1
|
Adam-Beyer N, Laufer-Meiser K, Fuchs S, Schippers A, Indenbirken D, Garbe-Schönberg D, Petersen S, Perner M. Microbial ecosystem assessment and hydrogen oxidation potential of newly discovered vent systems from the Central and South-East Indian Ridge. Front Microbiol 2023; 14:1173613. [PMID: 37886064 PMCID: PMC10598711 DOI: 10.3389/fmicb.2023.1173613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
In order to expand the knowledge of microbial ecosystems from deep-sea hydrothermal vent systems located on the Central and South-East Indian Ridge, we sampled hydrothermal fluids, massive sulfides, ambient water and sediments of six distinct vent fields. Most of these vent sites were only recently discovered in the course of the German exploration program for massive sulfide deposits and no previous studies of the respective microbial communities exist. Apart from typically vent-associated chemosynthetic members of the orders Campylobacterales, Mariprofundales, and Thiomicrospirales, high numbers of uncultured and unspecified Bacteria were identified via 16S rRNA gene analyses in hydrothermal fluid and massive sulfide samples. The sampled sediments however, were characterized by an overall lack of chemosynthetic Bacteria and the presence of high proportions of low abundant bacterial groups. The archaeal communities were generally less diverse and mostly dominated by members of Nitrosopumilales and Woesearchaeales, partly exhibiting high proportions of unassigned Archaea. Correlations with environmental parameters were primarily observed for sediment communities and for microbial species (associated with the nitrogen cycle) in samples from a recently identified vent field, which was geochemically distinct from all other sampled sites. Enrichment cultures of diffuse fluids demonstrated a great potential for hydrogen oxidation coupled to the reduction of various electron-acceptors with high abundances of Hydrogenovibrio and Sulfurimonas species. Overall, given the large number of currently uncultured and unspecified microorganisms identified in the vent communities, their respective metabolic traits, ecosystem functions and mediated biogeochemical processes have still to be resolved for estimating consequences of potential environmental disturbances by future mining activities.
Collapse
Affiliation(s)
- Nicole Adam-Beyer
- Marine Geosystems, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Katja Laufer-Meiser
- Marine Geosystems, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Sebastian Fuchs
- Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
| | - Axel Schippers
- Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
| | | | | | - Sven Petersen
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Mirjam Perner
- Marine Geosystems, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
2
|
Steinthorsdottir K, Dipple GM, Cutts JA, Turvey CC, Milidragovic D, Peacock SM. Formation and Preservation of Brucite and Awaruite in Serpentinized and Tectonized Mantle in Central British Columbia: Implications for Carbon Mineralization and Nickel Mining. JOURNAL OF PETROLOGY 2022; 63. [DOI: 10.1093/petrology/egac100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Abstract
The serpentinized and tectonized mantle in the Decar area in central British Columbia, including rocks that host the Baptiste Ni Deposit, consists of several ultramafic protolith lithologies that were variably altered to serpentinite, ophicarbonate, soapstone and listvenite. Alteration minerals include brucite (Mg[OH]2), which can be used to sequester atmospheric CO2 and awaruite (Ni3Fe), which is an economically attractive nickel alloy. This study examines the formation and preservation of brucite (up to 13 wt%) and awaruite (up to 0.12 wt%) in the Decar area and demonstrates that both minerals are formed during serpentinization and destroyed during carbonate alteration of mantle rocks. We distinguish five alteration stages that occurred primarily in a continental environment: (1) low-temperature lizardite serpentinization from meteoric fluids at <300°C, (2) high-temperature antigorite (±metamorphic olivine) serpentinization from metamorphic fluids at >300°C, (3) carbonate alteration, (4) chrysotile veining (±antigorite) serpentinization, and (5) later carbonate alteration from crustal fluids. Brucite formed primarily during late lizardite serpentinization and is most abundant in rocks that originally had high olivine–pyroxene ratios. Awaruite formed during both late lizardite serpentinization and during antigorite serpentinization and is most abundant in serpentinized olivine-rich harzburgite. The stability and abundance of brucite and awaruite are controlled by both the host rock composition and degree of serpentinization. The coexistence of brucite and awaruite reflects formation in serpentinized olivine-rich peridotite and creates an opportunity for carbon-neutral nickel mining.
Collapse
Affiliation(s)
- Katrin Steinthorsdottir
- The University of British Columbia CarbMin Lab, Department of Earth, Ocean and Atmospheric Sciences, , Vancouver, BC V6T 1Z4, Canada
| | - Gregory M Dipple
- The University of British Columbia CarbMin Lab, Department of Earth, Ocean and Atmospheric Sciences, , Vancouver, BC V6T 1Z4, Canada
| | - Jamie A Cutts
- The University of British Columbia CarbMin Lab, Department of Earth, Ocean and Atmospheric Sciences, , Vancouver, BC V6T 1Z4, Canada
| | - Connor C Turvey
- The University of British Columbia CarbMin Lab, Department of Earth, Ocean and Atmospheric Sciences, , Vancouver, BC V6T 1Z4, Canada
| | | | - Simon M Peacock
- The University of British Columbia CarbMin Lab, Department of Earth, Ocean and Atmospheric Sciences, , Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
3
|
Decreasing extents of Archean serpentinization contributed to the rise of an oxidized atmosphere. Nat Commun 2021; 12:7341. [PMID: 34930924 PMCID: PMC8688491 DOI: 10.1038/s41467-021-27589-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022] Open
Abstract
At present, molecular hydrogen (H2) produced through Fe(II) oxidation during serpentinization of ultramafic rocks represents a small fraction of the global sink for O2 due to limited exposures of ultramafic rocks. In contrast, ultramafic rocks such as komatiites were much more common in the Early Earth and H2 production via serpentinization was a likely factor in maintaining an O2-free atmosphere throughout most of the Archean. Using thermodynamic simulations, this work quantifies the global O2 consumption attributed to serpentinization during the past 3.5 billion years. Results show that H2 generation is strongly dependent on rock compositions where serpentinization of more magnesian lithologies generated substantially higher amounts of H2. Consumption of >2 Tmole O2 yr-1 via low-temperature serpentinization of Archean continents and seafloor is possible. This O2 sink diminished greatly towards the end of the Archean as ultramafic rocks became less common and helped set the stage for the Great Oxidation Event.
Collapse
|
4
|
White LM, Shibuya T, Vance SD, Christensen LE, Bhartia R, Kidd R, Hoffmann A, Stucky GD, Kanik I, Russell MJ. Simulating Serpentinization as It Could Apply to the Emergence of Life Using the JPL Hydrothermal Reactor. ASTROBIOLOGY 2020; 20:307-326. [PMID: 32125196 DOI: 10.1089/ast.2018.1949] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The molecules feeding life's emergence are thought to have been provided through the hydrothermal interactions of convecting carbonic ocean waters with minerals comprising the early Hadean oceanic crust. Few laboratory experiments have simulated ancient hydrothermal conditions to test this conjecture. We used the JPL hydrothermal flow reactor to investigate CO2 reduction in simulated ancient alkaline convective systems over 3 days (T = 120°C, P = 100 bar, pH = 11). H2-rich hydrothermal simulant and CO2-rich ocean simulant solutions were periodically driven in 4-h cycles through synthetic mafic and ultramafic substrates and Fe>Ni sulfides. The resulting reductants included micromoles of HS- and formate accompanied possibly by micromoles of acetate and intermittent minor bursts of methane as ascertained by isotopic labeling. The formate concentrations directly correlated with the CO2 input as well as with millimoles of Mg2+ ions, whereas the acetate did not. Also, tens of micromoles of methane were drawn continuously from the reactor materials during what appeared to be the onset of serpentinization. These results support the hypothesis that formate may have been delivered directly to a branch of an emerging acetyl coenzyme-A pathway, thus obviating the need for the very first hydrogenation of CO2 to be made in a hydrothermal mound. Another feed to early metabolism could have been methane, likely mostly leached from primary CH4 present in the original Hadean crust or emanating from the mantle. That a small volume of methane was produced sporadically from the 13CO2-feed, perhaps from transient occlusions, echoes the mixed results and interpretations from other laboratories. As serpentinization and hydrothermal leaching can occur wherever an ocean convects within anhydrous olivine- and sulfide-rich crust, these results may be generalized to other wet rocky planets and moons in our solar system and beyond.
Collapse
Affiliation(s)
- Lauren M White
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California
- Project Systems Engineering, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Takazo Shibuya
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Project Team for Development of New-generation Research Protocol for Submarine Resources, and Research and Development (RandD), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Research and Development (RandD) Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Steven D Vance
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Lance E Christensen
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Rohit Bhartia
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Richard Kidd
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Adam Hoffmann
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Galen D Stucky
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, California
- Materials Department, University of California at Santa Barbara, Santa Barbara, California
| | - Isik Kanik
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Michael J Russell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| |
Collapse
|
5
|
Mayhew LE, Ellison ET. A synthesis and meta-analysis of the Fe chemistry of serpentinites and serpentine minerals. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20180420. [PMID: 31902340 PMCID: PMC7015306 DOI: 10.1098/rsta.2018.0420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
The iron chemistry of serpentinites and serpentine group minerals is often invoked as a record of the setting and conditions of serpentinization because Fe behaviour is influenced by reaction conditions. Iron can be partitioned into a variety of secondary mineral phases and undergo variable extents of oxidation and/or reduction during serpentinization. This behaviour influences geophysical, geochemical and biological aspects of serpentinizing systems and, more broadly, earth systems. Iron chemistry of serpentinites and serpentines is frequently analysed and reported for single systems. Interpretations of the controls on, and the implications of, Fe behaviour drawn from a single system are often widely extrapolated. There is a wealth of serpentinite/serpentine chemical composition data available in the literature. Consequently, compilation of a database including potential predictors of Fe behaviour and measures of Fe chemistry enables systematic investigation of trends in Fe behaviour across a variety of systems and conditions. The database presented here contains approximately 2000 individual data points including both bulk rock and serpentine mineral geochemical data which are paired whenever possible. Measures of total Fe and Fe oxidation state, which are more limited, are compiled with characteristics of the systems from which they were sampled. Observations of trends in Fe chemistry in serpentinites and serpentines across the variety of geologic systems and parameters will aid in verifying and strengthening interpretations made on the basis of Fe chemistry. This article is part of a discussion meeting issue 'Serpentinite in the Earth system'.
Collapse
|
6
|
High-temperature water-rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nat Commun 2015; 6:8604. [PMID: 26506464 PMCID: PMC4639802 DOI: 10.1038/ncomms9604] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/09/2015] [Indexed: 11/08/2022] Open
Abstract
It has been suggested that Saturn's moon Enceladus possesses a subsurface ocean. The recent discovery of silica nanoparticles derived from Enceladus shows the presence of ongoing hydrothermal reactions in the interior. Here, we report results from detailed laboratory experiments to constrain the reaction conditions. To sustain the formation of silica nanoparticles, the composition of Enceladus' core needs to be similar to that of carbonaceous chondrites. We show that the presence of hydrothermal reactions would be consistent with NH3- and CO2-rich plume compositions. We suggest that high reaction temperatures (>50 °C) are required to form silica nanoparticles whether Enceladus' ocean is chemically open or closed to the icy crust. Such high temperatures imply either that Enceladus formed shortly after the formation of the solar system or that the current activity was triggered by a recent heating event. Under the required conditions, hydrogen production would proceed efficiently, which could provide chemical energy for chemoautotrophic life.
Collapse
|
7
|
Konn C, Charlou JL, Holm NG, Mousis O. The production of methane, hydrogen, and organic compounds in ultramafic-hosted hydrothermal vents of the Mid-Atlantic Ridge. ASTROBIOLOGY 2015; 15:381-99. [PMID: 25984920 PMCID: PMC4442600 DOI: 10.1089/ast.2014.1198] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 01/27/2015] [Indexed: 05/23/2023]
Abstract
Both hydrogen and methane are consistently discharged in large quantities in hydrothermal fluids issued from ultramafic-hosted hydrothermal fields discovered along the Mid-Atlantic Ridge. Considering the vast number of these fields discovered or inferred, hydrothermal fluxes represent a significant input of H2 and CH4 to the ocean. Although there are lines of evidence of their abiogenic formation from stable C and H isotope results, laboratory experiments, and thermodynamic data, neither their origin nor the reaction pathways generating these gases have been fully constrained yet. Organic compounds detected in the fluids may also be derived from abiotic reactions. Although thermodynamics are favorable and extensive experimental work has been done on Fischer-Tropsch-type reactions, for instance, nothing is clear yet about their origin and formation mechanism from actual data. Since chemolithotrophic microbial communities commonly colonize hydrothermal vents, biogenic and thermogenic processes are likely to contribute to the production of H2, CH4, and other organic compounds. There seems to be a consensus toward a mixed origin (both sources and processes) that is consistent with the ambiguous nature of the isotopic data. But the question that remains is, to what proportions? More systematic experiments as well as integrated geochemical approaches are needed to disentangle hydrothermal geochemistry. This understanding is of prime importance considering the implications of hydrothermal H2, CH4, and organic compounds for the ocean global budget, global cycles, and the origin of life.
Collapse
Affiliation(s)
- C Konn
- 1Ifremer, Unité Géosciences Marine, Laboratoire de Géochime et Métallogénie, F-29280 Plouzané, France
| | - J L Charlou
- 1Ifremer, Unité Géosciences Marine, Laboratoire de Géochime et Métallogénie, F-29280 Plouzané, France
| | - N G Holm
- 2Department of Geological Sciences, Stockholm University, SE-10691 Stockholm, Sweden
| | - O Mousis
- 3Aix Marseille Université, CNRS, LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, Marseille, France
| |
Collapse
|
8
|
Ultramafic-Hosted Hydrothermal Systems at Mid-Ocean Ridges: Chemical and Physical Controls on pH, Redox and Carbon Reduction Reactions. ACTA ACUST UNITED AC 2013. [DOI: 10.1029/148gm11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
9
|
Abstract
Submarine hydrothermal vents above serpentinite produce chemical potential gradients of aqueous and ionic hydrogen, thus providing a very attractive venue for the origin of life. This environment was most favourable before Earth's massive CO(2) atmosphere was subducted into the mantle, which occurred tens to approximately 100 Myr after the moon-forming impact; thermophile to clement conditions persisted for several million years while atmospheric pCO(2) dropped from approximately 25 bar to below 1 bar. The ocean was weakly acid (pH ∼ 6), and a large pH gradient existed for nascent life with pH 9-11 fluids venting from serpentinite on the seafloor. Total CO(2) in water was significant so the vent environment was not carbon limited. Biologically important phosphate and Fe(II) were somewhat soluble during this period, which occurred well before the earliest record of preserved surface rocks approximately 3.8 billion years ago (Ga) when photosynthetic life teemed on the Earth and the oceanic pH was the modern value of approximately 8. Serpentinite existed by 3.9 Ga, but older rocks that might retain evidence of its presence have not been found. Earth's sequesters extensive evidence of Archaean and younger subducted biological material, but has yet to be exploited for the Hadean record.
Collapse
Affiliation(s)
- Norman H Sleep
- Department of Geophysics, Stanford University, Stanford, CA 94305, USA.
| | | | | |
Collapse
|
10
|
Schauer R, Røy H, Augustin N, Gennerich HH, Peters M, Wenzhoefer F, Amann R, Meyerdierks A. Bacterial sulfur cycling shapes microbial communities in surface sediments of an ultramafic hydrothermal vent field. Environ Microbiol 2011; 13:2633-48. [PMID: 21895907 DOI: 10.1111/j.1462-2920.2011.02530.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ultramafic-hosted Logatchev hydrothermal field (LHF) is characterized by vent fluids, which are enriched in dissolved hydrogen and methane compared with fluids from basalt-hosted systems. Thick sediment layers in LHF are partly covered by characteristic white mats. In this study, these sediments were investigated in order to determine biogeochemical processes and key organisms relevant for primary production. Temperature profiling at two mat-covered sites showed a conductive heating of the sediments. Elemental sulfur was detected in the overlying mat and metal-sulfides in the upper sediment layer. Microprofiles revealed an intensive hydrogen sulfide flux from deeper sediment layers. Fluorescence in situ hybridization showed that filamentous and vibrioid, Arcobacter-related Epsilonproteobacteria dominated the overlying mats. This is in contrast to sulfidic sediments in basalt-hosted fields where mats of similar appearance are composed of large sulfur-oxidizing Gammaproteobacteria. Epsilonproteobacteria (7-21%) and Deltaproteobacteria (20-21%) were highly abundant in the surface sediment layer. The physiology of the closest cultivated relatives, revealed by comparative 16S rRNA sequence analysis, was characterized by the capability to metabolize sulfur components. High sulfate reduction rates as well as sulfide depleted in (34)S further confirmed the importance of the biogeochemical sulfur cycle. In contrast, methane was found to be of minor relevance for microbial life in mat-covered surface sediments. Our data indicate that in conductively heated surface sediments microbial sulfur cycling is the driving force for bacterial biomass production although ultramafic-hosted systems are characterized by fluids with high levels of dissolved methane and hydrogen.
Collapse
Affiliation(s)
- Regina Schauer
- Max Planck Institute for Marine Microbiology, Celsiusstr.1, D-28359 Bremen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev 2011; 75:361-422. [PMID: 21646433 PMCID: PMC3122624 DOI: 10.1128/mmbr.00039-10] [Citation(s) in RCA: 324] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The majority of life on Earth--notably, microbial life--occurs in places that do not receive sunlight, with the habitats of the oceans being the largest of these reservoirs. Sunlight penetrates only a few tens to hundreds of meters into the ocean, resulting in large-scale microbial ecosystems that function in the dark. Our knowledge of microbial processes in the dark ocean-the aphotic pelagic ocean, sediments, oceanic crust, hydrothermal vents, etc.-has increased substantially in recent decades. Studies that try to decipher the activity of microorganisms in the dark ocean, where we cannot easily observe them, are yielding paradigm-shifting discoveries that are fundamentally changing our understanding of the role of the dark ocean in the global Earth system and its biogeochemical cycles. New generations of researchers and experimental tools have emerged, in the last decade in particular, owing to dedicated research programs to explore the dark ocean biosphere. This review focuses on our current understanding of microbiology in the dark ocean, outlining salient features of various habitats and discussing known and still unexplored types of microbial metabolism and their consequences in global biogeochemical cycling. We also focus on patterns of microbial diversity in the dark ocean and on processes and communities that are characteristic of the different habitats.
Collapse
Affiliation(s)
- Beth N. Orcutt
- Center for Geomicrobiology, Aarhus University, 8000 Aarhus, Denmark
- Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - Jason B. Sylvan
- Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - Nina J. Knab
- Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - Katrina J. Edwards
- Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
- Department of Earth Sciences, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
12
|
Mielke RE, Russell MJ, Wilson PR, McGlynn SE, Coleman M, Kidd R, Kanik I. Design, fabrication, and test of a hydrothermal reactor for origin-of-life experiments. ASTROBIOLOGY 2010; 10:799-810. [PMID: 21087160 DOI: 10.1089/ast.2009.0456] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We describe a continuous high-pressure flow reactor designed to simulate the unforced convective interaction of hydrothermal solutions and ocean waters with submarine crust on early Earth-conditions appropriate to those that may have led to the onset of life. The experimental operating conditions are appropriate for investigating kinetic hydrothermal processes in the early history of any sizable wet, rocky planet. Beyond the description of the fabrication, we report an initial experiment that tested the design and investigated the feasibility of sulfide and silica dissolution in alkaline solution from iron sulfide and basaltic rock, and their possible subsequent transport as HS(-) and H(2)SiO(2-)(4) in hot alkaline solutions. Delivery of hydrogen sulfide and dihydrogen silicate ions would have led to the precipitation of ferrous hydroxide, hydroxysilicates, and iron sulfides as integral mineral components of an off-ridge compartmentalized hydrothermal mound in the Hadean. Such a mound could, we contend, have acted as a natural chemical and electrochemical reactor and, ultimately, as the source of all biochemistry on our planet. In the event, we show that an average of ∼1 mM/kg of both sulfide and silica were released throughout, though over 10 mM/kg of HS(-) was recorded for ∼100 minutes in the early stages of the experiment. This alkaline effluent from the reactor was injected into a reservoir of a simulacrum of ferrous iron-bearing "Hadean Ocean" water in an experiment that demonstrated the capacity of such fluids to generate hydrothermal chimneys and a variety of contiguous inorganic microgeode precipitates bearing disseminations of discrete metal sulfides. Comparable natural composite structures may have acted as hatcheries for emergent life in the Hadean.
Collapse
Affiliation(s)
- Randall E Mielke
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109-8099, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Perner M, Petersen JM, Zielinski F, Gennerich HH, Seifert R. Geochemical constraints on the diversity and activity of H2 -oxidizing microorganisms in diffuse hydrothermal fluids from a basalt- and an ultramafic-hosted vent. FEMS Microbiol Ecol 2010; 74:55-71. [PMID: 20662930 DOI: 10.1111/j.1574-6941.2010.00940.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Mixing processes of reduced hydrothermal fluids with oxygenated seawater and fluid-rock reactions contribute to the chemical signatures of diffuse venting and likely determine the geochemical constraints on microbial life. We examined the influence of fluid chemistry on microbial diversity and activity by sampling diffuse fluids emanating through mussel beds at two contrasting hydrothermal vents. The H(2) concentration was very low at the basalt-hosted Clueless site, and mixing models suggest O(2) availability throughout much of the habitat. In contrast, effluents from the ultramafic-hosted Quest site were considerably enriched in H(2) , while O(2) is likely limited to the mussel layer. Only two different hydrogenase genes were identified in clone libraries from the H(2) -poor Clueless fluids, but these fluids exhibited the highest H(2) uptake rates in H(2) -spiked incubations (oxic conditions, at 18 °C). In contrast, a phylogenetically diverse H(2) -oxidizing potential was associated with distinct thermal conditions in the H(2) -rich Quest fluids, but under oxic conditions, H(2) uptake rates were extremely low. Significant stimulation of CO(2) fixation rates by H(2) addition was solely illustrated in Quest incubations (P-value <0.02), but only in conjunction with anoxic conditions (at 18 °C). We conclude that the factors contributing toward differences in the diversity and activity of H(2) oxidizers at these sites include H(2) and O(2) availability.
Collapse
Affiliation(s)
- Mirjam Perner
- Microbiology and Biotechnology Unit, University of Hamburg, Hamburg, Germany.
| | | | | | | | | |
Collapse
|
14
|
Fouquet Y, Cambon P, Etoubleau J, Charlou JL, Ondréas H, Barriga FJAS, Cherkashov G, Semkova T, Poroshina I, Bohn M, Donval JP, Henry K, Murphy P, Rouxel O. Geodiversity of hydrothermal processes along the Mid-Atlantic Ridge and ultramafic-hosted mineralization: A new type of oceanic Cu-Zn-Co-Au volcanogenic massive sulfide deposit. GEOPHYSICAL MONOGRAPH SERIES 2010. [DOI: 10.1029/2008gm000746] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Charlou JL, Donval JP, Konn C, Ondréas H, Fouquet Y, Jean-Baptiste P, Fourré E. High production and fluxes of H2 and CH4 and evidence of abiotic hydrocarbon synthesis by serpentinization in ultramafic-hosted hydrothermal systems on the Mid-Atlantic Ridge. GEOPHYSICAL MONOGRAPH SERIES 2010. [DOI: 10.1029/2008gm000752] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Evolutionary ecology during the rise of dioxygen in the Earth's atmosphere. Philos Trans R Soc Lond B Biol Sci 2008; 363:2651-64. [PMID: 18468980 PMCID: PMC2606762 DOI: 10.1098/rstb.2008.0018] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pre-photosynthetic niches were meagre with a productivity of much less than 10(-4) of modern photosynthesis. Serpentinization, arc volcanism and ridge-axis volcanism reliably provided H(2). Methanogens and acetogens reacted CO(2) with H(2) to obtain energy and make organic matter. These skills pre-adapted a bacterium for anoxygenic photosynthesis, probably starting with H(2) in lieu of an oxygen 'acceptor'. Use of ferrous iron and sulphide followed as abundant oxygen acceptors, allowing productivity to approach modern levels. The 'photobacterium' proliferated rooting much of the bacterial tree. Land photosynthetic microbes faced a dearth of oxygen acceptors and nutrients. A consortium of photosynthetic and soil bacteria aided weathering and access to ferrous iron. Biologically enhanced weathering led to the formation of shales and, ultimately, to granitic rocks. Already oxidized iron-poor sedimentary rocks and low-iron granites provided scant oxygen acceptors, as did freshwater in their drainages. Cyanobacteria evolved dioxygen production that relieved them of these vicissitudes. They did not immediately dominate the planet. Eventually, anoxygenic and oxygenic photosynthesis oxidized much of the Earth's crust and supplied sulphate to the ocean. Anoxygenic photosynthesis remained important until there was enough O(2) in downwelling seawater to quantitatively oxidize massive sulphides at mid-ocean ridge axes.
Collapse
|
17
|
McCollom TM. Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems. ASTROBIOLOGY 2007; 7:933-50. [PMID: 18163871 DOI: 10.1089/ast.2006.0119] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Numerical models are employed to investigate sources of chemical energy for autotrophic microbial metabolism that develop during mixing of oxidized seawater with strongly reduced fluids discharged from ultramafic-hosted hydrothermal systems on the seafloor. Hydrothermal fluids in these systems are highly enriched in H(2) and CH(4) as a result of alteration of ultramafic rocks (serpentinization) in the subsurface. Based on the availability of chemical energy sources, inferences are made about the likely metabolic diversity, relative abundance, and spatial distribution of microorganisms within ultramafic-hosted systems. Metabolic reactions involving H(2) and CH(4), particularly hydrogen oxidation, methanotrophy, sulfate reduction, and methanogenesis, represent the predominant sources of chemical energy during fluid mixing. Owing to chemical gradients that develop from fluid mixing, aerobic metabolisms are likely to predominate in low-temperature environments (<20-30 degrees C), while anaerobes will dominate higher-temperature environments. Overall, aerobic metabolic reactions can supply up to approximately 7 kJ of energy per kilogram of hydrothermal fluid, while anaerobic metabolic reactions can supply about 1 kJ, which is sufficient to support a maximum of approximately 120 mg (dry weight) of primary biomass production by aerobic organisms and approximately 20-30 mg biomass by anaerobes. The results indicate that ultramafic-hosted systems are capable of supplying about twice as much chemical energy as analogous deep-sea hydrothermal systems hosted in basaltic rocks.
Collapse
Affiliation(s)
- Thomas M McCollom
- CU Center for Astrobiology and Laboratory for Atmospheric & Space Physics, University of Colorado, Boulder, Colorado 80309-0392, USA.
| |
Collapse
|
18
|
Vance S, Harnmeijer J, Kimura J, Hussmann H, Demartin B, Brown JM. Hydrothermal systems in small ocean planets. ASTROBIOLOGY 2007; 7:987-1005. [PMID: 18163874 DOI: 10.1089/ast.2007.0075] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1).
Collapse
Affiliation(s)
- Steve Vance
- Astrobiology Program and Department of Earth & Space Sciences, University of Washington, Seattle, Washington, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Perner M, Kuever J, Seifert R, Pape T, Koschinsky A, Schmidt K, Strauss H, Imhoff JF. The influence of ultramafic rocks on microbial communities at the Logatchev hydrothermal field, located 15°N on the Mid-Atlantic Ridge. FEMS Microbiol Ecol 2007; 61:97-109. [PMID: 17506828 DOI: 10.1111/j.1574-6941.2007.00325.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The ultramafic-hosted Logatchev hydrothermal field (LHF) on the Mid-Atlantic Ridge is characterized by high hydrogen and methane contents in the subseafloor, which support a specialized microbial community of phylogenetically diverse, hydrogen-oxidizing chemolithoautotrophs. We compared the prokaryotic communities of three sites located in the LHF and encountered a predominance of archaeal sequences affiliated with methanogenic Methanococcales at all three. However, the bacterial composition varied in accordance with differences in fluid chemistry between the three sites investigated. An increase in hydrogen seemed to coincide with the diversification of hydrogen-oxidizing bacteria. This might indicate that the host rock indirectly selects this specific group of bacteria. However, next to hydrogen availability further factors are evident (e.g. mixing of hot reduced hydrothermal fluids with cold oxygenated seawater), which have a significant impact on the distribution of microorganisms.
Collapse
Affiliation(s)
- Mirjam Perner
- Marine Microbiology, IFM-GEOMAR, Duesternbrooker Weg, Kiel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Schulte M, Blake D, Hoehler T, McCollom T. Serpentinization and its implications for life on the early Earth and Mars. ASTROBIOLOGY 2006; 6:364-76. [PMID: 16689652 DOI: 10.1089/ast.2006.6.364] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Ophiolites, sections of ocean crust tectonically displaced onto land, offer significant potential to support chemolithoautotrophic life through the provision of energy and reducing power during aqueous alteration of their highly reduced mineralogies. There is substantial chemical disequilibrium between the primary olivine and pyroxene mineralogy of these ophiolites and the fluids circulating through them. This disequilibrium represents a potential source of chemical energy that could sustain life. Moreover, E (h)-pH conditions resulting from rock- water interactions in ultrabasic rocks are conducive to important abiotic processes antecedent to the origin of life. Serpentinization--the reaction of olivine- and pyroxene-rich rocks with water--produces magnetite, hydroxide, and serpentine minerals, and liberates molecular hydrogen, a source of energy and electrons that can be readily utilized by a broad array of chemosynthetic organisms. These systems are viewed as important analogs for potential early ecosystems on both Earth and Mars, where highly reducing mineralogy was likely widespread in an undifferentiated crust. Secondary phases precipitated during serpentinization have the capability to preserve organic or mineral biosignatures. We describe the petrology and mineral chemistry of an ophiolite-hosted cold spring in northern California and propose criteria to aid in the identification of serpentinizing terranes on Mars that have the potential to harbor chemosynthetic life.
Collapse
Affiliation(s)
- Mitch Schulte
- Exobiology Branch, NASA Ames Research Center, Moffett Field, California, USA.
| | | | | | | |
Collapse
|
21
|
Kelley DS, Karson JA, Früh-Green GL, Yoerger DR, Shank TM, Butterfield DA, Hayes JM, Schrenk MO, Olson EJ, Proskurowski G, Jakuba M, Bradley A, Larson B, Ludwig K, Glickson D, Buckman K, Bradley AS, Brazelton WJ, Roe K, Elend MJ, Delacour A, Bernasconi SM, Lilley MD, Baross JA, Summons RE, Sylva SP. A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field. Science 2005; 307:1428-34. [PMID: 15746419 DOI: 10.1126/science.1102556] [Citation(s) in RCA: 354] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The serpentinite-hosted Lost City hydrothermal field is a remarkable submarine ecosystem in which geological, chemical, and biological processes are intimately interlinked. Reactions between seawater and upper mantle peridotite produce methane- and hydrogen-rich fluids, with temperatures ranging from <40 degrees to 90 degrees C at pH 9 to 11, and carbonate chimneys 30 to 60 meters tall. A low diversity of microorganisms related to methane-cycling Archaea thrive in the warm porous interiors of the edifices. Macrofaunal communities show a degree of species diversity at least as high as that of black smoker vent sites along the Mid-Atlantic Ridge, but they lack the high biomasses of chemosynthetic organisms that are typical of volcanically driven systems.
Collapse
Affiliation(s)
- Deborah S Kelley
- School of Oceanography, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Schrenk MO, Kelley DS, Bolton SA, Baross JA. Low archaeal diversity linked to subseafloor geochemical processes at the Lost City Hydrothermal Field, Mid-Atlantic Ridge. Environ Microbiol 2004; 6:1086-95. [PMID: 15344934 DOI: 10.1111/j.1462-2920.2004.00650.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The recently discovered Lost City Hydrothermal Field (LCHF) represents a new type of submarine hydrothermal system driven primarily by exothermic serpentinization reactions in ultramafic oceanic crust. Highly reducing, alkaline hydrothermal environments at the LCHF produce considerable quantities of hydrogen, methane and organic molecules through chemo- and biosynthetic reactions. Here, we report the first analyses of microbial communities inhabiting carbonate chimneys awash in warm, high pH fluids at the LCHF and the predominance of a single group of methane-metabolizing Archaea. The predominant phylotype, related to the Methanosarcinales, formed tens of micrometre-thick biofilms in regions adjacent to hydrothermal flow. Exterior portions of active structures harboured a diverse microbial community composed primarily of filamentous Eubacteria that resembled sulphide-oxidizing species. Inactive samples, away from regions of hydrothermal flow, contained phylotypes related to pelagic microorganisms. The abundance of organisms linked to the volatile chemistry at the LCHF hints that similar metabolic processes may operate in the subseafloor. These results expand the range of known geological settings that support biological activity to include submarine hydrothermal systems that are not dependent upon magmatic heat sources.
Collapse
Affiliation(s)
- Matthew O Schrenk
- School of Oceanography, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
23
|
Früh-Green GL, Connolly JA, Plas A, Kelley DS, Grobéty B. Serpentinization of oceanic peridotites: Implications for geochemical cycles and biological activity. THE SUBSEAFLOOR BIOSPHERE AT MID-OCEAN RIDGES 2004. [DOI: 10.1029/144gm08] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Volatiles in submarine environments: Food for life. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/144gm11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
25
|
Zolotov MY. Energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2002je001966] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Kelley DS, Karson JA, Blackman DK, Früh-Green GL, Butterfield DA, Lilley MD, Olson EJ, Schrenk MO, Roe KK, Lebon GT, Rivizzigno P. An off-axis hydrothermal vent field near the Mid-Atlantic Ridge at 30 degrees N. Nature 2001; 412:145-9. [PMID: 11449263 DOI: 10.1038/35084000] [Citation(s) in RCA: 295] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Evidence is growing that hydrothermal venting occurs not only along mid-ocean ridges but also on old regions of the oceanic crust away from spreading centres. Here we report the discovery of an extensive hydrothermal field at 30 degrees N near the eastern intersection of the Mid-Atlantic Ridge and the Atlantis fracture zone. The vent field--named 'Lost City'--is distinctly different from all other known sea-floor hydrothermal fields in that it is located on 1.5-Myr-old crust, nearly 15 km from the spreading axis, and may be driven by the heat of exothermic serpentinization reactions between sea water and mantle rocks. It is located on a dome-like massif and is dominated by steep-sided carbonate chimneys, rather than the sulphide structures typical of 'black smoker' hydrothermal fields. We found that vent fluids are relatively cool (40-75 degrees C) and alkaline (pH 9.0-9.8), supporting dense microbial communities that include anaerobic thermophiles. Because the geological characteristics of the Atlantis massif are similar to numerous areas of old crust along the Mid-Atlantic, Indian and Arctic ridges, these results indicate that a much larger portion of the oceanic crust may support hydrothermal activity and microbial life than previously thought.
Collapse
Affiliation(s)
- D S Kelley
- University of Washington, School of Oceanography, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|