1
|
Arabi TZ, Sabbah BN, Lerman A, Zhu XY, Lerman LO. Xenotransplantation: Current Challenges and Emerging Solutions. Cell Transplant 2023; 32:9636897221148771. [PMID: 36644844 PMCID: PMC9846288 DOI: 10.1177/09636897221148771] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To address the ongoing shortage of organs available for replacement, xenotransplantation of hearts, corneas, skin, and kidneys has been attempted. However, a major obstacle facing xenotransplants is rejection due to a cycle of immune reactions to the graft. Both adaptive and innate immune systems contribute to this cycle, in which natural killer cells, macrophages, and T-cells play a significant role. While advancements in the field of genetic editing can circumvent some of these obstacles, biomarkers to identify and predict xenograft rejection remain to be standardized. Several T-cell markers, such as CD3, CD4, and CD8, are useful in both the diagnosis and prediction of xenograft rejection. Furthermore, an increase in the levels of various circulating DNA markers and microRNAs is also predictive of xenograft rejection. In this review, we summarize recent findings on the advancements in xenotransplantation, with a focus on pig-to-human, the role of immunity in xenograft rejection, and its biomarkers.
Collapse
Affiliation(s)
- Tarek Ziad Arabi
- Division of Nephrology and
Hypertension, Mayo Clinic, Rochester, MN, USA,College of Medicine, Alfaisal
University, Riyadh, Saudi Arabia
| | - Belal Nedal Sabbah
- College of Medicine, Alfaisal
University, Riyadh, Saudi Arabia,Department of Urology, Mayo Clinic,
Rochester, MN, USA
| | - Amir Lerman
- Department of Cardiology, Mayo Clinic,
Rochester, MN, USA
| | - Xiang-Yang Zhu
- Division of Nephrology and
Hypertension, Mayo Clinic, Rochester, MN, USA,Xiang-Yang Zhu, Division of Nephrology and
Hypertension, Mayo Clinic, 200 First Street SW., Rochester, MN 55905, USA.
| | - Lilach O. Lerman
- Division of Nephrology and
Hypertension, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
2
|
Tagawa T. Protease inhibitor nafamostat mesilate attenuates complement activation and improves function of xenografts in a discordant lung perfusion model. Xenotransplantation 2012; 18:315-9. [PMID: 22168138 DOI: 10.1111/j.1399-3089.2011.00650.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Anti-complement activity of nafamostat mesilate (FUT-175) is strong including its variety of pharmacological effects. The effect of FUT-175 for xenografts in an ex vivo guinea pig-to-rat lung perfusion model was evaluated. METHODS Heparinized Lewis rat blood was used to perfuse the lungs in three groups (n = 6 each). Group I used Lewis rat left lung for donor, Group X used guinea pig left lung for donor, and Group XF used guinea pig left lung for donor, which was perfused with Lewis rat blood with 0.2 mg/ml of FUT-175. Complement activity causing 50% hemolysis (CH50) in the perfusion blood and pulmonary function either before or during perfusion were serially measured. Pathological assessments of the lungs were also carried out after perfusion. RESULTS The duration of satisfactory pulmonary function was significantly increased in Group XF. Complement activity causing 50% hemolysis in Group XF decreased more significantly compared to Group X. FUT-175 suppressed both the increase in pulmonary arterial pressure and airway resistance, and the decrease in dynamic lung compliance. In Group X, pathology showed intra-alveolar hemorrhage, perivascular edema, and medial thickening with endothelial swelling of the pulmonary arteries. In Group XF, less changes were observed compared to Group X. Group X showed deposition of IgM, IgG, and C3 at the endothelium of arteries, which was fewer in Group XF, and even fewer in Group I. CONCLUSIONS This study suggests that FUT-175 inhibited complement activation and improved lung xenograft function. FUT-175 ameliorates hyperacute rejection in a guinea pig-to-rat ex vivo xenogeneic lung perfusion model.
Collapse
Affiliation(s)
- Tsutomu Tagawa
- Department of Translational Medical Science, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| |
Collapse
|
3
|
Cooper DKC, Ekser B, Burlak C, Ezzelarab M, Hara H, Paris L, Tector AJ, Phelps C, Azimzadeh AM, Ayares D, Robson SC, Pierson RN. Clinical lung xenotransplantation--what donor genetic modifications may be necessary? Xenotransplantation 2012; 19:144-58. [PMID: 22702466 PMCID: PMC3775598 DOI: 10.1111/j.1399-3089.2012.00708.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Barriers to successful lung xenotransplantation appear to be even greater than for other organs. This difficulty may be related to several macro anatomic factors, such as the uniquely fragile lung parenchyma and associated blood supply that results in heightened vulnerability of graft function to segmental or lobar airway flooding caused by loss of vascular integrity (also applicable to allotransplants). There are also micro-anatomic considerations, such as the presence of large numbers of resident inflammatory cells, such as pulmonary intravascular macrophages and natural killer (NK) T cells, and the high levels of von Willebrand factor (vWF) associated with the microvasculature. We have considered what developments would be necessary to allow successful clinical lung xenotransplantation. We suggest this will only be achieved by multiple genetic modifications of the organ-source pig, in particular to render the vasculature resistant to thrombosis. The major problems that require to be overcome are multiple and include (i) the innate immune response (antibody, complement, donor pulmonary and recipient macrophages, monocytes, neutrophils, and NK cells), (ii) the adaptive immune response (T and B cells), (iii) coagulation dysregulation, and (iv) an inflammatory response (e.g., TNF-α, IL-6, HMGB1, C-reactive protein). We propose that the genetic manipulation required to provide normal thromboregulation alone may include the introduction of genes for human thrombomodulin/endothelial protein C-receptor, and/or tissue factor pathway inhibitor, and/or CD39/CD73; the problem of pig vWF may also need to be addressed. It would appear that exploration of every available therapeutic path will be required if lung xenotransplantation is to be successful. To initiate a clinical trial of lung xenotransplantation, even as a bridge to allotransplantation (with a realistic possibility of survival long enough for a human lung allograft to be obtained), significant advances and much experimental work will be required. Nevertheless, with the steadily increasing developments in techniques of genetic engineering of pigs, we are optimistic that the goal of successful clinical lung xenotransplantation can be achieved within the foreseeable future. The optimistic view would be that if experimental pig lung xenotransplantation could be successfully managed, it is likely that clinical application of this and all other forms of xenotransplantation would become more feasible.
Collapse
Affiliation(s)
- David K C Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Nguyen BNH, Azimzadeh AM, Schroeder C, Buddensick T, Zhang T, Laaris A, Cochrane M, Schuurman HJ, Sachs DH, Allan JS, Pierson RN. Absence of Gal epitope prolongs survival of swine lungs in an ex vivo model of hyperacute rejection. Xenotransplantation 2011; 18:94-107. [PMID: 21496117 DOI: 10.1111/j.1399-3089.2011.00633.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Galactosyl transferase gene knock-out (GalTKO) swine offer a unique tool to evaluate the role of the Gal antigen in xenogenic lung hyperacute rejection. METHODS We perfused GalTKO miniature swine lungs with human blood. Results were compared with those from previous studies using wild-type and human decay-accelerating factor-transgenic (hDAF(+/+) ) pig lungs. RESULTS GalTKO lungs survived 132 ± 52 min compared to 10 ± 9 min for wild-type lungs (P = 0.001) and 45 ± 60 min for hDAF(+/+) lungs (P = 0.18). GalTKO lungs displayed stable physiologic flow and pulmonary vascular resistance (PVR) until shortly before graft demise, similar to autologous perfusion, and unlike wild-type or hDAF(+/+) lungs. Early (15 and 60 min) complement (C3a) and platelet activation and intrapulmonary platelet deposition were significantly diminished in GalTKO lungs relative to wild-type or hDAF(+/+) lungs. However, GalTKO lungs adsorbed cytotoxic anti-non-Gal antibody and elaborated high levels of thrombin; their demise was associated with increased PVR, capillary congestion, intravascular thrombi and strong CD41 deposition not seen at earlier time points. CONCLUSIONS In summary, GalTKO lungs are substantially protected from injury but, in addition to anti-non-Gal antibody and complement, platelet adhesion and non-physiologic intravascular coagulation contribute to Gal-independent lung injury mechanisms.
Collapse
Affiliation(s)
- Bao-Ngoc H Nguyen
- Department of Surgery, University of Maryland and Baltimore VAMC, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Pierson RN. Antibody-mediated xenograft injury: mechanisms and protective strategies. Transpl Immunol 2009; 21:65-9. [PMID: 19376229 PMCID: PMC2695451 DOI: 10.1016/j.trim.2009.03.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 12/09/2008] [Accepted: 03/25/2009] [Indexed: 11/28/2022]
Abstract
The use of porcine organs for clinical transplantation is a promising potential solution to the shortage of human organs. Preformed anti-pig antibody is the primary cause of hyperacute rejection, while elicited antibody can contribute to subsequent "delayed" xenograft rejection. This article will review recent progress to overcome antibody mediated xenograft rejection, through modification of the host immunity and use of genetically engineered pig organs.
Collapse
Affiliation(s)
- Richard N Pierson
- Department of Surgery, University of Maryland School of Medicine and Baltimore VAMC, Baltimore, MD 21201, USA.
| |
Collapse
|
6
|
Wu G, Pfeiffer S, Schröder C, Zhang T, Nguyen BN, Kelishadi S, Atkinson JB, Schuurman HJ, White DJG, Azimzadeh AM, Pierson RN. Coagulation cascade activation triggers early failure of pig hearts expressing human complement regulatory genes. Xenotransplantation 2007; 14:34-47. [PMID: 17214703 DOI: 10.1111/j.1399-3089.2006.00362.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Hyperacute rejection (HAR) and early graft failure (EGF) have been described in a minority of pig-to-baboon heart transplants using organs transgenic for human complement regulatory proteins (hCRP). Here we investigate the role of coagulation cascade activation in the pathogenesis of HAR and EGF in a consecutive series where a high incidence of these outcomes was observed. METHODS Twenty-eight naïve wild-caught Papio anubis baboons received heterotopic heart transplants from pigs transgenic for hDAF (n = 23) or hMCP (n = 5). Immunosuppression consisted of cyclosporine A, cyclophosphamide and MMF (n = 18) or anti-CD154 mAb (IDEC-131) and ATG (n = 10). Eleven received anti-Gal carbohydrates (GAS914, n = 8, or NEX1285, n = 3), of which four also underwent extracorporeal immunoadsorption (EIA), and 12 also received pharmacologic complement inhibitors (C1 INH, n = 9, or APT070, n = 3). RESULTS Excluding one technical failure, 14 of 27 transplants (11 hDAF, 3 hMCP) exhibited either HAR (n = 10) or EGF (n = 4). Surprisingly, neither complement inhibition (with C1 INH or APT070) nor anti-Gal antibody depletion with GAS914, NEX1285, or additional EIA consistently prevented HAR or EGF despite low or undetectable complement deposition. Strikingly, most grafts with HAR/EGF exhibited prominent fibrinogen and platelet deposition associated with systemic coagulation cascade activation, consistent with non-physiologic intravascular coagulation, in many instances despite little evidence for antibody-mediated complement activation. CONCLUSION We conclude that dysregulated coagulation correlates closely with and probably causes primary failure of pig hearts transgenic for hCRP. These data support efforts to define effective strategies to prevent dysregulated coagulation in pig organ xenografts.
Collapse
Affiliation(s)
- Guosheng Wu
- Baltimore VAMC, University of Maryland, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Cantu E, Gaca JG, Palestrant D, Baig K, Lukes DJ, Gibson SE, Gonzalez-Stawinski GV, Olausson M, Parker W, Davis RD. Depletion of Pulmonary Intravascular Macrophages Prevents Hyperacute Pulmonary Xenograft Dysfunction. Transplantation 2006; 81:1157-64. [PMID: 16641602 DOI: 10.1097/01.tp.0000169758.57679.2a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Recent years have brought dramatic progress in the field of xenotransplantation, with the development of transgenic swine and various other means of overcoming the rejection mediated by xenoreactive antibodies. Although progress has been rapid with kidney and heart xenografts, progress with pulmonary xenografts has lagged behind. Recent findings have suggested that donor pulmonary intravascular macrophages may play a critical role in the hyperacute dysfunction of pulmonary xenografts. METHODS The function of pulmonary xenografts from pigs depleted of pulmonary intravascular macrophages was compared with the function of xenografts from normal pigs. RESULTS Pulmonary xenografts from pigs from which pulmonary intravascular macrophages were depleted survived (23.5+/-0.9 hours) about five times longer than normal (macrophage sufficient) xenografts (4.4+/-1.41 hours) (P< 0.0001). At 21 hours post-reperfusion, the left pulmonary arterial flow was 225.0+/-34 ml/min in lungs depleted of pulmonary intravascular macrophages, whereas all normal xenografts had failed. CONCLUSIONS These findings indicate that donor macrophages play a critical role in pulmonary xenograft dysfunction. This finding has broad implications for xenotransplantation, suggesting that porcine macrophages might pose a barrier to the engraftment and function of a variety of porcine organ xenografts.
Collapse
Affiliation(s)
- Edward Cantu
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Shimizu I, Smith NR, Zhao G, Medof E, Sykes M. Decay-Accelerating Factor Prevents Acute Humoral Rejection Induced by Low Levels of Anti-αGal Natural Antibodies. Transplantation 2006; 81:95-100. [PMID: 16421483 DOI: 10.1097/01.tp.0000188176.18666.68] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hyperacute and delayed vascular rejection due to natural antibodies (NAb) present major obstacles in pig-to-primate xenotransplantation. Although "supraphysiologic" expression of human complement regulatory proteins (CRPs) can prevent hyperacute rejection in discordant xenogenic recipients, their physiologic role in the homologous setting is undefined. We have evaluated the effect of the absence of decay-accelerating factor (DAF) on cardiac allograft rejection in the presence of different levels of antidonor antibodies (Ab). METHODS DAF1-deficient (DAF KO; B6129F2 H-2) mice were used as heart graft donors to alpha1,3-galactosyltransferase deficient (GalT KO; B6, H-2) recipients. Heterotopic heart grafting was performed with or without presensitization. Graft survival, histology, and anti-alphaGal Ab levels were monitored. RESULTS DAF knockout (KO) but not wild-type (WT) grafts showed hyperacute or acute humoral rejection in nonsensitized GalT KO mice with low levels of anti-alphaGal IgM NAb. However, humoral rejection of both DAF KO and DAF WT donor grafts occurred in presensitized GalT KO recipients. CONCLUSIONS The expression of DAF prevents hyperacute rejection in mice with low titers of anti-alphaGal antibody. These studies demonstrate the physiologic role of DAF in preventing humoral rejection in the presence of low levels of NAb and have implications for transplantation of discordant vascularized xenografts.
Collapse
Affiliation(s)
- Ichiro Shimizu
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129, USA
| | | | | | | | | |
Collapse
|
9
|
Wu G, Pfeiffer S, Schröder C, Zhang T, Nguyen BN, Lea W, Kelishadi S, Atkinson JB, Schuurman HJ, White DJG, Azimzadeh AM, Pierson RN. Local or short-term systemic costimulatory molecule blockade prolongs rat corneal allograft survival. Xenotransplantation 2005; 12:197-208. [PMID: 15807770 DOI: 10.1111/j.1399-3089.2005.00221.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Costimulatory molecule blockade with antibody-based immunosuppressive agents has been shown to prolong the survival of many types of allograft. The effects were evaluated of local costimulatory molecule blockade with different CTLA4-Ig constructs and of systemic, short-term treatment with an anti-CD28 monoclonal antibody on orthotopic corneal allograft survival in the rat. METHODS Adult Fischer-344 rats underwent Wistar-Furth orthotopic corneal grafts. The rats were treated with two different CTLA4-fusion proteins administered intraocularly in the perioperative period, or systemically with anti-CD28 monoclonal antibody JJ319. Corneal graft survival was determined by daily slit-lamp examination. The day of rejection was defined as the first postoperative day on which the iris margin was no longer clearly visible through the corneal graft. RESULTS Local administration of CTLA4-fusion protein with mutated immunoglobulin constant region domains via a single perioperative intraocular injection prolonged corneal graft survival modestly but significantly (P < 0.05), in contrast to a CTLA4-fusion protein with wild-type immunoglobulin domains, which had no effect on graft survival (P > 0.5). Systemic short-term administration of 400 microg total of an anti-CD28 monoclonal antibody also prolonged corneal graft survival significantly (P < 0.05) and was more effective than systemic administration of 2 mg total of CTLA4-fusion protein (P < 0.05). CONCLUSIONS Local administration of CTLA4-fusion protein with mutated (non-functional) immunoglobulin domains or systemic administration of anti-CD28 monoclonal antibody can prolong corneal allograft survival in the rat.
Collapse
Affiliation(s)
- Guosheng Wu
- University of Maryland and Baltimore VAMC, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Pfeiffer S, Zorn GL, Blair KSA, Farley SM, Wu G, Schuurman HJ, White DJG, Azimzadeh AM, Pierson RN. Hyperacute Lung Rejection in the Pig-to-Human Model 4: Evidence for Complement and Antibody Independent Mechanisms. Transplantation 2005; 79:662-71. [PMID: 15785372 DOI: 10.1097/01.tp.0000148922.32358.bf] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND We assessed whether the combination of complement regulation and depletion of xenoreactive antibodies improves the outcome of pulmonary xenografts compared with either strategy alone. METHODS Lungs from pigs heterozygous (hDAF(+/-)) or homozygous (hDAF(+/+)) for the human decay accelerating factor transgene (hDAF) or their nontransgenic litter mates (hDAF(-/-)) were perfused with heparinized whole human blood. In additional groups, xenoreactive natural antibodies (XNA) were depleted by pig lung perfusion (hDAF(-/-)/AbAbs, hDAF(+/-)/AbAbs) before the experiment. This combined approach was augmented by adding soluble complement receptor 1 (sCR1) to the perfusate in one further group (hDAF(+/-)/AbAbs/sCR1). RESULTS HDAF(-/-) lungs perfused with unmodified human blood were rejected after 32.5 min (interquartile range, IQR 5 to 210). HDAF(+/-) lungs survived for 90 min (IQR 10 to 161, P = 0.54). Both groups showed a rapid rise in pulmonary vascular resistance (PVR), which is a characteristic feature of hyperacute rejection (HAR). This phenomenon was blunted in the hDAF(+/+) group, although survival (48 min, IQR 14 to 111) was not further prolonged. Antibody depletion (AbAbs) led to a significant increase in survival time (hDAF(-/-)/AbAbs: 315 min, IQR 230 to 427; hDAF(+/-)/AbAbs: 375 min, IQR 154 to 575), reduced PVR and less complement production. Addition of sCR1 reduced complement elaboration but did not further improve survival (200 min, IQR 128 to 580) and surprisingly tended to increase PVR. CONCLUSIONS Depletion of xenoreactive antibodies is more effective than membrane-bound complement regulation to blunt hyperacute rejection of pulmonary xenografts, but even the combined approach including soluble-phase complement inhibition is not sufficient to reliably prevent organ failure within hours. It therefore seems likely that other factors independent of antibody and complement contribute to HAR in this model.
Collapse
Affiliation(s)
- Steffen Pfeiffer
- Department of Cardiac and Thoracic Surgery, Vanderbilt University Med-ical Center and VAMC, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Schröder C, Wu GS, Price E, Johnson JE, Pierson RN, Azimzadeh AM. Hyperacute rejection of mouse lung by human blood: characterization of the model and the role of complement. Transplantation 2003; 76:755-60. [PMID: 14501848 DOI: 10.1097/01.tp.0000069836.91593.09] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The pathophysiology of hyperacute lung rejection (HALR) is not fully understood. A mouse model of HALR by human blood would be valuable to efficiently dissect the molecular mechanisms underlying this complex process, but it has not been described. METHODS We developed a xenogenic mouse lung-perfusion model. Perfusion with heparinized autologous blood (n=3) was compared with human blood unmodified (n=7) or pretreated with C1 inhibitor (n=5) or soluble complement receptor type 1 (n=6) at unchanged flow conditions. RESULTS Perfusion with autologous blood was associated with stable physiologic parameters and no overt evidence of lung injury for up to 2 hr. Pulmonary artery perfusion pressure increased rapidly after introduction of unmodified human blood, plasma anti-Gal(alpha)1,3Gal antibodies declined (90% immunoglobulin [Ig]M, 80% IgG), and lungs reliably met survival endpoints within 11 min (median 10 min, confidence interval [CI]: 9-11). Human Ig and neutrophils were rapidly sequestered in the lung. Survival was significantly prolonged in the soluble complement receptor type 1 group (36 min, CI: 26-46) (P<0.01) and in the C1 inhibitor group (23 min, CI: 21-25) (P<0.05), and pulmonary vascular resistance elevation and complement activation were significantly attenuated but not prevented. CONCLUSIONS Hyperacute rejection of mouse lung by human blood occurs with kinetics, physiology, and histology closely analogous to the pig-to-human model. In addition, as in that model, neither of two potent soluble-phase complement inhibitors prevented complement activation or HALR. We conclude that the mouse lung model is relevant to dissect the cellular and molecular mechanisms governing HALR.
Collapse
Affiliation(s)
- Carsten Schröder
- Department of Cardiothoracic Surgery, Vanderbilt University, and Nashville Veterans Administration Medical Center, Nashville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Trends in solid organ xenograft pathology are presented, with the focus on pig-to-nonhuman primate models. A simplified classification of rejection is followed, including hyperacute rejection (HAR), acute humoral xenograft rejection (AHXR), and acute cellular xenograft rejection (ACXR). The main components in HAR are natural xenoreactive antibodies in combination with complement activation. This is evident from the prevention of HAR in recipients in whom either antibodies or complement activation is depleted or inhibited. However, these strategies generally fail to prevent AHXR, which occurs later. AHXR is a multifactorial process in which natural and elicited antibodies may play roles, possibly in conjunction with complement, coagulation factors, and white blood cells. A main target appears to be the microvasculature which, in kidney grafts, is associated with a glomerular thrombotic microangiopathy. It is not clear to what extent species-specific physiologic disparities in complement and coagulation processes may play a role, separate from antibody-initiated processes. As rejection of solid organ xenografts is currently from AHXR, ACXR has not yet received close attention. In addition to intragraft rejection events, systemic complications following host-graft interactions have emerged, including (often fatal) consumptive coagulopathy and immune complex disease. It is anticipated that rejection processes will change when pigs with new genetic modifications become available. For instance, the precise role of natural antibodies to Galalpha1,3Gal will be able to be distinguished from other factors when pigs that lack the target antigen are available, and their organs can be evaluated in large animal xenotransplantation models.
Collapse
Affiliation(s)
- Henk-Jan Schuurman
- Immerge BioTherapeutics, Inc., Building 75, 3rd Avenue, Charlestown, MA, USA.
| | | | | |
Collapse
|
13
|
Pfeiffer S, Zorn GL, Zhang JP, Giorgio TD, Robson SC, Azimzadeh AM, Pierson RN. Hyperacute lung rejection in the pig-to-human model. III. Platelet receptor inhibitors synergistically modulate complement activation and lung injury. Transplantation 2003; 75:953-9. [PMID: 12698079 DOI: 10.1097/01.tp.0000058517.07194.90] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The influence of platelet von Willebrand factor (vWF)-glycoprotein (GP)Ib-V-IX and GPIIb-IIIa receptor interactions in the context of hyperacute rejection (HAR) of pulmonary xenografts has not previously been explored. METHODS Aurintricarboxylic acid (ATA, an inhibitor of platelet-GPIb interactions with vWF), SC52012A (SC, a synthetic GPIIb/IIIa inhibiting peptide), or both were added to heparinized whole human blood before perfusion of isolated piglet lungs. Results were compared with unmodified blood ("unmodified"). RESULTS Perfusion of porcine lungs with unmodified human blood resulted in an immediate rise in pulmonary vascular resistance (PVR), fluid and platelet sequestration in the lung, and, without exception, cessation of function within 15 minutes with a mean survival of 8 minutes. Addition of ATA or SC before lung perfusion significantly decreased the rise in PVR, diminished histamine release, and prolonged survival to 31+/-11 and 31+/-22 minutes, respectively. When the therapies were combined, mean survival was 156+/-77 minutes (P<0.05 vs. either monotherapy). Complement activation was synergistically attenuated only when the drugs were used together. CONCLUSIONS Platelet protein receptor adhesive interactions play an important role in amplification of complement activation during hyperacute lung rejection. Inhibiting recruitment of platelets at the site of initial immunologic injury to endothelial cells may protect porcine organs against thrombosis and inflammation during the initial exposure to human blood.
Collapse
Affiliation(s)
- Steffen Pfeiffer
- Zentrum für Herzchirurgie Erlangen-Nürnberg, Klinikum Nürnberg Süd, 90471 Nuremberg, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Azimzadeh A, Zorn GL, Blair KSA, Zhang JP, Pfeiffer S, Harrison RA, Cozzi E, White DJG, Pierson RN. Hyperacute lung rejection in the pig-to-human model. 2. Synergy between soluble and membrane complement inhibition. Xenotransplantation 2003; 10:120-31. [PMID: 12588645 DOI: 10.1034/j.1399-3089.2003.01102.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND The role of complement in hyperacute lung xenograft rejection has not been elucidated. The present study evaluates the effect of complement (C) C3/C5 convertase inhibition on hyperacute rejection of pig lung by human blood. METHODS In an established ex-vivo model, lungs from pigs heterozygous for human decay accelerating factor (hDAF), non-transgenic littermate control pigs, or farm-bred pigs were perfused with fresh human blood that was either unmodified or treated with soluble complement receptor type 1 (sCR1: TP10, 100 microg/ml). RESULTS Non-transgenic lungs from littermate controls had a median survival time of 35 min (range 5 to 210; P = 0.25 vs. farm-bred piglets: median 5 min, range 5 to 10). Lungs expressing hDAF survived for a median of 90 min (range 10 to 161; P = 0.5 and 0.01 vs. littermate and farm-bred controls, respectively), with sCR1, whereas hDAF (-) lungs failed by 35 min (range 6 to 307), hDAF (+) lungs survived for 330 min (range 39 to 577) [P = 0.002 vs. farm-bred; P = 0.08 vs. hDAF (-); P = 0.17 vs. sCR1/hDAF (-)]. The rise in pulmonary vascular resistance (PVR) at 5 min was blunted only by hDAF (+) with sCR1 (0.26 +/- 0.2 vs. 0.5 to 0.7 mmHg/ml/min for other groups). Plasma C3a and sC5b-9 and tissue deposition of C5b-9 were dramatically diminished using sCR1, and further decreased in association with hDAF. Histamine and thromboxane were produced rapidly in all groups. CONCLUSION Complement plays an important role in lung HAR. However, even potent inhibition of C3/C5 convertase, both membrane bound in lung and by a soluble-phase inhibitor in the blood, does not prevent activation of inflammatory responses known to be particularly injurious to the lung. Our findings implicate a role for innate immune pathways resistant to efficient complement regulation. The role of anti-species antibody, coagulation pathway dysregulation, and additional environmental or genetic influences remain to be defined.
Collapse
Affiliation(s)
- A Azimzadeh
- Department of Cardiothoracic Surgery, The Vanderbilt Clinic, Vanderbilt University Medical Center, Nashville, TN 38232-5734, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gonzalez-Stawinski GV, Daggett CW, Lau CL, Karoor S, Love SD, Logan JS, Gaca JG, Parker W, Davis RD. Non-anti-Gal alpha1-3Gal antibody mechanisms are sufficient to cause hyperacute lung dysfunction in pulmonary xenotransplantation. J Am Coll Surg 2002; 194:765-73. [PMID: 12081067 DOI: 10.1016/s1072-7515(02)01162-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Hyperacute lung dysfunction, which is always associated with pulmonary pig-to-primate xenotransplantation is not well understood. The mechanisms associated with its occurrence seem to differ from mechanisms involved in hyperacute xenograft rejection seen in porcine hearts or kidneys transplanted into primates. To determine the contribution of anti-Gal alpha1-3Gal antibodies (alphaGAb) in such a process, we performed a set of orthotopic pig lung transplants into baboons depleted of alphaGAb and compared graft function and survival with those receiving only immunosuppression. STUDY DESIGN Pigs expressing human membrane cofactor protein served as donors. All baboons received triple immunosuppressive therapy. Depletion of alphaGAb in the experimental group (n = 4) was done by way of immunoadsorption using immunoaffinity membranes. Controls (n = 4) did not undergo immunoadsorption. Orthotopic lung transplants were performed through a left thoracotomy. Main pulmonary artery blood flow and pressure, left pulmonary artery blood flow, and left atrial pressure were recorded. RESULTS At 1 hour after reperfusion, pulmonary artery graft flows and pulmonary vascular resistances (PVR) were better in animals depleted of alphaGAb than in controls (605 +/- 325.2 mL/min versus 230 +/- 21 mL/min; 27.1 +/- 41.3 mmHg/L/min versus 63 +/- 1 mmHg/L/min). But at 3 hours after reperfusion average graft flows in baboons depleted of alphaGAb had decreased to 277.6 +/- 302.2 mL/min and PVRs had increased 58.3 +/- 42.0 mmHg/L/min. On the other hand, controls maintained stable flows and PVRs (223 +/- 23 mL/min; 61 +/- 3 mmHg/L/min). Survival was ultimately better in control baboons when compared with alphaGAb depleted ones (12.2 +/- 3.3 h versus 4.4 +/- 3.2 h). CONCLUSION Unlike heart and kidney xenograft transplants, hyperacute lung xenograft dysfunction seems to be mediated by factors other than alphaGAb.
Collapse
|
16
|
Pfeiffer S, Zorn GL, Kelishadi S, Oriol R, Wolf P, Pierson RN, Azimzadeh AM. Role of anti-Gal alpha13Gal and anti-platelet antibodies in hyperacute rejection of pig lung by human blood. Ann Thorac Surg 2001; 72:1681-9; discussion 1690. [PMID: 11722065 DOI: 10.1016/s0003-4975(01)03033-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND Previous work has shown that antibodies against porcine antigens are an important trigger of hyperacute lung rejection (HALR). The relative importance of Gal alpha1,3Gal epitopes and other antigens, such as those expressed on pig platelet membranes or lung itself, has not been defined. This study compares the efficiency of three anti-pig antibody depletion strategies, and their efficacy with regard to attenuation of HALR. METHODS Plasma pooled from three human donors was adsorbed against Gal alpha1,3Gal disaccharide or porcine platelet extract (PPE), or passed through pig lung vasculature. Whole blood reconstituted using adsorbed plasma was then used to perfuse piglet lung, and results were compared with unmodified human blood. RESULTS Depletion of lung-reactive anti-Gal alpha1-3Gal antibodies was most efficient with the alphaGal column (99% +/- 0.5% vs 87% to 93% +/- 11% for PPE and 92% to 95% +/- 8% for lung, p < 0.01 vs alphaGal column). PPE column tended to be more efficient (77% to 84% +/- 12%) in removing anti-PPE antibodies than pig lung (66% to 70% +/- 14%) or the alphaGal column (56% to 63% +/- 16%, p < 0.05). Lung survival and function with each antibody depletion strategy was improved relative to unmodified controls (mean survival > or = 146 minutes vs 8 minutes for controls). Although alphaGal and lung adsorption yielded more consistent lung protection (survival beyond 2 hours) than did PPE, no approach proved significantly superior. Complement C3a elaboration at 10 minutes was attenuated > 80% by each adsorption strategy, an effect that was most pronounced in the lung adsorption group (95%, p < 0.01). Histamine elaboration was blunted significantly by PPE adsorption but not in other groups (p < 0.05). Platelet but not leukocyte sequestration was decreased with antibody depletion compared with the nondepleted group (44% to 50% vs 82%, p < 0.01). CONCLUSIONS Each antibody depletion strategy tested significantly prolongs lung xenograft survival and function compared with unmodified human blood, but none was sufficient to reliably prevent HALR. Depletion of antibodies against both alphaGal and additional cell membrane antigens, or control of antibody-independent pathogenic pathways, may be necessary to consistently prevent HALR.
Collapse
Affiliation(s)
- S Pfeiffer
- Department of Cardiac and Thoracic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 37232-5734, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Auchincloss H. Literature update 1999, part 3. Xenotransplantation. Xenotransplantation 2000; 7:156-62. [PMID: 10961300 DOI: 10.1034/j.1399-3089.2000.00062.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- H Auchincloss
- Transplantation Unit, Surgical Services, Massachusetts General Hospital, Boston 02114, USA
| |
Collapse
|