1
|
Hafida EG, Rachid S, Halima G, Najib K. CBD's potential impact on Parkinson's disease: An updated overview. Open Med (Wars) 2024; 19:20241075. [PMID: 39479465 PMCID: PMC11524397 DOI: 10.1515/med-2024-1075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
Background Parkinson's disease (PD) is primarily known as a motor disorder; however, its debilitating non-motor symptoms have a significant impact on patients' quality of life. The current standard treatment, l-DOPA, is used to relieve motor symptoms, but prolonged use is often associated with severe side effects. This creates an urgent need for effective alternatives targeting both motor and non-motor symptoms. Objectives Over the past decade, Cannabis sativa and its cannabinoids have been widely studied across various health conditions. Among these compounds, cannabidiol (CBD), a non-psychoactive component, is garnering growing interest due to its multi-targeted pleiotropic properties. This work aims to provide a comprehensive overview of CBD's efficacy in PD. Methods This review compiles data on both motor and non-motor symptoms of PD, integrating results from preclinical animal studies and available clinical trials. Results Preclinical research has demonstrated promising results regarding CBD's potential benefits in PD; however, the total number of clinical trials is limited (with only seven studies to date), making it difficult to draw definitive conclusions on its efficacy. Conclusions While preclinical findings suggest that CBD may have therapeutic potential in PD, the limited number of clinical trials highlights the need for further research. This review emphasizes the gaps that need to be addressed in future studies to fully understand CBD's role in treating both motor and non-motor symptoms of PD.
Collapse
Affiliation(s)
- El Ghachi Hafida
- Neurosciences, Pharmacology, and Environment Unit (NPEU), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Soulimani Rachid
- LCOMS/Neurotoxicologie Alimentaire et Bioactivité, Université de Lorraine, 57000, Metz, France
| | - Gamrani Halima
- Neurosciences, Pharmacology, and Environment Unit (NPEU), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Kissani Najib
- Department of Neurology, Faculty of Medicine and Pharmacy, University Hospital Mohamed VI, Medical Research Center, University Cadi Ayyad, 40000, Marrakesh, Morocco
| |
Collapse
|
2
|
Guidolin D, Tortorella C, Marcoli M, Cervetto C, De Caro R, Maura G, Agnati LF. Modulation of Neuron and Astrocyte Dopamine Receptors via Receptor-Receptor Interactions. Pharmaceuticals (Basel) 2023; 16:1427. [PMID: 37895898 PMCID: PMC10610355 DOI: 10.3390/ph16101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Dopamine neurotransmission plays critical roles in regulating complex cognitive and behavioral processes including reward, motivation, reinforcement learning, and movement. Dopamine receptors are classified into five subtypes, widely distributed across the brain, including regions responsible for motor functions and specific areas related to cognitive and emotional functions. Dopamine also acts on astrocytes, which express dopamine receptors as well. The discovery of direct receptor-receptor interactions, leading to the formation of multimeric receptor complexes at the cell membrane and providing the cell decoding apparatus with flexible dynamics in terms of recognition and signal transduction, has expanded the knowledge of the G-protein-coupled receptor-mediated signaling processes. The purpose of this review article is to provide an overview of currently identified receptor complexes containing dopamine receptors and of their modulatory action on dopamine-mediated signaling between neurons and between neurons and astrocytes. Pharmacological possibilities offered by targeting receptor complexes in terms of addressing neuropsychiatric disorders associated with altered dopamine signaling will also be briefly discussed.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, University of Padova, 35122 Padova, Italy; (C.T.); (R.D.C.)
| | - Cinzia Tortorella
- Department of Neuroscience, University of Padova, 35122 Padova, Italy; (C.T.); (R.D.C.)
| | - Manuela Marcoli
- Department of Pharmacy, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Chiara Cervetto
- Department of Pharmacy, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Raffaele De Caro
- Department of Neuroscience, University of Padova, 35122 Padova, Italy; (C.T.); (R.D.C.)
| | - Guido Maura
- Department of Pharmacy, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Luigi F. Agnati
- Department of Biomedical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| |
Collapse
|
3
|
Costa AC, Joaquim HPG, Pedrazzi JFC, Pain ADO, Duque G, Aprahamian I. Cannabinoids in Late Life Parkinson's Disease and Dementia: Biological Pathways and Clinical Challenges. Brain Sci 2022; 12:brainsci12121596. [PMID: 36552056 PMCID: PMC9775654 DOI: 10.3390/brainsci12121596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022] Open
Abstract
The use of cannabinoids as therapeutic drugs has increased among aging populations recently. Age-related changes in the endogenous cannabinoid system could influence the effects of therapies that target the cannabinoid system. At the preclinical level, cannabidiol (CBD) induces anti-amyloidogenic, antioxidative, anti-apoptotic, anti-inflammatory, and neuroprotective effects. These findings suggest a potential therapeutic role of cannabinoids to neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer. Emerging evidence suggests that CBD and tetrahydrocannabinol have neuroprotective therapeutic-like effects on dementias. In clinical practice, cannabinoids are being used off-label to relieve symptoms of PD and AD. In fact, patients are using cannabis compounds for the treatment of tremor, non-motor symptoms, anxiety, and sleep assistance in PD, and managing responsive behaviors of dementia such as agitation. However, strong evidence from clinical trials is scarce for most indications. Some clinicians consider cannabinoids an alternative for older adults bearing Parkinson's disease and Alzheimer's dementia with a poor response to first-line treatments. In our concept and experience, cannabinoids should never be considered a first-line treatment but could be regarded as an adjuvant therapy in specific situations commonly seen in clinical practice. To mitigate the risk of adverse events, the traditional dogma of geriatric medicine, starting with a low dose and proceeding with a slow titration regime, should also be employed with cannabinoids. In this review, we aimed to address preclinical evidence of cannabinoids in neurodegenerative disorders such as PD and AD and discuss potential off-label use of cannabinoids in clinical practice of these disorders.
Collapse
Affiliation(s)
- Alana C. Costa
- Laboratory of Neuroscience (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas HCFMUSP, Faculdade de Medicina da Universidade de São Paulo, São Paulo 05403-903, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo 05403-010, Brazil
| | - Helena P. G. Joaquim
- Department of Psychiatry, Faculdade de Medicina da Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - João F. C. Pedrazzi
- Department of Neurosciences and Behavioral Sciences, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo 05403-903, Brazil
| | - Andreia de O. Pain
- Group of Investigation on Multimorbidity and Mental Health in Aging (GIMMA), Geriatrics Division, Department of Internal Medicine, Jundiaí Medical School, Jundiaí 13202-550, Brazil
| | - Gustavo Duque
- Division of Geriatric Medicine, Research Institute of the McGill University Health Centre, Montreal, QC H4A 3J1, Canada
| | - Ivan Aprahamian
- Group of Investigation on Multimorbidity and Mental Health in Aging (GIMMA), Geriatrics Division, Department of Internal Medicine, Jundiaí Medical School, Jundiaí 13202-550, Brazil
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, 9712 Groningen, The Netherlands
- Correspondence:
| |
Collapse
|
4
|
Tudorancea IM, Ciorpac M, Stanciu GD, Caratașu C, Săcărescu A, Ignat B, Burlui A, Rezuș E, Creangă I, Alexa-Stratulat T, Tudorancea I, Tamba BI. The Therapeutic Potential of the Endocannabinoid System in Age-Related Diseases. Biomedicines 2022; 10:2492. [PMID: 36289755 PMCID: PMC9599275 DOI: 10.3390/biomedicines10102492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022] Open
Abstract
The endocannabinoid system (ECS) dynamically regulates many aspects of mammalian physiology. ECS has gained substantial interest since growing evidence suggests that it also plays a major role in several pathophysiological conditions due to its ability to modulate various underlying mechanisms. Furthermore, cannabinoids, as components of the cannabinoid system (CS), have proven beneficial effects such as anti-inflammatory, immunomodulatory, neuromodulatory, antioxidative, and cardioprotective effects. In this comprehensive review, we aimed to describe the complex interaction between CS and most common age-related diseases such as neuro-degenerative, oncological, skeletal, and cardiovascular disorders, together with the potential of various cannabinoids to ameliorate the progression of these disorders. Since chronic inflammation is postulated as the pillar of all the above-mentioned medical conditions, we also discuss in this paper the potential of CS to ameliorate aging-associated immune system dysregulation.
Collapse
Affiliation(s)
- Ivona Maria Tudorancea
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Mitică Ciorpac
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Gabriela Dumitrița Stanciu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Cătălin Caratașu
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Alina Săcărescu
- Department of Medical Specialties II, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității, 700115 Iași, Romania
- Department of Neurology, Clinical Rehabilitation Hospital, 14 Pantelimon Halipa, 700661 Iași, Romania
| | - Bogdan Ignat
- Department of Neurology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Alexandra Burlui
- Department of Rheumatology and Rehabilitation, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Rehabilitation Hospital, 700661 Iași, Romania
| | - Elena Rezuș
- Department of Rheumatology and Rehabilitation, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Clinical Rehabilitation Hospital, 700661 Iași, Romania
| | - Ioana Creangă
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
- Oncology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Teodora Alexa-Stratulat
- Oncology Department, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Oncology Department, Regional Institute of Oncology, 700483 Iași, Romania
| | - Ionuț Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
- Cardiology Clinic “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Bogdan Ionel Tamba
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
- Department of Pharmacology, Clinical Pharmacology and Algesiology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| |
Collapse
|
5
|
Song S, Kong X, Wang B, Sanchez-Ramos J. Administration of Δ 9-Tetrahydrocannabinol Following Controlled Cortical Impact Restores Hippocampal-Dependent Working Memory and Locomotor Function. Cannabis Cannabinoid Res 2022; 7:424-435. [PMID: 34747647 PMCID: PMC9418466 DOI: 10.1089/can.2021.0053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Hypothesis: Administration of the phytocannabinoid Δ9-tetrahydrocannabinol (Δ9-THC) will enhance brain repair and improve short-term spatial working memory in mice following controlled cortical impact (CCI) by upregulating granulocyte colony-stimulating factor (G-CSF) and other neurotrophic factors (brain-derived neurotrophic factor [BDNF], glial-derived neurotrophic factor [GDNF]) in hippocampus (HP), cerebral cortex, and striatum. Materials and Methods: C57BL/6J mice underwent CCI and were treated for 3 days with Δ9-THC 3 mg/kg intraperitoneally (i.p.). Short-term working memory was determined using the spontaneous alternations test during exploratory behavior in a Y-maze. Locomotor function was measured as latency to fall from a rotating drum (rotometry). These behaviors were recorded at baseline and 3, 7, and 14 days after CCI. Groups of mice were euthanized at 7 and 14 days. Extent of microgliosis, astrocytosis, and G-CSF, BDNF, and GDNF expression were measured at 7 and 14 days in cerebral cortex, striatum, and HP on the side of the trauma. Levels of the most abundant endocannabinoid (2-arachidonoyl-glycerol [2-AG]) was also measured at these times. Results: Δ9-THC-treated mice exhibited marked improvement in performance on the Y-maze indicating that treatment with the phytocannabinoid could reverse the deficit in working memory caused by the CCI. Δ9-THC-treated mice ran on the rotarod longer than vehicle-treated mice and recovered to normal rotarod performance levels at 2 weeks. Δ9-THC-treated mice, compared with vehicle-treated animals, exhibited significant upregulation of G-CSF as well as BDNF and GDNF in the cerebral cortex, striatum, and HP. Levels of 2-AG were also increased in the Δ9-THC-treated mice. Conclusion: Administration of the phytocannabinoid Δ9-THC promotes significant functional recovery from traumatic brain injury (TBI) in the realms of working memory and locomotor function. This beneficial effect is associated with upregulation of brain 2-AG, G-CSF, BDNF, and GDNF. The latter three neurotrophic factors have been previously shown to mediate brain self-repair following TBI and stroke.
Collapse
Affiliation(s)
- Shijie Song
- James Haley VA Medical Center and University of South Florida, Tampa, Florida, USA
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| | - Xiaoyuan Kong
- James Haley VA Medical Center and University of South Florida, Tampa, Florida, USA
| | - Bangmei Wang
- James Haley VA Medical Center and University of South Florida, Tampa, Florida, USA
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| | - Juan Sanchez-Ramos
- Department of Neurology, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
6
|
Zheng C, Zhang F. New insights into pathogenesis of l-DOPA-induced dyskinesia. Neurotoxicology 2021; 86:104-113. [PMID: 34331976 DOI: 10.1016/j.neuro.2021.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Parkinson's disease (PD) is a progressive and self-propelling neurodegenerative disorder, which is characterized by motor symptoms, such as rigidity, tremor, slowness of movement and problems with gait. These symptoms become worse over time. To date, Dopamine (DA) replacement therapy with 3, 4-dihydroxy-l-phenylalanine (L-DOPA) is still the most effective pharmacotherapy for motor symptoms of PD. Unfortunately, motor fluctuations consisting of wearing-off effect actions and dyskinesia tend to occur in a few years of starting l-DOPA. Currently, l-DOPA-induced dyskinesia (LID) is troublesome and the pathogenesis of LID requires further investigation. Importantly, a new intervention for LID is imminent. Thus, this review mainly summarized the clinical features, risk factors and pathogenesis of LID to provide updatefor the development of therapeutic targets and new approaches for the treatment of LID.
Collapse
Affiliation(s)
- Changqing Zheng
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Laboratory Animal Center and Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
7
|
The effect of intra-striatal administration of GPR55 agonist (LPI) and antagonist (ML193) on sensorimotor and motor functions in a Parkinson's disease rat model. Acta Neuropsychiatr 2021; 33:15-21. [PMID: 32967746 DOI: 10.1017/neu.2020.30] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE G protein-coupled receptor 55 (GPR55) is an orphan G protein-coupled receptor with various physiological functions. Recent evidence suggests that this receptor may be involved in the control of motor functions. Therefore, in the present study, we evaluated the effects of intra-striatal administration of GPR55 selective ligands in a rat model of Parkinson's disease. METHODS Experimental Parkinson was induced by unilateral intra-striatal administration of 6-hydroxydopamine (6-OHDA, 10 µg/rat). L-α-lysophosphatidylinositol (LPI, 1 and 5 µg/rat), an endogenous GPR55 agonist, and ML193 (1 and 5 µg/rat), a selective GPR55 antagonist, were injected into the striatum of 6-OHDA-lesioned rats. Motor performance and balance skills were evaluated using the accelerating rotating rod and the ledged beam tests. The sensorimotor function of the forelimbs and locomotor activity were assessed by the adhesive removal and open field tests, respectively. RESULTS 6-OHDA-lesioned rats had impaired behaviours in all tests. Intra-striatal administration of LPI in 6-OHDA-lesioned rats increased time on the rotarod, decreased latency to remove the label, with no significant effect on slip steps, and locomotor activity. Intra-striatal administration of ML193 also increased time on the rotarod, decreased latency to remove the label and slip steps in 6-OHDA-lesioned rats mostly at the dose of 1 µg/rat. CONCLUSIONS This study suggests that the striatal GPR55 is involved in the control of motor functions. However, considering the similar effects of GPR55 agonist and antagonist, it may be concluded that this receptor has a modulatory role in the control of motor deficits in an experimental model of Parkinson.
Collapse
|
8
|
Leehey MA, Liu Y, Hart F, Epstein C, Cook M, Sillau S, Klawitter J, Newman H, Sempio C, Forman L, Seeberger L, Klepitskaya O, Baud Z, Bainbridge J. Safety and Tolerability of Cannabidiol in Parkinson Disease: An Open Label, Dose-Escalation Study. Cannabis Cannabinoid Res 2020; 5:326-336. [PMID: 33381646 PMCID: PMC7759259 DOI: 10.1089/can.2019.0068] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Cannabis is increasingly used in Parkinson disease (PD), despite little information regarding benefits and risks. Objectives: To investigate the safety and tolerability of a range of doses of cannabidiol (CBD), a nonintoxicating component of cannabis, and it's effect on common parkinsonian symptoms. Methods: In this open-label study Coloradans with PD, substantial rest tremor, not using cannabis received plant-derived highly purified CBD (Epidiolex®; 100 mg/mL). CBD was titrated from 5 to 20-25 mg/kg/day and maintained for 10-15 days. Results: Fifteen participants enrolled, two were screen failures. All 13 participants (10 male), mean (SD) age 68.15 (6.05), with 6.1 (4.0) years of PD, reported adverse events, including diarrhea (85%), somnolence (69%), fatigue (62%), weight gain (31%), dizziness (23%), abdominal pain (23%), and headache, weight loss, nausea, anorexia, and increased appetite (each 5%). Adverse events were mostly mild; none serious. Elevated liver enzymes, mostly a cholestatic pattern, occurred in five (38.5%) participants on 20-25 mg/kg/day, only one symptomatic. Three (23%) dropped out due to intolerance. Ten (eight male) that completed the study had improvement in total and motor Movement Disorder Society Unified Parkinson Disease Rating Scale scores of 7.70 (9.39, mean decrease 17.8%, p=0.012) and 6.10 (6.64, mean decrease 24.7%, p=0.004), respectively. Nighttime sleep and emotional/behavioral dyscontrol scores also improved significantly. Conclusions: CBD, in the form of Epidiolex, may be efficacious in PD, but the relatively high dose used in this study was associated with liver enzyme elevations. Randomized controlled trials are needed to investigate various forms of cannabis in PD.
Collapse
Affiliation(s)
- Maureen A. Leehey
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Ying Liu
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Felecia Hart
- Department of Clinical Pharmacy, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Christen Epstein
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Mary Cook
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Stefan Sillau
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jost Klawitter
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Heike Newman
- Regulatory Compliance Office, University of Colorado, Aurora, Colorado, USA
| | - Cristina Sempio
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Lisa Forman
- Department of Gastroenterology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Lauren Seeberger
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Olga Klepitskaya
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Zachrey Baud
- Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jacquelyn Bainbridge
- Department of Clinical Pharmacy, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
9
|
Leija-Salazar M, Bermúdez de León M, González-Horta A, González-Hernández B. Arachidonyl-2'-chloroethylamide (ACEA), a synthetic agonist of cannabinoid receptor, increases CB 1R gene expression and reduces dyskinesias in a rat model of Parkinson's disease. Pharmacol Biochem Behav 2020; 194:172950. [PMID: 32413434 DOI: 10.1016/j.pbb.2020.172950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/25/2020] [Accepted: 05/11/2020] [Indexed: 01/20/2023]
Abstract
l-Dopa is the most effective drug used for Parkinson's disease (PD), but after long-term treatment, the vast majority of PD patients develop abnormal involuntary movements (AIMs) termed l-Dopa-induced dyskinesia (LID). Cannabinoid receptors in the basal ganglia can modulate motor functions, but their role in the treatment of LID is controversial. Therefore, the aim of this study is to evaluate the motor behavior and mRNA expression of the cannabinoid receptor-1 (CB1R), encoded by the Cnr1 gene, in the striatum and globus pallidus of a 6-hydroxydopamine rat model of PD. The evaluated rats had 6-hydroxydopamine-induced injury, LID, and LID treated with arachidonyl-2'-chloroethylamide (ACEA), a cannabinoid receptor agonist. Contralateral turns and AIMs were recorded to assess motor behavior. Gene expression was quantified by reverse transcription coupled with quantitative polymerase chain reaction using TaqMan probes. Behavioral evaluations demonstrated that dyskinetic rats treated with ACEA had a significant reduction in AIMs compared to the dyskinetic group. The expression of CB1R mRNA was significantly decreased in the 6-hydroxydopamine-injured and dyskinetic rats, compared to intact rats. The striata of dyskinetic rats treated with ACEA exhibited highly significant increases in CB1R mRNA expression. Contrary to results in the striatum, a lower CB1R expression was observed in globus pallidus from dyskinetic ACEA-treated group. In summary, significant differences in mRNA expression of CB1R were found between the evaluated groups of rats, suggesting the occurrence of compensatory mechanisms that may result in the ACEA-mediated reduction of dyskinesias in a rat model of PD.
Collapse
Affiliation(s)
- Melissa Leija-Salazar
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Biológicas, Av. Universidad s/n, Ciudad Universitaria, 66451 San Nicolás de los Garza, Nuevo León, Mexico.
| | - Mario Bermúdez de León
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 2 de abril 501, Col. Independencia, 64720 Monterrey, Nuevo León, Mexico.
| | - Azucena González-Horta
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Biológicas, Av. Universidad s/n, Ciudad Universitaria, 66451 San Nicolás de los Garza, Nuevo León, Mexico.
| | - Brenda González-Hernández
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Biológicas, Av. Universidad s/n, Ciudad Universitaria, 66451 San Nicolás de los Garza, Nuevo León, Mexico.
| |
Collapse
|
10
|
Chen XY, Xue Y, Chen H, Chen L. The globus pallidus as a target for neuropeptides and endocannabinoids participating in central activities. Peptides 2020; 124:170210. [PMID: 31778724 DOI: 10.1016/j.peptides.2019.170210] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/14/2019] [Accepted: 11/21/2019] [Indexed: 12/12/2022]
Abstract
The globus pallidus in the basal ganglia plays an important role in movement regulation. Neuropeptides and endocannabinoids are neuronal signalling molecules that influence the functions of the whole brain. Endocannabinoids, enkephalin, substance P, neurotensin, orexin, somatostatin and pituitary adenylate cyclase-activating polypeptides are richly concentrated in the globus pallidus. Neuropeptides and endocannabinoids exert excitatory or inhibitory effects in the globus pallidus mainly by modulating GABAergic, glutamatergic and dopaminergic neurotransmission, as well as many ionic mechanisms. Pallidal neuropeptides and endocannabinoids are associated with the pathophysiology of a number of neurological disorders, such as Parkinson's disease, Huntington's disease, schizophrenia, and depression. The levels of neuropeptides and endocannabinoids and their receptors in the globus pallidus change in neurological diseases. It has been demonstrated that spontaneous firing activity of globus pallidus neurons is closely related to the manifestations of Parkinson's disease. Therefore, the neuropeptides and endocannabinoids in the globus pallidus may function as potential targets for treatment in some neurological diseases. In this review, we highlight the morphology and function of neuropeptides and endocannabinoids in the globus pallidus and their involvement in neurological diseases.
Collapse
Affiliation(s)
- Xin-Yi Chen
- Department of Pathology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China; Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Xue
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hua Chen
- Department of Pathology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
| | - Lei Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
11
|
Junior NCF, Dos-Santos-Pereira M, Guimarães FS, Del Bel E. Cannabidiol and Cannabinoid Compounds as Potential Strategies for Treating Parkinson's Disease and L-DOPA-Induced Dyskinesia. Neurotox Res 2019; 37:12-29. [PMID: 31637586 DOI: 10.1007/s12640-019-00109-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/22/2022]
Abstract
Parkinson's disease (PD) and L-DOPA-induced dyskinesia (LID) are motor disorders with significant impact on the patient's quality of life. Unfortunately, pharmacological treatments that improve these disorders without causing severe side effects are not yet available. Delay in initiating L-DOPA is no longer recommended as LID development is a function of disease duration rather than cumulative L-DOPA exposure. Manipulation of the endocannabinoid system could be a promising therapy to control PD and LID symptoms. In this way, phytocannabinoids and synthetic cannabinoids, such as cannabidiol (CBD), the principal non-psychotomimetic constituent of the Cannabis sativa plant, have received considerable attention in the last decade. In this review, we present clinical and preclinical evidence suggesting CBD and other cannabinoids have therapeutic effects in PD and LID. Here, we discuss CBD pharmacology, as well as its neuroprotective effects and those of other cannabinoids. Finally, we discuss the modulation of several pro- or anti-inflammatory factors as possible mechanisms responsible for the therapeutic/neuroprotective potential of Cannabis-derived/cannabinoid synthetic compounds in motor disorders.
Collapse
Affiliation(s)
- Nilson Carlos Ferreira Junior
- Department of Pharmacology, FMRP, Campus USP, University of São Paulo, Av. Bandeirantes 13400, Ribeirão Preto, SP, 14049-900, Brazil.,USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil
| | - Maurício Dos-Santos-Pereira
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil.,Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Av. Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil
| | - Francisco Silveira Guimarães
- Department of Pharmacology, FMRP, Campus USP, University of São Paulo, Av. Bandeirantes 13400, Ribeirão Preto, SP, 14049-900, Brazil.,USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil
| | - Elaine Del Bel
- Department of Pharmacology, FMRP, Campus USP, University of São Paulo, Av. Bandeirantes 13400, Ribeirão Preto, SP, 14049-900, Brazil. .,USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), São Paulo, Brazil. .,Department of Basic and Oral Biology, FORP, Campus USP, University of São Paulo, Av. Café, s/n, Ribeirão Preto, SP, 14040-904, Brazil.
| |
Collapse
|
12
|
Babayeva M, Assefa H, Basu P, Chumki S, Loewy Z. Marijuana Compounds: A Nonconventional Approach to Parkinson's Disease Therapy. PARKINSON'S DISEASE 2016; 2016:1279042. [PMID: 28050308 PMCID: PMC5165161 DOI: 10.1155/2016/1279042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/29/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder, is the second most common neurological illness in United States. Neurologically, it is characterized by the selective degeneration of a unique population of cells, the nigrostriatal dopamine neurons. The current treatment is symptomatic and mainly involves replacement of dopamine deficiency. This therapy improves only motor symptoms of Parkinson's disease and is associated with a number of adverse effects including dyskinesia. Therefore, there is unmet need for more comprehensive approach in the management of PD. Cannabis and related compounds have created significant research interest as a promising therapy in neurodegenerative and movement disorders. In this review we examine the potential benefits of medical marijuana and related compounds in the treatment of both motor and nonmotor symptoms as well as in slowing the progression of the disease. The potential for cannabis to enhance the quality of life of Parkinson's patients is explored.
Collapse
Affiliation(s)
- Mariana Babayeva
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Haregewein Assefa
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Paramita Basu
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Sanjeda Chumki
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| | - Zvi Loewy
- Touro College of Pharmacy, 230 West 125th Street, Room 530, New York, NY 10027, USA
| |
Collapse
|
13
|
Dos-Santos-Pereira M, da-Silva CA, Guimarães FS, Del-Bel E. Co-administration of cannabidiol and capsazepine reduces L-DOPA-induced dyskinesia in mice: Possible mechanism of action. Neurobiol Dis 2016; 94:179-95. [PMID: 27373843 DOI: 10.1016/j.nbd.2016.06.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 12/22/2022] Open
Affiliation(s)
- Maurício Dos-Santos-Pereira
- University of São Paulo (USP), School of Odontology of Ribeirão Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School of Ribeirão Preto, Department of Physiology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Célia Aparecida da-Silva
- University of São Paulo (USP), School of Odontology of Ribeirão Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil
| | - Francisco Silveira Guimarães
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School of Ribeirão Preto, Department of Pharmacology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil
| | - Elaine Del-Bel
- University of São Paulo (USP), School of Odontology of Ribeirão Preto, Department of Morphology, Physiology and Basic Pathology, Av. Café S/N, 14040-904 Ribeirão Preto, SP, Brazil; USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA), Brazil; USP, Medical School of Ribeirão Preto, Department of Physiology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil; USP, Medical School of Ribeirão Preto, Department of Pharmacology, Av. Bandeirantes 3900, 14049-900 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
14
|
Kluger B, Triolo P, Jones W, Jankovic J. The therapeutic potential of cannabinoids for movement disorders. Mov Disord 2015; 30:313-27. [PMID: 25649017 DOI: 10.1002/mds.26142] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 11/10/2014] [Accepted: 12/01/2014] [Indexed: 01/12/2023] Open
Abstract
There is growing interest in the therapeutic potential of marijuana (cannabis) and cannabinoid-based chemicals within the medical community and, particularly, for neurological conditions. This interest is driven both by changes in the legal status of cannabis in many areas and increasing research into the roles of endocannabinoids within the central nervous system and their potential as symptomatic and/or neuroprotective therapies. We review basic science as well as preclinical and clinical studies on the therapeutic potential of cannabinoids specifically as it relates to movement disorders. The pharmacology of cannabis is complex, with over 60 neuroactive chemicals identified to date. The endocannabinoid system modulates neurotransmission involved in motor function, particularly within the basal ganglia. Preclinical research in animal models of several movement disorders have shown variable evidence for symptomatic benefits, but more consistently suggest potential neuroprotective effects in several animal models of Parkinson's (PD) and Huntington's disease (HD). Clinical observations and clinical trials of cannabinoid-based therapies suggests a possible benefit of cannabinoids for tics and probably no benefit for tremor in multiple sclerosis or dyskinesias or motor symptoms in PD. Data are insufficient to draw conclusions regarding HD, dystonia, or ataxia and nonexistent for myoclonus or RLS. Despite the widespread publicity about the medical benefits of cannabinoids, further preclinical and clinical research is needed to better characterize the pharmacological, physiological, and therapeutic effects of this class of drugs in movement disorders.
Collapse
Affiliation(s)
- Benzi Kluger
- Movement Disorders Center, Department of Neurology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | | | | |
Collapse
|
15
|
The combination of oral L-DOPA/rimonabant for effective dyskinesia treatment and cytological preservation in a rat model of Parkinson's disease and L-DOPA-induced dyskinesia. Behav Pharmacol 2014; 24:640-52. [PMID: 24196024 DOI: 10.1097/fbp.0000000000000004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Parkinson's disease is the second most prevalent neurodegenerative disease in the world. Its treatment is limited so far to the management of parkinsonian symptoms with L-DOPA (LD). The long-term use of LD is limited by the development of L-DOPA-induced dyskinesias and dystonia. However, recent studies have suggested that pharmacological targeting of the endocannabinoid system may potentially provide a valuable therapeutic tool to suppress these motor alterations. In the present study, we have explored the behavioral (L-DOPA-induced dyskinesias severity) and cytological (substantia nigra compacta neurons and striatum neuropil preservation) effects of the oral coadministration of LD and rimonabant, a selective antagonist of CB1 receptors, in the 6-hydroxydopamine rat model of Parkinson's disease. Oral coadministration of LD (30 mg/kg) and rimonabant (1 mg/kg) significantly decreased abnormal involuntary movements and dystonia, possibly through the conservation of some functional tyrosine hydroxylase-immunoreactive dopaminergic cells, which in turn translates into a well-preserved neuropil of a less denervated striatum. Our results provide anatomical evidence that long-term coadministration of LD with cannabinoid antagonist-based therapy may not only alleviate specific motor symptoms but also delay/arrest the degeneration of striatal and substantia nigra compacta cells.
Collapse
|
16
|
Detection of cannabinoid receptors CB1 and CB2 within basal ganglia output neurons in macaques: changes following experimental parkinsonism. Brain Struct Funct 2014; 220:2721-38. [PMID: 24972960 PMCID: PMC4549378 DOI: 10.1007/s00429-014-0823-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 06/10/2014] [Indexed: 11/21/2022]
Abstract
Although type 1 cannabinoid receptors (CB1Rs) are expressed abundantly throughout the brain, the presence of type 2 cannabinoid receptors (CB2Rs) in neurons is still somewhat controversial. Taking advantage of newly designed CB1R and CB2R mRNA riboprobes, we demonstrate by PCR and in situ hybridization that transcripts for both cannabinoid receptors are present within labeled pallidothalamic-projecting neurons of control and MPTP-treated macaques, whereas the expression is markedly reduced in dyskinetic animals. Moreover, an in situ proximity ligation assay was used to qualitatively assess the presence of CB1Rs and CB2Rs, as well as CB1R–CB2R heteromers within basal ganglia output neurons in all animal groups (control, parkinsonian and dyskinetic macaques). A marked reduction in the number of CB1Rs, CB2Rs and CB1R–CB2R heteromers was found in dyskinetic animals, mimicking the observed reduction in CB1R and CB2R mRNA expression levels. The fact that chronic levodopa treatment disrupted CB1R–CB2R heteromeric complexes should be taken into consideration when designing new drugs acting on cannabinoid receptor heteromers.
Collapse
|
17
|
Iravani MM, Jenner P. Mechanisms underlying the onset and expression of levodopa-induced dyskinesia and their pharmacological manipulation. J Neural Transm (Vienna) 2011; 118:1661-90. [DOI: 10.1007/s00702-011-0698-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 08/06/2011] [Indexed: 12/18/2022]
|
18
|
Morera-Herreras T, Ruiz-Ortega JÁ, Linazasoro G, Ugedo L. Nigrostriatal denervation changes the effect of cannabinoids on subthalamic neuronal activity in rats. Psychopharmacology (Berl) 2011; 214:379-89. [PMID: 20959968 PMCID: PMC3045509 DOI: 10.1007/s00213-010-2043-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 09/30/2010] [Indexed: 02/03/2023]
Abstract
RATIONALE It is known that dopaminergic cell loss leads to increased endogenous cannabinoid levels and CB1 receptor density. OBJECTIVE The aim of this study was to evaluate the influence of dopaminergic cell loss, induced by injection of 6-hydroxydopamine, on the effects exerted by cannabinoid agonists on neuron activity in the subthalamic nucleus (STN) of anesthetized rats. RESULTS We have previously shown that Δ(9)-tetrahydrocannabinol (Δ(9)-THC) and anandamide induce both stimulation and inhibition of STN neuron activity and that endocannabinoids mediate tonic control of STN activity. Here, we show that in intact rats, the cannabinoid agonist WIN 55,212-2 stimulated all recorded STN neurons. Conversely, after dopaminergic depletion, WIN 55,212-2, Δ(9)-THC, or anandamide inhibited the STN firing rate without altering its discharge pattern, and stimulatory effects were not observed. Moreover, anandamide exerted a more intense inhibitory effect in lesioned rats in comparison to control rats. CONCLUSIONS Cannabinoids induce different effects on the STN depending on the integrity of the nigrostriatal pathway. These findings advance our understanding of the role of cannabinoids in diseases involving dopamine deficits.
Collapse
Affiliation(s)
- Teresa Morera-Herreras
- Department of Pharmacology, Faculty of Medicine, University of the Basque Country, 48940 Leioa, Vizcaya Spain
| | - José Ángel Ruiz-Ortega
- Department of Pharmacology, Faculty of Medicine, University of the Basque Country, 48940 Leioa, Vizcaya Spain
| | - Gurutz Linazasoro
- Centro Investigación Parkinson, Policlínica Gipuzkoa, San Sebastián, Gipuzkoa Spain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine, University of the Basque Country, 48940 Leioa, Vizcaya Spain
| |
Collapse
|
19
|
The effects of cannabinoid drugs on abnormal involuntary movements in dyskinetic and non-dyskinetic 6-hydroxydopamine lesioned rats. Brain Res 2010; 1363:40-8. [DOI: 10.1016/j.brainres.2010.09.086] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/22/2010] [Accepted: 09/24/2010] [Indexed: 11/22/2022]
|
20
|
Walther S, Halpern M. Cannabinoids and Dementia: A Review of Clinical and Preclinical Data. Pharmaceuticals (Basel) 2010; 3:2689-2708. [PMID: 27713372 PMCID: PMC4033945 DOI: 10.3390/ph3082689] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/05/2010] [Accepted: 08/16/2010] [Indexed: 12/28/2022] Open
Abstract
The endocannabinoid system has been shown to be associated with neurodegenerative diseases and dementia. We review the preclinical and clinical data on cannabinoids and four neurodegenerative diseases: Alzheimer’s disease (AD), Huntington’s disease (HD), Parkinson’s disease (PD) and vascular dementia (VD). Numerous studies have demonstrated an involvement of the cannabinoid system in neurotransmission, neuropathology and neurobiology of dementias. In addition, several candidate compounds have demonstrated efficacy in vitro. However, some of the substances produced inconclusive results in vivo. Therefore, only few trials have aimed to replicate the effects seen in animal studies in patients. Indeed, the literature on cannabinoid administration in patients is scarce. While preclinical findings suggest causal treatment strategies involving cannabinoids, clinical trials have only assessed the suitability of cannabinoid receptor agonists, antagonists and cannabidiol for the symptomatic treatment of dementia. Further research is needed, including in vivo models of dementia and human studies.
Collapse
Affiliation(s)
- Sebastian Walther
- University Hospital of Psychiatry, Bolligenstrasse 111, 3000 Bern 60, Switzerland;.
| | - Michael Halpern
- University Hospital of Psychiatry, Bolligenstrasse 111, 3000 Bern 60, Switzerland;.
| |
Collapse
|
21
|
Fuxe K, Marcellino D, Rivera A, Diaz-Cabiale Z, Filip M, Gago B, Roberts D, Langel U, Genedani S, Ferraro L, de la Calle A, Narvaez J, Tanganelli S, Woods A, Agnati L. Receptor–receptor interactions within receptor mosaics. Impact on neuropsychopharmacology. ACTA ACUST UNITED AC 2008; 58:415-52. [DOI: 10.1016/j.brainresrev.2007.11.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 11/26/2007] [Accepted: 11/29/2007] [Indexed: 01/01/2023]
|
22
|
Pacher P, Bátkai S, Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 2006; 58:389-462. [PMID: 16968947 PMCID: PMC2241751 DOI: 10.1124/pr.58.3.2] [Citation(s) in RCA: 1473] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The recent identification of cannabinoid receptors and their endogenous lipid ligands has triggered an exponential growth of studies exploring the endocannabinoid system and its regulatory functions in health and disease. Such studies have been greatly facilitated by the introduction of selective cannabinoid receptor antagonists and inhibitors of endocannabinoid metabolism and transport, as well as mice deficient in cannabinoid receptors or the endocannabinoid-degrading enzyme fatty acid amidohydrolase. In the past decade, the endocannabinoid system has been implicated in a growing number of physiological functions, both in the central and peripheral nervous systems and in peripheral organs. More importantly, modulating the activity of the endocannabinoid system turned out to hold therapeutic promise in a wide range of disparate diseases and pathological conditions, ranging from mood and anxiety disorders, movement disorders such as Parkinson's and Huntington's disease, neuropathic pain, multiple sclerosis and spinal cord injury, to cancer, atherosclerosis, myocardial infarction, stroke, hypertension, glaucoma, obesity/metabolic syndrome, and osteoporosis, to name just a few. An impediment to the development of cannabinoid medications has been the socially unacceptable psychoactive properties of plant-derived or synthetic agonists, mediated by CB(1) receptors. However, this problem does not arise when the therapeutic aim is achieved by treatment with a CB(1) receptor antagonist, such as in obesity, and may also be absent when the action of endocannabinoids is enhanced indirectly through blocking their metabolism or transport. The use of selective CB(2) receptor agonists, which lack psychoactive properties, could represent another promising avenue for certain conditions. The abuse potential of plant-derived cannabinoids may also be limited through the use of preparations with controlled composition and the careful selection of dose and route of administration. The growing number of preclinical studies and clinical trials with compounds that modulate the endocannabinoid system will probably result in novel therapeutic approaches in a number of diseases for which current treatments do not fully address the patients' need. Here, we provide a comprehensive overview on the current state of knowledge of the endocannabinoid system as a target of pharmacotherapy.
Collapse
Affiliation(s)
- Pál Pacher
- Laboratory of Physiological Studies, National Institute of Alcohol Abuse and Alcoholism, National Institutes of Health, 5625 Fishers Lane, Room 2S-24, Bethesda, MD 20892-9413, USA
| | | | | |
Collapse
|
23
|
Hill MN, Froese LM, Morrish AC, Sun JC, Floresco SB. Alterations in behavioral flexibility by cannabinoid CB1 receptor agonists and antagonists. Psychopharmacology (Berl) 2006; 187:245-59. [PMID: 16752140 DOI: 10.1007/s00213-006-0421-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 04/29/2006] [Indexed: 11/24/2022]
Abstract
RATIONALE Cannabinoid CB1 receptors are expressed in the prefrontal cortex, but their role in mediating executive functions such as behavioral flexibility is unclear. OBJECTIVE The present study examined the effect of pharmacological activation or blockade of the cannabinoid CB1 receptors on behavioral flexibility using a strategy set-shifting task conducted on a cross maze. MATERIALS AND METHODS In experiment 1, rats initially were trained to turn left or right while ignoring the visual cue to obtain a food; on the second test day, rats had to inhibit the previously learned rule and approach the cue to obtain the food. In experiment 2, the order of discrimination training was reversed. RESULTS Administration of the cannabinoid CB1 receptor agonist HU-210 before the set-shift on day 2 elicited dose-dependent effects on performance. A 20-microg/kg dose of HU-210 increased perseverative errors, whereas the effects of a lower, 5-microg/kg dose caused differential effects depending on whether rats were required to shift from a response to a visual-cue discrimination strategy or vice versa. Conversely, administration of a 2-mg/kg, but not a 5-mg/kg dose of the CB1 receptor antagonist AM251 reduced perseverative errors. CONCLUSIONS These data demonstrate a biphasic and dose-sensitive role for the cannabinoid system in behavioral flexibility, which in turn may have clinical implications for the role of the endocannabinoid system in psychiatric disorders where behavioral flexibility is compromised.
Collapse
Affiliation(s)
- Matthew N Hill
- Department of Psychology and the Brain Research Centre, University of British Columbia, Vancouver, V6T1Z4, BC, Canada
| | | | | | | | | |
Collapse
|
24
|
Fumagalli F, Racagni G, Riva MA. Shedding light into the role of BDNF in the pharmacotherapy of Parkinson's disease. THE PHARMACOGENOMICS JOURNAL 2006; 6:95-104. [PMID: 16402079 DOI: 10.1038/sj.tpj.6500360] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a chronic, neurodegenerative disease with a 1% incidence in the population over 55 years of age. Movement impairments represent undoubtedly the hallmark of the disorder; however, extensive evidence implicates cognitive deficits as concomitant peculiar features. Brain-derived neurotrophic factor (BDNF) colocalizes with dopamine neurons in the substantia nigra, where dopaminergic cell bodies are located, and it has recently garnered attention as a molecule crucial for cognition, a function that is also compromised in PD patients. Thus, due to its colocalization with dopaminergic neurons and its role in cognition, BDNF might possess a dual role in PD, both as a neuroprotective molecule, since its inhibition leads to loss of nigral dopaminergic neurons, and as a neuromodulator, as its enhanced expression ameliorates cognitive processes. In this review, we discuss the mechanism of action of established as well as novel drugs for PD with a particular emphasis to those interfering with BDNF biosynthesis.
Collapse
Affiliation(s)
- F Fumagalli
- Department of Pharmacological Sciences, Center of Neuropharmacology, Milan, Italy.
| | | | | |
Collapse
|
25
|
Melamede R. Harm reduction--the cannabis paradox. Harm Reduct J 2005; 2:17. [PMID: 16179090 PMCID: PMC1261530 DOI: 10.1186/1477-7517-2-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Accepted: 09/22/2005] [Indexed: 12/31/2022] Open
Abstract
This article examines harm reduction from a novel perspective. Its central thesis is that harm reduction is not only a social concept, but also a biological one. More specifically, evolution does not make moral distinctions in the selection process, but utilizes a cannabis-based approach to harm reduction in order to promote survival of the fittest. Evidence will be provided from peer-reviewed scientific literature that supports the hypothesis that humans, and all animals, make and use internally produced cannabis-like products (endocannabinoids) as part of the evolutionary harm reduction program. More specifically, endocannabinoids homeostatically regulate all body systems (cardiovascular, digestive, endocrine, excretory, immune, nervous, musculo-skeletal, reproductive). Therefore, the health of each individual is dependant on this system working appropriately.
Collapse
Affiliation(s)
- Robert Melamede
- Biology Department, University of Colorado, Colorado Springs, 80918, USA.
| |
Collapse
|
26
|
Lastres-Becker I, Molina-Holgado F, Ramos JA, Mechoulam R, Fernández-Ruiz J. Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: relevance to Parkinson's disease. Neurobiol Dis 2005; 19:96-107. [PMID: 15837565 DOI: 10.1016/j.nbd.2004.11.009] [Citation(s) in RCA: 265] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 11/19/2004] [Accepted: 11/22/2004] [Indexed: 10/25/2022] Open
Abstract
Cannabinoids have been reported to provide neuroprotection in acute and chronic neurodegeneration. In this study, we examined whether they are also effective against the toxicity caused by 6-hydroxydopamine, both in vivo and in vitro, which may be relevant to Parkinson's disease (PD). First, we evaluated whether the administration of cannabinoids in vivo reduces the neurodegeneration produced by a unilateral injection of 6-hydroxydopamine into the medial forebrain bundle. As expected, 2 weeks after the application of this toxin, a significant depletion of dopamine contents and a reduction of tyrosine hydroxylase activity in the lesioned striatum were noted, and were accompanied by a reduction in tyrosine hydroxylase-mRNA levels in the substantia nigra. None of these events occurred in the contralateral structures. Daily administration of delta9-tetrahydrocannabinol (delta9-THC) during these 2 weeks produced a significant waning in the magnitude of these reductions, whereas it failed to affect dopaminergic parameters in the contralateral structures. This effect of delta9-THC appeared to be irreversible since interruption of the daily administration of this cannabinoid after the 2-week period did not lead to the re-initiation of the 6-hydroxydopamine-induced neurodegeneration. In addition, the fact that the same neuroprotective effect was also produced by cannabidiol (CBD), another plant-derived cannabinoid with negligible affinity for cannabinoid CB1 receptors, suggests that the antioxidant properties of both compounds, which are cannabinoid receptor-independent, might be involved in these in vivo effects, although an alternative might be that the neuroprotection exerted by both compounds might be due to their anti-inflammatory potential. As a second objective, we examined whether cannabinoids also provide neuroprotection against the in vitro toxicity of 6-hydroxydopamine. We found that the non-selective cannabinoid agonist HU-210 increased cell survival in cultures of mouse cerebellar granule cells exposed to this toxin. However, this effect was significantly lesser when the cannabinoid was directly added to neuronal cultures than when these cultures were exposed to conditioned medium obtained from mixed glial cell cultures treated with HU-210, suggesting that the cannabinoid exerted its major protective effect by regulating glial influence to neurons. In summary, our results support the view of a potential neuroprotective action of cannabinoids against the in vivo and in vitro toxicity of 6-hydroxydopamine, which might be relevant for PD. Our data indicated that these neuroprotective effects might be due, among others, to the antioxidant properties of certain plant-derived cannabinoids, or exerted through the capability of cannabinoid agonists to modulate glial function, or produced by a combination of both mechanisms.
Collapse
Affiliation(s)
- Isabel Lastres-Becker
- Departamento de Bioquímica y Biología Molecular III, Facultad de Medicina, Universidad Complutense, 28040-Madrid, Spain
| | | | | | | | | |
Collapse
|
27
|
van der Stelt M, Fox SH, Hill M, Crossman AR, Petrosino S, Di Marzo V, Brotchie JM. A role for endocannabinoids in the generation of parkinsonism and levodopa-induced dyskinesia in MPTP-lesioned non-human primate models of Parkinson's disease. FASEB J 2005; 19:1140-2. [PMID: 15894565 DOI: 10.1096/fj.04-3010fje] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endocannabinoids and cannabinoid CB1 receptors play a role in the control of movement by modulating GABA, glutamate, and other neurotransmitters throughout the basal ganglia. Roles for abnormalities in endocannabinoid signaling in Parkinson's disease (PD) and the major side effect of current treatments, levodopa-induced dyskinesia (LID), have been suggested by rodent studies. Here we show that signaling by endocannabinoids contributes to the pathophysiology of parkinsonism and LID in MPTP-lesioned, non-human primate models of Parkinson's disease. In MPTP-lesioned marmosets previously treated with levodopa to establish LID, attenuation of CB1 signaling by systemic administration of rimonabant (1 and 3 mg/kg) had anti-parkinsonian actions, equivalent to a 71% increase in motor activity at 3 mg/kg. Rimonabant did not elicit dyskinesia. Co-administration of levodopa (8 mg/kg) and rimonabant (1 and 3 mg/kg) resulted in significantly less dyskinesia than levodopa alone, without significantly affecting the anti-parkinsonian action of levodopa. These data suggest that enhanced endocannabinoid signaling may be involved in the pathophysiology of both parkinsonism and LID. To define potential mechanisms by which such a role might be mediated, we determined the levels of the endocannabinoids anandamide and 2-arachidonyl glycerol (2-AG) throughout the basal ganglia in normal and three groups of MPTP-lesioned cynomolgus monkeys (untreated; acutely treated with L-DOPA, non-dyskinetic; long-term treated, with levodopa-induced dyskinesia). In the untreated, MPTP-lesioned primate, parkinsonism was associated with increases in both 2-AG (+88%) and anandamide (+49%) in the striatum, and of 2-AG (+97%) in the substantia nigra, changes that are consistent with the previously suggested role for endocannabinoids in mechanisms attempting to compensate for loss of dopamine in untreated parkinsonism. Increased levels of anandamide (+34%) in the external globus pallidus of MPTP-lesioned animals were normalized by levodopa treatment and may contribute to the generation of parkinsonian symptoms. However, no clear alteration in endocannabinoid levels could be correlated with the expression of LID. These data highlight the potential roles played by endocannabinoids and CB1 in PD and LID and suggest the need for further research to pursue the multiple therapeutic opportunities for manipulating this system in movement disorders.
Collapse
Affiliation(s)
- Mario van der Stelt
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, NA, Italy
| | | | | | | | | | | | | |
Collapse
|