1
|
Novick KA, Ficklin DL, Grossiord C, Konings AG, Martínez-Vilalta J, Sadok W, Trugman AT, Williams AP, Wright AJ, Abatzoglou JT, Dannenberg MP, Gentine P, Guan K, Johnston MR, Lowman LEL, Moore DJP, McDowell NG. The impacts of rising vapour pressure deficit in natural and managed ecosystems. PLANT, CELL & ENVIRONMENT 2024; 47:3561-3589. [PMID: 38348610 DOI: 10.1111/pce.14846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 08/16/2024]
Abstract
An exponential rise in the atmospheric vapour pressure deficit (VPD) is among the most consequential impacts of climate change in terrestrial ecosystems. Rising VPD has negative and cascading effects on nearly all aspects of plant function including photosynthesis, water status, growth and survival. These responses are exacerbated by land-atmosphere interactions that couple VPD to soil water and govern the evolution of drought, affecting a range of ecosystem services including carbon uptake, biodiversity, the provisioning of water resources and crop yields. However, despite the global nature of this phenomenon, research on how to incorporate these impacts into resilient management regimes is largely in its infancy, due in part to the entanglement of VPD trends with those of other co-evolving climate drivers. Here, we review the mechanistic bases of VPD impacts at a range of spatial scales, paying particular attention to the independent and interactive influence of VPD in the context of other environmental changes. We then evaluate the consequences of these impacts within key management contexts, including water resources, croplands, wildfire risk mitigation and management of natural grasslands and forests. We conclude with recommendations describing how management regimes could be altered to mitigate the otherwise highly deleterious consequences of rising VPD.
Collapse
Affiliation(s)
- Kimberly A Novick
- O'Neill School of Public and Environmental Affairs, Indiana University, Bloomington, Indiana, USA
| | - Darren L Ficklin
- Department of Geography, Indiana University, Bloomington, Indiana, USA
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory (PERL), School of Architecture, Civil and Environmental Engineering (EPFL), Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, Lausanne, Switzerland
| | - Alexandra G Konings
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Jordi Martínez-Vilalta
- CREAF, Bellaterra, Catalonia, Spain
- Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Walid Sadok
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota, USA
| | - Anna T Trugman
- Department of Geography, University of California, Santa Barbara, California, USA
| | - A Park Williams
- Department of Geography, University of California, Los Angeles, California, USA
| | - Alexandra J Wright
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, USA
| | - John T Abatzoglou
- Management of Complex Systems Department, University of California, Merced, California, USA
| | - Matthew P Dannenberg
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, New York, USA
- Center for Learning the Earth with Artificial Intelligence and Physics (LEAP), Columbia University, New York, New York, USA
| | - Kaiyu Guan
- Agroecosystem Sustainability Center, Institute for Sustainability, Energy, and Environment, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- Department of Natural Resources and Environmental Sciences, College of Agricultural, Consumers, and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
- National Center for Supercomputing Applications, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Miriam R Johnston
- Department of Geographical and Sustainability Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Lauren E L Lowman
- Department of Engineering, Wake Forest University, Winston-Salem, North Carolina, USA
| | - David J P Moore
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, USA
| | - Nate G McDowell
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| |
Collapse
|
2
|
Burke M, Childs ML, de la Cuesta B, Qiu M, Li J, Gould CF, Heft-Neal S, Wara M. The contribution of wildfire to PM 2.5 trends in the USA. Nature 2023; 622:761-766. [PMID: 37730996 DOI: 10.1038/s41586-023-06522-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 08/07/2023] [Indexed: 09/22/2023]
Abstract
Steady improvements in ambient air quality in the USA over the past several decades, in part a result of public policy1,2, have led to public health benefits1-4. However, recent trends in ambient concentrations of particulate matter with diameters less than 2.5 μm (PM2.5), a pollutant regulated under the Clean Air Act1, have stagnated or begun to reverse throughout much of the USA5. Here we use a combination of ground- and satellite-based air pollution data from 2000 to 2022 to quantify the contribution of wildfire smoke to these PM2.5 trends. We find that since at least 2016, wildfire smoke has influenced trends in average annual PM2.5 concentrations in nearly three-quarters of states in the contiguous USA, eroding about 25% of previous multi-decadal progress in reducing PM2.5 concentrations on average in those states, equivalent to 4 years of air quality progress, and more than 50% in many western states. Smoke influence on trends in the number of days with extreme PM2.5 concentrations is detectable by 2011, but the influence can be detected primarily in western and mid-western states. Wildfire-driven increases in ambient PM2.5 concentrations are unregulated under current air pollution law6 and, in the absence of further interventions, we show that the contribution of wildfire to regional and national air quality trends is likely to grow as the climate continues to warm.
Collapse
Affiliation(s)
- Marshall Burke
- Doerr School of Sustainability, Stanford University, Stanford, CA, USA.
- Center on Food Security and the Environment, Stanford University, Stanford, CA, USA.
- National Bureau of Economic Research, Cambridge, MA, USA.
| | - Marissa L Childs
- Center for the Environment, Harvard University, Cambridge, MA, USA
| | - Brandon de la Cuesta
- Center on Food Security and the Environment, Stanford University, Stanford, CA, USA
| | - Minghao Qiu
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Jessica Li
- Center on Food Security and the Environment, Stanford University, Stanford, CA, USA
| | - Carlos F Gould
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Sam Heft-Neal
- Center on Food Security and the Environment, Stanford University, Stanford, CA, USA
| | - Michael Wara
- Doerr School of Sustainability, Stanford University, Stanford, CA, USA
- Woods Institute of the Environment, Stanford University, Stanford, CA, USA
| |
Collapse
|
3
|
Kabeshita L, Sloat LL, Fischer EV, Kampf S, Magzamen S, Schultz C, Wilkins MJ, Kinnebrew E, Mueller ND. Pathways framework identifies wildfire impacts on agriculture. NATURE FOOD 2023; 4:664-672. [PMID: 37550540 DOI: 10.1038/s43016-023-00803-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 06/14/2023] [Indexed: 08/09/2023]
Abstract
Wildfires are a growing concern to society and the environment in many parts of the world. Within the United States, the land area burned by wildfires has steadily increased over the past 40 years. Agricultural land management is widely understood as a force that alters fire regimes, but less is known about how wildfires, in turn, impact the agriculture sector. Based on an extensive literature review, we identify three pathways of impact-direct, downwind and downstream-through which wildfires influence agricultural resources (soil, water, air and photosynthetically active radiation), labour (agricultural workers) and products (crops and livestock). Through our pathways framework, we highlight the complexity of wildfire-agriculture interactions and the need for collaborative, systems-oriented research to better quantify the magnitude of wildfire impacts and inform the adaptation of agricultural systems to an increasingly fire-prone future.
Collapse
Affiliation(s)
- Lena Kabeshita
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Lindsey L Sloat
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, USA
- Land and Carbon Lab, World Resources Institute, Washington, DC, USA
| | - Emily V Fischer
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
| | - Stephanie Kampf
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, USA
| | - Sheryl Magzamen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Courtney Schultz
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO, USA
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Eva Kinnebrew
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, USA
| | - Nathaniel D Mueller
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
4
|
Comparison of Wildfire Meteorology and Climate at the Adriatic Coast and Southeast Australia. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Wildfire is one of the most complex natural hazards. Its origin is a combination of anthropogenic factors, urban development and weather plus climate factors. In particular, weather and climate factors possess many spatiotemporal scales and various degrees of predictability. Due to the complex synergy of the human and natural factors behind the events, every wildfire is unique. However, there are indeed common meteorological and climate factors leading to the high fire risk before certain ignition mechanismfigures occur. From a scientific point of view, a better understanding of the meteorological and climate drivers of wildfire in every region would enable more effective seasonal to annual outlook of fire risk, and in the long term, better applications of climate projections to estimate future scenarios of wildfire. This review has performed a comparison study of two fire-prone regions: southeast Australia including Tasmania, and the Adriatic coast in Europe, especially events in Croatia. The former is well known as part of the ‘fire continent’, and major resources have been put into wildfire research and forecasting. The Adriatic coast is a region where some of the highest surface wind speeds, under strong topographic effect, have been recorded and, over the years, have coincided with wildfire ignitions. Similar synoptic background and dynamic origins of the meso-micro-scale meteorological conditions of these high wind events as well as the accompanied dryness have been identified between some of the events in the two regions. We have also reviewed how the researchers from these two regions have applied different weather indices and numerical models. The status of estimating fire potential under climate change for both regions has been evaluated. This review aims to promote a global network of information exchange to study the changing anthropogenic and natural factors we have to confront in order to mitigate and adapt the impacts and consequences from wildfire.
Collapse
|
5
|
Machine learning-based observation-constrained projections reveal elevated global socioeconomic risks from wildfire. Nat Commun 2022; 13:1250. [PMID: 35318306 PMCID: PMC8940959 DOI: 10.1038/s41467-022-28853-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 02/04/2022] [Indexed: 11/30/2022] Open
Abstract
Reliable projections of wildfire and associated socioeconomic risks are crucial for the development of efficient and effective adaptation and mitigation strategies. The lack of or limited observational constraints for modeling outputs impairs the credibility of wildfire projections. Here, we present a machine learning framework to constrain the future fire carbon emissions simulated by 13 Earth system models from the Coupled Model Intercomparison Project phase 6 (CMIP6), using historical, observed joint states of fire-relevant variables. During the twenty-first century, the observation-constrained ensemble indicates a weaker increase in global fire carbon emissions but higher increase in global wildfire exposure in population, gross domestic production, and agricultural area, compared with the default ensemble. Such elevated socioeconomic risks are primarily caused by the compound regional enhancement of future wildfire activity and socioeconomic development in the western and central African countries, necessitating an emergent strategic preparedness to wildfires in these countries. A new study develops a machine learning framework to observationally constrain CMIP6-simulated fire carbon emissions, finding a weaker increase in 21st-century global fires but higher increase in their socioeconomic risks than previously thought.
Collapse
|
6
|
Juang CS, Williams AP, Abatzoglou JT, Balch JK, Hurteau MD, Moritz MA. Rapid Growth of Large Forest Fires Drives the Exponential Response of Annual Forest-Fire Area to Aridity in the Western United States. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2021GL097131. [PMID: 35866067 PMCID: PMC9286820 DOI: 10.1029/2021gl097131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/18/2022] [Accepted: 02/18/2022] [Indexed: 06/01/2023]
Abstract
Annual forest area burned (AFAB) in the western United States (US) has increased as a positive exponential function of rising aridity in recent decades. This non-linear response has important implications for AFAB in a changing climate, yet the cause of the exponential AFAB-aridity relationship has not been given rigorous attention. We investigated the exponential AFAB-aridity relationship in western US forests using a new 1984-2019 database of fire events and 2001-2020 satellite-based records of daily fire growth. While forest-fire frequency and duration grow linearly with aridity, the exponential AFAB-aridity relationship results from the exponential growth rates of individual fires. Larger fires generally have more potential for growth due to more extensive firelines. Thus, forces that promote fire growth, such as aridification, have more potent effects on larger fires. As aridity increases linearly, the potential for growth of large fires accelerates, leading to exponential increases in AFAB.
Collapse
Affiliation(s)
- C. S. Juang
- Lamont‐Doherty Earth Observatory of Columbia UniversityPalisadesNYUSA
- Department of Earth and Environmental SciencesColumbia UniversityNew YorkNYUSA
| | - A. P. Williams
- Lamont‐Doherty Earth Observatory of Columbia UniversityPalisadesNYUSA
- Department of GeographyUniversity of California, Los AngelesLos AngelesCAUSA
| | - J. T. Abatzoglou
- Management of Complex Systems DepartmentUniversity of California, MercedMercedCAUSA
| | - J. K. Balch
- Earth LabCooperative Institute for Research in Environmental ScienceUniversity of Colorado BoulderBoulderCOUSA
- Department of GeographyUniversity of Colorado BoulderBoulderCOUSA
| | - M. D. Hurteau
- Biology DepartmentUniversity of New MexicoAlbuquerqueNMUSA
| | - M. A. Moritz
- Cooperative Extension Division of Agriculture and Natural Resources & Bren School of Environmental Science & ManagementUniversity of California, Santa BarbaraSanta BarbaraCAUSA
| |
Collapse
|
7
|
Abstract
How will increasing wildfire activity affect water resources in the water-limited western United States (WUS)? Among basins where >20% of forest burned, postfire streamflow is significantly enhanced by an average of approximately 30% for 6 y. Over 2015 to 2020, several large WUS basins experienced >10% of forest burned. Climate projections and an exponential forest fire response to climate-induced drying suggest the next 3 decades will see repeated years when WUS forest fire area exceeds that of 2020, which set a modern record for forest area burned. If so, entire regions will likely experience more streamflow than expected, potentially enhancing human access to water but posing hazard management challenges. Projections of water supply and runoff-related hazards must account for wildfire. Streamflow often increases after fire, but the persistence of this effect and its importance to present and future regional water resources are unclear. This paper addresses these knowledge gaps for the western United States (WUS), where annual forest fire area increased by more than 1,100% during 1984 to 2020. Among 72 forested basins across the WUS that burned between 1984 and 2019, the multibasin mean streamflow was significantly elevated by 0.19 SDs (P < 0.01) for an average of 6 water years postfire, compared to the range of results expected from climate alone. Significance is assessed by comparing prefire and postfire streamflow responses to climate and also to streamflow among 107 control basins that experienced little to no wildfire during the study period. The streamflow response scales with fire extent: among the 29 basins where >20% of forest area burned in a year, streamflow over the first 6 water years postfire increased by a multibasin average of 0.38 SDs, or 30%. Postfire streamflow increases were significant in all four seasons. Historical fire–climate relationships combined with climate model projections suggest that 2021 to 2050 will see repeated years when climate is more fire-conducive than in 2020, the year currently holding the modern record for WUS forest area burned. These findings center on relatively small, minimally managed basins, but our results suggest that burned areas will grow enough over the next 3 decades to enhance streamflow at regional scales. Wildfire is an emerging driver of runoff change that will increasingly alter climate impacts on water supplies and runoff-related risks.
Collapse
|
8
|
Wang SS, Qian Y, Leung LR, Zhang Y. Identifying Key Drivers of Wildfires in the Contiguous US Using Machine Learning and Game Theory Interpretation. EARTH'S FUTURE 2021; 9:e2020EF001910. [PMID: 34222556 PMCID: PMC8243942 DOI: 10.1029/2020ef001910] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/19/2021] [Accepted: 05/09/2021] [Indexed: 05/30/2023]
Abstract
Understanding the complex interrelationships between wildfire and its environmental and anthropogenic controls is crucial for wildfire modeling and management. Although machine learning (ML) models have yielded significant improvements in wildfire predictions, their limited interpretability has been an obstacle for their use in advancing understanding of wildfires. This study builds an ML model incorporating predictors of local meteorology, land-surface characteristics, and socioeconomic variables to predict monthly burned area at grid cells of 0.25° × 0.25° resolution over the contiguous United States. Besides these predictors, we construct and include predictors representing the large-scale circulation patterns conducive to wildfires, which largely improves the temporal correlations in several regions by 14%-44%. The Shapley additive explanation is introduced to quantify the contributions of the predictors to burned area. Results show a key role of longitude and latitude in delineating fire regimes with different temporal patterns of burned area. The model captures the physical relationship between burned area and vapor pressure deficit, relative humidity (RH), and energy release component (ERC), in agreement with the prior findings. Aggregating the contribution of predictor variables of all the grids by region, analyses show that ERC is the major contributor accounting for 14%-27% to large burned areas in the western US. In contrast, there is no leading factor contributing to large burned areas in the eastern US, although large-scale circulation patterns featuring less active upper-level ridge-trough and low RH two months earlier in winter contribute relatively more to large burned areas in spring in the southeastern US.
Collapse
Affiliation(s)
- Sally S.‐C. Wang
- Atmospheric Sciences and Global Change DivisionPacific Northwest National LaboratoryRichlandWAUSA
| | - Yun Qian
- Atmospheric Sciences and Global Change DivisionPacific Northwest National LaboratoryRichlandWAUSA
| | - L. Ruby Leung
- Atmospheric Sciences and Global Change DivisionPacific Northwest National LaboratoryRichlandWAUSA
| | - Yang Zhang
- Department of Civil and Environmental EngineeringNortheastern UniversityBostonMAUSA
| |
Collapse
|
9
|
Sorensen C, House JA, O'Dell K, Brey SJ, Ford B, Pierce JR, Fischer EV, Lemery J, Crooks JL. Associations Between Wildfire-Related PM 2.5 and Intensive Care Unit Admissions in the United States, 2006-2015. GEOHEALTH 2021; 5:e2021GH000385. [PMID: 33977181 PMCID: PMC8095362 DOI: 10.1029/2021gh000385] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 05/29/2023]
Abstract
Wildfire smoke is a growing public health concern in the United States. Numerous studies have documented associations between ambient smoke exposure and severe patient outcomes for single-fire seasons or limited geographic regions. However, there are few national-scale health studies of wildfire smoke in the United States, few studies investigating Intensive Care Unit (ICU) admissions as an outcome, and few specifically framed around hospital operations. This study retrospectively examined the associations between ambient wildfire-related PM2.5 at a hospital ZIP code with total hospital ICU admissions using a national-scale hospitalization data set. Wildfire smoke was characterized using a combination of kriged PM2.5 monitor observations and satellite-derived plume polygons from National Oceanic and Atmospheric Administration's Hazard Mapping System. ICU admissions data were acquired from Premier, Inc. and encompass 15%-20% of all U.S. ICU admissions during the study period. Associations were estimated using a distributed-lag conditional Poisson model under a time-stratified case-crossover design. We found that a 10 μg/m3 increase in daily wildfire PM2.5 was associated with a 2.7% (95% CI: 1.3, 4.1; p = 0.00018) increase in ICU admissions 5 days later. Under stratification, positive associations were found among patients aged 0-20 and 60+, patients living in the Midwest Census Region, patients admitted in the years 2013-2015, and non-Black patients, though other results were mixed. Following a simulated severe 7-day 120 μg/m3 smoke event, our results predict ICU bed utilization peaking at 131% (95% CI: 43, 239; p < 10-5) over baseline. Our work suggests that hospitals may need to preposition vital critical care resources when severe smoke events are forecast.
Collapse
Affiliation(s)
- Cecilia Sorensen
- University of Colorado School of MedicineDepartment of Emergency MedicineAuroraCOUSA
- Center for Health, Work & EnvironmentColorado School of Public HealthAuroraCOUSA
| | | | - Katelyn O'Dell
- Department of Atmospheric ScienceColorado State UniversityFt. CollinsCOUSA
| | - Steven J. Brey
- Department of Atmospheric ScienceColorado State UniversityFt. CollinsCOUSA
| | - Bonne Ford
- Department of Atmospheric ScienceColorado State UniversityFt. CollinsCOUSA
| | - Jeffrey R. Pierce
- Department of Atmospheric ScienceColorado State UniversityFt. CollinsCOUSA
| | - Emily V. Fischer
- Department of Atmospheric ScienceColorado State UniversityFt. CollinsCOUSA
| | - Jay Lemery
- University of Colorado School of MedicineDepartment of Emergency MedicineAuroraCOUSA
| | - James L. Crooks
- Division of Biostatistics and Bioinformatics and Department of Immunology and Genomic MedicineNational Jewish HealthDenverCOUSA
- Department of EpidemiologyColorado School of Public HealthAuroraCOUSA
| |
Collapse
|
10
|
Hahn MB, Kuiper G, O'Dell K, Fischer EV, Magzamen S. Wildfire Smoke Is Associated With an Increased Risk of Cardiorespiratory Emergency Department Visits in Alaska. GEOHEALTH 2021; 5:e2020GH000349. [PMID: 34036208 PMCID: PMC8137270 DOI: 10.1029/2020gh000349] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/03/2021] [Accepted: 04/17/2021] [Indexed: 05/26/2023]
Abstract
Alaskan wildfires have major ecological, social, and economic consequences, but associated health impacts remain unexplored. We estimated cardiorespiratory morbidity associated with wildfire smoke (WFS) fine particulate matter with a diameter less than 2.5 μm (PM2.5) in three major population centers (Anchorage, Fairbanks, and the Matanuska-Susitna Valley) during the 2015-2019 wildfire seasons. To estimate WFS PM2.5, we utilized data from ground-based monitors and satellite-based smoke plume estimates. We implemented time-stratified case-crossover analyses with single and distributed lag models to estimate the effect of WFS PM2.5 on cardiorespiratory emergency department (ED) visits. On the day of exposure to WFS PM2.5, there was an increased odds of asthma-related ED visits among 15-65 year olds (OR = 1.12, 95% CI = 1.08, 1.16), people >65 years (OR = 1.15, 95% CI = 1.01, 1.31), among Alaska Native people (OR = 1.16, 95% CI = 1.09, 1.23), and in Anchorage (OR = 1.10, 95% CI = 1.05, 1.15) and Fairbanks (OR = 1.12, 95% CI = 1.07, 1.17). There was an increased risk of heart failure related ED visits for Alaska Native people (Lag Day 5 OR = 1.13, 95% CI = 1.02, 1.25). We found evidence that rural populations may delay seeking care. As the frequency and magnitude of Alaskan wildfires continue to increase due to climate change, understanding the health impacts will be imperative. A nuanced understanding of the effects of WFS on specific demographic and geographic groups facilitates data-driven public health interventions and fire management protocols that address these adverse health effects.
Collapse
Affiliation(s)
- M. B. Hahn
- Institute for Circumpolar Health StudiesUniversity of Alaska‐AnchorageAnchorageAKUSA
| | - G. Kuiper
- Institute for Circumpolar Health StudiesUniversity of Alaska‐AnchorageAnchorageAKUSA
| | - K. O'Dell
- Department of Atmospheric ScienceColorado State UniversityFort CollinsCOUSA
| | - E. V. Fischer
- Department of Atmospheric ScienceColorado State UniversityFort CollinsCOUSA
| | - S. Magzamen
- Department of Environmental and Radiological Health SciencesColorado State UniversityFort CollinsCOUSA
| |
Collapse
|
11
|
Magzamen S, Gan RW, Liu J, O’Dell K, Ford B, Berg K, Bol K, Wilson A, Fischer EV, Pierce JR. Differential Cardiopulmonary Health Impacts of Local and Long-Range Transport of Wildfire Smoke. GEOHEALTH 2021; 5:e2020GH000330. [PMID: 35281479 PMCID: PMC8900982 DOI: 10.1029/2020gh000330] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/17/2020] [Accepted: 01/19/2021] [Indexed: 05/26/2023]
Abstract
We estimated cardiopulmonary morbidity and mortality associated with wildfire smoke (WFS) fine particulate matter (PM2.5) in the Front Range of Colorado from 2010 to 2015. To estimate WFS PM2.5, we developed a daily kriged PM2.5 surface at a 15 × 15 km resolution based on the Environmental Protection Agency Air Quality System monitors for the western United States; we subtracted out local seasonal-average PM2.5 of nonsmoky days, identified using satellite-based smoke plume estimates, from the local daily estimated PM2.5 if smoke was identified by National Oceanic and Atmospheric Administration's Hazard Mapping System. We implemented time-stratified case-crossover analyses to estimate the effect of a 10 µg/m3 increase in WFS PM2.5 with cardiopulmonary hospitalizations and deaths using single and distributed lag models for lags 0-5 and distinct annual impacts based on local and long-range smoke during 2012, and long-range transport of smoke in 2015. A 10 µg/m3 increase in WFS was associated with all respiratory, asthma, and chronic obstructive pulmonary disease hospitalizations for lag day 3 and hospitalizations for ischemic heart disease at lag days 2 and 3. Cardiac arrest deaths were associated with WFS PM2.5 at lag day 0. For 2012 local wildfires, asthma hospitalizations had an inverse association with WFS PM2.5 (OR: 0.716, 95% CI: 0.517-0.993), but a positive association with WFS PM2.5 during the 2015 long-range transport event (OR: 1.455, 95% CI: 1.093-1.939). Cardiovascular mortality was associated with the 2012 long-range transport event (OR: 1.478, 95% CI: 1.124-1.944).
Collapse
Affiliation(s)
- Sheryl Magzamen
- Department of Environmental and Radiological Health SciencesColorado State UniversityFort CollinsCOUSA
| | - Ryan W. Gan
- Department of Environmental and Radiological Health SciencesColorado State UniversityFort CollinsCOUSA
| | - Jingyang Liu
- Department of Environmental and Radiological Health SciencesColorado State UniversityFort CollinsCOUSA
| | - Katelyn O’Dell
- Department of Atmospheric ScienceColorado State UniversityFort CollinsCOUSA
| | - Bonne Ford
- Department of Atmospheric ScienceColorado State UniversityFort CollinsCOUSA
| | - Kevin Berg
- Colorado Department of Public Health and EnvironmentDenverCOUSA
| | - Kirk Bol
- Colorado Department of Public Health and EnvironmentDenverCOUSA
| | - Ander Wilson
- Department of StatisticsColorado State UniversityFort CollinsCOUSA
| | - Emily V. Fischer
- Department of Atmospheric ScienceColorado State UniversityFort CollinsCOUSA
| | - Jeffrey R. Pierce
- Department of Atmospheric ScienceColorado State UniversityFort CollinsCOUSA
| |
Collapse
|