1
|
Kitamura Y, Okuyama K, Saito A. Periodontal Surgery Using Recombinant Human Fibroblast Growth Factor-2 in Combination with Carbonate Apatite Granules for Stage III Grade C Periodontitis: A 30-month Case Report. THE BULLETIN OF TOKYO DENTAL COLLEGE 2025; 66:31-40. [PMID: 39956573 DOI: 10.2209/tdcpublication.2024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
This report describes a case of generalized aggressive periodontitis requiring periodontal treatment including regenerative therapy. The patient was a 34-year-old woman who visited the Tokyo Dental College Suidobashi Hospital with the chief complaint of pain in tooth #14. An initial examination revealed that 35.8% of sites had a probing depth of ≥4 mm, while 19.1% showed bleeding on probing. Radiographic examination revealed angular bone resorption in #14, 33, 36, and 46, with horizontal resorption in other areas. Based on a clinical diagnosis of Stage III Grade C periodontitis, initial periodontal therapy consisting of plaque control, and scaling and root planing was performed. After reevaluation, periodontal regenerative therapy using recombinant human fibroblast growth factor-2 (rhFGF-2) in combination with carbonate apatite (CO3Ap) granules was performed for #14 and 33, while regenerative therapy using rhFGF-2 alone was performed for #46. Following reevaluation, the patient was placed on supportive periodontal therapy (SPT). During SPT, CAD/CAM crowns were placed on #26 and 46. Periodontal regenerative therapy using rhFGF-2 with CO3Ap granules yielded a resolution of angular bone defects in #14 and 33. This improvement has been adequately maintained over a 30-month period.
Collapse
|
2
|
Peng Y, Iwasaki K, Taguchi Y, Ishikawa I, Umeda M. Mesenchymal stem cell-derived protein extract induces periodontal regeneration. Cytotherapy 2025; 27:201-212. [PMID: 39545910 DOI: 10.1016/j.jcyt.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/27/2024] [Accepted: 10/07/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Periodontal disease is characterized by chronic inflammation and destruction of supporting periodontal tissues, ultimately leading to tooth loss. In recent years, "cell-free treatment" without stem cell transplantation has attracted considerable attention for tissue regeneration. This study investigated the effects of extracts of mesenchymal stem cells (MSC-extract) and their protein components (MSC-protein) on the proliferation and migration of periodontal ligament (PDL) cells and whether MSC-protein can induce periodontal regeneration. METHODS MSC-extract and MSC-protein were obtained by subjecting mesenchymal stem cells (MSCs) to freeze-thaw cycles and acetone precipitation. Cell proliferation was examined using a WST-8 assay and Ki67 immunostaining, and cell migration was examined using Boyden chambers. The MSC-protein content was analyzed using liquid chromatography-mass spectrometry, protein arrays, and enzyme-linked immunosorbent assays (ELISAs). Gene expression in MSC-protein-treated PDL cells was examined using RNA-sequencing and Gene Ontology analyses. The regenerative potential of MSC-protein was examined using micro-computer tomography (CT) and histological analyses after transplantation into a rat periodontal defect model. RESULTS MSC-extract and MSC-protein promoted the proliferation and migration of PDL cells. Protein array and ELISA revealed that MSC-protein contained high concentrations of basic fibroblast growth factor (bFGF) and hepatocyte growth factor (HGF). Exogenous bFGF promoted the proliferation and migration of PDL cells. Furthermore, the transplantation of MSC-protein enhanced periodontal tissue regeneration with the formation of new alveolar bone and PDLs. CONCLUSIONS These results indicate that the MSC-protein promotes the proliferation and migration of PDL cells and induces significant periodontal tissue regeneration, suggesting that the MSC-protein could be used as a new cell-free treatment for periodontal disease.
Collapse
Affiliation(s)
- Yihao Peng
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | - Kengo Iwasaki
- Division of Creative and Integrated Medicine, Advanced Medicine Research Center, Translational Research Institute for Medical Innovation (TRIMI), Osaka Dental University, Osaka, Japan.
| | - Yoichiro Taguchi
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | | | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| |
Collapse
|
3
|
Kojima K, Kamata Y, Shimizu T, Sato S, Suzuki S, Takanashi Y, Hojo S, Yoshino T, Fuchida S, Tamura T, Minabe M, Kodama T, Kessoku T, Oyamada S. Recombinant human fibroblast growth factor and autogenous bone for periodontal regeneration: Alone or in combination? A randomized clinical trial. J Periodontal Res 2024; 59:1162-1174. [PMID: 38853125 PMCID: PMC11626695 DOI: 10.1111/jre.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/22/2024] [Accepted: 05/26/2024] [Indexed: 06/11/2024]
Abstract
AIM To compare the outcomes of therapy using recombinant human fibroblast growth factor (rhFGF)-2 combined with autologous bone grafting (ABG) therapy with those of rhFGF-2 alone and ABG alone in the treatment of periodontal intraosseous defects. METHODS Periodontal intraosseous defects were randomized to receive rhFGF-2 therapy + ABG, rhFGF-2 therapy alone, or ABG alone. Periodontal examination and periapical radiography were performed preoperatively and at 3, 6, and 12 months postoperatively. RESULTS At the 12 months follow-up, all three groups showed significant improvement in the clinical attachment level (CAL): 5.6 ± 1.6, 5.8 ± 1.7, and 5.2 ± 1.6 mm in the rhFGF-2 + ABG, rhFGF-2 alone, and ABG alone groups, respectively, with no significant inter-group differences (p < .05). rhFGF-2 therapy (alone or in combination) resulted in greater bone defect filling (BDF) (2.3 ± 1.2 mm and 2.6 ± 1.9 mm, respectively) than ABG therapy alone (1.2 ± 1.2 mm). Gingival recession was lesser in the ABG alone (1.2 ± 1.1 mm) and rhFGF-2 + ABG groups (1.4 ± 0.8 mm) than in the rhFGF-2 alone group (2.2 ± 1.2 mm). CONCLUSION The results of this study showed that at 12 months postoperatively, all treatments resulted in statistically significant clinical improvements compared to the baseline. From these results, it can be concluded that rhFGF-2 promotes hard tissue regeneration in intraosseous defects.
Collapse
Affiliation(s)
- Kosuke Kojima
- Department of Implantology and Periodontology, Graduate School of DentistryKanagawa Dental UniversityYokohamaKanagawaJapan
| | - Yohei Kamata
- Department of Implantology and Periodontology, Graduate School of DentistryKanagawa Dental UniversityYokohamaKanagawaJapan
| | - Tomoko Shimizu
- Department of Implantology and Periodontology, Graduate School of DentistryKanagawa Dental UniversityYokohamaKanagawaJapan
| | - Satsuki Sato
- Department of Implantology and Periodontology, Graduate School of DentistryKanagawa Dental UniversityYokohamaKanagawaJapan
| | - Sota Suzuki
- Department of Implantology and Periodontology, Graduate School of DentistryKanagawa Dental UniversityYokohamaKanagawaJapan
| | - Yuya Takanashi
- Department of Implantology and Periodontology, Graduate School of DentistryKanagawa Dental UniversityYokohamaKanagawaJapan
| | - Sawako Hojo
- Department of Implantology and Periodontology, Graduate School of DentistryKanagawa Dental UniversityYokohamaKanagawaJapan
| | - Takeshi Yoshino
- Department of Implantology and Periodontology, Graduate School of DentistryKanagawa Dental UniversityYokohamaKanagawaJapan
| | - Shinya Fuchida
- Department of Education PlanningKanagawa Dental UniversityYokosukaJapan
| | - Toshiyuki Tamura
- Department of Implantology and Periodontology, Graduate School of DentistryKanagawa Dental UniversityYokohamaKanagawaJapan
| | | | - Toshiro Kodama
- Department of Implantology and Periodontology, Graduate School of DentistryKanagawa Dental UniversityYokohamaKanagawaJapan
| | - Takaomi Kessoku
- Department of GastroenterologyInternational University Health and Welfare Graduate School of MedicineChibaJapan
| | - Shunsuke Oyamada
- Department of BiostatisticsJORTC Data Center 2‐54‐6‐302TokyoJapan
| |
Collapse
|
4
|
Wen S, Zheng X, Yin W, Liu Y, Wang R, Zhao Y, Liu Z, Li C, Zeng J, Rong M. Dental stem cell dynamics in periodontal ligament regeneration: from mechanism to application. Stem Cell Res Ther 2024; 15:389. [PMID: 39482701 PMCID: PMC11526537 DOI: 10.1186/s13287-024-04003-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/17/2024] [Indexed: 11/03/2024] Open
Abstract
Periodontitis, a globally prevalent chronic inflammatory disease is characterized by the progressive degradation of tooth-supporting structures, particularly the periodontal ligament (PDL), which can eventually result in tooth loss. Despite the various clinical interventions available, most focus on symptomatic relief and lack substantial evidence of supporting the functional regeneration of the PDL. Dental stem cells (DSCs), with their homology and mesenchymal stem cell (MSC) properties, have gained significant attention as a potential avenue for PDL regeneration. Consequently, multiple therapeutic strategies have been developed to enhance the efficacy of DSC-based treatments and improve clinical outcomes. This review examines the mechanisms by which DSCs and their derivatives promote PDL regeneration, and explores the diverse applications of exogenous implantation and endogenous regenerative technology (ERT) aimed at amplifying the regenerative capacity of endogenous DSCs. Additionally, the persistent challenges and controversies surrounding DSC therapies are discussed, alongside an evaluation of the limitations in current research on the underlying mechanisms and innovative applications of DSCs in PDL regeneration with the aim of providing new insights for future development. Periodontitis, a chronic inflammatory disease, represents a major global public health concern, affecting a significant proportion of the population and standing as the leading cause tooth loss in adults. The functional periodontal ligament (PDL) plays an indispensable role in maintaining periodontal health, as its structural and biological integrity is crucial for the long-term prognosis of periodontal tissues. It is widely recognized as the cornerstone of periodontal regeneration Despite the availability of various treatments, ranging from nonsurgical interventions to guided tissue regeneration (GTR) techniques, these methods have shown limited success in achieving meaningful PDL regeneration. As a result, the inability to fully restore PDL function underscores the urgent need for innovative therapeutic strategies at reconstructing this essential structure. Stem cell therapy, known for its regenerative and immunomodulatory potential, offers a promising approach for periodontal tissue repair. Their application marks a significant paradigm shift in the treatment of periodontal diseases, opening new avenues for functional PDL regeneration. However, much of the current research has primarily focused on the regeneration of alveolar bone and gingiva, as these hard and soft tissues can be more easily evaluated through visual assessment. The complexity of PDL structure, coupled with the intricate interactions among cellular and molecular components, presents significant scientific and clinical hurdles in translating DSC research into practical therapeutic applications. This review provides a thorough exploration of DSC dynamics in periodontal regeneration, detailing their origins, properties, and derived products, while also examining their potential mechanisms and applications in PDL regeneration. It offers an in-depth analysis of the current research, landscape, acknowledging both the progress made and the challenges that remain in bridging the gap between laboratory findings and clinical implementation. Finally, the need for continued investigation into the intricate mechanisms governing DSC behavior and the optimization of their use in regenerative therapies for periodontal diseases is also emphasized.
Collapse
Affiliation(s)
- Shuyi Wen
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Xiao Zheng
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Wuwei Yin
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yushan Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Ruijie Wang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Yaqi Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Ziyi Liu
- Department of Stomatology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, Guangdong, 528308, China
| | - Cong Li
- Dongguan Key Laboratory of Metabolic Immunology and Oral Diseases, Dongguan Maternal and Child Health Care Hospital, Dongguan, Guangdong, 523000, China
| | - Jincheng Zeng
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, 523808, China.
| | - Mingdeng Rong
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China.
| |
Collapse
|
5
|
Kiyota M, Iwata T, Hasegawa N, Sasaki S, Taniguchi Y, Hamamoto Y, Matsuda S, Ouhara K, Takeda K, Fujita T, Kurihara H, Kawaguchi H, Mizuno N. Periodontal tissue regeneration with cementogenesis after application of brain-derived neurotrophic factor in 3-wall inflamed intra-bony defect. J Periodontal Res 2024; 59:530-541. [PMID: 38501357 DOI: 10.1111/jre.13244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE The purpose of this study is to investigate regenerative process by immunohistochemical analysis and evaluate periodontal tissue regeneration following a topical application of BDNF to inflamed 3-wall intra-bony defects. BACKGROUND Brain-derived neurotrophic factor (BDNF) plays a role in the survival and differentiation of central and peripheral neurons. BDNF can regulate the functions of non-neural cells, osteoblasts, periodontal ligament cells, endothelial cells, as well as neural cells. Our previous study showed that a topical application of BDNF enhances periodontal tissue regeneration in experimental periodontal defects of dog and that BDNF stimulates the expression of bone (cementum)-related proteins and proliferation of human periodontal ligament cells. METHODS Six weeks after extraction of mandibular first and third premolars, 3-wall intra-bony defects were created in mandibular second and fourth premolars of beagle dogs. Impression material was placed in all of the artificial defects to induce inflammation. Two weeks after the first operation, BDNF (25 and 50 μg/mL) immersed into atelocollagen sponge was applied to the defects. As a control, only atelocollagen sponge immersed in saline was applied. Two and four weeks after the BDNF application, morphometric analysis was performed. Localizations of osteopontin (OPN) and proliferating cell nuclear antigen (PCNA)-positive cells were evaluated by immunohistochemical analysis. RESULTS Two weeks after application of BDNF, periodontal tissue was partially regenerated. Immunohistochemical analyses revealed that cells on the denuded root surface were positive with OPN and PCNA. PCNA-positive cells were also detected in the soft connective tissue of regenerating periodontal tissue. Four weeks after application of BDNF, the periodontal defects were regenerated with cementum, periodontal ligament, and alveolar bone. Along the root surface, abundant OPN-positive cells were observed. Morphometric analyses revealed that percentage of new cementum length and percentage of new bone area of experimental groups were higher than control group and dose-dependently increased. CONCLUSION These findings suggest that BDNF could induce cementum regeneration in early regenerative phase by stimulating proliferation of periodontal ligament cells and differentiation into periodontal tissue cells, resulting in enhancement of periodontal tissue regeneration in inflamed 3-wall intra-bony defects.
Collapse
Affiliation(s)
- Mari Kiyota
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tomoyuki Iwata
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Naohiko Hasegawa
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shinya Sasaki
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuri Taniguchi
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Yuta Hamamoto
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Shinji Matsuda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Katsuhiro Takeda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Department of Biological Endodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hiroyuki Kawaguchi
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Department of General Dentistry, Hiroshima University hospital, Hiroshima, Japan
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
6
|
De Lauretis A, Øvrebø Ø, Romandini M, Lyngstadaas SP, Rossi F, Haugen HJ. From Basic Science to Clinical Practice: A Review of Current Periodontal/Mucogingival Regenerative Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308848. [PMID: 38380549 PMCID: PMC11077667 DOI: 10.1002/advs.202308848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/23/2024] [Indexed: 02/22/2024]
Abstract
Periodontitis is a dysbiosis-driven inflammatory disease affecting the tooth-supporting tissues, characterized by their progressive resorption, which can ultimately lead to tooth loss. A step-wise therapeutic approach is employed for periodontitis. After an initial behavioral and non-surgical phase, intra-bony or furcation defects may be amenable to regenerative procedures. This review discusses the regenerative technologies employed for periodontal regeneration, highlighting the current limitations and future research areas. The search, performed on the MEDLINE database, has identified the available biomaterials, including biologicals (autologous platelet concentrates, hydrogels), bone grafts (pure or putty), and membranes. Biologicals and bone grafts have been critically analyzed in terms of composition, mechanism of action, and clinical applications. Although a certain degree of periodontal regeneration is predictable in intra-bony and class II furcation defects, complete defect closure is hardly achieved. Moreover, treating class III furcation defects remains challenging. The key properties required for functional regeneration are discussed, and none of the commercially available biomaterials possess all the ideal characteristics. Therefore, research is needed to promote the advancement of more effective and targeted regenerative therapies for periodontitis. Lastly, improving the design and reporting of clinical studies is suggested by strictly adhering to the Consolidated Standards of Reporting Trials (CONSORT) 2010 statement.
Collapse
Affiliation(s)
- Angela De Lauretis
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of DentistryUniversity of OsloOslo0455Norway
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoMilan20133Italy
| | - Øystein Øvrebø
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of DentistryUniversity of OsloOslo0455Norway
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoMilan20133Italy
| | - Mario Romandini
- Department of Periodontology, Institute of Clinical Dentistry, Faculty of DentistryUniversity of OsloOslo0455Norway
| | - Ståle Petter Lyngstadaas
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of DentistryUniversity of OsloOslo0455Norway
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”Politecnico di MilanoMilan20133Italy
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, Faculty of DentistryUniversity of OsloOslo0455Norway
| |
Collapse
|
7
|
Sawada K, Shimomura J, Takedachi M, Murata M, Morimoto C, Kawasaki K, Kawakami K, Iwayama T, Murakami S. Activation of periodontal ligament cell cytodifferentiation by juxtacrine signaling from cementoblasts. J Periodontol 2024; 95:256-267. [PMID: 37492992 DOI: 10.1002/jper.23-0211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/12/2023] [Accepted: 07/22/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND New cementum forms from existing cementum during periodontal tissue regeneration, indicating that cementoblasts may interact with progenitor cells in the periodontal ligament to enhance cementogenesis. However, the molecular mechanisms of this process are currently unknown. This study aims to clarify the role of cell-cell interactions between cementoblasts and periodontal ligament cells in differentiation into cementoblasts. METHODS To analyze the role of human cementoblast-like cells (HCEMs) on human periodontal ligament cells (HPDLs), we mixed cell suspensions of enhanced green fluorescent protein-tagged HPDLs and HCEMs, and then seeded and cultured them in single wells (direct co-cultures). We sorted co-cultured HPDLs and analyzed their characteristics, including the expression of cementum-related genes. In addition, we cultured HPDLs and HCEMs in a non-contact environment using a culture system composed of an upper insert and a lower well separated by a semi-permeable membrane (indirect co-cultures), and similar analysis was performed. Gene expression of integrin-binding sialoprotein (IBSP) in cementoblasts was confirmed in mouse periodontal tissues. We also investigated the effect of Wingless-type (Wnt) signaling on the differentiation of HPDLs into cementoblasts. RESULTS Direct co-culture of HPDLs with HCEMs significantly upregulated the expression of cementoblast-related genes in HPDLs, whereas indirect co-culture exerted no effect. Wnt3A stimulation significantly upregulated IBSP expression in HPDLs, whereas inhibition of canonical Wnt signaling suppressed the effects of co-culture. CONCLUSION Our results suggest that direct cell interactions with cementoblasts promote periodontal ligament cell differentiation into cementoblasts. Juxtacrine signaling via the canonical Wnt pathway plays a role in this interaction.
Collapse
Affiliation(s)
- Keigo Sawada
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Junpei Shimomura
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masahide Takedachi
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Mari Murata
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Chiaki Morimoto
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Kohsuke Kawasaki
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Kazuma Kawakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Tomoaki Iwayama
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
8
|
Najeeb S, Manekia FA, Sadiq MSK, Adanir N, Khurshid Z, Zafar MS, Heboyan A. The effect of fibroblast growth factor-2 on the outcomes of tooth replantation: A systematic review of animal studies. Sci Prog 2024; 107:368504241228964. [PMID: 38489928 PMCID: PMC10943733 DOI: 10.1177/00368504241228964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Background/Aim: The ideal treatment of tooth avulsion is replantation. However, replanting teeth may lead to root resorption. Fibroblast growth factor-2 (FGF-2) is a cytokine that plays an important role in wound repair and tissue regeneration. Recently, FGF-2 has been studied a potential regenerative agent to prevent root resorption and ankylosis. The aim of this review is to analyze and summarize the currently available literature focusing on using FGF-2 based regenerative modalities to improve the outcomes of tooth replantation. Materials and Methods: An electronic search was conducted via PubMed/Medline, Google Scholar and ISI Web of Knowledge, using the Medical Subject Headings (MeSH) terms "Basic fibroblast growth factor," "Fibroblast growth factor-2," "tooth replantation," and "replantation" for studies published between January 2001 and June 2021. Data was extracted and quality assessment was carried using the ARRIVE guidelines. Results: Nine animal studies were included in this review. In six studies, FGF-2 had a favorable effect on the tissue regeneration around roots of replanted teeth when compared to other treatment groups. However, quality assessment of the studies revealed many sources of bias and deficiencies in the studies. Conclusions: Within the limitations of this study, it may be concluded that FGF-2 may improve the outcomes of delayed replantation of avulsed teeth. However, more long-term animal studies, with improved experimental designs, and clinical trials are required to determine the clinical potential of the growth factor in improving the outcomes of delayed tooth replantation.
Collapse
Affiliation(s)
- Shariq Najeeb
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Evidentia Dental Outcomes Research, Calgary, AB, Canada
| | | | - Muhammad Shahrukh Khan Sadiq
- Department of Oral Pathology, Bahria University Dental College, Bahria University Health Ciences, Karachi, Pakistan
| | - Necdet Adanir
- Department of Restorative Dentistry, College of Dentistry, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Zohaib Khurshid
- Department of Prosthodontics and Dental Implantology, College of Dentistry, King Faisal University, Kingdom of Saudi Arabia
- Current affiliation: Center of Excellence for Regenerative Dentistry, Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madina Al Munawwarrah, Saudi Arabia
- School of Dentistry, University of Jordan, Amman, Jordan
- Department of Dental Materials, Islamic International Dental College, Riphah International University, Islamabad, Pakistan
- Current affiliation: Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
| | - Artak Heboyan
- Department of Prosthodontics, Faculty of Stomatology, Yerevan State Medical University after Mkhitar Heratsi, Str. Koryun 2, Yerevan, Armenia
| |
Collapse
|
9
|
Bizenjima T, Irokawa D, Yamada S, Saito A, Tomita S. A Case Report of Periodontal Regenerative Therapy Using Recombinant Human Fibroblast Growth Factor 2 and Deproteinized Bovine Bone Mineral with Non-incised Papillae Surgical Approach (NIPSA) for Angular Bone Defect in Patient with Stage III Grade C Periodontitis. THE BULLETIN OF TOKYO DENTAL COLLEGE 2023; 64:145-155. [PMID: 37967939 DOI: 10.2209/tdcpublication.2023-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
This report describes a case of Stage III Grade C periodontitis requiring periodontal regenerative therapy. The patient was a 19-year-old woman who presented with the chief complaint of gingival recession in the incisor region. An initial examination revealed that 45.3% of sites had a probing depth of ≥4 mm and 45.8% bleeding on probing. Radiographic examination showed angular bone resorption in #25, 26, 31, 36, and 46 and horizontal resorption in other regions. Initial periodontal therapy was implemented based on a clinical diagnosis of Stage III Grade C periodontitis (generalized aggressive periodontitis). Occlusal adjustment was also performed at sites showing premature contact (#26 and 36) after suppression of inflammation. Periodontal regenerative therapy using recombinant human fibroblast growth factor (rhFGF) -2 was performed on #25, 26, and 46. Combination therapy with rhFGF-2 and deproteinized bovine bone mineral (DBBM) was performed on #31 and 36. A non-incised papillae surgical approach (NIPSA) was used on #31. Periodontal conditions were then re-evaluated and the patient placed on supportive periodontal therapy. Regenerative therapy using rhFGF-2 and DBBM with NIPSA yielded an improvement in clinical parameters and bone resorption. This improvement has been adequately maintained over a 12-month period. Continued care is needed to maintain stable periodontal conditions.
Collapse
|
10
|
Yabe M, Karakida T, Onuma K, Yamamoto R, Chiba-Ohkuma R, Asada S, Yamakoshi Y, Gomi K. Synergistic effect of FGF-2 and TGF-β1 on the mineralization of human umbilical cord perivascular cells. Arch Oral Biol 2023; 156:105826. [PMID: 37898061 DOI: 10.1016/j.archoralbio.2023.105826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/05/2023] [Accepted: 10/15/2023] [Indexed: 10/30/2023]
Abstract
OBJECTIVE Human umbilical cord perivascular cells (HUCPVCs) are derived from the human umbilical cord perivascular tissue and are expected to replace mesenchymal stromal cells in the future. We investigated the synergistic effects of fibroblast growth factor 2 (FGF-2) and transforming growth factor-beta 1 (TGF-β1) on HUCPVC mineralization. DESIGN We prepared HUCPVCs with (FGF(+)HUCPVCs) or without FGF-2 (FGF(-)HUCPVCs) in the presence of activated vitamin D3, a bone morphogenic protein inhibitor, and TGF-β1. We examined the cell proliferative capacity, expression of various hard tissue-forming cell gene markers, and mineralization induction ability and identified the crystalline phases of the mineralized nodules. RESULTS FGF(+)HUCPVCs exhibited higher intracellular alkaline phosphatase (ALP) gene expression and ALP activity, and their cell proliferation rate was higher than that of FGF(-)HUCPVCs. The expression levels of osteoblast marker genes increased in FGF(+)HUCPVCs, whereas those of elastic fiber and muscle cell markers increased in FGF(-)HUCPVCs. The expression of genes related to matrix vesicle-mediated mineralization was increased in FGF(+)HUCPVCs. While FGF(-)HUCPVCs displayed myofibroblast-like properties and could not induce mineralization, FGF(+)HUCPVCs demonstrated the ability to produce mineralized nodules. The resulting mineralized nodules consisted of hydroxyapatite as the major phase and minor amounts of octacalcium phosphate. The mineralized nodules exhibited the morphological characteristics of bone hydroxyapatite, composed of fibrous hydroxyapatite nanorods and polycrystalline sheets. CONCLUSION We found that FGF-2 synergizes with TGF-β1 and is a key factor in the differentiation of HUCPVCs into osteoblast-like cells. Thus, HUCPVCs can potentially serve as a new stem cell source for future bone regeneration and dental treatments.
Collapse
Affiliation(s)
- Masahiro Yabe
- Department of Periodontology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Takeo Karakida
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Kazuo Onuma
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Ryuji Yamamoto
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Risako Chiba-Ohkuma
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Sakurako Asada
- Department of Periodontology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| | - Yasuo Yamakoshi
- Department of Biochemistry and Molecular Biology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan.
| | - Kazuhiro Gomi
- Department of Periodontology, School of Dental Medicine, Tsurumi University, 2-1-3 Tsurumi, Tsurumi-ku, Yokohama 230-8501, Japan
| |
Collapse
|
11
|
Geisinger ML. NexGen regen? Challenges and opportunities for growth factors and signaling agents in periodontal regeneration at intrabony defects. FRONTIERS IN DENTAL MEDICINE 2023; 4:1239149. [PMID: 39916925 PMCID: PMC11797756 DOI: 10.3389/fdmed.2023.1239149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/18/2023] [Indexed: 02/09/2025] Open
Abstract
Regeneration of periodontal tissues that have been destroyed by inflammatory periodontitis involves the initiation of tissue engineering and wound healing of multiple tissues involved in the function of the teeth, including the periodontal ligament, cementum, and alveolar bone. Such regeneration is termed guided tissue regeneration and the unique challenges to reconstruct these tissues involve a complex interplay of cells, signaling molecules, and scaffolds. While traditional guided tissue regeneration treatments have involved cell occlusive membranes, bone replacement graft scaffolds, and endogenous multipotent mesenchymal stem cells, the use of adjunctive materials to enhance healing outcomes has been studied and many such adjunctive factors are in common current clinical use. This report will focus on the current and emerging adjunctive growth factors and signaling molecules that can be used to optimize periodontal regeneration in periodontal intrabony defects, their mechanisms of action, the challenges associated with periodontal regeneration, and future avenues for research.
Collapse
Affiliation(s)
- Maria L. Geisinger
- Department of Periodontology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
12
|
Nagayasu-Tanaka T, Anzai J, Takedachi M, Kitamura M, Harada T, Murakami S. Effects of combined application of fibroblast growth factor (FGF)-2 and carbonate apatite for tissue regeneration in a beagle dog model of one-wall periodontal defect. Regen Ther 2023; 23:84-93. [PMID: 37122358 PMCID: PMC10141504 DOI: 10.1016/j.reth.2023.04.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/14/2023] [Accepted: 04/06/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction There has been an increasing desire for the development of predictive periodontal regenerative therapy for severe periodontitis. In this study, we investigated the effect of the combined use of fibroblast growth factor-2 (FGF-2), a drug for periodontal regeneration approved in Japan, and carbonated apatite (CO3Ap), bioresorbable and osteoconductive scaffold, on periodontal regeneration in beagle dog model of one-wall periodontal defect (severe intraosseous defect) for 24 weeks in comparison with CO3Ap or vehicle alone. Methods One-wall periodontal defects were created (mesiodistal width × depth: 4 × 4 mm) on the mesial portion of the mandibular first molar (M1) of beagle dogs on both side. Mixture of FGF-2 and CO3Ap, vehicle and CO3Ap, or vehicle alone were administered to the defects and designated as groups FGF-2+CO3Ap, CO3Ap, and control, respectively. To assess the periodontal regeneration, radiographic analysis over time for 24 weeks, and micro computed tomography (μCT) and histological evaluation at 6 and 24 weeks were performed. Results For the regenerated tissue in the defect site, the mineral content of the FGF-2+CO3Ap group was higher than that of the CO3Ap group in the radiographic analysis at 6-24 weeks. In the context of new bone formation and replacement, the FGF-2+CO3Ap group exhibited significantly greater new bone volume and smaller CO3Ap volume than the CO3Ap group in the μCT analysis at 6 and 24 weeks. Furthermore, the density of the new bone in the FGF-2+CO3Ap group at 24 weeks was similar to those in the control and CO3Ap groups. Histological evaluation revealed that the length of the new periodontal ligament and cementum in the FGF-2+CO3Ap group was greater than that in the CO3Ap group at 6 weeks. We also examined the effect of the combined use of the FGF-2 and CO3Ap on the existing bone adjacent to the defect and demonstrated that the existing bone height and volume in the FGF-2+CO3Ap group remained significantly greater than those in the CO3Ap group. Conclusion This study demonstrated that the combination of FGF-2 and CO3Ap was effective not only in enhancing new bone formation and replacing scaffold but also in maintaining the existing bone adjacent to the defect site in a beagle dog model of one-wall periodontal defect. Additionally, new periodontal tissues induced by FGF-2 and CO3Ap may follow a maturation process similar to that formed by spontaneous healing. This suggests that the combined use of FGF-2 and CO3Ap would promote periodontal regeneration in severe bony defects of periodontitis patient.
Collapse
Affiliation(s)
- Toshie Nagayasu-Tanaka
- Pharmacology Department, Drug Research Center, Kaken Pharmaceutical Co., LTD., 14, Shinomiya, Minamigawara-cho, Yamashina-ku, Kyoto, 607-8042, Japan
| | - Jun Anzai
- Pharmacology Department, Drug Research Center, Kaken Pharmaceutical Co., LTD., 14, Shinomiya, Minamigawara-cho, Yamashina-ku, Kyoto, 607-8042, Japan
| | - Masahide Takedachi
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masahiro Kitamura
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tatsuhiro Harada
- Pharmacology Department, Drug Research Center, Kaken Pharmaceutical Co., LTD., 14, Shinomiya, Minamigawara-cho, Yamashina-ku, Kyoto, 607-8042, Japan
| | - Shinya Murakami
- Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Corresponding author. Shinya Murakami Department of Periodontology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
13
|
Pouliou MM, Fragkioudakis I, Doufexi AE, Batas L. The role of rhFGF-2 in periodontal defect bone fill: A systematic review of the literature. J Periodontal Res 2023. [PMID: 37130815 DOI: 10.1111/jre.13131] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/06/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Growth factors have been used with success in periodontal regeneration, especially in intrabony defects. Among those, the recombined form of fibroblast growth factor-2 (rhFGF-2) has been also examined. OBJECTIVE To address the outcomes of periodontal regeneration using rhFGF-2 alone or in combination with bone substitutes primarily in terms of Radiographic Bone Fill (RBF%) and secondary Probing Pocket Depth (PPD), and Probing Attachment Levels (PAL). MATERIAL AND METHODS A search in MEDLINE and EMBASE using the Ovid interface was conducted from 2000 up to and including the 12th of November 2022. Starting from the initially identified 1289 articles, 34 studies were selected for further analysis. Following the full-text screening, 7 of the 34 studies met the inclusion criteria and thus were included in the systematic review after assessing their quality according to the Newcastle-Ottawa scale (NOS). Clinical and radiographic results (bone gain, pocket depth, and clinical attachment level) after the application of FGF-2 alone or in combination with different carriers were studied in patients with intrabony defects of at least one wall and pocket depth greater than 4 mm. RESULTS Primary outcomes: RBF% was higher in studies using a combination of rhFGF-2 and bone substitutes (74.6 ± 20.0%) compared to others using the specific growth factor alone or negative controls (22.7 ± 20.7%). In terms of secondary outcomes, the analysis failed to show an additional benefit from the use of the rhFGF-2 alone or in combination with bone substitutes. CONCLUSION rhFGF-2 can improve RBF% in the treatment of periodontal defects, especially when it is used in combination with a bone substitute.
Collapse
Affiliation(s)
| | - Ioannis Fragkioudakis
- Department of Preventive Dentistry, Periodontology, and Implant Biology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Aikaterini-Elisavet Doufexi
- Department of Preventive Dentistry, Periodontology, and Implant Biology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Leonidas Batas
- Department of Preventive Dentistry, Periodontology, and Implant Biology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
14
|
Kitamura M, Yamashita M, Miki K, Ikegami K, Takedachi M, Kashiwagi Y, Nozaki T, Yamanaka K, Masuda H, Ishihara Y, Murakami S. An exploratory clinical trial to evaluate the safety and efficacy of combination therapy of REGROTH® and Cytrans® granules for severe periodontitis with intrabony defects. Regen Ther 2022; 21:104-113. [PMID: 35785043 PMCID: PMC9234541 DOI: 10.1016/j.reth.2022.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/06/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Currently, flap operation (FOP) using REGROTH® (0.3% basic fibroblast growth factor [FGF-2]) is the standard treatment for periodontal regenerative therapy in Japan. However, the periodontal tissue regenerative effect with REGROTH® monotherapy is inadequate for severe alveolar bone defects. Therefore, in this study, we evaluated the safety and effectiveness of periodontal regenerative therapy for patients with severe periodontitis using REGROTH® (test medicine) combined with Cytrans® Granules (test device: carbonated apatite granules), which is a new artificial bone. Methods The study participants included 10 patients with severe periodontitis (mean age: 47.4 years). All participants provided written informed consents. In each patient, the intrabony defect site (mean bone defect depth: 5.7 mm) was defined as the test site. FOP was performed for the test site after the baseline investigation; moreover, the test medicine and test device were administered simultaneously. Furthermore, the observation of subjects’ general condition and test sites was conducted and the blood, urine, and periodontal tissue tests were performed up to 36 weeks after FOP. The rate of bone increase (%), clinical attachment level (CAL), probing pocket depth (PPD), bleeding on probing (BOP), tooth mobility (Mo), width of keratinized gingiva (KG), gingival recession (REC), gingival index (GI), and plaque index (PlI) were evaluated during the periodontal tissue investigation. Results As the primary endpoint, no adverse events related to the test medicine and test device occurred during the entire observation period of this study. Regarding the secondary endpoints, there was a significant increase in new alveolar bone (p = 0.003) and CAL acquisition (p = 0.001) as well as decrease in PPD (p = 0.002) and BOP (p = 0.016) at 36 weeks after administration of the test medicine and test device compared with the preoperative values. Furthermore, at 36 weeks after surgery, the Mo, GI, and PlI decreased to preoperative levels at 40%, 60%, and 30% of sites, respectively. However, at 36 weeks after surgery, there was no difference in KG and REC compared with their preoperative values. Conclusions The safety of periodontal regenerative therapy using the test medicine in combination with the abovementioned test device was confirmed. In addition, it was suggested that this periodontal regenerative therapy is effective for tissue regeneration in severe alveolar bone defects. This clinical trial was conducted after registering and publicizing as a specified clinical trial in the Japan registry of clinical trials (jRCTs051190045). The safety of flap operation using 0.3% FGF-2 and carbonated apatite was confirmed. The administration of 0.3% FGF-2 and carbonated apatite improved periodontitis. Combining 0.3% FGF-2 and carbonated apatite for severe alveolar bone defects. Periodontal regenerative therapy combining both could be effective.
Collapse
|
15
|
Mikami R, Sudo T, Fukuba S, Takeda K, Matsuura T, Kariya T, Takeuchi S, Ochiai A, Kawamoto S, Toyoshima K, Mizutani K, Arakawa S, Aoki A, Iwata T. Prognostic factors affecting periodontal regenerative therapy using recombinant human fibroblast growth factor-2: A 3-year cohort study. Regen Ther 2022; 21:271-276. [PMID: 36092500 PMCID: PMC9440263 DOI: 10.1016/j.reth.2022.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/04/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction Fibroblast growth factor-2 (FGF-2) has been reported to promote periodontal tissue regeneration. However, no study has investigated the long-term prognosis of periodontal regenerative therapy using FGF-2 to date. The aim of this study was to observe the long-term outcomes as well as to investigate the factors affecting the prognosis of periodontal regenerative therapy using FGF-2. Methods Sixty intrabony defects were prospectively investigated for three years after periodontal regenerative therapy with recombinant human FGF-2 (rhFGF-2) by evaluating probing pocket depth (PPD) and radiographic bone defect depth (RBD). The factors influencing RBD were assessed by conducting a multivariate linear regression analysis after adjusting for confounders. Results The mean age of the participants was 62.4 ± 13.4 years, and baseline PPD and RBD were 6.1 ± 1.9 mm and 4.5 ± 1.8 mm, respectively. At six months, one year, and three years after surgery, PPD and RBD had significantly improved to 4.2 ± 1.7, 3.7 ± 1.4, 4.0 ± 1.9 mm and to 3.08 ± 2.05, 2.73 ± 1.90, 2.51 ± 2.15 mm, respectively. At the three-year examination, a significant positive association was deteced between RBD reduction and RBD at baseline, while the association was not significant between RBD reduction and the radiographic bony angle, number of bony walls of the defect, or the furcation involvement at baseline. Conclusions rhFGF-2 was effective for alveolar bone regeneration in patients with periodontitis and maintained the improved parameters over the three-year observation period. The radiographic bone defect depth at baseline was found to be the factor affecting the periodontal regenerative therapy using rhFGF-2 in the intrabony defects. Trial registration number UMIN000027979. Mid-term observation following periodontal regenerative therapy using rhFGF-2. Reductions in PPD and radiographic defect depth were maintained for 3 years. Evaluation of prognostic factors of rhFGF-2 application in intrabony defects. Preoperative radiographic defect depth predicts postoperative bone fill.
Collapse
Affiliation(s)
- Risako Mikami
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeaki Sudo
- Institute of Education, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shunsuke Fukuba
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| | - Kohei Takeda
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| | - Takanori Matsuura
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, UCLA School of Dentistry, CA, USA
| | - Tomoaki Kariya
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| | - Shunsuke Takeuchi
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| | - Akane Ochiai
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| | - Sakurako Kawamoto
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| | - Keita Toyoshima
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| | - Koji Mizutani
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
- Corresponding author. Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8549, Japan. Fax: +81 3 5803-0196.
| | - Shinichi Arakawa
- Department of Lifetime Oral Health Care Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akira Aoki
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Medical and Dental University, Tokyo, Japan
| |
Collapse
|
16
|
Tomohisa O, Kamio T, Maeda Y, Tsubosaki K, Kato T, Iwata H. Application of Medical Imaging and 3D Printing Technology in Teaching the Handling of Novel Medicine in Periodontal Surgery. Cureus 2022; 14:e29271. [PMID: 36159352 PMCID: PMC9491622 DOI: 10.7759/cureus.29271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2022] [Indexed: 11/30/2022] Open
Abstract
Recently, fibroblast growth factor-2 (FGF-2) agents for periodontal tissue regeneration have been increasingly applied to the treatment of periodontal disease. Our current challenge for resident dentists with little clinical experience is to enhance instruction in the handling of new medicine in addition to teaching conventional procedures in periodontal tissue regeneration. This report describes using case-specific, cost-effective three-dimensional (3D) models for dentists' lectures and periodontal surgical training. As an educational and training aid, preoperative and postoperative cone-beam computed tomography images were superimposed to enable three-dimensional observation of postoperative bone regeneration. A three-dimensional anatomical model was fabricated based on these images. Dental laboratory materials were used to reproduce the periosteum and gum. The fabrication time per 3D model was about 2 hours and the cost per model was about $0.5. These models were used for lectures to resident dentists and periodontal surgery training, and their feedback was obtained. The resident's response to surgical training using these 3D models was generally positive. The use of FGF-2 represents a new direction in the treatment of periodontal disease. This being new, however, means that inexperienced periodontists require training in its application and how this will affect prognosis, as this will differ from that with more conventional techniques aimed at tissue regeneration. The low-cost 3D model presented in this report can be a valuable tool to help accomplish this in teaching inexperienced dentists, such as resident dentists.
Collapse
Affiliation(s)
- Ogawa Tomohisa
- Division of General Dentistry, Nippon Dental University Hospital, Tokyo, JPN
| | - Takashi Kamio
- Oral and Maxillofacial Radiology, Nippon Dental University, Tokyo, JPN
| | - Yuuki Maeda
- Division of General Dentistry, Nippon Dental University Hospital, Tokyo, JPN
| | - Kento Tsubosaki
- Division of General Dentistry, Nippon Dental University Hospital, Tokyo, JPN
| | - Tomotaka Kato
- Division of General Dentistry, Nippon Dental University, Tokyo, JPN
| | - Hiroshi Iwata
- Division of Oral Diagnosis, Oral and Maxillofacial Radiology and Pathology Diagnostic Services, Nippon Dental University Hospital, Tokyo, JPN
| |
Collapse
|
17
|
Liu Y, Guo L, Li X, Liu S, Du J, Xu J, Hu J, Liu Y. Challenges and tissue engineering strategies of periodontal guided tissue regeneration. Tissue Eng Part C Methods 2022; 28:405-419. [PMID: 35838120 DOI: 10.1089/ten.tec.2022.0106] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Periodontitis is a chronic infectious oral disease with a high prevalence rate in the world, and is a major cause of tooth loss. Nowadays, people have realized that the local microenvironment that includes proteins, cytokines, and extracellular matrix has a key influence on the functions of host immune cells and periodontal ligament stem cells during a chronic infectious disease such as periodontitis. The above pathological process of periodontitis will lead to a defect of periodontal tissues. Through the application of biomaterials, biological agents, and stem cells therapy, guided tissue regeneration (GTR) makes it possible to reconstruct healthy periodontal ligament tissue after local inflammation control. To date, substantial advances have been made in periodontal guided tissue regeneration. However, the process of periodontal remodeling experiences complex microenvironment changes, and currently periodontium regeneration still remains to be a challenging feat. In this review, we summarized the main challenges in each stage of periodontal regeneration, and try to put forward appropriate biomaterial treatment mechanisms or potential tissue engineering strategies that provide a theoretical basis for periodontal tissue engineering regeneration research.
Collapse
Affiliation(s)
- Yitong Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China;
| | - Lijia Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China;
| | - Xiaoyan Li
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China;
| | - Siyan Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China;
| | - Juan Du
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China;
| | - Junji Xu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China;
| | - Jingchao Hu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, School of Stomatology, Capital Medical University, Beijing, China;
| | - Yi Liu
- Capital Medical University School of Stomatology, Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction,, Tian Tan Xi Li No.4, Beijing, Beijing , China, 100050;
| |
Collapse
|
18
|
Castro JPGD, Aguiar TRDS, Tristão GC, Alves GG, Pinheiro MPF, Quinelato V, Casado PL, Romanos GE. Peri-implant health after supportive mucositis therapy is associated with increased levels of FGF-2. Braz Dent J 2021; 32:55-66. [PMID: 34877978 DOI: 10.1590/0103-6440202104027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 09/24/2021] [Indexed: 11/22/2022] Open
Abstract
This study aimed to analyze Fibroblast Growth Factor-2 (FGF-2) levels in the peri-implant crevicular fluid throughout supportive mucositis therapy. Twenty-six participants with Branemark protocol prosthesis were divided into two groups: the control group, characterized by healthy peri-implants, and the mucositis group, presenting a diagnosis of peri-implant mucositis. All participants underwent clinical examination, radiographic analysis, prosthesis removal, and non-invasive peri-implant therapy (mechanical debridement associated with chlorhexidine 0.12%) during a period of 36 days divided into three intervals. Peri-implant crevicular fluid samples were collected at each interval in order to analyze FGF-2 levels by immuno-enzymatic assay. The control and mucositis groups showed difference in keratinized mucosa. The smaller the range of keratinized mucosa the higher susceptibility of peri-implant mucositis. Throughout the treatment intervals, participants were diagnosed in different groups indicating whether or not the non-invasive therapy was able to treat peri-implant mucositis. There was a significant difference of FGF-2 levels between groups, with the higher FGF-2 levels in the control group (p=0.01). After supportive therapy, the mucositis group showed significantly increased FGF-2 levels (p<0.01) compared to initial levels. After 36 days of supportive therapy, there was a reduction of peri-implant mucositis from 70% to 23%. Clinical and laboratory outcomes showed a clear correlation since FGF-2 levels increased after 36 days. It was concluded that the therapy protocol was effective and promoted a regenerative reaction and FGF-2 can be considered a future target for peri-implant mucositis understanding.
Collapse
Affiliation(s)
| | - Telma Regina da Silva Aguiar
- Department of Implant Dentistry Post-graduation, Fluminense Federal University - School of Dentistry - Niterói - RJ - Brazil
| | - Gilson Coutinho Tristão
- Department of Clinical dentistry, Fluminense Federal University - School of Dentistry- Niterói- RJ- Brazil
| | - Gutemberg Gomes Alves
- Cellular and Molecular Biology Department, Fluminense Federal University - School of Biology - Niterói- RJ- Brazil
| | | | - Valquiria Quinelato
- Department of Implant Dentistry Post-graduation, Fluminense Federal University - School of Dentistry - Niterói - RJ - Brazil
| | - Priscila Ladeira Casado
- Department of Implant Dentistry Post-graduation, Fluminense Federal University - School of Dentistry - Niterói - RJ - Brazil
| | - George E Romanos
- Stony Brook University - School of Dental Medicine - United States
| |
Collapse
|
19
|
Zhang SY, Ren JY, Yang B. Priming strategies for controlling stem cell fate: Applications and challenges in dental tissue regeneration. World J Stem Cells 2021; 13:1625-1646. [PMID: 34909115 PMCID: PMC8641023 DOI: 10.4252/wjsc.v13.i11.1625] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/14/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) have attracted intense interest in the field of dental tissue regeneration. Dental tissue is a popular source of MSCs because MSCs can be obtained with minimally invasive procedures. MSCs possess distinct inherent properties of self-renewal, immunomodulation, proangiogenic potential, and multilineage potency, as well as being readily available and easy to culture. However, major issues, including poor engraftment and low survival rates in vivo, remain to be resolved before large-scale application is feasible in clinical treatments. Thus, some recent investigations have sought ways to optimize MSC functions in vitro and in vivo. Currently, priming culture conditions, pretreatment with mechanical and physical stimuli, preconditioning with cytokines and growth factors, and genetic modification of MSCs are considered to be the main strategies; all of which could contribute to improving MSC efficacy in dental regenerative medicine. Research in this field has made tremendous progress and continues to gather interest and stimulate innovation. In this review, we summarize the priming approaches for enhancing the intrinsic biological properties of MSCs such as migration, antiapoptotic effect, proangiogenic potential, and regenerative properties. Challenges in current approaches associated with MSC modification and possible future solutions are also indicated. We aim to outline the present understanding of priming approaches to improve the therapeutic effects of MSCs on dental tissue regeneration.
Collapse
Affiliation(s)
- Si-Yuan Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Jia-Yin Ren
- Department of Oral Radiology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Bo Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
20
|
Inhibition of c-Jun N-terminal kinase signaling promotes osteoblastic differentiation of periodontal ligament stem cells and induces regeneration of periodontal tissues. Arch Oral Biol 2021; 134:105323. [PMID: 34896864 DOI: 10.1016/j.archoralbio.2021.105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/31/2021] [Accepted: 11/23/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Few clinical treatments to regenerate periodontal tissue lost due to severe endodontic and periodontal disease have yet been developed. Therefore, the development of new treatment methods for the regeneration of periodontal tissue is expected. The purpose of this study was to investigate the effects of a c-Jun N-terminal kinase (JNK) inhibitor, SP600125, on the osteoblastic differentiation of periodontal ligament stem cells (PDLSCs) in vitro, and the function of SP600125 on the regeneration of alveolar bone in vivo. DESIGN Alizarin red S staining, quantitative RT-PCR, and western blotting analysis was performed to determine whether SP600125 affects osteoblastic differentiation of human PDLSCs (HPDLSCs) and bone-related intracellular signaling. The effect of SP600125 on the regeneration of alveolar bone was assessed by using a rat periodontal defect model. The healing of periodontal defects was evaluated using micro-CT scans and histological analysis. RESULTS SP600125 promoted the osteoblastic differentiation such as Alizarin red S-positive mineralized nodule formation and the expression of osteoblast-related genes in HPDLSCs under osteogenic conditions. In addition, this inhibitor upregulated the BMP2 expression and the phosphorylation of Smad1/5/8 in HPDLSCs under the same conditions. The inhibition of Smad1/5/8 signaling by LDN193189 suppressed the SP600125-induced osteoblastic differentiation of HPDLSCs. Furthermore, the application of SP600125 promoted the regeneration of not only alveolar bone but also PDL tissue in periodontal defects. CONCLUSION This study suggested that inhibition of JNK signaling promotes the osteoblastic differentiation of HPDLSCs through BMP2-Smad1/5/8 signaling, leading to the regeneration of periodontal tissues such as alveolar bone and PDL tissue.
Collapse
|
21
|
Watanabe K, Tahara S, Koyama H, Shimizu M, Kawabe M, Miyawaki S. Visual and histological evaluation of the effects of trafermin in a dog oronasal fistula model. J Vet Med Sci 2021; 84:64-68. [PMID: 34803085 PMCID: PMC8810320 DOI: 10.1292/jvms.21-0393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The standard procedure to treat oronasal fistula in dogs requires tooth extraction to close the fistula; hence, the subject would lose its tooth. In this study, trafermin was applied to
four dog models with oronasal fistula to investigate the periodontal tissue regenerative effects of trafermin in the treatment without tooth extraction. A fistula was created along the
palatal side of each upper canine tooth. One of the fistulae was filled with trafermin, whereas that on the contralateral side was left unfilled as a control. The results showed a
significant decrease in the non-calcified periodontal tissue volume on the trafermin side after the fourth week. In addition, oronasal fistula closure was visually and histologically
confirmed at the eighth week on the trafermin side of all four models.
Collapse
Affiliation(s)
- Kazuhiro Watanabe
- Laboratory of Veterinary Surgery, Clinical Veterinary Medicine, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University
| | - Syun Tahara
- Laboratory of Veterinary Surgery, Clinical Veterinary Medicine, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University
| | - Hiroyuki Koyama
- Laboratory of Veterinary Surgery, Clinical Veterinary Medicine, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University.,Cookie Animal Hospital
| | - Mamu Shimizu
- Laboratory of Veterinary Surgery, Clinical Veterinary Medicine, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University
| | - Mifumi Kawabe
- Laboratory of Veterinary Surgery, Clinical Veterinary Medicine, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University
| | - Shingo Miyawaki
- Laboratory of Veterinary Surgery, Clinical Veterinary Medicine, Joint Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University
| |
Collapse
|
22
|
Potential of Bone-Marrow-Derived Mesenchymal Stem Cells for Maxillofacial and Periodontal Regeneration: A Narrative Review. Int J Dent 2021; 2021:4759492. [PMID: 34795761 PMCID: PMC8594991 DOI: 10.1155/2021/4759492] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/19/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Bone-marrow-derived mesenchymal stem cells (BM-MSCs) are one of the most widely studied postnatal stem cell populations and are considered to utilize more frequently in cell-based therapy and cancer. These types of stem cells can undergo multilineage differentiation including blood cells, cardiac cells, and osteogenic cells differentiation, thus providing an alternative source of mesenchymal stem cells (MSCs) for tissue engineering and personalized medicine. Despite the ability to reprogram human adult somatic cells to induced pluripotent stem cells (iPSCs) in culture which provided a great opportunity and opened the new door for establishing the in vitro disease modeling and generating an unlimited source for cell base therapy, using MSCs for regeneration purposes still have a great chance to cure diseases. In this review, we discuss the important issues in MSCs biology including the origin and functions of MSCs and their application for craniofacial and periodontal tissue regeneration, discuss the potential and clinical applications of this type of stem cells in differentiation to maxillofacial bone and cartilage in vitro, and address important future hopes and challenges in this field.
Collapse
|
23
|
Secreted Frizzled-Related Protein 1 Promotes Odontoblastic Differentiation and Reparative Dentin Formation in Dental Pulp Cells. Cells 2021; 10:cells10092491. [PMID: 34572140 PMCID: PMC8468928 DOI: 10.3390/cells10092491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 01/09/2023] Open
Abstract
Direct pulp capping is an effective treatment for preserving dental pulp against carious or traumatic pulp exposure via the formation of protective reparative dentin by odontoblast-like cells. Reparative dentin formation can be stimulated by several signaling molecules; therefore, we investigated the effects of secreted frizzled-related protein (SFRP) 1 that was reported to be strongly expressed in odontoblasts of newborn molar tooth germs on odontoblastic differentiation and reparative dentin formation. In developing rat incisors, cells in the dental pulp, cervical loop, and inner enamel epithelium, as well as ameloblasts and preodontoblasts, weakly expressed Sfrp1; however, Sfrp1 was strongly expressed in mature odontoblasts. Human dental pulp cells (hDPCs) showed stronger expression of SFRP1 compared with periodontal ligament cells and gingival cells. SFRP1 knockdown in hDPCs abolished calcium chloride-induced mineralized nodule formation and odontoblast-related gene expression and decreased BMP-2 gene expression. Conversely, SFRP1 stimulation enhanced nodule formation and expression of BMP-2. Direct pulp capping treatment with SFRP1 induced the formation of a considerable amount of reparative dentin that has a structure similar to primary dentin. Our results indicate that SFRP1 is crucial for dentinogenesis and is important in promoting reparative dentin formation in response to injury.
Collapse
|
24
|
Sevari SP, Ansari S, Moshaverinia A. A narrative overview of utilizing biomaterials to recapitulate the salient regenerative features of dental-derived mesenchymal stem cells. Int J Oral Sci 2021; 13:22. [PMID: 34193832 PMCID: PMC8245503 DOI: 10.1038/s41368-021-00126-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering approaches have emerged recently to circumvent many limitations associated with current clinical practices. This elegant approach utilizes a natural/synthetic biomaterial with optimized physiomechanical properties to serve as a vehicle for delivery of exogenous stem cells and bioactive factors or induce local recruitment of endogenous cells for in situ tissue regeneration. Inspired by the natural microenvironment, biomaterials could act as a biomimetic three-dimensional (3D) structure to help the cells establish their natural interactions. Such a strategy should not only employ a biocompatible biomaterial to induce new tissue formation but also benefit from an easily accessible and abundant source of stem cells with potent tissue regenerative potential. The human teeth and oral cavity harbor various populations of mesenchymal stem cells (MSCs) with self-renewing and multilineage differentiation capabilities. In the current review article, we seek to highlight recent progress and future opportunities in dental MSC-mediated therapeutic strategies for tissue regeneration using two possible approaches, cell transplantation and cell homing. Altogether, this paper develops a general picture of current innovative strategies to employ dental-derived MSCs combined with biomaterials and bioactive factors for regenerating the lost or defective tissues and offers information regarding the available scientific data and possible applications.
Collapse
Affiliation(s)
- Sevda Pouraghaei Sevari
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sahar Ansari
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alireza Moshaverinia
- Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA.
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
25
|
Murakami T, Matsugami D, Yoshida W, Imamura K, Bizenjima T, Seshima F, Saito A. Healing of Experimental Periodontal Defects Following Treatment with Fibroblast Growth Factor-2 and Deproteinized Bovine Bone Mineral. Biomolecules 2021; 11:biom11060805. [PMID: 34072351 PMCID: PMC8226676 DOI: 10.3390/biom11060805] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to investigate the effects of fibroblast growth factor (FGF)-2 used in combination with deproteinized bovine bone mineral (DBBM) on the healing of experimental periodontal defects. Periodontal defects created in rats were treated by FGF-2, DBBM, FGF-2 + DBBM, or left unfilled. Microcomputed tomography, histological, and immunohistochemical examinations were used to evaluate healing. In vitro cell viability/proliferation on DBBM with/without FGF-2 was assessed by WST-1. Cell behavior was analyzed using scanning electron and confocal laser scanning microscopy. Osteogenic differentiation was evaluated by staining with alkaline phosphatase and alizarin red. Bone volume fraction was significantly greater in FGF-2 and FGF-2 + DBBM groups than in other groups at 2 and 4 weeks postoperatively. In histological assessment, newly formed bone in FGF-2 and FGF-2 + DBBM groups appeared to be greater than other groups. Significantly greater levels of proliferating cell nuclear antigen-, vascular endothelial growth factor-, and osterix-positive cells were observed in FGF-2 and FGF-2 + DBBM groups compared to Unfilled group. In vitro, addition of FGF-2 to DBBM promoted cell viability/proliferation, attachment/spreading, and osteogenic differentiation. The combination therapy using FGF-2 and DBBM was similarly effective as FGF-2 alone in the healing of experimental periodontal defects. In certain bone defect configurations, the combined use of FGF-2 and DBBM may enhance healing via promotion of cell proliferation, angiogenesis, and osteogenic differentiation.
Collapse
Affiliation(s)
- Tasuku Murakami
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (T.M.); (D.M.); (W.Y.); (K.I.); (F.S.)
| | - Daisuke Matsugami
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (T.M.); (D.M.); (W.Y.); (K.I.); (F.S.)
- Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan
| | - Wataru Yoshida
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (T.M.); (D.M.); (W.Y.); (K.I.); (F.S.)
| | - Kentaro Imamura
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (T.M.); (D.M.); (W.Y.); (K.I.); (F.S.)
- Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan
| | - Takahiro Bizenjima
- Chiba Dental Center, Tokyo Dental College, Mihama-ku, Chiba 2618502, Japan;
| | - Fumi Seshima
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (T.M.); (D.M.); (W.Y.); (K.I.); (F.S.)
| | - Atsushi Saito
- Department of Periodontology, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan; (T.M.); (D.M.); (W.Y.); (K.I.); (F.S.)
- Oral Health Science Center, Tokyo Dental College, Chiyoda-ku, Tokyo 1010061, Japan
- Correspondence:
| |
Collapse
|
26
|
Bizenjima T, Irokawa D, Tanaka K, Saito A, Tomita S. Periodontal Regenerative Therapy with Recombinant Human Fibroblast Growth Factor-2 and Deproteinized Bovine Bone Mineral in Patient with Chronic Periodontitis: An 18-month Follow-up Report. THE BULLETIN OF TOKYO DENTAL COLLEGE 2021; 62:107-117. [PMID: 33994421 DOI: 10.2209/tdcpublication.2020-0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This report describes a case of generalized chronic periodontitis requiring periodontal regenerative therapy. The patient was a 62-year-old man who presented with the chief complaint of gingival swelling in the molar region. An initial examination revealed that 31.6% of sites had a probing depth of ≥4 mm and 18.5% bleeding on probing. Radiographic examination revealed vertical bone resorption in #14, 25, 26, 27, 32, 37, 45, and 47, and horizontal resorption in other regions. Based on a clinical diagnosis of moderate chronic periodontitis, initial periodontal therapy consisting of plaque control and scaling and root planing was performed. Occlusal adjustment of premature contact sites was performed after inflammation was suppressed. Surgical periodontal therapy was subsequently performed at selected sites. Periodontal regenerative therapy using recombinant human fibroblast growth factor (rhFGF)-2 was performed on #14, 25, 26, 32, and 37. Combination therapy with rhFGF-2 and deproteinized bovine bone mineral (DBBM) was performed on #45 and 47. Other sites with residual periodontal pockets were treated by open flap debridement, and #27 was extracted due to a bone defect exceeding the root apex. Progress was then reevaluated and the patient placed on supportive periodontal therapy. Periodontal regenerative therapy using rhFGF-2 in combination with DBBM resulted in an improvement in clinical parameters and vertical bone resorption. This improvement has been adequately maintained over an 18-month period. The periodontal treatment provided resulted in a marked improvement in the patient's oral health-related quality of life.
Collapse
|
27
|
Matsugami D, Aoki H, Saito A. Surgical Periodontal Therapy with Recombinant Human Fibroblast Growth Factor-2 in Treatment of Chronic Periodontitis: A Case Report with 2-year Follow-up. THE BULLETIN OF TOKYO DENTAL COLLEGE 2021; 62:127-134. [PMID: 33994424 DOI: 10.2209/tdcpublication.2020-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We report a case of generalized chronic periodontitis requiring periodontal regenerative therapy. The patient was a 53-year-old woman who presented with the chief complaint of gingival swelling. An initial examination revealed 31.5% of sites with a probing depth of ≥4 mm and 46.3% with bleeding on probing. Radiographic examination showed vertical bone resorption in tooth #33. Horizontal adsorption was also observed in other areas. Based on a clinical diagnosis of severe generalized chronic periodontitis, initial periodontal therapy consisting of plaque control, scaling and root planing, occlusal adjustment, caries treatment, and splint placement was performed. After re-evaluation, surgical periodontal treatment was performed at selected sites. Periodontal regeneration therapy with recombinant human fibroblast growth factor (rhFGF)-2 was performed at #33. Two other sites (#14, 15), which had residual periodontal pockets, were treated by open-flap debridement. After re-evaluation, the patient was placed on a maintenance program. Periodontal regenerative therapy with rhFGF-2 resulted in an improvement in angular bone resorption, which has been properly maintained for 2 years. Continued care is needed to maintain stable periodontal conditions.
Collapse
Affiliation(s)
| | - Hideto Aoki
- Department of Periodontology, Tokyo Dental College
| | | |
Collapse
|
28
|
Olaru M, Sachelarie L, Calin G. Hard Dental Tissues Regeneration-Approaches and Challenges. MATERIALS 2021; 14:ma14102558. [PMID: 34069265 PMCID: PMC8156070 DOI: 10.3390/ma14102558] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
With the development of the modern concept of tissue engineering approach and the discovery of the potential of stem cells in dentistry, the regeneration of hard dental tissues has become a reality and a priority of modern dentistry. The present review reports the recent advances on stem-cell based regeneration strategies for hard dental tissues and analyze the feasibility of stem cells and of growth factors in scaffolds-based or scaffold-free approaches in inducing the regeneration of either the whole tooth or only of its component structures.
Collapse
Affiliation(s)
- Mihaela Olaru
- “Petru Poni” Institute of Macromolecular Chemistry, 41 A Grigore Ghica Voda Alley, 700487 Iasi, Romania;
| | - Liliana Sachelarie
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 2 Muzicii Str., 700399 Iasi, Romania;
- Correspondence:
| | - Gabriela Calin
- Faculty of Medical Dentistry, “Apollonia” University of Iasi, 2 Muzicii Str., 700399 Iasi, Romania;
| |
Collapse
|
29
|
Mohammadipour HS, Forouzanfar F, Forouzanfar A. The Role of Type 2 Fibroblast Growth Factor in Periodontal Therapy. Curr Drug Targets 2021; 22:310-317. [PMID: 33153420 DOI: 10.2174/1389450121999201105152639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/10/2020] [Accepted: 09/21/2020] [Indexed: 11/22/2022]
Abstract
The prevalence of periodontitis is around 20-50% in the global population. If it is not treated, it can cause tooth loss. Periodontal treatment aims at preserving the patient's teeth from various damages, including infection control and restoring lost periodontal tissue. The periodontium has great biological regenerative potential, and several biomaterials can be used to improve the outcome of periodontal treatment. To achieve the goal of periodontal tissue regeneration, numerous studies have used fibroblast growth factor 2 (FGF2) to stimulate the regeneration of both the soft tissue and bone. FGF2 induced a significant increment in the percentage of bone fill, bone mineral levels of the defect sites, length of the regenerated periodontal ligament, angiogenesis, connective tissue formation on the root surface, formation of dense fibers bound to the alveolar bone and newly synthesized cementum in teeth. This review will open further avenues to better understand the FGF2 therapy for periodontal regeneration.
Collapse
Affiliation(s)
| | - Fatemeh Forouzanfar
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Forouzanfar
- Dental Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
30
|
Chandra RV, Sneha K, Pushpalatha S, Chakravarthy Y. Efficacy of recombinant human fibroblast growth factor 2 impregnated absorbable collagen membrane in the treatment of Miller's Class I and II gingival recession defects Preliminary results from the first in human clinical trial. J Indian Soc Periodontol 2021; 24:541-546. [PMID: 33424171 PMCID: PMC7781258 DOI: 10.4103/jisp.jisp_76_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/16/2020] [Accepted: 06/05/2020] [Indexed: 11/09/2022] Open
Abstract
Aims: This study was a single-arm trial to obtain preliminary data on the efficacy of collagen membranes impregnated with recombinant human fibroblast growth factor-2 (rhFGF-2) in the treatment of Miller's Class I and II gingival recessions. Materials and Methods: Twenty-one individuals (34 sites) presenting with localized Miller's Class I and II gingival recessions were included in this study. Following a standard surgical protocol, rhFGF-2-impregnated membranes were placed in sites with gingival recession. Clinical parameters such as width of keratinized gingiva (wKG), recession depth (RD), and probing depth were measured at baseline and after therapy completion at 3 and 6 months. Results: Most of the sites exhibited favorable clinical healing; the most common complications were persistent edematous and inflamed gingivae beyond 1 week (n = 3), development of residual periodontal pockets (n = 2), and no reduction in RDs (n = 2). Significant improvements in wKG and RD were noted from baseline to 6 months. Conclusion: rhFGF-2-impregnated collagen membranes showed promising results in terms of increasing the wKG and recession coverage. A comparison with other standard therapies and agents in subsequent trials may shed more light on the clinical efficacy of this material.
Collapse
Affiliation(s)
- Rampalli Viswa Chandra
- Department of Periodontics, SVS Institute of Dental Sciences, Mahabubnagar, Telangana, India
| | - Kidambi Sneha
- Department of Periodontics, SVS Institute of Dental Sciences, Mahabubnagar, Telangana, India
| | - Sabbani Pushpalatha
- Department of Periodontics, SVS Institute of Dental Sciences, Mahabubnagar, Telangana, India
| | - Yarabham Chakravarthy
- Department of Periodontics, SVS Institute of Dental Sciences, Mahabubnagar, Telangana, India
| |
Collapse
|
31
|
Galli M, Yao Y, Giannobile WV, Wang HL. Current and future trends in periodontal tissue engineering and bone regeneration. PLASTIC AND AESTHETIC RESEARCH 2021; 8. [PMID: 35765666 PMCID: PMC9236184 DOI: 10.20517/2347-9264.2020.176] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Periodontal tissue engineering involves a multi-disciplinary approach towards the regeneration of periodontal ligament, cementum and alveolar bone surrounding teeth, whereas bone regeneration specifically applies to ridge reconstruction in preparation for future implant placement, sinus floor augmentation and regeneration of peri-implant osseous defects. Successful periodontal regeneration is based on verifiable cementogenesis on the root surface, oblique insertion of periodontal ligament fibers and formation of new and vital supporting bone. Ultimately, regenerated periodontal and peri-implant support must be able to interface with surrounding host tissues in an integrated manner, withstand biomechanical forces resulting from mastication, and restore normal function and structure. Current regenerative approaches utilized in everyday clinical practice are mainly guided tissue/bone regeneration-based. Although these approaches have shown positive outcomes for small and medium-sized defects, predictability of clinical outcomes is heavily dependent on the defect morphology and clinical case selection. In many cases, it is still challenging to achieve predictable regenerative outcomes utilizing current approaches. Periodontal tissue engineering and bone regeneration (PTEBR) aims to improve the state of patient care by promoting reconstitution of damaged and lost tissues through the use of growth factors and signaling molecules, scaffolds, cells and gene therapy. The present narrative review discusses key advancements in PTEBR including current and future trends in preclinical and clinical research, as well as the potential for clinical translatability.
Collapse
Affiliation(s)
- Matthew Galli
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Yao Yao
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - William V Giannobile
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA.,Biointerfaces Institute, North Campus Research Complex, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA.,Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Hom-Lay Wang
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| |
Collapse
|
32
|
Yoshida W, Takeuchi T, Imamura K, Seshima F, Saito A, Tomita S. Treatment of Chronic Periodontitis with Recombinant Human Fibroblast Growth Factor-2 and Deproteinized Bovine Bone Mineral in Wide Intrabony Defects:12-month Follow-up Case Series. THE BULLETIN OF TOKYO DENTAL COLLEGE 2020; 61:231-241. [PMID: 33177268 DOI: 10.2209/tdcpublication.2019-0050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Clinical use of 0.3% recombinant human fibroblast growth factor (rhFGF)-2 for periodontal regeneration received formal approval in Japan in 2016. The combination of growth factor and bone graft material is used to enhance periodontal healing in regenerative therapy. The exact effects of combination therapy on periodontal healing remain unknown, however. Here, we report three cases of chronic periodontitis treated with the combination of rhFGF-2 and deproteinized bovine bone mineral (DBBM). Following initial periodontal therapy, periodontal regenerative therapy using rhFGF-2 in combination with DBBM was performed to treat wide intrabony defects. Periodontal parameters and radiographic bone fill were reevaluated at 3 months, 6 months, and 1 year postoperatively. Oral health-related quality of life (OHRQL) was assessed as a patient-reported measure of outcome. At 1 year postoperatively, probing pocket depth and clinical attachment level showed a significant improvement in comparison with at baseline. An improvement was also noted in radiographic evidence of bone fill and total OHRQL scores. Combination therapy yielded clinically favorable results in the present cases.
Collapse
Affiliation(s)
| | | | | | - Fumi Seshima
- Department of Periodontology, Tokyo Dental College
| | | | | |
Collapse
|
33
|
Takayama SI, Murakami S. Efficacy of FGF-2 in Periodontal Regeneration in a Case of Severe Intrabony Defect and Furcation Involvement With 15-Month Follow-Up. Clin Adv Periodontics 2020; 11:74-79. [PMID: 33075207 DOI: 10.1002/cap.10127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 09/08/2020] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Several studies have demonstrated that basic fibroblast growth factor (FGF-2) is one of the most effective growth factors for periodontal regeneration. The Ministry of Health, Labor and Welfare in Japan have approved 0.3% human recombinant FGF-2 for periodontal regeneration, and it has been commercially available since 2016. In this case report, a patient was treated with this periodontal regenerative medicine and demonstrated success at 15-month follow-up, as confirmed by dental X-ray and on cone-beam computed tomography (CBCT). CASE PRESENTATION A 42-year-old woman with a one by two walled intrabony defect and Class III furcation involvement in tooth #19, and Class II furcation involvement in tooth #18 (lingual) underwent periodontal regenerative surgery with FGF-2 without any bone graft materials. Favorable clinical and radiographic outcomes were noted 15 months after the procedure. The vertical bone defect in tooth #19 showed a clinical attachment level gain of 8 mm. Moreover, CBCT analysis revealed considerable new bone formation in the Class II furcation involvement in tooth #18 and limited bone formation in the Class III furcation involvement in tooth #19. CONCLUSIONS This case report indicates that FGF-2 showed a positive outcome in terms of periodontal regeneration in a case of one by two wall intrabony defects with Class III furcation involvement. A complete recovery of Class II furcation involvement was observed without artificial bone graft materials.
Collapse
Affiliation(s)
- Shin-Ichi Takayama
- Private practice, Takayama Dental Clinic, Shiga, Japan.,Department of Periodontology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Shinya Murakami
- Department of Periodontology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| |
Collapse
|
34
|
Liang Y, Luan X, Liu X. Recent advances in periodontal regeneration: A biomaterial perspective. Bioact Mater 2020; 5:297-308. [PMID: 32154444 PMCID: PMC7052441 DOI: 10.1016/j.bioactmat.2020.02.012] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Periodontal disease (PD) is one of the most common inflammatory oral diseases, affecting approximately 47% of adults aged 30 years or older in the United States. If not treated properly, PD leads to degradation of periodontal tissues, causing tooth movement, and eventually tooth loss. Conventional clinical therapy for PD aims at eliminating infectious sources, and reducing inflammation to arrest disease progression, which cannot achieve the regeneration of lost periodontal tissues. Over the past two decades, various regenerative periodontal therapies, such as guided tissue regeneration (GTR), enamel matrix derivative, bone grafts, growth factor delivery, and the combination of cells and growth factors with matrix-based scaffolds have been developed to target the restoration of lost tooth-supporting tissues, including periodontal ligament, alveolar bone, and cementum. This review discusses recent progresses of periodontal regeneration using tissue-engineering and regenerative medicine approaches. Specifically, we focus on the advances of biomaterials and controlled drug delivery for periodontal regeneration in recent years. Special attention is given to the development of advanced bio-inspired scaffolding biomaterials and temporospatial control of multi-drug delivery for the regeneration of cementum-periodontal ligament-alveolar bone complex. Challenges and future perspectives are presented to provide inspiration for the design and development of innovative biomaterials and delivery system for new regenerative periodontal therapy.
Collapse
Affiliation(s)
- Yongxi Liang
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Xianghong Luan
- Department of Periodontics, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| | - Xiaohua Liu
- Department of Biomedical Sciences, Texas A&M University College of Dentistry, Dallas, TX, 75246, USA
| |
Collapse
|
35
|
Ouchi T, Nakagawa T. Mesenchymal stem cell-based tissue regeneration therapies for periodontitis. Regen Ther 2020; 14:72-78. [PMID: 31970269 PMCID: PMC6962327 DOI: 10.1016/j.reth.2019.12.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 11/05/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is commonly observed and is an important concern in dental health. It is characterized by a multifactorial etiology, including imbalance of oral microbiota, mechanical stress, and systemic diseases such as diabetes mellitus. The current standard treatments for periodontitis include elimination of the microbial pathogen and application of biomaterials for treating bone defects. However, the periodontal tissue regeneration via a process consistent with the natural tissue formation process has not yet been achieved. Developmental biology studies state that periodontal tissue is composed of neural crest-derived ectomesenchyme. To elucidate the process of periodontal regeneration, it is essential to understand the developmental background and intercellular cross-talk. Several recent studies have reported the efficacy of transplantation of mesenchymal stem cells for periodontal tissue regeneration. In this review, we discuss the basic knowledge of periodontal tissue regeneration using mesenchymal stem cells and highlight the potential of stem cell-based periodontal regenerative medicine. Neural crest cells regulate the development and homeostasis of periodontal tissues. Dental mesenchymal stem cells (MSCs) are used for treating alveolar bone defects. Non-odontogenic MSCs can be investigated for periodontal tissue regeneration. Using appropriate growth factors and scaffold may improve periodontium regeneration.
Collapse
Key Words
- BMMSCs, bone marrow MSCs
- BMP, bone morphogenetic protein
- C-MSCs, clumps of MSC/ECM complexes
- DFSCs, dental follicle stem cells
- ECM, extracellular matrix
- FGF, fibroblast growth factor
- GDF-5, growth/differentiation factor-5
- HERS, Hertwig epithelial root sheath
- IFN-γ, interferon-gamma
- IGFBP-6, insulin-like growth factor binding protein-6
- LepR, leptin receptor
- MSCs, mesenchymal stem cells
- Mesenchymal stem cells
- NCCs, neural crest cells
- PDGFRα, platelet derived growth factor receptor α
- PDL, periodontal ligament
- PDLSCs, periodontal ligament stem cells
- Periodontal tissue
- Periodontitis
- Pluripotent stem cells
- TNF-α, tumor necrosis factor-alpha
- Tissue regeneration
- Wnt, wingless-INT
- iPSC-MSCs, iPSC-derived MSCs
- iPSCs, induced pluripotent stem cells
- scRNA-seq, single-cell RNA sequence
Collapse
Affiliation(s)
- Takehito Ouchi
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Taneaki Nakagawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
36
|
Takagi M, Kanayama K, Mukai K, Morinaga H, Shibatsuji A, Shibutani T. Application of The bFGF and β-TCP Complex to Peri-Implant Bone Defects in Dogs. J HARD TISSUE BIOL 2020. [DOI: 10.2485/jhtb.29.105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Masashi Takagi
- Department of Periodontology, Division of Oral Infections and Health Science, Asahi University School of Dentistry
| | - Keiichi Kanayama
- Department of Periodontology, Division of Oral Infections and Health Science, Asahi University School of Dentistry
| | - Keisuke Mukai
- Department of Periodontology, Division of Oral Infections and Health Science, Asahi University School of Dentistry
| | - Hirotsugu Morinaga
- Department of Periodontology, Division of Oral Infections and Health Science, Asahi University School of Dentistry
| | - Atsushi Shibatsuji
- Department of Periodontology, Division of Oral Infections and Health Science, Asahi University School of Dentistry
| | - Toshiaki Shibutani
- Department of Periodontology, Division of Oral Infections and Health Science, Asahi University School of Dentistry
| |
Collapse
|
37
|
Xu M, Wei X, Fang J, Xiao L. Combination of SDF-1 and bFGF promotes bone marrow stem cell-mediated periodontal ligament regeneration. Biosci Rep 2019; 39:BSR20190785. [PMID: 31789340 PMCID: PMC6923350 DOI: 10.1042/bsr20190785] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/04/2019] [Accepted: 11/25/2019] [Indexed: 02/08/2023] Open
Abstract
Stromal cell derived factor-1 (SDF-1) and basic fibroblast growth factor (bFGF) were reported to induce the differentiation of bone marrow stem cells (BMSCs) into cells with characteristics of periodontal ligament fibroblasts. Thus SDF-1 and bFGF may play a positive role in BMSCs-mediated periodontal ligament regeneration. Here, the methylthiazolyldiphenyl tetrazolium bromide (MTT) assay was used to investigate the effect of scaffolds, SDF-1 and bFGF on BMSCs proliferation. RT-PCR and Western blot were used to evaluate gene and protein expression. Beagle dogs were used to establish an animal model of tooth reimplantation and to investigate the effects of scaffolds, BMSCs, SDF-1 and bFGF on periodontal ligament regeneration. X-ray images and micro computed tomography (micro CT) were used to assess morphological changes in replanted teeth and surrounding alveolar bone. H&E staining and Masson's staining were also performed. BMSCs from Beagle dogs growth on scaffolds consisted of dense structured collagens. SDF-1 and bFGF effectively promoted the differentiation of BMSCs into fibroblasts, periodontal membrane reconstruction, and cell proliferation in vitro. SDF-1 and bFGF also stimulated the expression of type I collagen (Col I), type III collagen (Col III), CXC family chemokine receptor 4 (CXCR4), and S100 calcium binding protein A4 (S100A4), and decreased the expression of alkaline phosphatase (ALP). In our experimental Beagle dog model of tooth extraction and replantation, application of SDF-1 and bFGF significantly elevated periodontal membrane reconstruction and thus supported the survival of replanted teeth. In conclusion, the findings from the present study demonstrated that SDF-1 and bFGF enhance the process of periodontal ligament reconstruction, and provide a basis and reference for the use of stem cell tissue engineering in promoting periodontal membrane regeneration.
Collapse
Affiliation(s)
- Mengting Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xing Wei
- Department of Orthodontics, Stomatological Center, Shenzhen People’s Hospital, The Second Clinical Medical College of Jinan University, Shenzhen, Guangdong
| | - Jie Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Xiao
- Department of Stomatology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, Sichuan, China
| |
Collapse
|
38
|
Saito A, Bizenjima T, Takeuchi T, Suzuki E, Sato M, Yoshikawa K, Kitamura Y, Matsugami D, Aoki H, Kita D, Imamura K, Irokawa D, Seshima F, Tomita S. Treatment of intrabony periodontal defects using rhFGF-2 in combination with deproteinized bovine bone mineral or rhFGF-2 alone: A 6-month randomized controlled trial. J Clin Periodontol 2019; 46:332-341. [PMID: 30758076 PMCID: PMC6899590 DOI: 10.1111/jcpe.13086] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/14/2019] [Accepted: 02/10/2019] [Indexed: 01/07/2023]
Abstract
Aim To evaluate the use of recombinant human fibroblast growth factor (rhFGF)‐2 in combination with deproteinized bovine bone mineral (DBBM) compared with rhFGF‐2 alone, in the treatment of intrabony periodontal defects. Materials and Methods Patients with periodontitis who had received initial periodontal therapy and had intrabony defects of ≥ 3 mm in depth were enrolled. Sites were randomly assigned to receive a commercial formulation of 0.3% rhFGF‐2 + DBBM (test) or rhFGF‐2 alone (control). Clinical parameters and a patient‐reported outcome measure (PROM) were evaluated at baseline and at 3 and 6 months postoperatively. Results Twenty‐two sites in each group were evaluated. A significant improvement in clinical attachment level (CAL) from baseline was observed in both groups at 6 months postoperatively. CAL gain was 3.16 ± 1.45 mm in the test group and 2.77 ± 1.15 mm in the control group, showing no significant difference between groups. Radiographic bone fill was significantly greater in the test group (47.2%) than in the control group (29.3%). No significant difference in PROM between groups was observed. Conclusions At 6 months, no significant difference in CAL gain or PROM between the two treatments was observed, although combination therapy yielded an enhanced radiographic outcome.
Collapse
Affiliation(s)
- Atsushi Saito
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | | | | | - Eiichi Suzuki
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Masahiro Sato
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Kouki Yoshikawa
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Yurie Kitamura
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | | | - Hideto Aoki
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Daichi Kita
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Kentaro Imamura
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Daisuke Irokawa
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Fumi Seshima
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| | - Sachiyo Tomita
- Department of Periodontology, Tokyo Dental College, Tokyo, Japan
| |
Collapse
|
39
|
Arabaci T, Albayrak M. Titanium-prepared platelet-rich fibrin provides advantages on periodontal healing: A randomized split-mouth clinical study. J Periodontol 2019; 89:255-264. [PMID: 29543995 DOI: 10.1002/jper.17-0294] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/20/2017] [Accepted: 09/23/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND The aim of this study to evaluate the contributions of titanium-prepared platelet-rich fibrin (T-PRF) combined with open flap debridement (OFD) on biological markers in gingival crevicular fluid (GCF)and periodontal outcomes. METHODS Twenty-nine participants with chronic periodontitis were treated either with autologous T-PRF+OFD or OFD alone. GCF growth factor levels and relative receptor activator nuclear factor kappa-B/osteoprotegerin (RANKL/OPG) ratio at baseline and 2, 4, and 6 weeks postoperatively were analyzed, and clinical parameters such as probing depth (PD), relative attachment level (RAL) and gingival margin level (GML) at baseline and 9 months after surgery were compared. RESULTS The mean PD reduction, RAL gain, and GML change were significantly greater in the OFD+T-PRF sites than in the OFD sites (P = 0.033, P = 0.029, and P = 0.026, respectively). Both groups demonstrated increased growth factor levels at week 2 compared with baseline, followed by reductions at weeks 4 and 6. GCF growth factor levels in the test group were seen at higher concentrations with respect to control group until 6 weeks post-surgery. During this 6-week period, relative RANKL/OPG ratio was found significantly lower in the OFD+T-PRF group compared to the OFD group(P < 0.05). CONCLUSIONS Using T-PRF membrane combined with OFD provided significantly higher concentrations of growth factors and lower RANKL/OPG ratio in GCF for approximately 4 to 6 weeks, and improved periodontal healing compared to conventional flap sites.
Collapse
Affiliation(s)
- Taner Arabaci
- Department of Periodontology, Faculty of Dentistry, Atatürk University, Erzurum, Turkey
| | - Mevlut Albayrak
- Medical Laboratory Department, Health Services Vocational Training School, Ataturk University, Erzurum, Turkey
| |
Collapse
|
40
|
Ausenda F, Rasperini G, Acunzo R, Gorbunkova A, Pagni G. New Perspectives in the Use of Biomaterials for Periodontal Regeneration. MATERIALS 2019; 12:ma12132197. [PMID: 31288437 PMCID: PMC6651816 DOI: 10.3390/ma12132197] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 02/05/2023]
Abstract
Periodontitis is a disease with a high prevalence among adults. If not treated, it can lead to loss of teeth. Periodontal therapy aims at maintaining patient’s teeth through infection control and correction of non-maintainable anatomies including—when possible—regeneration of lost periodontal tissues. The biological regenerative potential of the periodontium is high, and several biomaterials can be utilized to improve the outcome of periodontal therapy. Use of different natural and synthetic materials in the periodontal field has been studied for many years. The main materials used today in periodontology analyzed in this review are: Resorbable and non-resorbable barrier membranes; autogenous, allogeneic, xenogeneic, and alloplastic bone substitutes; biological agents, such as amelogenins; platelet-derived growth factor; bone morphogenic proteins; rh fibroblast growth factor 2; teriparatide hormone; platelet concentrates; and 3D scaffolds. With the development of new surgical techniques some concepts on periodontal regeneration that were strictly applied in the past seem to be not so critical today. This can have an impact on the materials that are needed when attempting to regenerate lost periodontal structures. This review aims at presenting a rationale behind the use of biomaterials in modern periodontal regeneration
Collapse
Affiliation(s)
- Federico Ausenda
- Unit of Periodontology, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Foundation IRCCS C'a Granda, 20142 Milan, Italy
| | - Giulio Rasperini
- Unit of Periodontology, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Foundation IRCCS C'a Granda, 20142 Milan, Italy
| | - Raffaele Acunzo
- Unit of Periodontology, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Foundation IRCCS C'a Granda, 20142 Milan, Italy
| | - Angelina Gorbunkova
- Unit of Periodontology, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Foundation IRCCS C'a Granda, 20142 Milan, Italy
| | - Giorgio Pagni
- Unit of Periodontology, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Foundation IRCCS C'a Granda, 20142 Milan, Italy.
| |
Collapse
|
41
|
Histologic evidence of periodontal regeneration in furcation defects: a systematic review. Clin Oral Investig 2019; 23:2861-2906. [PMID: 31165313 DOI: 10.1007/s00784-019-02964-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/16/2019] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To systematically review the available histologic evidence on periodontal regeneration in class II and III furcations in animals and humans. MATERIALS AND METHODS A protocol including all aspects of a systematic review methodology was developed including definition of the focused question, defined search strategy, study inclusion criteria, determination of outcome measures, screening methods, data extraction and analysis, and data synthesis. The focused question was defined as follows: "What is the regenerative effect obtained by using or not several biomaterials as adjuncts to open flap surgery in the treatment of periodontal furcation defects as evaluated in animal and human histological studies?" SEARCH STRATEGY Using the MEDLINE database, the literature was searched for articles published up to and including September 2018: combinations of several search terms were applied to identify appropriate studies. Reference lists of review articles and of the included articles in the present review were screened. A hand search of the most important dental journals was also performed. CRITERIA FOR STUDY SELECTION AND INCLUSION Only articles published in English describing animal and human histological studies evaluating the effect of surgical treatment, with or without the adjunctive use of potentially regenerative materials (i.e., barrier membranes, grafting materials, growth factors/proteins, and combinations thereof) for the treatment of periodontal furcation defects were considered. Only studies reporting a minimum of 8 weeks healing following reconstructive surgery were included. The primary outcome variable was formation of periodontal supporting tissues [e.g., periodontal ligament, root cementum, and alveolar bone, given as linear measurements (in mm) or as a percentage of the instrumented root length (%)] following surgical treatment with or without regenerative materials, as determined histologically/histomorphometrically. Healing type and defect resolution (i.e., complete regeneration, long junctional epithelium, connective tissue attachment, connective tissue adhesion, or osseous repair) were also recorded. RESULTS In animals, periodontal regeneration was reported in class II and III defects with open flap debridement alone or combined with various types of bone grafts/bone substitues, biological factors, guided tissue regeneration, and different combinations thereof. The use of biological factors and combination approaches provided the best outcomes for class II defects whereas in class III defects, the combination approaches seem to offer the highest regenerative outcomes. In human class II furcations, the best outcomes were obtained with DFDBA combined with rhPDGF-BB and with GTR. In class III furcations, evidence from two case reports indicated very limited to no periodontal regeneration. CONCLUSIONS Within their limits, the present results suggest that (a) in animals, complete periodontal regeneration has been demonstrated in class II and class III furcation defects, and (b) in humans, the evidence for substantial periodontal regeneration is limited to class II furcations. CLINICAL RELEVANCE At present, regenerative periodontal surgery represents a valuable treatment option only for human class II furcation defects but not for class III furcations.
Collapse
|
42
|
Nakamura S, Ito T, Okamoto K, Mima T, Uchida K, Siddiqui YD, Ito M, Tai M, Okubo K, Yamashiro K, Omori K, Yamamoto T, Matsushita O, Takashiba S. Acceleration of bone regeneration of horizontal bone defect in rats using collagen-binding basic fibroblast growth factor combined with collagen scaffolds. J Periodontol 2019; 90:1043-1052. [PMID: 30889294 PMCID: PMC6850180 DOI: 10.1002/jper.18-0674] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/28/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022]
Abstract
Background Basic fibroblast growth factor (bFGF) has been applied for periodontal regeneration. However, the application depends on bone defect morphology because bFGF diffuses rapidly from defect sites. In a previous study, collagen‐binding bFGF (CB‐bFGF) has been shown to enhance bone formation by collagen‐anchoring in the orthopedic field. The aim of this study is to demonstrate the efficacy of CB‐bFGF with collagen scaffolds in bone regeneration of horizontal bone defect. Methods Cell proliferation activity and collagen binding activity of CB‐bFGF was confirmed by WST‐8 assay and collagen binding assay, respectively. The retention of CB‐bFGF in the collagen sheet (CS) was measured by fluorescence imaging. The rat horizontal alveolar bone defect model was employed to investigate the efficacy of CB‐bFGF with collagen powder (CP). After 4 and 8 weeks, the regenerative efficacy was evaluated by microcomputed tomography, histological, and immunohistochemical analyses. Results CB‐bFGF had a comparable proliferation activity to bFGF and a collagen binding activity. CB‐bFGF was retained in CS longer than bFGF. At 8 weeks postoperation, bone volume, bone mineral content, and new bone area in CB‐bFGF/CP group were significantly increased compared with those in other groups. Furthermore, epithelial downgrowth was significantly suppressed in CB‐bFGF/CP group. At 4 weeks, the numbers of osteocalcin, proliferating cell nuclear antigen, and osteopontin‐positive cells at the regeneration site in CB‐bFGF/CP group were greater than those in other groups. Conclusions CB‐bFGF/CP effectively promoted bone regeneration of horizontal bone defect possibly by sustained release of bFGF. The potential of CB‐bFGF composite material for improved periodontal regeneration in vertical axis was shown.
Collapse
Affiliation(s)
- Shin Nakamura
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Takashi Ito
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan.,Ministry of Health, Labour and Welfare Medical Politics Economic Section, Medical Equipment Policy Office, Tokyo, Japan
| | - Kentaro Okamoto
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Takehiko Mima
- Department of Bacteriology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Kentaro Uchida
- Department of Orthopedic Surgery, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Yasir D Siddiqui
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Masahiro Ito
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Masako Tai
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Keisuke Okubo
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Keisuke Yamashiro
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Kazuhiro Omori
- Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, Japan
| | - Tadashi Yamamoto
- Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, Japan
| | - Osamu Matsushita
- Department of Bacteriology, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| |
Collapse
|
43
|
Wang Y, Li H, Feng Y, Jiang P, Su J, Huang C. Dual micelles-loaded gelatin nanofibers and their application in lipopolysaccharide-induced periodontal disease. Int J Nanomedicine 2019; 14:963-976. [PMID: 30787610 PMCID: PMC6368126 DOI: 10.2147/ijn.s182073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Combined therapies utilizing inhibitors to remove pathogens are needed to suppress lipopolysaccharide (LPS)-induced periodontal disease. We prepared a novel, multi-agent delivery scaffold for periodontal treatment. METHODS In this study, we synthesized SP600125 (a JNK inhibitor) and SB203580 (a p38 inhibitor) drug-loaded poly(ethylene glycol)-block-caprolactone copolymer via dialysis method. The physical property of micelles was characterized through dynamic light scattering and transmission electron microscopy. The cell growth and LPS-induced MMP-2 and MMP-13 expression were evaluated through CCK-8, real-time PCR and Western blot assay. The release of SP600125 and SB203580 from different scaffolds was estimated. Microcomputed tomography and histology were used for evaluating the effect of the micelles-loaded nanofibers on the treatment of class II furcation defects in dogs. RESULTS The drug was then successfully incorporated into gelatin fibers during electrospinning process. We confirmed that the micelles had spherical structure and an average particle size of 160 nm for SP600125-micelles (SP-Ms) and 150 nm for SB203580-micelles (SB-Ms). The nanofiber scaffold showed excellent encapsulation capability, in vitro drug-release behavior, and cell compatibility. Real-time PCR and Western blot assay further indicated that LPS-induced MMP-2 and MMP-13 expression was significantly inhibited by the scaffold. CONCLUSION The results suggested that the dual drug-loaded system developed in this study might become a highly effective therapy for periodontal disease.
Collapse
Affiliation(s)
- Yabing Wang
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China,
| | - Haoxuan Li
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China,
| | - Yanhuizhi Feng
- Department of Periodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China
| | - Peilin Jiang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China,
| | - Jiansheng Su
- Department of Prosthodontics, School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072, China,
| | - Chen Huang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China,
| |
Collapse
|
44
|
Yu SJ, Lee YS, Choung HW, Park YH, Kim BO, Park JC. Effect of preameloblast-conditioned medium and CPNE7 on root surfaces in dogs: a histologic and histomorphometric evaluation. J Mol Histol 2018; 49:265-276. [PMID: 29525888 DOI: 10.1007/s10735-018-9766-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/08/2018] [Indexed: 12/16/2022]
Abstract
Preameloblast-conditioned medium (PACM) has been reported as a potent dentin regenerative material, but its effects as a mixture on periodontal regeneration and the role of CPNE7 in PACM are not known. The purpose of this study is to evaluate the histologic and histomorphometric effects of preameloblast-conditioned medium (PACM) and CPNE7 on periodontal tissue healing in dogs. Seventy-two mandibular premolar roots from ten dogs were extracted and randomly divided into six groups (n = 12 each): (1) positive control group; (2) negative control group; (3) cementum-removed and PACM-treated group; (4) cementum-preserved and PACM-treated group; (5) CPNE7-inactivated PACM-treated group; and (6) recombinant CPNE7-treated group. The extracted roots were replanted into extraction sockets for 4 and 8 weeks and analyzed histologically. Most of the root surfaces in the negative control group showed ankylosis; and those in the experimental groups showed newly formed PDL-like and cementum-like tissues. Histomorphometric analysis of horizontal sections showed that the mean length of the PDL on the roots of the positive controls was similar to those in cementum-removed or -preserved and PACM-treated group at 8 weeks (p = 1.08). Sagittal sections showed that the mean length of the new cementum on the roots in cementum-removed and PACM-treated group was significantly greater than that in CPNE7-inactivated PACM-treated group (p = 0.037). The mean length of the newly formed PDL on the roots in CPNE7- inactivated PACM-treated and rCPNE7-treated groups was significantly greater than that in the negative controls at 8 weeks (p = 0.037, p = 0.036). The use of PACM and CPNE7 in tooth replantation resulted in increased PDL and cementum formation, suggesting the beneficial role of PACM and CPNE7 in periodontal tissue healing.
Collapse
Affiliation(s)
- Sang-Joun Yu
- Department of Periodontology, School of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Yoon Seon Lee
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, BK 21, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Han-Wool Choung
- Department of Oral and Maxillofacial Surgery, School of Dentistry and Dental Research Institute, Seoul National University, 101 Daehak-ro, Yeongeon-dong, Seoul, 03080, Republic of Korea
| | - Yeoung-Hyun Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, BK 21, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Byung-Ock Kim
- Department of Periodontology, School of Dentistry, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju, 61452, Republic of Korea
| | - Joo-Cheol Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, BK 21, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
45
|
Rocha FRG, Souza JACD, Guimarães-Stabili MR, Sampaio JEC, Rossa C. Topical application of bFGF on acid-conditioned and non-conditioned dentin: effect on cell proliferation and gene expression in cells relevant for periodontal regeneration. J Appl Oral Sci 2018; 25:689-699. [PMID: 29211291 PMCID: PMC5701540 DOI: 10.1590/1678-7757-2017-0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/21/2017] [Indexed: 12/13/2022] Open
Abstract
Periodontal regeneration is still a challenge in terms of predictability and magnitude of effect. In this study we assess the biological effects of combining chemical root conditioning and biological mediators on three relevant cell types for periodontal regeneration.
Collapse
Affiliation(s)
| | | | | | - José Eduardo Cezar Sampaio
- Univ Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departmento de Diagnóstico e Cirurgia, Araraquara, SP, Brasil
| | - Carlos Rossa
- Univ Estadual Paulista - UNESP, Faculdade de Odontologia de Araraquara, Departmento de Diagnóstico e Cirurgia, Araraquara, SP, Brasil
| |
Collapse
|
46
|
Jiang L, Li W, Mamtilahun M, Song Y, Ma Y, Qu M, Lu Y, He X, Zheng J, Fu Z, Zhang Z, Yang GY, Wang Y. Optogenetic Inhibition of Striatal GABAergic Neuronal Activity Improves Outcomes After Ischemic Brain Injury. Stroke 2017; 48:3375-3383. [PMID: 29146880 DOI: 10.1161/strokeaha.117.019017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/12/2017] [Accepted: 10/17/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Striatal GABAergic neuron is known as a key regulator in adult neurogenesis. However, the specific role of striatal GABAergic neuronal activity in the promotion of neurological recovery after ischemic stroke remains unknown. Here, we used optogenetic approach to investigate these effects and mechanism. METHODS Laser stimulation was delivered via an implanted optical fiber to inhibit or activate the striatal GABAergic neurons in Gad2-Arch-GFP or Gad2-ChR2-tdTomato mice (n=80) 1 week after 60-minute transient middle cerebral artery occlusion. Neurological severity score, brain atrophy volume, microvessel density, and cell morphological changes were examined using immunohistochemistry. Gene expression and protein levels of related growth factors were further examined using real-time polymerase chain reaction and Western blotting. RESULTS Inhibiting striatal GABAergic neuronal activity improved functional recovery, reduced brain atrophy volume, and prohibited cell death compared with the control (P<0.05). Microvessel density and bFGF (basic fibroblast growth factor) expression in the inhibition group were also increased (P<0.05). In contrast, activation of striatal GABAergic neurons resulted in adverse effects compared with the control (P<0.05). Using cocultures of GABAergic neurons, astrocytes, and endothelial cells, we further demonstrated that the photoinhibition of GABAergic neuronal activity could upregulate bFGF expression in endothelial cells, depending on the presence of astrocytes. The conditioned medium from the aforementioned photoinhibited 3-cell coculture system protected cells from oxygen glucose deprivation injury. CONCLUSIONS After ischemic stroke, optogenetic inhibition of GABAergic neurons upregulated bFGF expression by endothelial cells and promoted neurobehavioral recovery, possibly orchestrated by astrocytes. Optogenetically inhibiting neuronal activity provides a novel approach to promote neurological recovery.
Collapse
Affiliation(s)
- Lu Jiang
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Wanlu Li
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Muyassar Mamtilahun
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Yaying Song
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Yuanyuan Ma
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Meijie Qu
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Yifan Lu
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Xiaosong He
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Jieyu Zheng
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Zongjie Fu
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Zhijun Zhang
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.)
| | - Guo-Yuan Yang
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.).
| | - Yongting Wang
- From the Neuroscience and Neuroengineering Research Center, Med-X Research Institute and School of Biomedical Engineering (L.J., W.L., M.M., Y.L., Z.Z., G.-Y.Y., Y.W.), Department of Neurology, Ruijin Hospital, School of Medicine (Y.S., Y.M., M.Q., Z.F., G.-Y.Y.), School of Agriculture and Biology (J.Z.), and Brain Science and Technology Research Center (Y.W.), Shanghai Jiao Tong University, Shanghai, China; and Department of Human Anatomy, School of Basic Medical Science, and Institute of Neuroscience and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510182, China (X.H.).
| |
Collapse
|
47
|
Effect of Serial Use of Bone Morphogenetic Protein 2 and Fibroblast Growth Factor 2 on Periodontal Tissue Regeneration. IMPLANT DENT 2017; 26:664-673. [DOI: 10.1097/id.0000000000000624] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
48
|
Inhibiting PHD2 in bone marrow mesenchymal stem cells via lentiviral vector-mediated RNA interference facilitates the repair of periodontal tissue defects in SD rats. Oncotarget 2017; 8:72676-72699. [PMID: 29069818 PMCID: PMC5641161 DOI: 10.18632/oncotarget.20243] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 07/25/2017] [Indexed: 11/25/2022] Open
Abstract
Hypoxia-inducible factors (HIFs) play an important role in angiogenesis, and they can activate the expression of several downstream angiogenic factors. HIF-1 is a major transcriptor of HIFs, composed of α and β subunits. Prolyl hydroxylase domain-containing protein 2 (PHD2) is the main catabolic enzyme for HIF-1α, and it can accelerate its degradation under normoxic conditions. PHD2 expression in bone marrow mesenchymal stem cells (BMMSCs) of SD rats was down-regulated under normoxic conditions in this study by utilizing lentiviral vector-mediated RNA interference to promote HIF-1α accumulation, thus enhancing the expression of angiogenic factors. A tissue-engineered compound was constructed using the composite collagen membrane of BMMSCs after PHD2 gene silencing to repair periodontal fenestration defects in SD rats. The results of this study indicated that, after PHD2 gene silencing, the osteogenic differentiation of BMMSCs was enhanced in vitro, the resistance of cells to oxidative stress was also validated in vitro, thereby illustrating the promotion of the repair of artificially constructed periodontal tissue defects in rats. The results of this study provide a reference and guidance for future applications of RNA interference in periodontal tissue engineering and serve as a basis for improving the survival of seed cells in recipient tissues.
Collapse
|
49
|
Zhang H, Kot A, Lay YAE, Fierro FA, Chen H, Lane NE, Yao W. Acceleration of Fracture Healing by Overexpression of Basic Fibroblast Growth Factor in the Mesenchymal Stromal Cells. Stem Cells Transl Med 2017; 6:1880-1893. [PMID: 28792122 PMCID: PMC6430058 DOI: 10.1002/sctm.17-0039] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/20/2017] [Indexed: 12/29/2022] Open
Abstract
In this study, we engineered mesenchymal stem cells (MSCs) to over‐express basic fibroblast growth factor (bFGF) and evaluated its effects on fracture healing. Adipose‐derived mouse MSCs were transduced to express bFGF and green fluorescence protein (ADSCbFGF‐GFP). Closed‐femoral fractures were performed with osterix‐mCherry reporter mice of both sexes. The mice received 3 × 105 ADSCs transfected with control vector or bFGF via intramuscular injection within or around the fracture sites. Mice were euthanized at days 7, 14, and 35 to monitor MSC engraftment, osteogenic differentiation, callus formation, and bone strength. Compared to ADSC culture alone, ADSCbFGF increased bFGF expression and higher levels of bFGF and vascular endothelial growth factor (VEGF) in the culture supernatant for up to 14 days. ADSCbFGF treatment increased GFP‐labeled MSCs at the fracture gaps and these cells were incorporated into the newly formed callus. quantitative reverse transcription polymerase chain reaction (qRT‐PCR) from the callus revealed a 2‐ to 12‐fold increase in the expression of genes associated with nervous system regeneration, angiogenesis, and matrix formation. Compared to the control, ADSCbFGF treatment increased VEGF expression at the periosteal region of the callus, remodeling of collagen into mineralized callus and bone strength. In summary, MSCbFGF accelerated fracture healing by increasing the production of growth factors that stimulated angiogenesis and differentiation of MSCs to osteoblasts that formed new bone and accelerated fracture repair. This novel treatment may reduce the time required for fracture healing. Stem Cells Translational Medicine2017;6:1880–1893
Collapse
Affiliation(s)
- Hongliang Zhang
- Center for Musculoskeletal Health, Department of Internal Medicine, Sacramento, California, USA.,Department of Emergency Medicine, Center for Difficult Diagnoses and Rare Diseases, Second Xiangya Hospital of the Central-South University, Hunan, Changsha, People's Republic of China
| | - Alexander Kot
- Center for Musculoskeletal Health, Department of Internal Medicine, Sacramento, California, USA
| | - Yu-An E Lay
- Center for Musculoskeletal Health, Department of Internal Medicine, Sacramento, California, USA
| | - Fernando A Fierro
- Stem Cell Program, UC Davis Health System, Institute for Regenerative Cures, University of California Davis Medical Center, Sacramento, California, USA
| | - Haiyan Chen
- Center for Musculoskeletal Health, Department of Internal Medicine, Sacramento, California, USA.,Adult Programs Division, California Department of Social Services, Sacramento, California, USA
| | - Nancy E Lane
- Center for Musculoskeletal Health, Department of Internal Medicine, Sacramento, California, USA
| | - Wei Yao
- Center for Musculoskeletal Health, Department of Internal Medicine, Sacramento, California, USA
| |
Collapse
|
50
|
Lee SH, Park YB, Moon HS, Shim JS, Jung HS, Kim HJ, Chung MK. The role of rhFGF-2 soaked polymer membrane for enhancement of guided bone regeneration. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:825-843. [DOI: 10.1080/09205063.2017.1354676] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sang-Hoon Lee
- Department of Prosthodontics, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Korea
| | - Young-Bum Park
- Department of Prosthodontics, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Korea
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Hong-Seok Moon
- Department of Prosthodontics, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Korea
| | - June-Sung Shim
- Department of Prosthodontics, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Korea
| | - Han-Sung Jung
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Oral Science Research Center, BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, Korea
| | - Hyung Jun Kim
- Department of Oral & Maxillofacial Surgery, Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, Korea
| | - Moon-Kyu Chung
- Department of Prosthodontics, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Korea
| |
Collapse
|