette Sub-Family B Member 4
Collapse
Affiliation(s)
- Renjie Xu
- Department of Clinical pharmacy, Shaoxing Women and Children’s Hospital, Shaoxing, Zhejiang, China
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongdan Zhu
- Neonatal Intensive Care Unit, Shaoxing Women and Children’s Hospital, Shaoxing, Zhejiang, China
| | - Lingmin Hu
- Department of Laboratory, Shaoxing Seventh People’s Hospital, Shaoxing, Zhejiang, China
| | - Beimeng Yu
- Neonatal Intensive Care Unit, Shaoxing Women and Children’s Hospital, Shaoxing, Zhejiang, China
| | - Xiaohua Zhan
- The Third Maternal wards, Shaoxing Women and Children’s Hospital, Shaoxing, Zhejiang, China
| | - Yichu Yuan
- Department of Urology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ping Zhou
- Department of Clinical pharmacy, Shaoxing Women and Children’s Hospital, Shaoxing, Zhejiang, China
| |
Collapse
|
13
|
Fan X, Bai J, Zhao S, Hu M, Sun Y, Wang B, Ji M, Jin J, Wang X, Hu J, Li Y. Evaluation of inhibitory effects of flavonoids on breast cancer resistance protein (BCRP): From library screening to biological evaluation to structure-activity relationship. Toxicol In Vitro 2019; 61:104642. [PMID: 31493543 DOI: 10.1016/j.tiv.2019.104642] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/24/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
Flavonoids are a group of polyphenols ubiquitously present in vegetables, fruits and herbal products, despite various known pharmacological activities, few researches have been done about the interaction of flavonoids with breast cancer resistance protein (BCRP). The present study was designed to investigate the inhibitory effects of 99 flavonoids on BCRP in vitro and in vivo and to clarify structure-activity relationships of flavonoids with BCRP. Eleven flavonoids, including amentoflavone, apigenin, biochanin A, chrysin, diosimin, genkwanin, hypericin, kaempferol, kaempferide, licochalcone A and naringenin, exhibited significant inhibition (>50%) on BCRP in BCRP-MDCKII cells, which reduced the BCRP-mediated efflux of doxorubicin and temozolomide, accordingly increased their cytotoxicity. In addition, co-administration of mitoxantrone with the 11 flavonoids increased the AUC0-t of mitoxantrone in different extents in rats. Among them, chrysin increased the AUC0-t most significantly, by 81.97%. Molecular docking analysis elucidated the inhibition of flavonoids on BCRP might be associated with Pi-Pi stacked interactions and/or potential Pi-Alkyl interactions, but not conventional hydrogen bonds. The pharmacophore model indicated the aromatic ring B, hydrophobic groups and hydrogen bond acceptors may play critical role in the potency of flavonoids inhibition on BCRP. Thus, our findings would provide helpful information for predicting the potential risks of flavonoid-containing food/herb-drug interactions in humans.
Collapse
Affiliation(s)
- Xiaoqing Fan
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Jie Bai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Shengyu Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Minwan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Yanhong Sun
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Baolian Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Jing Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Xiaojian Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Jinping Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China.
| | - Yan Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Drug Metabolism, Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD study, Beijing Key Laboratory of Active Substances Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
14
|
Drouet S, Leclerc EA, Garros L, Tungmunnithum D, Kabra A, Abbasi BH, Lainé É, Hano C. A Green Ultrasound-Assisted Extraction Optimization of the Natural Antioxidant and Anti-Aging Flavonolignans from Milk Thistle Silybum marianum (L.) Gaertn. Fruits for Cosmetic Applications. Antioxidants (Basel) 2019; 8:E304. [PMID: 31416140 PMCID: PMC6721202 DOI: 10.3390/antiox8080304] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 01/23/2023] Open
Abstract
Silybum marianum (L.) Gaertn. (aka milk thistle) constitutes the source of silymarin (SILM), a mixture of different flavonolignans and represents a unique model for their extraction. Here we report on the development and validation of an ultrasound-assisted extraction (UAE) method of S. marianum flavonolignans follow by their quantification using LC system. The optimal conditions of this UAE method were: aqueous EtOH 54.5% (v/v) as extraction solvent, with application of an ultrasound (US) frequency of 36.6 kHz during 60 min at 45 °C with a liquid to solid ratio of 25:1 mL/g dry weight (DW). Following its optimization using a full factorial design, the extraction method was validated according to international standards of the association of analytical communities (AOAC) to ensure precision and accuracy in the quantitation of each component of the SILM mixture. The efficiency of this UAE was compared with maceration protocol. Here, the optimized and validated conditions of the UAE allowed the highest extraction yields of SILM and its constituents in comparison to maceration. During UAE, the antioxidant capacity of the extracts was retained, as confirmed by the in vitro assays CUPRAC (cupric ion reducing antioxidant capacity) and inhibition of AGEs (advanced glycation end products). The skin anti-aging potential of the extract obtained by UAE was also confirmed by the strong in vitro cell-free inhibition capacity of both collagenase and elastase. To summarize, the UAE procedure presented here is a green and efficient method for the extraction and quantification of SILM and its constituents from the fruits of S. marianum, making it possible to generate extracts with attractive antioxidant and anti-aging activities for future cosmetic applications.
Collapse
Affiliation(s)
- Samantha Drouet
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France
- Bioactifs et Cosmétiques, Centre National de la Recherche Scientifique (CNRS) - Groupement de Recherche 3711, Université d'Orléans, 45067 Orléans Cedex 2, France
| | - Emilie A Leclerc
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France
- Bioactifs et Cosmétiques, Centre National de la Recherche Scientifique (CNRS) - Groupement de Recherche 3711, Université d'Orléans, 45067 Orléans Cedex 2, France
| | - Laurine Garros
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France
- Bioactifs et Cosmétiques, Centre National de la Recherche Scientifique (CNRS) - Groupement de Recherche 3711, Université d'Orléans, 45067 Orléans Cedex 2, France
| | - Duangjai Tungmunnithum
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France
- Bioactifs et Cosmétiques, Centre National de la Recherche Scientifique (CNRS) - Groupement de Recherche 3711, Université d'Orléans, 45067 Orléans Cedex 2, France
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Mahidol University, 447 Sri-Ayuthaya Road, Rajathevi, Bangkok 10400, Thailand
| | - Atul Kabra
- Inder Kumar Gujral Punjab Technical University, Kapurthala, Punjab 144603, India
- Kota College of Pharmacy, Kota Rajasthan 325003, India
| | - Bilal Haider Abbasi
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France
- Bioactifs et Cosmétiques, Centre National de la Recherche Scientifique (CNRS) - Groupement de Recherche 3711, Université d'Orléans, 45067 Orléans Cedex 2, France
- Department of Biotechnology, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Éric Lainé
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France
- Bioactifs et Cosmétiques, Centre National de la Recherche Scientifique (CNRS) - Groupement de Recherche 3711, Université d'Orléans, 45067 Orléans Cedex 2, France
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), INRA USC1328, Université d'Orléans, Pôle Universitaire d'Eure et Loir, 21 rue de Loigny la Bataille, F-28000 Chartres, France.
- Bioactifs et Cosmétiques, Centre National de la Recherche Scientifique (CNRS) - Groupement de Recherche 3711, Université d'Orléans, 45067 Orléans Cedex 2, France.
| |
Collapse
|
15
|
Xu R, Peng Y, Wang M, Li X. Intestinal Absorption of Isoalantolactone and Alantolactone, Two Sesquiterpene Lactones from Radix Inulae, Using Caco-2 Cells. Eur J Drug Metab Pharmacokinet 2019; 44:295-303. [PMID: 30209793 DOI: 10.1007/s13318-018-0510-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Isoalantolactone and alantolactone are the main sesquiterpene lactones in Radix Inulae (dried root of Inula helenium L. or I. racemosa Hook. F.), which is a frequently utilized herbal medicine. They also occur in several plants and have various pharmacologic effects. However, they have been found to have poor oral bioavailability in rats. OBJECTIVES To understand the intestinal absorptive characteristics of isoalantolactone and alantolactone as well specific influx and efflux transporters in their absorption. METHODS Bidirectional permeabilities of isoalantolactone and alantolactone were investigated across Caco-2 cell monolayers. Transport assays were performed using different concentrations of two lactones and specific inhibitors of ATP-binding cassette transporters and influx transporters. RESULTS The absorption permeability of isoalantolactone and alantolactone was high at the tested concentrations (5, 20 and 80 μmol/l), and the major permeation mechanism of both lactones was found to be passive diffusion with active efflux mediated by multidrug resistance-associated proteins (MRPs) and breast cancer resistance protein (BCRP). CONCLUSION Our results demonstrated that the absorption permeability of isoalantolactone and alantolactone was good in the Caco-2 cell model. The isoalantolactone and alantolactone absorption elucidated in this study provides useful information for further pharmacokinetics studies. Since low intestinal absorption can now be ruled out as a cause, further studies are needed to explain the low oral bioavailability of the two sesquiterpene lactones.
Collapse
Affiliation(s)
- Renjie Xu
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - Mengyue Wang
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
16
|
Song D, Cheng L, Zhang X, Wu Z, Zheng X. The modulatory effect and the mechanism of flavonoids on obesity. J Food Biochem 2019; 43:e12954. [PMID: 31368555 DOI: 10.1111/jfbc.12954] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/15/2019] [Accepted: 05/31/2019] [Indexed: 12/19/2022]
Abstract
With the improvement of living standards, obesity has become a serious health problem all over the word. Currently, the methods and drugs for obesity treatment have some limitations and side effects. Flavonoids are active constituents with various biological activities, widely found in plants, and numerous studies have shown that flavonoids can inhibit obesity and related metabolism disorders effectively. This perspective reviews the recent progress in understanding the anti-obesity effects of flavonoids through modulating food intake, enzyme activities, nutrition absorption, adipogenesis and adipocyte lifecycle, thermogenesis, energy consumption, and intestinal microbiota. PRACTICAL APPLICATIONS: Natural bioactive substance flavonoids have anti-obesity property, which may play a role in anti-obesity drugs or functional food without any side effects. Flavonoids can inhibit weight gain directly or through their biologically active metabolites by various potential pathways. A better understanding of the modulatory effect and the mechanism of flavonoids on obesity will allow us to better utilize flavonoids in plants to treat obesity and related metabolic syndrome.
Collapse
Affiliation(s)
- Dan Song
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, P.R. China
| | - Xiaojie Zheng
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou, P.R. China
| |
Collapse
|
17
|
Ye Q, Liu K, Shen Q, Li Q, Hao J, Han F, Jiang RW. Reversal of Multidrug Resistance in Cancer by Multi-Functional Flavonoids. Front Oncol 2019; 9:487. [PMID: 31245292 PMCID: PMC6581719 DOI: 10.3389/fonc.2019.00487] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/23/2019] [Indexed: 12/22/2022] Open
Abstract
Multidrug resistance (MDR) resulting from different defensive mechanisms in cancer is one of the major obstacles of clinical treatment. To circumvent MDR many reversal agents have been developed, but most of them fail in clinical trials due to severely adverse effects. Recently, certain natural products have been reported to overcome MDR, including flavonoids which are abundant in plants, foods, and herbs. The structure of flavonoids can be abbreviated as C6-C3-C6 (C for carbon), and further categorized into flavonoids, iso-flavonoids and neo-flavonoids, according to their structural backbones. Flavonoids possess multiple bioactivities, and a growing body of research has indicated that both flavonoids and iso-flavonoids can either kill or re-sensitize conventional chemotherapeutics to resistant cancer cells. Here, we summarize the research and discuss the underlying mechanisms, concluding that these flavonoids do not function as specific regulators of target proteins, but rather as multi-functional agents that negatively regulate the key factors contributing to MDR.
Collapse
Affiliation(s)
| | - Kai Liu
- Hainan General Hospital, Haikou, China
| | - Qun Shen
- Hainan General Hospital, Haikou, China
| | | | - Jinghui Hao
- Jiaozuo Second People's Hospital, Jiaozuo, China
| | | | - Ren-Wang Jiang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Wang X, Yang Y, An Y, Fang G. The mechanism of anticancer action and potential clinical use of kaempferol in the treatment of breast cancer. Biomed Pharmacother 2019; 117:109086. [PMID: 31200254 DOI: 10.1016/j.biopha.2019.109086] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 01/09/2023] Open
Abstract
In the last century, natural compounds have achieved remarkable achievements in the treatment of tumors through chemotherapy. This inspired scientists to continuously explore anticancer agents from natural compounds. Kaempferol is an ordinary natural compound, the most common flavonoid, which is widely existed in vegetables and fruits. It has been reported to have various anticancer activities, including breast cancer, prostate cancer, bladder cancer, cervical cancer, colon cancer, liver cancer, lung cancer, ovarian cancer, leukemia, etc. Meanwhile, we found that there were more reports on breast cancer among these cancers although there are limited clinical studies that have addressed the benefits of kaempferol as an anti-cancer agent for breast cancer treatment. Then we realize that although kaempferol has been reported to have anti-breast cancer effect many times, it is still far from becoming a real anti-breast cancer agent. Therefore, in this review, we talk about the options for improving the anti-breast cancer effect of kaempferol, including various techniques and methods to improve the bioavailability of kaempferol, the idea of combining other compounds to produce synergistic effects, and the possibility of developing kaempferol into a targeted drug delivery system.
Collapse
Affiliation(s)
- Xueni Wang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China.
| | - Yuting Yang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China; Faculty of pharmacy, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China.
| | - Yating An
- Department of pharmacy, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, 354 North road, Hongqiao District, Tianjin, 300120, China.
| | - Gang Fang
- Guangxi Zhuang Yao Medicine Center of Engineering and Technology, Guangxi University of Chinese Medicine, 13 Wuhe Road, Qingxiu District, Nanning, 530200, China; Laboratory of Zhuang Medicine Prescriptions Basis and application Research, Guangxi University of Chinese medicine, 179 Mingxiudong Road, Xixiangtang District, Nanning, 530001, China.
| |
Collapse
|
19
|
Fang Y, Xia M, Liang F, Cao W, Pan S, Xu X. Establishment and Use of Human Mouth Epidermal Carcinoma (KB) Cells Overexpressing P-Glycoprotein To Characterize Structure Requirements for Flavonoids Transported by the Efflux Transporter. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2350-2360. [PMID: 30688455 DOI: 10.1021/acs.jafc.9b00039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study was aimed to determine the mechanism for flavonoid poor absorption related to P-glycoprotein (P-gp). The cellular uptake (CU) of 40 flavonoids was investigated in P-gp overexpressing KB/multidrug-resistant (MDR) cells. A total of 9 flavonoids, including 5,7,3',4'-tetramethoxyflavone, with a significant ( p < 0.05) CUKBE (2.90 ± 0.146 μmol/g) higher than CUKBP (1.57 ± 0.129 μmol/g) were identified as P-gp substrates. Besides, 8 substrates, including tangeretin, showed a significant ( p < 0.05) CUKB (9.72 ± 1.09 μmol/g) higher than its CUKBP (7.36 ± 0.692 μmol/g). A total of 7 of 17 flavonoid substrates stimulated the P-gp efflux of rhodamine 123, and most substrates increased P-gp expression in KB/MDR cells. Docking analyses showed a good correlation ( R = 0.764; p < 0.01) between efflux fold and S_scoring of flavonoids to the P-gp model, indicating consistency between in silico and in vitro results. A structure-affinity relationship exhibited that 3-OH, 5-OH, 3'-OCH3, and 4'-OCH3 are crucial for flavonoids binding to P-gp. These results provide valuable information for finding a solution to improve the absorption of flavonoids.
Collapse
Affiliation(s)
- Yajing Fang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education , Huazhong Agricultural University , Wuhan , Hubei 430070 , People's Republic of China
| | - Mengmeng Xia
- Key Laboratory of Environment Correlative Dietology, Ministry of Education , Huazhong Agricultural University , Wuhan , Hubei 430070 , People's Republic of China
| | - Fuqiang Liang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education , Huazhong Agricultural University , Wuhan , Hubei 430070 , People's Republic of China
| | - Weiwei Cao
- Key Laboratory of Environment Correlative Dietology, Ministry of Education , Huazhong Agricultural University , Wuhan , Hubei 430070 , People's Republic of China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education , Huazhong Agricultural University , Wuhan , Hubei 430070 , People's Republic of China
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology, Ministry of Education , Huazhong Agricultural University , Wuhan , Hubei 430070 , People's Republic of China
| |
Collapse
|
20
|
Xu R, Yuan Y, Qi J, Zhou J, Guo X, Zhang J, Zhan R. Elucidation of the Intestinal Absorption Mechanism of Loganin in the Human Intestinal Caco-2 Cell Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:8340563. [PMID: 30671130 PMCID: PMC6323428 DOI: 10.1155/2018/8340563] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/26/2018] [Accepted: 12/04/2018] [Indexed: 11/17/2022]
Abstract
Loganin, iridoid glycosides, is the main bioactive ingredients in the plant Strychnos nux-vomica L. and demonstrates various pharmacological effects, though poor oral bioavailability in rats. In this study, the intestinal absorption mechanism of loganin was investigated using the human intestinal Caco-2 cell monolayer model in both the apical-to-basolateral (A-B) and the basolateral-to-apical (B-A) direction; additionally, transport characteristics were systematically investigated at different concentrations, pHs, temperatures, and potential transporters. The absorption permeability (PappAB) of loganin, which ranged from 12.17 to 14.78 × 10-6cm/s, was high at four tested concentrations (5, 20, 40, and 80μM), while the major permeation mechanism of loganin was found to be passive diffusion with active efflux mediated by multidrug resistance-associated protein (MRP) and breast cancer resistance protein (BCRP). In addition, it was found that loganin was not the substrate of efflux transporter P-glycoprotein (P-gp) since the selective inhibitor (verapamil) of the efflux transporter exhibited little effects on the transport of loganin in the human intestinal Caco-2 cells. Meanwhile, transport from the apical to the basolateral side increased 2.09-fold after addition of a MRP inhibitor and 2.32-fold after addition of a BCRP inhibitor. In summary, our results clearly demonstrate, for the first time, a good permeability of loganin in the human intestinal Caco-2 cell model and elucidate, in detail, the intestinal absorption mechanism and the effects of transporters on iridoid glycosides compounds.
Collapse
Affiliation(s)
- Renjie Xu
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200092, China
| | - Yichu Yuan
- Department of Urology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai200127, China
| | - Jia Qi
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200092, China
| | - Jia Zhou
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200092, China
| | - Xiaowen Guo
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200092, China
| | - Jian Zhang
- Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai200092, China
| | - Ruanjuan Zhan
- Department of Pharmacy, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou325035, China
| |
Collapse
|
21
|
Zeng X, Su W, Liu H, Zheng Y, Chen T, Zhang W, Yan Z, Bai Y, Yao H. Simultaneous determination of rosuvastatin, naringin and naringenin in rat plasma by RRLC-MS/MS and its application to a pharmacokinetic drug interaction study. J Chromatogr Sci 2018; 56:611-618. [PMID: 29701749 DOI: 10.1093/chromsci/bmy034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 04/04/2018] [Indexed: 01/12/2023]
Abstract
A rapid resolution liquid chromatography tandem mass spectrometry method was developed and validated for simultaneous determination of rosuvastatin, naringin and naringenin in rat plasma. Chromatographic separation of analytes and internal standard (fluvastatin for rosuvastatin, while isoquercitrin for naringin and naringenin) was performed on Agilent Poroshell 120 EC-C18 column (3.0 × 50 mm, 2.7 μm) using gradient elution with a mobile phase of methanol and water, both with 0.1% formic acid (v/v). The detection was operated in multiple reaction monitoring mode to monitor the precursor-to-product ion transitions of m/z 579.1→270.8 for naringin, m/z 270.9→150.7 for naringenin, m/z 463.1→299.8 for isoquercitrin in negative ionization mode, and m/z 482.2→258.1 for rosuvastatin, m/z 412.1→224.1 for fluvastatin in positive ionization mode. Polarity switch (negative-positive-negative ionization mode) was performed in a total runtime of 5.0 min. The method was validated over a concentration range of 10-2,000 ng/mL for the above three analytes. The intra-day and inter-day precisions and accuracies of the quality control samples at low, medium and high concentration levels exhibited relative standard deviations <10% and the accuracy values ranged from -7.2% to 8.4%. The proposed method was successfully applied to the pharmacokinetic drug interaction study of rosuvastatin combined with naringin in rats.
Collapse
Affiliation(s)
- Xuan Zeng
- Guangdong Key Laboratory of Plant Resources, Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, People's Republic of China
| | - Weiwei Su
- Guangdong Key Laboratory of Plant Resources, Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, People's Republic of China
| | - Hong Liu
- Guangdong Key Laboratory of Plant Resources, Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, People's Republic of China
| | - Yuying Zheng
- Guangdong Key Laboratory of Plant Resources, Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, People's Republic of China
| | - Taobin Chen
- Guangdong Key Laboratory of Plant Resources, Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, People's Republic of China
| | - Weijian Zhang
- Guangdong Key Laboratory of Plant Resources, Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, People's Republic of China
| | - Zenghao Yan
- Guangdong Key Laboratory of Plant Resources, Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, People's Republic of China
| | - Yang Bai
- Guangdong Key Laboratory of Plant Resources, Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, People's Republic of China
| | - Hongliang Yao
- Guangdong Key Laboratory of Plant Resources, Guangdong Engineering and Technology Research Center for Quality and Efficacy Reevaluation of Post-Market Traditional Chinese Medicine, School of Life Sciences, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, People's Republic of China
| |
Collapse
|
22
|
Shankar E, Goel A, Gupta K, Gupta S. Plant flavone apigenin: An emerging anticancer agent. CURRENT PHARMACOLOGY REPORTS 2017; 3:423-446. [PMID: 29399439 PMCID: PMC5791748 DOI: 10.1007/s40495-017-0113-2] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Research in cancer chemoprevention provides convincing evidence that increased intake of vegetables and fruits may reduce the risk of several human malignancies. Phytochemicals present therein provide beneficial anti-inflammatory and antioxidant properties that serve to improve the cellular microenvironment. Compounds known as flavonoids categorized anthocyanidins, flavonols, flavanones, flavonols, flavones, and isoflavones have shown considerable promise as chemopreventive agents. Apigenin (4', 5, 7-trihydroxyflavone), a major plant flavone, possessing antioxidant, anti-inflammatory, and anticancer properties affecting several molecular and cellular targets used to treat various human diseases. Epidemiologic and case-control studies have suggested apigenin reduces the risk of certain cancers. Studies demonstrate that apigenin retain potent therapeutic properties alone and/or increases the efficacy of several chemotherapeutic drugs in combination on a variety of human cancers. Apigenin's anticancer effects could also be due to its differential effects in causing minimal toxicity to normal cells with delayed plasma clearance and slow decomposition in liver increasing the systemic bioavailability in pharmacokinetic studies. Here we discuss the anticancer role of apigenin highlighting its potential activity as a chemopreventive and therapeutic agent. We also highlight the current caveats that preclude apigenin for its use in the human trials.
Collapse
Affiliation(s)
- Eswar Shankar
- Department of Urology, The James and Eilleen Dicke Laboratory, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Urology, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Aditi Goel
- Department of Biology, School of Undergraduate Studies, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Karishma Gupta
- Department of Urology, The James and Eilleen Dicke Laboratory, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Urology, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Sanjay Gupta
- Department of Urology, The James and Eilleen Dicke Laboratory, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Urology, The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
- Department of Urology, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
23
|
Dietary Modulation of Oxidative Stress in Alzheimer's Disease. Int J Mol Sci 2017; 18:ijms18071583. [PMID: 28753984 PMCID: PMC5536070 DOI: 10.3390/ijms18071583] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 02/07/2023] Open
Abstract
Cells generate unpaired electrons, typically via oxygen- or nitrogen-based by-products during normal cellular respiration and under stressed situations. These pro-oxidant molecules are highly unstable and may oxidize surrounding cellular macromolecules. Under normal conditions, the reactive oxygen or nitrogen species can be beneficial to cell survival and function by destroying and degrading pathogens or antigens. However, excessive generation and accumulation of the reactive pro-oxidant species over time can damage proteins, lipids, carbohydrates, and nucleic acids. Over time, this oxidative stress can contribute to a range of aging-related degenerative diseases such as cancer, diabetes, macular degeneration, and Alzheimer’s, and Parkinson’s diseases. It is well accepted that natural compounds, including vitamins A, C, and E, β-carotene, and minerals found in fruits and vegetables are powerful anti-oxidants that offer health benefits against several different oxidative stress induced degenerative diseases, including Alzheimer’s disease (AD). There is increasing interest in developing anti-oxidative therapeutics to prevent AD. There are contradictory and inconsistent reports on the possible benefits of anti-oxidative supplements; however, fruits and vegetables enriched with multiple anti-oxidants (e.g., flavonoids and polyphenols) and minerals may be highly effective in attenuating the harmful effects of oxidative stress. As the physiological activation of either protective or destructive pro-oxidant behavior remains relatively unclear, it is not straightforward to relate the efficacy of dietary anti-oxidants in disease prevention. Here, we review oxidative stress mediated toxicity associated with AD and highlight the modulatory roles of natural dietary anti-oxidants in preventing AD.
Collapse
|
24
|
Das A, Majumder D, Saha C. Correlation of binding efficacies of DNA to flavonoids and their induced cellular damage. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 170:256-262. [DOI: 10.1016/j.jphotobiol.2017.04.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
|
25
|
Peña-Solórzano D, Stark SA, König B, Sierra CA, Ochoa-Puentes C. ABCG2/BCRP: Specific and Nonspecific Modulators. Med Res Rev 2016; 37:987-1050. [PMID: 28005280 DOI: 10.1002/med.21428] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) in cancer cells is the development of resistance to a variety of structurally and functionally nonrelated anticancer drugs. This phenomenon has become a major obstacle to cancer chemotherapy seriously affecting the clinical outcome. MDR is associated with increased drug efflux from cells mediated by an energy-dependent mechanism involving the ATP-binding cassette (ABC) transporters, mainly P-glycoprotein (ABCB1), the MDR-associated protein-1 (ABCC1), and the breast cancer resistance protein (ABCG2). The first two transporters have been widely studied already and reviews summarized the results. The ABCG2 protein has been a subject of intense study since its discovery as its overexpression has been detected in resistant cell lines in numerous types of human cancers. To date, a long list of modulators of ABCG2 exists and continues to increase. However, little is known about the clinical consequences of ABCG2 modulation. This makes the design of novel, potent, and nontoxic inhibitors of this efflux protein a major challenge to reverse MDR and thereby increase the success of chemotherapy. The aim of the present review is to describe and highlight specific and nonspecific modulators of ABCG2 reported to date based on the selectivity of the compounds, as many of them are effective against one or more ABC transport proteins.
Collapse
Affiliation(s)
- Diana Peña-Solórzano
- Grupo de Investigación en Macromoléculas, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, 5997, Bogotá, Colombia
| | | | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Cesar Augusto Sierra
- Grupo de Investigación en Macromoléculas, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, 5997, Bogotá, Colombia
| | - Cristian Ochoa-Puentes
- Grupo de Investigación en Macromoléculas, Departamento de Química, Universidad Nacional de Colombia-Sede Bogotá, 5997, Bogotá, Colombia
| |
Collapse
|
26
|
Improvement of Transmembrane Transport Mechanism Study of Imperatorin on P-Glycoprotein-Mediated Drug Transport. Molecules 2016; 21:molecules21121606. [PMID: 27886150 PMCID: PMC6274566 DOI: 10.3390/molecules21121606] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 01/11/2023] Open
Abstract
P-glycoprotein (P-gp) affects the transport of many drugs; including puerarin and vincristine. Our previous study demonstrated that imperatorin increased the intestinal absorption of puerarin and vincristine by inhibiting P-gp-mediated drug efflux. However; the underlying mechanism was not known. The present study investigated the mechanism by which imperatorin promotes P-gp-mediated drug transport. We used molecular docking to predict the binding force between imperatorin and P-gp and the effect of imperatorin on P-gp activity. P-gp efflux activity and P-gp ATPase activity were measured using a rhodamine 123 (Rh-123) accumulation assay and a Pgp-Glo™ assay; respectively. The fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) was used to assess cellular membrane fluidity in MDCK-MDR1 cells. Western blotting was used to analyze the effect of imperatorin on P-gp expression; and P-gp mRNA levels were assessed by qRT-PCR. Molecular docking results demonstrated that the binding force between imperatorin and P-gp was much weaker than the force between P-gp and verapamil (a P-gp substrate). Imperatorin activated P-gp ATPase activity; which had a role in the inhibition of P-gp activity. Imperatorin promoted Rh-123 accumulation in MDCK-MDR1 cells and decreased cellular membrane fluidity. Western blotting demonstrated that imperatorin inhibited P-gp expression; and qRT-PCR revealed that imperatorin down-regulated P-gp (MDR1) gene expression. Imperatorin decreased P-gp-mediated drug efflux by inhibiting P-gp activity and the expression of P-gp mRNA and protein. Our results suggest that imperatorin could down-regulate P-gp expression to overcome multidrug resistance in tumors.
Collapse
|
27
|
Electrophoretic Analysis of Natural Antioxidants in Plant and Beverage Samples Using Dynamically Coated Capillaries with Chitosan and Multiwall Carbon Nanotubes. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0642-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Taneja I, Raju KSR, Wahajuddin M. Dietary Isoflavones as Modulators of Drug Metabolizing Enzymes and Transporters: Effect on Prescription Medicines. Crit Rev Food Sci Nutr 2015; 56 Suppl 1:S95-S109. [DOI: 10.1080/10408398.2015.1045968] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
29
|
Clark JL, Zahradka P, Taylor CG. Efficacy of flavonoids in the management of high blood pressure. Nutr Rev 2015; 73:799-822. [PMID: 26491142 DOI: 10.1093/nutrit/nuv048] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Plant compounds such as flavonoids have been reported to exert beneficial effects in cardiovascular disease, including hypertension. Information on the effects of isolated individual flavonoids for management of high blood pressure, however, is more limited. This review is focused on the flavonoids, as isolated outside of the food matrix, from the 5 main subgroups consumed in the Western diet (flavones, flavonols, flavanones, flavan-3-ols, and anthocyanins), along with their effects on hypertension, including the potential mechanisms for regulating blood pressure. Flavonoids from all 5 subgroups have been shown to attenuate a rise in or to reduce blood pressure during several pathological conditions (hypertension, metabolic syndrome, and diabetes mellitus). Flavones, flavonols, flavanones, and flavanols were able to modulate blood pressure by restoring endothelial function, either directly, by affecting nitric oxide levels, or indirectly, through other pathways. Quercetin had the most consistent blood pressure-lowering effect in animal and human studies, irrespective of dose, duration, or disease status. However, further research on the safety and efficacy of the flavonoids is required before any of them can be used by humans, presumably in supplement form, at the doses required for therapeutic benefit.
Collapse
Affiliation(s)
- Jaime L Clark
- J.L. Clark, P. Zahradka, and C.G. Taylor are with the Department of Human Nutritional Sciences, University of Manitoba, Manitoba, Canada. P. Zahradka and C.G. Taylor are with the Department of Physiology and Pathophysiology, University of Manitoba, Manitoba, Canada. J.L. Clark, P. Zahradka, and C.G. Taylor are with the Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Research Centre, Winnipeg, Manitoba, Canada
| | - Peter Zahradka
- J.L. Clark, P. Zahradka, and C.G. Taylor are with the Department of Human Nutritional Sciences, University of Manitoba, Manitoba, Canada. P. Zahradka and C.G. Taylor are with the Department of Physiology and Pathophysiology, University of Manitoba, Manitoba, Canada. J.L. Clark, P. Zahradka, and C.G. Taylor are with the Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Research Centre, Winnipeg, Manitoba, Canada
| | - Carla G Taylor
- J.L. Clark, P. Zahradka, and C.G. Taylor are with the Department of Human Nutritional Sciences, University of Manitoba, Manitoba, Canada. P. Zahradka and C.G. Taylor are with the Department of Physiology and Pathophysiology, University of Manitoba, Manitoba, Canada. J.L. Clark, P. Zahradka, and C.G. Taylor are with the Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Research Centre, Winnipeg, Manitoba, Canada.
| |
Collapse
|
30
|
Biflavonoids as Potential Small Molecule Therapeutics for Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 863:55-77. [PMID: 26092626 DOI: 10.1007/978-3-319-18365-7_3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Flavonoids are naturally occurring phytochemicals found in a variety of fruits and vegetables and offer color, flavor, aroma, nutritional and health benefits. Flavonoids have been found to play a neuroprotective role by inhibiting and/or modifying the self-assembly of the amyloid-β (Aβ) peptide into oligomers and fibrils, which are linked to the pathogenesis of Alzheimer's disease. The neuroprotective efficacy of flavonoids has been found to strongly depend on their structure and functional groups. Flavonoids may exist in monomeric, as well as di-, tri-, tetra- or polymeric form through C-C or C-O-C linkages. It has been shown that flavonoids containing two or more units, e.g., biflavonoids, exert greater biological activity than their respective monoflavonoids. For instance, biflavonoids have the ability to distinctly alter Aβ aggregation and more effectively reduce the toxicity of Aβ oligomers compared to the monoflavonoid moieties. Although the molecular mechanisms remain to be elucidated, flavonoids have been shown to alter the Aβ aggregation pathway to yield non-toxic, unstructured Aβ aggregates, as well as directly exerting a neuroprotective effect to cells. In this chapter, we review biflavonoid-mediated Aβ aggregation and toxicity, and highlight the beneficial roles biflavonoids can potentially play in the prevention and treatment of Alzheimer's disease.
Collapse
|
31
|
Guo X, Liu J, Cai S, Wang O, Ji B. Synergistic interactions of apigenin, naringin, quercetin and emodin on inhibition of 3T3-L1 preadipocyte differentiation and pancreas lipase activity. Obes Res Clin Pract 2015; 10:327-39. [PMID: 26314502 DOI: 10.1016/j.orcp.2015.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 07/22/2015] [Accepted: 08/07/2015] [Indexed: 11/30/2022]
Abstract
The interactions of four natural compounds including apigenin, naringin, emodin and quercetin were investigated on inhibiting 3T3-L1 preadipocyte differentiation and pancreas lipase activity. Oil Red O staining was conducted to visualise and quantify lipid accumulation. The difference between experimental and calculated results was utilised for determining the interaction types. Interestingly, emodin synergistically interacted with the other three compounds, and the combination of emodin and apigenin exhibited the strongest synergistic effect in both differentiation and pancreas lipase assays. Results implied that the combination of apigenin and emodin may be regarded as a promising complementary therapy for management of overweight or obesity.
Collapse
Affiliation(s)
- XiaoXuan Guo
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | - Jia Liu
- China National Research Institute of Food and Fermentation Industries, Beijing 100027, People's Republic of China
| | - ShengBao Cai
- Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming, Yunnan Province 650500, People's Republic of China
| | - Ou Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | - BaoPing Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China.
| |
Collapse
|
32
|
Blaylock RL. Methodological problems with population cancer studies: The forgotten confounding factors. Surg Neurol Int 2015; 6:93. [PMID: 26097772 PMCID: PMC4455124 DOI: 10.4103/2152-7806.157893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/11/2014] [Indexed: 12/14/2022] Open
Abstract
Among clinical physicians it is the population study that is considered to be the “gold standard” of medical evidence concerning acceptable treatments. As new information comes to light concerning the many variables and confounding factors that can affect such studies, many older studies lose much of their original impact. While newer population studies take into consideration a far greater number of confounding factors many are still omitted and a number of these omitted factors can have profound effects on interpretation and validity of the study. In this editorial, I will discuss some of the omitted confounding factors and demonstrate how they can alter the interpretation of these papers and their clinical application.
Collapse
|
33
|
Novel flavonoids as anti-cancer agents: mechanisms of action and promise for their potential application in breast cancer. Biochem Soc Trans 2015; 42:1017-23. [PMID: 25109996 DOI: 10.1042/bst20140073] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Flavonoids are a large group of ubiquitous polyphenolic secondary metabolites in plants with a wide range of properties, including a widely reported anti-cancer effect. The present review focuses on the different known mechanisms partaking in said anti-tumour effects, with particular emphasis on breast cancer. Their structure and reactivity allows flavonoids to work as antioxidant agents and phyto-oestrogens, modulating oestrogen signalling and metabolism to induce an overall anti-proliferative response. Other effects include the ability of flavonoids to modulate the CYP1 (cytochrome P450 1) and ABC (ATP-binding cassette) protein families, involved in carcinogenesis and drug delivery respectively. They can also induce apoptosis and cell cycle arrest and regulate other signalling pathways involved in the development and progression of cancer. In conclusion, there is accumulating evidence on the versatility of flavonoids and the numerous activities contributing to their anti-tumour effect. The complex, yet effective, mechanism of action of flavonoids, together with their interesting pharmacological properties, is the basis for their potential application in breast and other cancers. This rationale has led to the current interest in the application of flavonoids, including clinical trials currently underway and the development of novel flavonoids with improved properties, which hold great promise for tackling breast cancer.
Collapse
|
34
|
Choi YA, Yoon YH, Choi K, Kwon M, Goo SH, Cha JS, Choi MK, Lee HS, Song IS. Enhanced Oral Bioavailability of Morin Administered in Mixed Micelle Formulation with PluronicF127 and Tween80 in Rats. Biol Pharm Bull 2015; 38:208-17. [DOI: 10.1248/bpb.b14-00508] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yeon Ah Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University
| | - You Hyun Yoon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University
| | - Kwangik Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University
| | - Mihwa Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University
| | - Soo Hyeon Goo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University
| | | | | | - Hye Suk Lee
- College of Pharmacy, The Catholic University of Korea
| | - Im-Sook Song
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Kyungpook National University
| |
Collapse
|
35
|
Bircsak KM, Aleksunes LM. Interaction of Isoflavones with the BCRP/ABCG2 Drug Transporter. Curr Drug Metab 2015; 16:124-40. [PMID: 26179608 PMCID: PMC4713194 DOI: 10.2174/138920021602150713114921] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 03/03/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022]
Abstract
This review will provide a comprehensive overview of the interactions between dietary isoflavones and the ATP-binding cassette (ABC) G2 efflux transporter, which is also named the breast cancer resistance protein (BCRP). Expressed in a variety of organs including the liver, kidneys, intestine, and placenta, BCRP mediates the disposition and excretion of numerous endogenous chemicals and xenobiotics. Isoflavones are a class of naturallyoccurring compounds that are found at high concentrations in commonly consumed foods and dietary supplements. A number of isoflavones, including genistein and daidzein and their metabolites, interact with BCRP as substrates, inhibitors, and/or modulators of gene expression. To date, a variety of model systems have been employed to study the ability of isoflavones to serve as substrates and inhibitors of BCRP; these include whole cells, inverted plasma membrane vesicles, in situ organ perfusion, as well as in vivo rodent and sheep models. Evidence suggests that BCRP plays a role in mediating the disposition of isoflavones and in particular, their conjugated forms. Furthermore, as inhibitors, these compounds may aid in reversing multidrug resistance and sensitizing cancer cells to chemotherapeutic drugs. This review will also highlight the consequences of altered BCRP expression and/or function on the pharmacokinetics and toxicity of chemicals following isoflavone exposure.
Collapse
Affiliation(s)
| | - Lauren M Aleksunes
- Dept. of Pharmacology and Toxicology, Rutgers University, 170 Frelinghuysen Rd. Piscataway, NJ 08854, USA.
| |
Collapse
|
36
|
Rietjens IMCM, Tyrakowska B, van den Berg SJPL, Soffers AEMF, Punt A. Matrix-derived combination effects influencing absorption, distribution, metabolism and excretion (ADME) of food-borne toxic compounds: implications for risk assessment. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00081a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Absorption, distribution, metabolism and excretion (ADME) of food-borne toxic compounds may be influenced by other compounds or constituents present in the food.
Collapse
Affiliation(s)
| | - Bożena Tyrakowska
- Faculty of Commodity Science
- The Poznań University of Economics
- 61-875 Poznań
- Poland
| | | | | | - Ans Punt
- Division of Toxicology
- Wageningen University
- NL-6703 HE Wageningen
- The Netherlands
| |
Collapse
|
37
|
Szafraniec MJ, Szczygieł M, Urbanska K, Fiedor L. Determinants of the activity and substrate recognition of breast cancer resistance protein (ABCG2). Drug Metab Rev 2014; 46:459-74. [DOI: 10.3109/03602532.2014.942037] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
38
|
Abstract
While many epidemiological studies have associated the consumption of polyphenols within fruits and vegetables with a decreased risk of developing several chronic diseases, intervention studies have generally not confirmed these beneficial effects. The reasons for this discrepancy are not fully understood but include potential differences in dosing, interaction with the food matrix, and differences in polyphenol bioavailability. In addition to endogenous factors such as microbiota and digestive enzymes, the food matrix can also considerably affect bioaccessibility, uptake, and further metabolism of polyphenols. While dietary fiber (such as hemicellulose), divalent minerals, and viscous and protein-rich meals are likely to cause detrimental effects on polyphenol bioaccessibility, digestible carbohydrates, dietary lipids (especially for hydrophobic polyphenols, e.g., curcumin), and additional antioxidants may enhance polyphenol availability. Following epithelial uptake, polyphenols such as flavonoids may reduce phase II metabolism and excretion, enhancing polyphenol bioavailability. Furthermore, polyphenols may act synergistically due to their influence on efflux transporters such as p-glycoprotein. In order to understand polyphenol bioactivity, increased knowledge of the factors affecting polyphenol bioavailability, including dietary factors, is paramount.
Collapse
Affiliation(s)
- Torsten Bohn
- Centre de Recherche Public - Gabriel Lippmann, Environment and Agro-biotechnologies Department, Belvaux, Luxembourg
| |
Collapse
|
39
|
Structure and function of BCRP, a broad specificity transporter of xenobiotics and endobiotics. Arch Toxicol 2014; 88:1205-48. [DOI: 10.1007/s00204-014-1224-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/06/2014] [Indexed: 12/20/2022]
|
40
|
Brantley SJ, Argikar AA, Lin YS, Nagar S, Paine MF. Herb-drug interactions: challenges and opportunities for improved predictions. Drug Metab Dispos 2014; 42:301-17. [PMID: 24335390 PMCID: PMC3935140 DOI: 10.1124/dmd.113.055236] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 12/11/2013] [Indexed: 01/23/2023] Open
Abstract
Supported by a usage history that predates written records and the perception that "natural" ensures safety, herbal products have increasingly been incorporated into Western health care. Consumers often self-administer these products concomitantly with conventional medications without informing their health care provider(s). Such herb-drug combinations can produce untoward effects when the herbal product perturbs the activity of drug metabolizing enzymes and/or transporters. Despite increasing recognition of these types of herb-drug interactions, a standard system for interaction prediction and evaluation is nonexistent. Consequently, the mechanisms underlying herb-drug interactions remain an understudied area of pharmacotherapy. Evaluation of herbal product interaction liability is challenging due to variability in herbal product composition, uncertainty of the causative constituents, and often scant knowledge of causative constituent pharmacokinetics. These limitations are confounded further by the varying perspectives concerning herbal product regulation. Systematic evaluation of herbal product drug interaction liability, as is routine for new drugs under development, necessitates identifying individual constituents from herbal products and characterizing the interaction potential of such constituents. Integration of this information into in silico models that estimate the pharmacokinetics of individual constituents should facilitate prospective identification of herb-drug interactions. These concepts are highlighted with the exemplar herbal products milk thistle and resveratrol. Implementation of this methodology should help provide definitive information to both consumers and clinicians about the risk of adding herbal products to conventional pharmacotherapeutic regimens.
Collapse
Affiliation(s)
- Scott J Brantley
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina (S.J.B.); Department of Pharmaceutical Sciences, Temple University School of Pharmacy, Philadelphia, Pennsylvania (A.A.A., S.N.); Department of Pharmaceutics, University of Washington, Seattle, Washington (Y.S.L.); and College of Pharmacy, Washington State University, Spokane, Washington (M.F.P.)
| | | | | | | | | |
Collapse
|
41
|
Liu P, Yang H, Long F, Hao HP, Xu X, Liu Y, Shi XW, Zhang DD, Zheng HC, Wen QY, Li WW, Ji H, Jiang XJ, Zhang BL, Qi LW, Li P. Bioactive equivalence of combinatorial components identified in screening of an herbal medicine. Pharm Res 2014; 31:1788-800. [PMID: 24549817 PMCID: PMC4062815 DOI: 10.1007/s11095-013-1283-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/31/2013] [Indexed: 11/29/2022]
Abstract
Purpose To identify bioactive equivalent combinatorial components (BECCs) in herbal medicines. The exact composition of effective components in herbal medicines is often elusive due to the lack of adequate screening methodology. Herein, we propose a hypothesis that BECCs accounting for the whole efficacy of original herbal medicines could be discovered from a complex mixture of constituents. Methods We developed a bioactive equivalence oriented feedback screening method and applied it to discover the BECCs from an herbal preparation Cardiotonic Pill (CP). The operations include chemical profiling of CP, followed by an iterative loop of determining, collecting and evaluating candidate BECCs. Results A combination of 18 compounds was identified as BECCs from CP, which accounts for 15.0% (w/w) of original CP. We have demonstrated that the BECCs were as effective as CP in cell models and in a rat model of myocardial infarction. Conclusions This work answers the key question of which are real bioactive components for CP that have been used in clinic for many years, and provides a promising approach for discovering BECCs from herbal medicines. More importantly, the BECCs could be extended to improve quality control of herbal products and inspire an herbal medicines based discovery of combinatorial therapeutics. Electronic supplementary material The online version of this article (doi:10.1007/s11095-013-1283-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Duan J, Xie Y, Luo H, Li G, Wu T, Zhang T. Transport characteristics of isorhamnetin across intestinal Caco-2 cell monolayers and the effects of transporters on it. Food Chem Toxicol 2014; 66:313-20. [PMID: 24525098 DOI: 10.1016/j.fct.2014.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 01/10/2014] [Accepted: 02/01/2014] [Indexed: 11/30/2022]
Abstract
Flavonoid isorhamnetin occurs in various plants and herbs, and demonstrates various biological effects in humans. This work will clarify the isorhamnetin absorption mechanism using the Caco-2 monolayer cell model. The isorhamnetin transport characteristics at different concentrations, pHs, temperatures, tight junctions and potential transporters were systemically investigated. Isorhamnetin was poorly absorbed by both passive diffusion and active transport mechanisms. Both trans- and paracellular pathways were involved during isorhamnetin transport. Active transport under an ATP-dependent transport mechanism was mediated by the organic anion transporting peptide (OATP); isorhamnetin's permeability from the apical to the basolateral side significantly decreased after estrone-3-sulfate was added (p<0.01). Efflux transporters, P-glycoproteins (P-gp), breast cancer resistance proteins (BCRP) and multidrug resistance proteins (MRPs) participated in the isorhamnetin transport process. Among them, the MRPs (especially MRP2) were the main efflux transporters for isorhamnetin; transport from the apical to the basolateral side increased 10.8-fold after adding an MRP inhibitor (MK571). This study details isorhamnetin's cellular transport and elaborates isorhamnetin's absorption mechanisms to provide a foundation for further studies.
Collapse
Affiliation(s)
- Jingze Duan
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan Xie
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Huilin Luo
- Research Center for Health and Nutrition, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Guowen Li
- Pharmacy Department, Shanghai TCM-integrated Hospital, Shanghai 200082, China.
| | - Tao Wu
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Zhang
- Experiment Center of Teaching & Learning, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
43
|
Synthesis and biological evaluation of flavones and benzoflavones as inhibitors of BCRP/ABCG2. Eur J Med Chem 2013; 67:115-26. [PMID: 23851114 DOI: 10.1016/j.ejmech.2013.06.035] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 06/12/2013] [Accepted: 06/13/2013] [Indexed: 01/16/2023]
Abstract
Multidrug resistance (MDR) often leads to a failure of cancer chemotherapy. Breast Cancer Resistance Protein (BCRP/ABCG2), a member of the superfamily of ATP binding cassette proteins has been found to confer MDR in cancer cells by transporting molecules with amphiphilic character out of the cells using energy from ATP hydrolysis. Inhibiting BCRP can be a solution to overcome MDR. We synthesized a series of flavones, 7,8-benzoflavones and 5,6-benzoflavones with varying substituents at positions 3, 3' and 4' of the (benzo)flavone structure. All synthesized compounds were tested for BCRP inhibition in Hoechst 33342 and pheophorbide A accumulation assays using MDCK cells expressing BCRP. All the compounds were further screened for their P-glycoprotein (P-gp) and Multidrug resistance-associated protein 1 (MRP1) inhibitory activity by calcein AM accumulation assay to check the selectivity towards BCRP. In addition most active compounds were investigated for their cytotoxicity. It was observed that in most cases 7,8-benzoflavones are more potent in comparison to the 5,6-benzoflavones. In general it was found that presence of a 3-OCH3 substituent leads to increase in activity in comparison to presence of OH or no substitution at position 3. Also, it was found that presence of 3',4'-OCH3 on phenyl ring lead to increase in activity as compared to other substituents. Compound 24, a 7,8-benzoflavone derivative was found to be most potent being 50 times selective for BCRP and showing very low cytotoxicity at higher concentrations.
Collapse
|
44
|
Yang Z, Kulkarni K, Zhu W, Hu M. Bioavailability and pharmacokinetics of genistein: mechanistic studies on its ADME. Anticancer Agents Med Chem 2013; 12:1264-80. [PMID: 22583407 DOI: 10.2174/187152012803833107] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 02/20/2012] [Accepted: 02/20/2012] [Indexed: 12/11/2022]
Abstract
Genistein, one of the most active natural flavonoids, exerts various biological effects including chemoprevention, antioxidation, antiproliferation and anticancer. More than 30 clinical trials of genistein with various disease indications have been conducted to evaluate its clinical efficacy. Based on many animals and human pharmacokinetic studies, it is well known that the most challenge issue for developing genistein as a chemoprevention agent is the low oral bioavailability, which may be the major reason relating to its ambiguous therapeutic effects and large interindividual variations in clinical trials. In order to better correlate pharmacokinetic to pharmacodynamics results in animals and clinical studies, an in-depth understanding of pharmacokinetic behavior of genistein and its ADME properties are needed. Numerous in vitro/in vivo ADME studies had been conducted to reveal the main factors contributing to the low oral bioavailability of genistein. Therefore, this review focuses on summarizing the most recent progress on mechanistic studies of genistein ADME and provides a systemic view of these processes to explain genistein pharmacokinetic behaviors in vivo. The better understanding of genistein ADME property may lead to development of proper strategy to improve genistein oral bioavailability via mechanism-based approaches.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Pharmacological and Pharmaceutical Science, College of Pharmacy, University of Houston, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
45
|
Perez M, Otero JA, Barrera B, Prieto JG, Merino G, Alvarez AI. Inhibition of ABCG2/BCRP transporter by soy isoflavones genistein and daidzein: effect on plasma and milk levels of danofloxacin in sheep. Vet J 2013; 196:203-8. [PMID: 23083838 DOI: 10.1016/j.tvjl.2012.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 09/11/2012] [Accepted: 09/17/2012] [Indexed: 01/07/2023]
Abstract
Danofloxacin is a synthetic fluoroquinolone antibacterial agent and a substrate for ATP-binding cassette transporter G2/breast cancer resistance protein (ABCG2/BCRP). This protein actively extrudes drugs from cells in the intestine, liver, kidney, and other organs, such as the mammary gland. The purpose of this study was to determine whether genistein and daidzein, isoflavones present in soy and known inhibitors of ABCG2, could diminish danofloxacin secretion into milk. The results obtained from BCRP-transduced MDCK-II cells (Mardin-Darby canine kidney) showed that both isoflavones efficiently inhibited the in vitro transport of the drug. In addition, danofloxacin transport into milk was studied in Assaf sheep. The experimental design with ewes (n = 18) included ewes fed with standard forage, soy-enriched forage for 15 days prior to the experiment or standard forage paired with orally administered exogenous genistein and daidzein. The danofloxacin levels in the milk of ewes in the soy-enriched diet group were decreased. The area under concentration-time curve AUC (0-24 h) was 9.3 ± 4.6 vs. 16.58 ± 4.44 μgh/mL in the standard forage or control group. The plasma levels of danofloxacin were unmodified. The AUC (0-24 h) milk/plasma ratio decreased by over 50% in the soy-enriched diet group, compared to the control group (4.90 ± 2.65 vs. 9.58 ± 2.17). Exogenous administration of isoflavones did not modify danofloxacin secretion into milk. This study showed that milk excretion of a specific substrate of BCRP, such as danofloxacin, can be diminished by the presence of isoflavones in the diet.
Collapse
Affiliation(s)
- Miriam Perez
- Departamento de Ciencias Biomédicas-Fisiología, Facultad de Veterinaria, Campus de Vegazana s/n, Universidad de León, León, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Androutsopoulos VP, Spandidos DA. The flavonoids diosmetin and luteolin exert synergistic cytostatic effects in human hepatoma HepG2 cells via CYP1A-catalyzed metabolism, activation of JNK and ERK and P53/P21 up-regulation. J Nutr Biochem 2013; 24:496-504. [DOI: 10.1016/j.jnutbio.2012.01.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 12/22/2011] [Accepted: 01/31/2012] [Indexed: 12/31/2022]
|
47
|
Li Y, Paxton JW. The effects of flavonoids on the ABC transporters: consequences for the pharmacokinetics of substrate drugs. Expert Opin Drug Metab Toxicol 2013; 9:267-85. [PMID: 23289831 DOI: 10.1517/17425255.2013.749858] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION The flavonoids are a large group of dietary plant compounds with suggested health benefits. There is accumulating evidence that many of these flavonoids can interact with the major drug transporters (and metabolizing enzymes) in the body, leading to alterations in the pharmacokinetics of substrate drugs, and thus their efficacy and toxicity. AREAS COVERED This review summarizes and updates the reported in vitro and in vivo interactions between common dietary flavonoids and the major drug-effluxing ABC transporters; these include P-glycoprotein, breast cancer resistance protein and multidrug resistance proteins 1 and 2. In contrast to previous reviews, the ADME of flavonoids are considered, along with their glycosides and Phase II conjugates. The authors also consider their possible interactions with the ABC transporters in the oral absorption, distribution into pharmacological sanctuaries and excretion of substrate drugs. Electronic databases, including PubMed, Scopus and Google Scholar were searched to identify appropriate in vitro and in vivo ABC transporter-flavonoid interactions, particularly within the last 10 years. EXPERT OPINION Caution is advised when taking flavonoid-containing supplements or herbal remedies concurrently with drugs. Further clinical studies are warranted to explore the impact of flavonoids and their metabolites on the pharmacokinetics, efficacy and toxicity of drugs.
Collapse
Affiliation(s)
- Yan Li
- Auckland University of Technology, Faculty of Health and Environmental Sciences, Department of Interdisciplinary Studies, Auckland, New Zealand
| | | |
Collapse
|
48
|
Jiang W, Hu M. Mutual interactions between flavonoids and enzymatic and transporter elements responsible for flavonoid disposition via phase II metabolic pathways. RSC Adv 2012; 2:7948-7963. [PMID: 25400909 PMCID: PMC4228968 DOI: 10.1039/c2ra01369j] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Flavonoids, existing mainly as glycosides in nature, have multiple "claimed" beneficial effects in humans. Flavonoids are extensively metabolized in enterocytes and hepatocytes by phase II enzymes such as UGTs and SULTs to form glucuronides and sulfates, respectively. These glucuronides and sulfates are subsequently excreted via ABC transporters (e.g., MRP2 or BCRP). Therefore, it is the interplay between phase II enzymes and efflux transporters that affects the disposition of flavonoids and leads to the low bioavailability of flavonoid aglycones. Flavonoids can also serve as chemical regulators that affect the activity or expression levels of phase II enzymes including UGTs, SULTs and GSTs, and transporters including P-gp, MRP2, BCRP, OATP and OAT. In general, flavonoids may exert the inhibitory or inductive effects on the phase II enzymes and transporters via multiple mechanisms that may involve different nuclear receptors. Since flavonoids may affect the metabolic pathways shared by many important clinical drugs, drug-flavonoid interaction is becoming an increasingly important concern. This review article focused on the disposition of flavonoids and effects of flavonoids on relevant enzymes (e.g. UGTs and SULTs) and transporters (e.g. MRP2 and BCRP) involved in the interplay between phase II enzymes and efflux transporters. The effects of flavonoids on other metabolic enzymes (e.g. GSTs) or transporters (e.g. P-gp, OATP and OAT) are also addressed but that is not the emphasis of this review.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030, USA ; Pharmaceutics Graduate Program, College of Pharmacy, University of Houston, Houston, TX 77204, USA
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77030, USA
| |
Collapse
|
49
|
Arakawa H, Shirasaka Y, Haga M, Nakanishi T, Tamai I. Active intestinal absorption of fluoroquinolone antibacterial agent ciprofloxacin by organic anion transporting polypeptide, Oatp1a5. Biopharm Drug Dispos 2012; 33:332-41. [DOI: 10.1002/bdd.1809] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Revised: 07/31/2012] [Accepted: 08/11/2012] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Makoto Haga
- Faculty of Pharmaceutical Sciences; Tokyo University of Science; 2641 Yamazaki; Noda; Chiba; 278-8510; Japan
| | - Takeo Nakanishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences; Kanazawa University; Kakuma-machi; Kanazawa; 920-1192; Japan
| | | |
Collapse
|
50
|
Bagya SK, Rajashree P, Gnana Sam K. Preliminary Anticancer Screening and Standardization of some Indigenous Medicinal Plants using Cell-biology and Molecular Biotechnology Based Models. ACTA ACUST UNITED AC 2011. [DOI: 10.3923/rjmp.2011.728.737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|