1
|
More KJ, Kaur H, Simpson AGB, Spiegel FW, Dacks JB. Contractile vacuoles: a rapidly expanding (and occasionally diminishing?) understanding. Eur J Protistol 2024; 94:126078. [PMID: 38688044 DOI: 10.1016/j.ejop.2024.126078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
Osmoregulation is the homeostatic mechanism essential for the survival of organisms in hypoosmotic and hyperosmotic conditions. In freshwater or soil dwelling protists this is frequently achieved through the action of an osmoregulatory organelle, the contractile vacuole. This endomembrane organelle responds to the osmotic challenges and compensates by collecting and expelling the excess water to maintain the cellular osmolarity. As compared with other endomembrane organelles, this organelle is underappreciated and under-studied. Here we review the reported presence or absence of contractile vacuoles across eukaryotic diversity, as well as the observed variability in the structure, function, and molecular machinery of this organelle. Our findings highlight the challenges and opportunities for constructing cellular and evolutionary models for this intriguing organelle.
Collapse
Affiliation(s)
- Kiran J More
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Harpreet Kaur
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Alastair G B Simpson
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Frederick W Spiegel
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic; Centre for Life's Origins and Evolution, Department of Genetics, Evolution, & Environment, University College, London, United Kingdom.
| |
Collapse
|
2
|
Cheng CY, Romero DP, Zoltner M, Yao MC, Turkewitz AP. Structure and dynamics of the contractile vacuole complex in Tetrahymena thermophila. J Cell Sci 2023; 136:jcs261511. [PMID: 37902010 PMCID: PMC10729820 DOI: 10.1242/jcs.261511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
The contractile vacuole complex (CVC) is a dynamic and morphologically complex membrane organelle, comprising a large vesicle (bladder) linked with a tubular reticulum (spongiome). CVCs provide key osmoregulatory roles across diverse eukaryotic lineages, but probing the mechanisms underlying their structure and function is hampered by the limited tools available for in vivo analysis. In the experimentally tractable ciliate Tetrahymena thermophila, we describe four proteins that, as endogenously tagged constructs, localize specifically to distinct CVC zones. The DOPEY homolog Dop1p and the CORVET subunit Vps8Dp localize both to the bladder and spongiome but with different local distributions that are sensitive to osmotic perturbation, whereas the lipid scramblase Scr7p colocalizes with Vps8Dp. The H+-ATPase subunit Vma4 is spongiome specific. The live imaging permitted by these probes revealed dynamics at multiple scales including rapid exchange of CVC-localized and soluble protein pools versus lateral diffusion in the spongiome, spongiome extension and branching, and CVC formation during mitosis. Although the association with DOP1 and VPS8D implicate the CVC in endosomal trafficking, both the bladder and spongiome might be isolated from bulk endocytic input.
Collapse
Affiliation(s)
- Chao-Yin Cheng
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Daniel P. Romero
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Martin Zoltner
- Biotechnology Biomedicine Centre of the Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Meng-Chao Yao
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Aaron P. Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Cheng CY, Hernández J, Turkewitz AP. VPS8D, a CORVET subunit, is required to maintain the contractile vacuole complex in Tetrahymena thermophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566071. [PMID: 37986963 PMCID: PMC10659352 DOI: 10.1101/2023.11.07.566071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Contractile vacuole complexes (CVCs) are complex osmoregulatory organelles, with vesicular (bladder) and tubular (spongiome) subcompartments. The mechanisms that underlie their formation and maintenance within the eukaryotic endomembrane network are poorly understood. In the Ciliate Tetrahymena thermophila, six differentiated CORVETs (class C core vacuole/endosome tethering complexes), with Vps8 subunits designated A-F, are likely to direct endosomal trafficking. Vps8Dp localizes to both bladder and spongiome. We show by inducible knockdown that VPS8D is essential to CVC organization and function. VPS8D knockdown increased susceptibility to osmotic shock, tolerated in the wildtype but triggering irreversible lethal swelling in the mutant. The knockdown rapidly triggered contraction of the spongiome and lengthened the period of the bladder contractile cycle. More prolonged knockdown resulted in disassembly of both the spongiome and bladder, and dispersal of proteins associated with those compartments. In stressed cells where the normally singular bladder is replaced by numerous vesicles bearing bladder markers, Vps8Dp concentrated conspicuously at long-lived inter-vesicle contact sites, consistent with tethering activity. Similarly, Vps8Dp in cell-free preparations accumulated at junctions formed after vacuoles came into close contact. Also consistent with roles for Vps8Dp in tethering and/or fusion were the emergence in knockdown cells of multiple vacuole-related structures, replacing the single bladder.
Collapse
Affiliation(s)
- Chao-Yin Cheng
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Josefina Hernández
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Aaron P. Turkewitz
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Velle KB, Garner RM, Beckford TK, Weeda M, Liu C, Kennard AS, Edwards M, Fritz-Laylin LK. A conserved pressure-driven mechanism for regulating cytosolic osmolarity. Curr Biol 2023; 33:3325-3337.e5. [PMID: 37478864 PMCID: PMC10529079 DOI: 10.1016/j.cub.2023.06.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/24/2023] [Accepted: 06/22/2023] [Indexed: 07/23/2023]
Abstract
Controlling intracellular osmolarity is essential to all cellular life. Cells that live in hypo-osmotic environments, such as freshwater, must constantly battle water influx to avoid swelling until they burst. Many eukaryotic cells use contractile vacuoles to collect excess water from the cytosol and pump it out of the cell. Although contractile vacuoles are essential to many species, including important pathogens, the mechanisms that control their dynamics remain unclear. To identify the basic principles governing contractile vacuole function, we investigate here the molecular mechanisms of two species with distinct vacuolar morphologies from different eukaryotic lineages: the discoban Naegleria gruberi and the amoebozoan slime mold Dictyostelium discoideum. Using quantitative cell biology, we find that although these species respond differently to osmotic challenges, they both use vacuolar-type proton pumps for filling contractile vacuoles and actin for osmoregulation, but not to power water expulsion. We also use analytical modeling to show that cytoplasmic pressure is sufficient to drive water out of contractile vacuoles in these species, similar to findings from the alveolate Paramecium multimicronucleatum. These analyses show that cytoplasmic pressure is sufficient to drive contractile vacuole emptying for a wide range of cellular pressures and vacuolar geometries. Because vacuolar-type proton-pump-dependent contractile vacuole filling and pressure-dependent emptying have now been validated in three eukaryotic lineages that diverged well over a billion years ago, we propose that this represents an ancient eukaryotic mechanism of osmoregulation.
Collapse
Affiliation(s)
- Katrina B Velle
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Rikki M Garner
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Tatihana K Beckford
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Makaela Weeda
- Department of Biology, Amherst College, Amherst, MA 01002, USA
| | - Chunzi Liu
- Department of Applied Mathematics, Harvard University, Cambridge, MA 02138, USA
| | - Andrew S Kennard
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Marc Edwards
- Department of Biology, Amherst College, Amherst, MA 01002, USA
| | | |
Collapse
|
5
|
Velle KB, Garner RM, Beckford TK, Weeda M, Liu C, Kennard AS, Edwards M, Fritz-Laylin LK. A conserved pressure-driven mechanism for regulating cytosolic osmolarity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.529730. [PMID: 36909496 PMCID: PMC10002747 DOI: 10.1101/2023.03.01.529730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Controlling intracellular osmolarity is essential to all cellular life. Cells that live in hypo-osmotic environments like freshwater must constantly battle water influx to avoid swelling until they burst. Many eukaryotic cells use contractile vacuoles to collect excess water from the cytosol and pump it out of the cell. Although contractile vacuoles are essential to many species, including important pathogens, the mechanisms that control their dynamics remain unclear. To identify basic principles governing contractile vacuole function, we here investigate the molecular mechanisms of two species with distinct vacuolar morphologies from different eukaryotic lineagesâ€"the discoban Naegleria gruberi , and the amoebozoan slime mold Dictyostelium discoideum . Using quantitative cell biology we find that, although these species respond differently to osmotic challenges, they both use actin for osmoregulation, as well as vacuolar-type proton pumps for filling contractile vacuoles. We also use analytical modeling to show that cytoplasmic pressure is sufficient to drive water out of contractile vacuoles in these species, similar to findings from the alveolate Paramecium multimicronucleatum . Because these three lineages diverged well over a billion years ago, we propose that this represents an ancient eukaryotic mechanism of osmoregulation.
Collapse
Affiliation(s)
- Katrina B. Velle
- Department of Biology, University of Massachusetts Amherst, Amherst, MA
| | - Rikki M. Garner
- Department of Systems Biology, Harvard Medical School, Boston, MA
| | | | | | - Chunzi Liu
- Department of Applied Mathematics, Harvard University, Cambridge, MA
| | - Andrew S. Kennard
- Department of Biology, University of Massachusetts Amherst, Amherst, MA
| | - Marc Edwards
- Department of Biology, Amherst College, Amherst, MA
| | | |
Collapse
|
6
|
Fadil SA, Janetopoulos C. The Polarized Redistribution of the Contractile Vacuole to the Rear of the Cell is Critical for Streaming and is Regulated by PI(4,5)P2-Mediated Exocytosis. Front Cell Dev Biol 2022; 9:765316. [PMID: 35928786 PMCID: PMC9344532 DOI: 10.3389/fcell.2021.765316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/20/2021] [Indexed: 12/05/2022] Open
Abstract
Dictyostelium discoideum amoebae align in a head to tail manner during the process of streaming during fruiting body formation. The chemoattractant cAMP is the chemoattractant regulating cell migration during this process and is released from the rear of cells. The process by which this cAMP release occurs has eluded investigators for many decades, but new findings suggest that this release can occur through expulsion during contractile vacuole (CV) ejection. The CV is an organelle that performs several functions inside the cell including the regulation of osmolarity, and discharges its content via exocytosis. The CV localizes to the rear of the cell and appears to be part of the polarity network, with the localization under the influence of the plasma membrane (PM) lipids, including the phosphoinositides (PIs), among those is PI(4,5)P2, the most abundant PI on the PM. Research on D. discoideum and neutrophils have shown that PI(4,5)P2 is enriched at the rear of migrating cells. In several systems, it has been shown that the essential regulator of exocytosis is through the exocyst complex, mediated in part by PI(4,5)P2-binding. This review features the role of the CV complex in D. discoideum signaling with a focus on the role of PI(4,5)P2 in regulating CV exocytosis and localization. Many of the regulators of these processes are conserved during evolution, so the mechanisms controlling exocytosis and membrane trafficking in D. discoideum and mammalian cells will be discussed, highlighting their important functions in membrane trafficking and signaling in health and disease.
Collapse
Affiliation(s)
- Sana A. Fadil
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
- Department of Natural product, Faculty of Pharmacy, King Abdulaziz University, Saudia Arabia
| | - Chris Janetopoulos
- Department of Biological Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
- The Science Research Institute, Albright College, Reading, PA, United States
- The Department of Cell Biology at Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Chris Janetopoulos,
| |
Collapse
|
7
|
O'Day DH, Mathavarajah S, Myre MA, Huber RJ. Calmodulin-mediated events during the life cycle of the amoebozoan Dictyostelium discoideum. Biol Rev Camb Philos Soc 2020; 95:472-490. [PMID: 31774219 PMCID: PMC7079120 DOI: 10.1111/brv.12573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
Abstract
This review focusses on the functions of intracellular and extracellular calmodulin, its target proteins and their binding proteins during the asexual life cycle of Dictyostelium discoideum. Calmodulin is a primary regulatory protein of calcium signal transduction that functions throughout all stages. During growth, it mediates autophagy, the cell cycle, folic acid chemotaxis, phagocytosis, and other functions. During mitosis, specific calmodulin-binding proteins translocate to alternative locations. Translocation of at least one cell adhesion protein is calmodulin dependent. When starved, cells undergo calmodulin-dependent chemotaxis to cyclic AMP generating a multicellular pseudoplasmodium. Calmodulin-dependent signalling within the slug sets up a defined pattern and polarity that sets the stage for the final events of morphogenesis and cell differentiation. Transected slugs undergo calmodulin-dependent transdifferentiation to re-establish the disrupted pattern and polarity. Calmodulin function is critical for stalk cell differentiation but also functions in spore formation, events that begin in the pseudoplasmodium. The asexual life cycle restarts with the calmodulin-dependent germination of spores. Specific calmodulin-binding proteins as well as some of their binding partners have been linked to each of these events. The functions of extracellular calmodulin during growth and development are also discussed. This overview brings to the forefront the central role of calmodulin, working through its numerous binding proteins, as a primary downstream regulator of the critical calcium signalling pathways that have been well established in this model eukaryote. This is the first time the function of calmodulin and its target proteins have been documented through the complete life cycle of any eukaryote.
Collapse
Affiliation(s)
- Danton H. O'Day
- Cell and Systems BiologyUniversity of TorontoTorontoOntarioM5S 3G5Canada
- Department of BiologyUniversity of Toronto MississaugaMississaugaOntarioL5L 1C6Canada
| | | | - Michael A. Myre
- Department of Biological Sciences, Kennedy College of SciencesUniversity of Massachusetts LowellLowellMassachusetts01854USA
| | - Robert J. Huber
- Department of BiologyTrent UniversityPeterboroughOntarioK9L 0G2Canada
| |
Collapse
|
8
|
McLaren MD, Mathavarajah S, Huber RJ. Recent Insights into NCL Protein Function Using the Model Organism Dictyostelium discoideum. Cells 2019; 8:cells8020115. [PMID: 30717401 PMCID: PMC6406579 DOI: 10.3390/cells8020115] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 12/16/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of devastating neurological disorders that have a global distribution and affect people of all ages. Commonly known as Batten disease, this form of neurodegeneration is linked to mutations in 13 genetically distinct genes. The precise mechanisms underlying the disease are unknown, in large part due to our poor understanding of the functions of NCL proteins. The social amoeba Dictyostelium discoideum has proven to be an exceptional model organism for studying a wide range of neurological disorders, including the NCLs. The Dictyostelium genome contains homologs of 11 of the 13 NCL genes. Its life cycle, comprised of both single-cell and multicellular phases, provides an excellent system for studying the effects of NCL gene deficiency on conserved cellular and developmental processes. In this review, we highlight recent advances in NCL research using Dictyostelium as a biomedical model.
Collapse
Affiliation(s)
- Meagan D McLaren
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada.
| | - Sabateeshan Mathavarajah
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada.
| | - Robert J Huber
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada.
| |
Collapse
|
9
|
Mathavarajah S, McLaren MD, Huber RJ. Cln3 function is linked to osmoregulation in a Dictyostelium model of Batten disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3559-3573. [PMID: 30251676 DOI: 10.1016/j.bbadis.2018.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/27/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022]
Abstract
Mutations in CLN3 cause a juvenile form of neuronal ceroid lipofuscinosis (NCL), commonly known as Batten disease. Currently, there is no cure for NCL and the mechanisms underlying the disease are not well understood. In the social amoeba Dictyostelium discoideum, the CLN3 homolog, Cln3, localizes predominantly to the contractile vacuole (CV) system. This dynamic organelle functions in osmoregulation, and intriguingly, osmoregulatory defects have been observed in mammalian cell models of CLN3 disease. Therefore, we used Dictyostelium to further study the involvement of CLN3 in this conserved cellular process. First, we assessed the localization of GFP-Cln3 during mitosis and cytokinesis, where CV system function is essential. GFP-Cln3 localized to the CV system during mitosis and cln3- cells displayed defects in cytokinesis. The recovery of cln3- cells from hypotonic stress and their progression through multicellular development was delayed and these effects were exaggerated when cells were treated with ammonium chloride. In addition, Cln3-deficiency reduced the viability of cells during hypotonic stress and impaired the integrity of spores. During hypertonic stress, Cln3-deficiency reduced cell viability and inhibited development. We then performed RNA sequencing to gain insight into the molecular pathways underlying the sensitivity of cln3- cells to osmotic stress. This analysis revealed that cln3-deficiency upregulated the expression of tpp1A, the Dictyostelium homolog of human TPP1/CLN2. We used this information to show a correlated increase in Tpp1 enzymatic activity in cln3- cells. In total, our study provides new insight in the mechanisms underlying the role of CLN3 in osmoregulation and neurodegeneration.
Collapse
Affiliation(s)
| | - Meagan D McLaren
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada.
| |
Collapse
|
10
|
Steffens A, Jakoby M, Hülskamp M. Physical, Functional and Genetic Interactions between the BEACH Domain Protein SPIRRIG and LIP5 and SKD1 and Its Role in Endosomal Trafficking to the Vacuole in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:1969. [PMID: 29209342 PMCID: PMC5701936 DOI: 10.3389/fpls.2017.01969] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/01/2017] [Indexed: 05/19/2023]
Abstract
Beige and Chediak Higashi (BEACH) domain-containing proteins (BDCPs) are facilitators of membrane-dependent cellular processes in eukaryotes. Mutations in BDCPs cause malfunctions of endosomal compartments in various cell types. Recently, the molecular analysis of the BDCP homolog gene SPIRRIG (SPI) has revealed a molecular function in P-bodies and the regulation of RNA stability. We therefore aimed to analyze, whether SPI has also a role in membrane-dependent processes. In this study, we show that SPI physically interacts with endosomal sorting complex required for transport associated ATPase Suppressor of K+-transport growth defect1 (SKD1) and its positive regulator, LYST Interacting Protein 5 (LIP5) and report genetic interactions between SPI and SKD1 and LIP5. We further show that the endosomal transport route of soluble proteins to the lytic vacuole is disturbed in spi lip5 double mutants but not in the single mutants. These vacuolar transport defects were suppressed by additional expression of SKD1. Our results indicate that the BEACH domain protein SPI has in addition to a role in P-bodies a function in endosomal transport routes.
Collapse
|
11
|
Albers T, Maniak M, Beitz E, von Bülow J. The C Isoform of Dictyostelium Tetraspanins Localizes to the Contractile Vacuole and Contributes to Resistance against Osmotic Stress. PLoS One 2016; 11:e0162065. [PMID: 27597994 PMCID: PMC5012570 DOI: 10.1371/journal.pone.0162065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/16/2016] [Indexed: 12/20/2022] Open
Abstract
Tetraspanins (Tsps) are membrane proteins that are widely expressed in eukaryotic organisms. Only recently, Tsps have started to acquire relevance as potential new drug targets as they contribute, via protein-protein interactions, to numerous pathophysiological processes including infectious diseases and cancer. However, due to a high number of isoforms and functional redundancy, knowledge on specific functions of most Tsps is still scarce. We set out to characterize five previously annotated Tsps, TspA-E, from Dictyostelium discoideum, a model for studying proteins that have human orthologues. Using reverse transcriptase PCRs, we found mRNAs for TspA-E in the multicellular slug stage, whereas vegetative cells expressed only TspA, TspC and, to a lesser extent, TspD. We raised antibodies against TspA, TspC and TspD and detected endogenous TspA, as well as heterologously expressed TspA and TspC by Western blot. N-deglycosylation assays and mutational analyses showed glycosylation of TspA and TspC in vivo. GFP-tagged Tsps co-localized with the proton pump on the contractile vacuole network. Deletion strains of TspC and TspD exibited unaltered growth, adhesion, random motility and development. Yet, tspC− cells showed a defect in coping with hypo-osmotic stress, due to accumulation of contractile vacuoles, but heterologous expression of TspC rescued their phenotype. In conclusion, our data fill a gap in Dictyostelium research and open up the possibility that Tsps in contractile vacuoles of e.g. Trypanosoma may one day constitute a valuable drug target for treating sleeping sickness, one of the most threatening tropical diseases.
Collapse
Affiliation(s)
- Tineke Albers
- Department of Medicinal and Pharmaceutical Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Markus Maniak
- Department of Cell Biology, University of Kassel, Kassel, Germany
| | - Eric Beitz
- Department of Medicinal and Pharmaceutical Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Julia von Bülow
- Department of Medicinal and Pharmaceutical Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
- * E-mail:
| |
Collapse
|
12
|
Barrett A, Hermann GJ. A Caenorhabditis elegans Homologue of LYST Functions in Endosome and Lysosome-Related Organelle Biogenesis. Traffic 2016; 17:515-35. [PMID: 26822177 DOI: 10.1111/tra.12381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 01/20/2023]
Abstract
LYST-1 is a Caenorhabditis elegans BEACH domain containing protein (BDCP) homologous to LYST and NBEAL2, BDCPs controlling organelle biogenesis that are implicated in human disease. Unlike the three other BDCPs encoded by C. elegans, mutations in lyst-1 lead to smaller lysosome-related organelles (LROs), smaller lysosomes, increased numbers of LROs and decreased numbers of early endosomes. lyst-1(-) mutations do not obviously disrupt protein trafficking to lysosomes or LROs, however, the formation of gut granules is diminished.
Collapse
Affiliation(s)
- Alec Barrett
- Department of Biology, Lewis & Clark College, 0615 SW Palatine Hill Rd., Portland, OR, 97219, USA
| | - Greg J Hermann
- Department of Biology, Lewis & Clark College, 0615 SW Palatine Hill Rd., Portland, OR, 97219, USA
| |
Collapse
|
13
|
Parkinson K, Baines AE, Keller T, Gruenheit N, Bragg L, North RA, Thompson CR. Calcium-dependent regulation of Rab activation and vesicle fusion by an intracellular P2X ion channel. Nat Cell Biol 2014; 16:87-98. [PMID: 24335649 PMCID: PMC3942655 DOI: 10.1038/ncb2887] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/30/2013] [Indexed: 11/24/2022]
Abstract
Rab GTPases play key roles in the delivery, docking and fusion of intracellular vesicles. However, the mechanism by which spatial and temporal regulation of Rab GTPase activity is controlled is poorly understood. Here we describe a mechanism by which localized calcium release through a vesicular ion channel controls Rab GTPase activity. We show that activation of P2XA, an intracellular ion channel localized to the Dictyostelium discoideum contractile vacuole system, results in calcium efflux required for downregulation of Rab11a activity and efficient vacuole fusion. Vacuole fusion and Rab11a downregulation require the activity of CnrF, an EF-hand-containing Rab GAP found in a complex with Rab11a and P2XA. CnrF Rab GAP activity for Rab11a is enhanced by the presence of calcium and the EF-hand domain. These findings suggest that P2XA activation results in vacuolar calcium release, which triggers activation of CnrF Rab GAP activity and subsequent downregulation of Rab11a to allow vacuole fusion.
Collapse
Affiliation(s)
- Katie Parkinson
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Abigail E. Baines
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Thomas Keller
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Nicole Gruenheit
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Laricia Bragg
- Faculty of Medical and Human Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | - R. Alan North
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
- Faculty of Medical and Human Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Christopher R.L. Thompson
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| |
Collapse
|
14
|
Linkner J, Witte G, Zhao H, Junemann A, Nordholz B, Runge-Wollmann P, Lappalainen P, Faix J. The inverse BAR-domain protein IBARa drives membrane remodelling to control osmoregulation, phagocytosis and cytokinesis. J Cell Sci 2014; 127:1279-92. [DOI: 10.1242/jcs.140756] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Here, we analyzed the single I-BAR family member IBARa from D. discoideum. The X-ray structure of the N-terminal I-BAR domain solved at 2.2 Å resolution revealed an all-α helical structure that self-associates into a 165 Å zeppelin-shaped antiparallel dimer. The structural data are consistent with its shape in solution obtained by small-angle X-ray-scattering. Cosedimentation, fluorescence-anisotropy as well as fluorescence and electron microscopy revealed the I-BAR domain to bind preferentially to phosphoinositide-containing vesicles and drive the formation of negatively curved tubules. Immunofluorescence labelling further showed accumulation of endogenous IBARa at the tips of filopodia, the rim of constricting phagocytic cups, in foci connecting dividing cells during the final stage of cytokinesis, and most prominently at the osmoregulatory contractile vacuole (CV). Consistently, IBARa-null mutants displayed defects in CV formation and discharge, growth, phagocytosis and mitotic cell division, whereas filopodia formation was not compromised. Of note, IBARa-null mutants were also strongly impaired in cell spreading. Together, these data suggest IBARa to constitute an important regulator of numerous cellular processes intimately linked with the dynamic rearrangement of cellular membranes.
Collapse
|
15
|
Contractile Vacuole Complex—Its Expanding Protein Inventory. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 306:371-416. [DOI: 10.1016/b978-0-12-407694-5.00009-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
16
|
New insights into roles of acidocalcisomes and contractile vacuole complex in osmoregulation in protists. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:69-113. [PMID: 23890380 DOI: 10.1016/b978-0-12-407695-2.00002-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
While free-living protists are usually subjected to hyposmotic environments, parasitic protists are also in contact with hyperosmotic habitats. Recent work in one of these parasites, Trypanosoma cruzi, has revealed that its contractile vacuole complex, which usually collects and expels excess water as a mechanism of regulatory volume decrease after hyposmotic stress, has also a role in cell shrinking when the cells are submitted to hyperosmotic stress. Trypanosomes also have an acidic calcium store rich in polyphosphate (polyP), named the acidocalcisome, which is involved in their response to osmotic stress. Here, we review newly emerging insights on the role of acidocalcisomes and the contractile vacuole complex in the cellular response to hyposmotic and hyperosmotic stresses. We also review the current state of knowledge on the composition of these organelles and their other roles in calcium homeostasis and protein trafficking.
Collapse
|
17
|
Peracino B, Buracco S, Bozzaro S. The Nramp (Slc11) proteins regulate development, resistance to pathogenic bacteria and iron homeostasis in Dictyostelium discoideum. J Cell Sci 2012; 126:301-11. [PMID: 22992462 DOI: 10.1242/jcs.116210] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Dictyostelium discoideum genome harbors two genes encoding members of the Nramp superfamily, which is conserved from bacteria (MntH proteins) to humans (Slc11 proteins). Nramps are proton-driven metal ion transporters with a preference for iron and manganese. Acquisition of these metal cations is vital for all cells, as they act as redox cofactors and regulate key cellular processes, such as DNA synthesis, electron transport, energy metabolism and oxidative stress. Dictyostelium Nramp1 (Slc11a1), like its mammalian ortholog, mediates resistance to infection by invasive bacteria. We have extended the analysis to the nramp2 gene, by generating single and double nramp1/nramp2 knockout mutants and cells expressing GFP fusion proteins. In contrast to Nramp1, which is recruited to phagosomes and macropinosomes, the Nramp2 protein is localized exclusively in the membrane of the contractile vacuole, a vesicular tubular network regulating cellular osmolarity. Both proteins colocalize with the V-H(+)-ATPase, which can provide the electrogenic force for vectorial transport. Like nramp1, nramp2 gene disruption affects resistance to Legionella pneumophila. Disrupting both genes additionally leads to defects in development, with strong delay in cell aggregation, formation of large streams and multi-tipped aggregates. Single and double mutants display differential sensitivity to cell growth under conditions of iron overload or depletion. The data favor the hypothesis that Nramp1 and Nramp2, under control of the V-H(+)-ATPase, synergistically regulate iron homeostasis, with the contractile vacuole possibly acting as a store for metal cations.
Collapse
Affiliation(s)
- Barbara Peracino
- Department of Clinical and Biological Sciences, University of Turin, AOU S. Luigi, 10043 Orbassano, Italy
| | | | | |
Collapse
|
18
|
Essid M, Gopaldass N, Yoshida K, Merrifield C, Soldati T. Rab8a regulates the exocyst-mediated kiss-and-run discharge of the Dictyostelium contractile vacuole. Mol Biol Cell 2012; 23:1267-82. [PMID: 22323285 PMCID: PMC3315810 DOI: 10.1091/mbc.e11-06-0576] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
A molecular dissection of contractile vacuole (CV) discharge shows that Rab8a is recruited to the CV a few seconds before the exocyst. Together they tether it to the plasma membrane and commit it to fusion. GTP hydrolysis is necessary for vacuole detethering, a process in which LvsA, a protein of the Chédiak–Higashi family, plays a crucial role. Water expulsion by the contractile vacuole (CV) in Dictyostelium is carried out by a giant kiss-and-run focal exocytic event during which the two membranes are only transiently connected but do not completely merge. We present a molecular dissection of the GTPase Rab8a and the exocyst complex in tethering of the contractile vacuole to the plasma membrane, fusion, and final detachment. Right before discharge, the contractile vacuole bladder sequentially recruits Drainin, a Rab11a effector, Rab8a, the exocyst complex, and LvsA, a protein of the Chédiak–Higashi family. Rab8a recruitment precedes the nucleotide-dependent arrival of the exocyst to the bladder by a few seconds. A dominant-negative mutant of Rab8a strongly binds to the exocyst and prevents recruitment to the bladder, suggesting that a Rab8a guanine nucleotide exchange factor activity is associated with the complex. Absence of Drainin leads to overtethering and blocks fusion, whereas expression of constitutively active Rab8a allows fusion but blocks vacuole detachment from the plasma membrane, inducing complete fragmentation of tethered vacuoles. An indistinguishable phenotype is generated in cells lacking LvsA, implicating this protein in postfusion detethering. Of interest, overexpression of a constitutively active Rab8a mutant reverses the lvsA-null CV phenotype.
Collapse
Affiliation(s)
- Miriam Essid
- Départment de Biochimie, Faculté des Sciences, Université de Genève, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
19
|
Ulrich PN, Jimenez V, Park M, Martins VP, Atwood J, Moles K, Collins D, Rohloff P, Tarleton R, Moreno SNJ, Orlando R, Docampo R. Identification of contractile vacuole proteins in Trypanosoma cruzi. PLoS One 2011; 6:e18013. [PMID: 21437209 PMCID: PMC3060929 DOI: 10.1371/journal.pone.0018013] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Accepted: 02/22/2011] [Indexed: 11/19/2022] Open
Abstract
Contractile vacuole complexes are critical components of cell volume regulation
and have been shown to have other functional roles in several free-living
protists. However, very little is known about the functions of the contractile
vacuole complex of the parasite Trypanosoma cruzi, the
etiologic agent of Chagas disease, other than a role in osmoregulation.
Identification of the protein composition of these organelles is important for
understanding their physiological roles. We applied a combined proteomic and
bioinfomatic approach to identify proteins localized to the contractile vacuole.
Proteomic analysis of a T. cruzi fraction enriched for
contractile vacuoles and analyzed by one-dimensional gel electrophoresis and
LC-MS/MS resulted in the addition of 109 newly detected proteins to the group of
expressed proteins of epimastigotes. We also identified different peptides that
map to at least 39 members of the dispersed gene family 1 (DGF-1) providing
evidence that many members of this family are simultaneously expressed in
epimastigotes. Of the proteins present in the fraction we selected several
homologues with known localizations in contractile vacuoles of other organisms
and others that we expected to be present in these vacuoles on the basis of
their potential roles. We determined the localization of each by expression as
GFP-fusion proteins or with specific antibodies. Six of these putative proteins
(Rab11, Rab32, AP180, ATPase subunit B, VAMP1, and phosphate transporter)
predominantly localized to the vacuole bladder. TcSNARE2.1, TcSNARE2.2, and
calmodulin localized to the spongiome. Calmodulin was also cytosolic. Our
results demonstrate the utility of combining subcellular fractionation,
proteomic analysis, and bioinformatic approaches for localization of organellar
proteins that are difficult to detect with whole cell methodologies. The CV
localization of the proteins investigated revealed potential novel roles of
these organelles in phosphate metabolism and provided information on the
potential participation of adaptor protein complexes in their biogenesis.
Collapse
Affiliation(s)
- Paul N. Ulrich
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - Veronica Jimenez
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - Miyoung Park
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - Vicente P. Martins
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - James Atwood
- Complex Carbohydrate Research Center,
University of Georgia, Athens, Georgia, United States of America
| | - Kristen Moles
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - Dalis Collins
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - Peter Rohloff
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - Rick Tarleton
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - Silvia N. J. Moreno
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
| | - Ron Orlando
- Complex Carbohydrate Research Center,
University of Georgia, Athens, Georgia, United States of America
| | - Roberto Docampo
- Center for Tropical and Emerging Global
Diseases and Department of Cellular Biology, University of Georgia, Athens,
Georgia, United States of America
- * E-mail:
| |
Collapse
|
20
|
Zamboni A, Di Carli M, Guzzo F, Stocchero M, Zenoni S, Ferrarini A, Tononi P, Toffali K, Desiderio A, Lilley KS, Pè ME, Benvenuto E, Delledonne M, Pezzotti M. Identification of putative stage-specific grapevine berry biomarkers and omics data integration into networks. PLANT PHYSIOLOGY 2010; 154:1439-59. [PMID: 20826702 PMCID: PMC2971619 DOI: 10.1104/pp.110.160275] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 09/08/2010] [Indexed: 05/19/2023]
Abstract
The analysis of grapevine (Vitis vinifera) berries at the transcriptomic, proteomic, and metabolomic levels can provide great insight into the molecular events underlying berry development and postharvest drying (withering). However, the large and very different data sets produced by such investigations are difficult to integrate. Here, we report the identification of putative stage-specific biomarkers for berry development and withering and, to our knowledge, the first integrated systems-level study of these processes. Transcriptomic, proteomic, and metabolomic data were integrated using two different strategies, one hypothesis free and the other hypothesis driven. A multistep hypothesis-free approach was applied to data from four developmental stages and three withering intervals, with integration achieved using a hierarchical clustering strategy based on the multivariate bidirectional orthogonal projections to latent structures technique. This identified stage-specific functional networks of linked transcripts, proteins, and metabolites, providing important insights into the key molecular processes that determine the quality characteristics of wine. The hypothesis-driven approach was used to integrate data from three withering intervals, starting with subdata sets of transcripts, proteins, and metabolites. We identified transcripts and proteins that were modulated during withering as well as specific classes of metabolites that accumulated at the same time and used these to select subdata sets of variables. The multivariate bidirectional orthogonal projections to latent structures technique was then used to integrate the subdata sets, identifying variables representing selected molecular processes that take place specifically during berry withering. The impact of this holistic approach on our knowledge of grapevine berry development and withering is discussed.
Collapse
|
21
|
Betapudi V, Egelhoff TT. Roles of an unconventional protein kinase and myosin II in amoeba osmotic shock responses. Traffic 2009; 10:1773-84. [PMID: 19843280 DOI: 10.1111/j.1600-0854.2009.00992.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The contractile vacuole (CV) is a dynamic organelle that enables Dictyostelium amoeba and other protist to maintain osmotic homeostasis by expelling excess water. In the present study, we have uncovered a mechanism that coordinates the mechanics of the CV with myosin II, regulated by VwkA, an unconventional protein kinase that is conserved in an array of protozoa. Green fluorescent protein (GFP)-VwkA fusion proteins localize persistently to the CV during both filling and expulsion phases of water. In vwkA null cells, the established CV marker dajumin still localizes to the CV, but these structures are large, spherical and severely impaired for discharge. Furthermore, myosin II cortical localization and assembly are abnormal in vwkA null cells. Parallel analysis of wild-type cells treated with myosin II inhibitors or of myosin II null cells also results in enlarged CVs with impaired dynamics. We suggest that the myosin II cortical cytoskeleton, regulated by VwkA, serves a critical conserved role in the periodic contractions of the CV, as part of the osmotic protective mechanism of protozoa.
Collapse
Affiliation(s)
- Venkaiah Betapudi
- Department of Cell Biology, The Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | |
Collapse
|
22
|
Saedler R, Jakoby M, Marin B, Galiana-Jaime E, Hülskamp M. The cell morphogenesis gene SPIRRIG in Arabidopsis encodes a WD/BEACH domain protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 59:612-21. [PMID: 19392685 DOI: 10.1111/j.1365-313x.2009.03900.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
WD40/BEACH domain proteins have been implicated in membrane trafficking and membrane composition events in Dictyostelium and Drosophila. In this paper, we show that the Arabidopsis SPIRRIG (SPI) gene encodes a WD40/BEACH domain protein. The cellular analysis revealed fragmented vacuoles in root hairs similar to those found in the corresponding Dictyostelium mutants, suggesting a related cellular function. The phenotypic analysis revealed that spi mutants share all phenotypic aspects of mutants in the actin polymerization-regulating ARP2/3 pathway, including distorted trichomes, less lobing of epidermal pavement cells, disconnected epidermal cells on various organs, and shorter root hairs. This complete phenotypic overlap suggests that this WD40/BEACH domain protein and the actin-regulating ARP2/3 pathway are involved in similar growth processes.
Collapse
Affiliation(s)
- Rainer Saedler
- University of Cologne, Botanical Institute, 50931 Cologne, Germany
| | | | | | | | | |
Collapse
|
23
|
Kirsten JH, Xiong Y, Davis CT, Singleton CK. Subcellular localization of ammonium transporters in Dictyostelium discoideum. BMC Cell Biol 2008; 9:71. [PMID: 19108721 PMCID: PMC2653498 DOI: 10.1186/1471-2121-9-71] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Accepted: 12/24/2008] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND With the exception of vertebrates, most organisms have plasma membrane associated ammonium transporters which primarily serve to import a source of nitrogen for nutritional purposes. Dictyostelium discoideum has three ammonium transporters, Amts A, B and C. Our present work used fluorescent fusion proteins to determine the cellular localization of the Amts and tested the hypothesis that the transporters mediate removal of ammonia generated endogenously from the elevated protein catabolism common to many protists. RESULTS Using RFP and YFP fusion constructs driven by the actin 15 promoter, we found that the three ammonium transporters were localized on the plasma membrane and on the membranes of subcellular organelles. AmtA and AmtB were localized on the membranes of endolysosomes and phagosomes, with AmtB further localized on the membranes of contractile vacuoles. AmtC also was localized on subcellular organelles when it was stabilized by coexpression with either the AmtA or AmtB fusion transporter. The three ammonium transporters exported ammonia linearly with regard to time during the first 18 hours of the developmental program as revealed by reduced export in the null strains. The fluorescently tagged transporters rescued export when expressed in the null strains, and thus they were functional transporters. CONCLUSION Unlike ammonium transporters in most organisms, which import NH3/NH4+ as a nitrogen source, those of Dictyostelium export ammonia/ammonium as a waste product from extensive catabolism of exogenously derived and endogenous proteins. Localization on proteolytic organelles and on the neutral contractile vacuole suggests that Dictyostelium ammonium transporters may have unique subcellular functions and play a role in the maintenance of intracellular ammonium distribution. A lack of correlation between the null strain phenotypes and ammonia excretion properties of the ammonium transporters suggests that it is not the excretion function that is important for coupling ammonia levels to the slug versus culmination choice, but rather a sensor and/or signaling function of these proteins that is important.
Collapse
Affiliation(s)
- Janet H Kirsten
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville TN 37235-1634, USA
| | - Yanhua Xiong
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville TN 37235-1634, USA
| | - Carter T Davis
- LSU School of Medicine – New Orleans, 2020 Gravier Street, New Orleans, LA 70112, USA
| | - Charles K Singleton
- Department of Biological Sciences, Vanderbilt University, VU Station B 351634, Nashville TN 37235-1634, USA
| |
Collapse
|
24
|
Du F, Edwards K, Shen Z, Sun B, De Lozanne A, Briggs S, Firtel RA. Regulation of contractile vacuole formation and activity in Dictyostelium. EMBO J 2008; 27:2064-76. [PMID: 18636095 DOI: 10.1038/emboj.2008.131] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Accepted: 06/16/2008] [Indexed: 11/09/2022] Open
Abstract
The contractile vacuole (CV) system is the osmoregulatory organelle required for survival for many free-living cells under hypotonic conditions. We identified a new CV regulator, Disgorgin, a TBC-domain-containing protein, which translocates to the CV membrane at the late stage of CV charging and regulates CV-plasma membrane fusion and discharging. disgorgin(-) cells produce large CVs due to impaired CV-plasma membrane fusion. Disgorgin is a specific GAP for Rab8A-GTP, which also localizes to the CV and whose hydrolysis is required for discharging. We demonstrate that Drainin, a previously identified TBC-domain-containing protein, lies upstream from Disgorgin in this pathway. Unlike Disgorgin, Drainin lacks GAP activity but functions as a Rab11A effector. The BEACH family proteins LvsA and LvsD were identified in a suppressor/enhancer screen of the disgorgin(-) large CV phenotype and demonstrated to have distinct functions in regulating CV formation. Our studies help define the pathways controlling CV function.
Collapse
Affiliation(s)
- Fei Du
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0380, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Malchow D, Lusche DF, De Lozanne A, Schlatterer C. A fast Ca2+-induced Ca2+-release mechanism in Dictyostelium discoideum. Cell Calcium 2007; 43:521-30. [PMID: 17854889 DOI: 10.1016/j.ceca.2007.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 07/16/2007] [Accepted: 08/09/2007] [Indexed: 11/17/2022]
Abstract
In vertebrate cells calcium-induced calcium release (CICR) is thought to be responsible for rapid cytosolic Ca(2+) elevations despite the occurrence of strong Ca(2+) buffering within the cytosol. In Dictyostelium, a CICR mechanism has not been reported. While analyzing Ca(2+) regulation in a vesicular fraction of Dictyostelium rich in Ca(2+)-flux activity, containing contractile vacuoles (CV) as the main component of acidic Ca(2+) stores and ER, we detected a rapid Ca(2+) change upon addition of Ca(2+) (CIC). CIC was three times larger in active stores accumulating Ca(2+) than before Ca(2+) uptake and in inactivated stores. Ca(2+) release was demonstrated with the calmodulin antagonist W7 that inhibits the V-type H(+)ATPase activity and Ca(2+) uptake of acidic Ca(2+) stores. W7 caused a rapid and large increase of extravesicular Ca(2+) ([Ca(2+)](e)), much faster and larger than thapsigargin (Tg), a Ca(2+)-uptake inhibitor of the ER. W7 treatment blocked CIC indicating that a large part of CIC is due to Ca(2+) release. The height of CIC depended on the filling state of the Ca(2+) stores. CIC was virtually unchanged in the iplA(-) strain that lacks a putative IP(3) or ryanodine receptor thought to be located at the endoplasmic reticulum. By contrast, CIC was reduced in two mutants, HGR8 and lvsA(-), that are impaired in acidic Ca(2+)-store function. Purified Ca(2+) stores enriched in CV still displayed CIC, indicating that CV are a source of Ca(2+)-induced Ca(2+) release. CIC-defective mutants were altered in their oscillatory properties. The irregularity of the HGR8 oscillation suggests that the principal oscillator is affected in this mutant.
Collapse
Affiliation(s)
- Dieter Malchow
- Department of Biology, University of Konstanz, P.O. Box 5560, D-78457 Konstanz, Germany.
| | | | | | | |
Collapse
|
27
|
Fountain SJ, Parkinson K, Young MT, Cao L, Thompson CRL, North RA. An intracellular P2X receptor required for osmoregulation in Dictyostelium discoideum. Nature 2007; 448:200-3. [PMID: 17625565 PMCID: PMC3942652 DOI: 10.1038/nature05926] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 05/22/2007] [Indexed: 11/09/2022]
Abstract
P2X receptors are membrane ion channels gated by extracellular ATP that are found widely in vertebrates, but not previously in microbes. Here we identify a weakly related gene in the genome of the social amoeba Dictyostelium discoideum, and show, with the use of heterologous expression in human embryonic kidney cells, that it encodes a membrane ion channel activated by ATP (30-100 muM). Site-directed mutagenesis revealed essential conservation of structure-function relations with P2X receptors of higher organisms. The receptor was insensitive to the usual P2X antagonists but was blocked by nanomolar concentrations of Cu2+ ions. In D. discoideum, the receptor was found on intracellular membranes, with prominent localization to an osmoregulatory organelle, the contractile vacuole. Targeted disruption of the gene in D. discoideum resulted in cells that were unable to regulate cell volume in hypotonic conditions. Cell swelling in these mutant cells was accompanied by a marked inhibition of contractile vacuole emptying. These findings demonstrate a new functional role for P2X receptors on intracellular organelles, in this case in osmoregulation.
Collapse
Affiliation(s)
- Samuel J Fountain
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
28
|
Kypri E, Schmauch C, Maniak M, De Lozanne A. The BEACH Protein LvsB Is Localized on Lysosomes and Postlysosomes and Limits Their Fusion with Early Endosomes. Traffic 2007; 8:774-83. [PMID: 17488289 DOI: 10.1111/j.1600-0854.2007.00567.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Chediak-Higashi syndrome (CHS) is a genetic disorder caused by the loss of the BEACH protein Lyst. Impaired lysosomal function in CHS patients results in many physiological problems, including immunodeficiency, albinism and neurological problems. Dictyostelium LvsB is the ortholog of mammalian Lyst and is also important for lysosomal function. A knock-in approach was used to tag LvsB with green fluorescent protein (GFP) and express it from its single chromosomal locus. GFP-LvsB was observed on late lysosomes and postlysosomes. Loss of LvsB resulted in enlarged postlysosomes, in the abnormal localization of proton pumps on postlysosomes and their abnormal acidification. The abnormal postlysosomes in LvsB-null cells were produced by the inappropriate fusion of early endosomal compartments with postlysosomal compartments. The intermixing of compartments resulted in a delayed transit of fluid-phase marker through the endolysosomal system. These results support the model that LvsB and Lyst proteins act as negative regulators of fusion by limiting the heterotypic fusion of early endosomes with postlysosomal compartments.
Collapse
Affiliation(s)
- Elena Kypri
- Section of Molecular Cell and Developmental Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
29
|
Damer CK, Bayeva M, Kim PS, Ho LK, Eberhardt ES, Socec CI, Lee JS, Bruce EA, Goldman-Yassen AE, Naliboff LC. Copine A is required for cytokinesis, contractile vacuole function, and development in Dictyostelium. EUKARYOTIC CELL 2007; 6:430-42. [PMID: 17259548 PMCID: PMC1828924 DOI: 10.1128/ec.00322-06] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Copines make up a family of soluble, calcium-dependent, membrane binding proteins found in a variety of eukaryotic organisms. In an earlier study, we identified six copine genes in the Dictyostelium discoideum genome and focused our studies on cpnA. Our previous localization studies of green fluorescent protein-tagged CpnA in Dictyostelium suggested that CpnA may have roles in contractile vacuole function, endolysosomal trafficking, and development. To test these hypotheses, we created a cpnA- knockout strain, and here we report the initial characterization of the mutant phenotype. The cpnA- cells exhibited normal growth rates and a slight cytokinesis defect. When placed in starvation conditions, cpnA- cells appeared to aggregate into mounds and form fingers with normal timing; however, they were delayed or arrested in the finger stage. When placed in water, cpnA- cells formed unusually large contractile vacuoles, indicating a defect in contractile vacuole function, while endocytosis and phagocytosis rates for the cpnA- cells were similar to those seen for wild-type cells. These studies indicate that CpnA plays a role in cytokinesis and contractile vacuole function and is required for normal development, specifically in the later stages prior to culmination. We also used real-time reverse transcription-PCR to determine the expression patterns of all six copine genes during development. The six copine genes were expressed in vegetative cells, with each gene exhibiting a distinct pattern of expression throughout development. All of the copine genes except cpnF showed an upregulation of mRNA expression at one or two developmental transitions, suggesting that copines may be important regulators of Dictyostelium development.
Collapse
Affiliation(s)
- Cynthia K Damer
- Biology Department, Vassar College, Box 566, 124 Raymond Ave., Poughkeepsie, NY 12604, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Malchow D, Lusche DF, Schlatterer C, De Lozanne A, Müller-Taubenberger A. The contractile vacuole in Ca2+-regulation in Dictyostelium: its essential function for cAMP-induced Ca2+-influx. BMC DEVELOPMENTAL BIOLOGY 2006; 6:31. [PMID: 16787542 PMCID: PMC1513554 DOI: 10.1186/1471-213x-6-31] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 06/20/2006] [Indexed: 11/10/2022]
Abstract
BACKGROUND cAMP-induced Ca2+-influx in Dictyostelium is controlled by at least two non-mitochondrial Ca2+-stores: acidic stores and the endoplasmic reticulum (ER). The acidic stores may comprise the contractile vacuole network (CV), the endosomal compartment and acidocalcisomes. Here the role of CV in respect to function as a potential Ca2+-store was investigated. RESULTS Dajumin-GFP labeled contractile vacuoles were purified 7-fold by anti-GFP-antibodies in a magnetic field. The purified CV were shown for the first time to accumulate and release Ca2+. Release of Ca2+ was elicited by arachidonic acid or the calmodulin antagonist W7, the latter due to inhibition of the pump. The characteristics of Ca2+-transport and Ca2+-release of CV were compared to similarly purified vesicles of the ER labeled by calnexin-GFP. Since the CV proved to be a highly efficient Ca2+-compartment we wanted to know whether or not it takes part in cAMP-induced Ca2+-influx. We made use of the LvsA--mutant expected to display reduced Ca2+-transport due to loss of calmodulin. We found a severe reduction of cAMP-induced Ca2+-influx into whole cells. CONCLUSION The contractile vacuoles in Dictyostelium represent a highly efficient acidic Ca2+-store that is required for cAMP-induced Ca2+-influx.
Collapse
Affiliation(s)
- Dieter Malchow
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
| | - Daniel F Lusche
- Department of Biology, University of Konstanz, D-78457 Konstanz, Germany
- WM Keck Research Facility, Department of Biological Sciences 014 BBE Iowa City, IA 52242, USA
| | | | - Arturo De Lozanne
- Section of Molecular Cell Developmental Biology, University of Texas at Austin, Austin, Tex 78712, USA
| | - Annette Müller-Taubenberger
- MaxPlanckInstitute for Biochemistry, D-82152 Martinsried, Germany
- Institute for Cell Biology (ABI), Ludwig Maximilians University München, D-80336 München, Germany
| |
Collapse
|
31
|
Sultana H, Rivero F, Blau-Wasser R, Schwager S, Balbo A, Bozzaro S, Schleicher M, Noegel AA. Cyclase-Associated Protein is Essential for the Functioning of the Endo-Lysosomal System and Provides a Link to the Actin Cytoskeleton. Traffic 2005; 6:930-46. [PMID: 16138906 DOI: 10.1111/j.1600-0854.2005.00330.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Data from mutant analysis in yeast and Dictyostelium indicate a role for the cyclase-associated protein (CAP) in endocytosis and vesicle transport. We have used genetic and biochemical approaches to identify novel interacting partners of Dictyostelium CAP to help explain its molecular interactions in these processes. Cyclase-associated protein associates and interacts with subunits of the highly conserved vacuolar H(+)-ATPase (V-ATPase) and co-localizes to some extent with the V-ATPase. Furthermore, CAP is essential for maintaining the structural organization, integrity and functioning of the endo-lysosomal system, as distribution and morphology of V-ATPase- and Nramp1-decorated membranes were disturbed in a CAP mutant (CAP bsr) accompanied by an increased endosomal pH. Moreover, concanamycin A (CMA), a specific inhibitor of the V-ATPase, had a more severe effect on CAP bsr than on wild-type cells, and the mutant did not show adaptation to the drug. Also, the distribution of green fluorescent protein-CAP was affected upon CMA treatment in the wildtype and recovered after adaptation. Distribution of the V-ATPase in CAP bsr was drastically altered upon hypo-osmotic shock, and growth was slower and reached lower saturation densities in the mutant under hyper-osmotic conditions. Taken together, our data unravel a link of CAP with the actin cytoskeleton and endocytosis and suggest that CAP is an essential component of the endo-lysosomal system in Dictyostelium.
Collapse
Affiliation(s)
- Hameeda Sultana
- Center for Biochemistry and Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, 50931 Köln, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Most eukaryotes have several members of the BEACH family of proteins but the molecular function of these large proteins remains unknown. The Dictyostelium BEACH protein LvsA is essential for cytokinesis and contractile vacuole activity. The functional contribution of different portions of LvsA was tested here by deletion analysis. The C-terminal WD domain was important for protein stability and C-terminal deletions resulted in loss of LvsA function. In contrast, N-terminal deletions yielded abundant protein expression that could be assayed for function. Despite very low sequence conservation of the N-terminal portion of LvsA, this region is important for its function in vivo. Deletion of 689 N-terminal amino acids produced a protein that was functional in cytokinesis but partially functional in osmoregulation. Further deletions resulted in the complete loss of LvsA function. Using in vitro fractionation assays we found that LvsA sedimented with membranes but that this association does not require the N-terminal portion of LvsA. Interestingly, the association of LvsA with the contractile vacuole was perturbed by the loss of drainin, a protein important for vacuole function. In drainin-null cells, LvsA bound irreversibly to engorged contractile vacuoles that fail to expel water. These experiments help delineate the biochemical and physiological requirements for function of one important BEACH protein, LvsA.
Collapse
Affiliation(s)
- Wei-I Wu
- Section of Molecular Cell & Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | |
Collapse
|
33
|
Shiflett SL, Vaughn MB, Huynh D, Kaplan J, Ward DM. Bph1p, the Saccharomyces cerevisiae Homologue of CHS1/Beige, Functions in Cell Wall Formation and Protein Sorting. Traffic 2004; 5:700-10. [PMID: 15296494 DOI: 10.1111/j.1600-0854.2004.00213.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations in the Chediak-Higashi syndrome gene (CHS1) and its murine homologue Beige result in the formation of enlarged lysosomes. BPH1 (Beige Protein Homologue 1) encodes the Saccharomyces cerevisiae homologue of CHS1/Beige. BPH1 is not essential and the encoded protein was found to be both cytosolic and peripherally bound to a membrane. Neither disruption nor overexpression of BPH1 affected vacuole morphology as assessed by fluorescence microscopy. The deltabph1 strain showed an impaired growth on defined synthetic media containing potassium acetate buffered below pH 4.25, increased sensitivity to calcofluor white, and increased agglutination in response to low pH. A library screen identified VPS9, FLO1, FLO9, BTS1 and OKP1 as high copy suppressors of the growth defect of deltabph1 on both low pH potassium acetate and calcofluor white. The deltabph1 strain demonstrated a mild defect in sorting vacuolar components, including increased secretion of carboxypeptidase Y and missorting of alkaline phosphatase. Overexpression of VPS9, BTS1 and OKP1 suppressed the carboxypeptidase Y secretion defect of deltabph1. Overexpression of BPH1 was found to suppress the calcofluor white sensitivity of a class E VPS deletion strain, deltavta1. Together, these data suggest that Bph1p associates with a membrane and is involved in protein sorting and cell wall formation.
Collapse
Affiliation(s)
- Shelly L Shiflett
- Department of Pathology, Division of Cell Biology and Immunology, University of Utah Health Science Center, Salt Lake City, Utah 84132, USA
| | | | | | | | | |
Collapse
|
34
|
Iwamoto M, Allen RD. Uptake and rapid transfer of fluorescent ceramide analogues to acidosomes (late endosomes) in Paramecium. J Histochem Cytochem 2004; 52:557-65. [PMID: 15100234 DOI: 10.1177/002215540405200501] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The ciliated protozoan Paramecium incorporates sphingolipids into its cell membranes. However, it is still unclear if these sphingolipids are metabolically synthesized in the cell or if their precursors are taken up from exogenous materials. Here we studied the route of uptake of fluorescence-labeled analogues of ceramide. Fluorescent ceramide was taken up rapidly independent of phagosome formation. Cold treatment caused a decrease in uptake, while reduction in the amount of cytosolic ATP induced by NaN(3) and deoxyglucose resulted in accumulation without internalization of fluorescence at the plasma membrane. These results suggest that uptake of fluorescent ceramide occurs at the plasma membrane, that it is an ATP-dependent process, and that it is not a result of simple diffusion. At first intracellular fluorescence appeared principally in the posterior half of the cell and then spread throughout the cytosol. In particular, a high accumulation of fluorescence occurred in association with acidosomes (late endosome or multivesicular body-like vesicles) that bind to the surface of nascent and young phagosomes. Therefore, in the Paramecium cell a significant proportion of ceramide apparently enters the cell by endocytosis and is quickly relayed to acidosomes along the endocytic pathway before becoming part of the digestive vacuole (phagoacidosome) membrane.
Collapse
Affiliation(s)
- Masaaki Iwamoto
- Pacific Biomedical Research Center, University of Hawaii at Manoa, Honolulu 96822, USA
| | | |
Collapse
|
35
|
Chen J, Lu Y, Xu J, Huang Y, Cheng H, Hu G, Luo C, Lou M, Cao G, Xie Y, Ying K. Identification and characterization of NBEAL1, a novel human neurobeachin-like 1 protein gene from fetal brain, which is up regulated in glioma. ACTA ACUST UNITED AC 2004; 125:147-55. [PMID: 15193433 DOI: 10.1016/j.molbrainres.2004.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2004] [Indexed: 11/30/2022]
Abstract
The Beige and Chediak-Higashi (BEACH) domain is highly conserved in a large family of eukaryotic proteins, and is crucial for their functions in vesicle trafficking, membrane dynamics and receptor signaling. From a fetal brain cDNA library, we isolated a cDNA of 3858 bp encoding a novel human BEACH protein, which was named as human neurobeachin-like 1 (NBEAL1) gene. The cDNA had an open reading frame (ORF) of 3006 bp encoding a putative 1001 amino acid protein. The NBEAL1 gene was located on human chromosome 2q33-2q34 and consisted of 25 exons spanning about 73 kb of the human genome. PSORT analysis indicated that the NBEAL1 protein contained a vacuolar-targeting motif ILPK, which suggested the protein might be located in the cell lysosome. The expression pattern was examined by reverse transcription/polymerase chain reaction (RT-PCR), which showed that the transcripts were highly expressed in the human brain, kidney, prostate, and testis while lowly in the ovary, small intestine, colon and peripheral blood leukocyte. In addition, the RT-PCR result of and Northern blot showed that the novel gene was highly expressed in the biopsies of different grade glioma, especially in that of lower grade ones, which suggested it might be correlative with the glioma.
Collapse
Affiliation(s)
- Juxiang Chen
- Department of Neurosurgery, ChangZheng Hospital, Second Military Medical University, Shanghai 200003, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ward DM, Shiflett SL, Huynh D, Vaughn MB, Prestwich G, Kaplan J. Use of expression constructs to dissect the functional domains of the CHS/beige protein: identification of multiple phenotypes. Traffic 2003; 4:403-15. [PMID: 12753649 DOI: 10.1034/j.1600-0854.2003.00093.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Chediak-Higashi Syndrome (CHS) and the orthologous murine disorder beige are characterized at the cellular level by the presence of giant lysosomes. The CHS1/Beige protein is a 3787 amino acid protein of unknown function. To determine functional domains of the CHS1/Beige protein, we generated truncated constructs of the gene/protein. These truncated proteins were transiently expressed in Cos-7 or HeLa cells and their effect on membrane trafficking was examined. Beige is apparently a cytosolic protein, as are most transiently expressed truncated Beige constructs. Expression of the Beige construct FM (amino acids 1-2037) in wild-type cells led to enlarged lysosomes. Similarly, expression of a 5.5-kb region (amino acids 2035-3787) of the carboxyl terminal of Beige (22B) also resulted in enlarged lysosomes. Expression of FM solely affected lysosome size, whereas expression of 22B led to alterations in lysosome size, changes in the Golgi and eventually cell death. The two constructs could be used to further dissect phenotypes resulting from loss of the Beige protein. CHS or beigej fibroblasts show an absence of nuclear staining using a monoclonal antibody directed against phosphatidylinositol 4,5 bisphosphate [PtdIns(4,5) P2]. Transformation of beige j fibroblasts with a YAC containing the full-length Beige gene resulted in the normalization of lysosome size and nuclear PtdIns(4,5)P2 staining. Expression of the carboxyl dominant negative construct 22B led to loss of nuclear PtdIns(4,5)P2 staining. Expression of the FM dominant negative clone did not alter nuclear PtdIns(4,5) P2 localization. These results suggest that the Beige protein interacts with at least two different partners and that the Beige protein affects cellular events, such as nuclear PtdIns(4,5)P2 localization, in addition to lysosome size.
Collapse
Affiliation(s)
- Diane McVey Ward
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah 84132, USA
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
Endocytosis in protozoa is often regarded as largely different from the pathways operating in mammalian cells. Experiments in the amoeba Dictyostelium, one of the genetically tractable single-celled organisms, have allowed us to manipulate the flow through endocytic compartments and to study the dynamic distribution of molecules by means of green fluorescent protein fusions. This review attempts to compile the molecular data available from Dictyostelium and assign them to specific steps of internalization by phagocytosis or macropinocytosis and to subsequent stages of the endocytic pathway. Parallels to phagocytes of the mammalian immune system are emphasized. The major distinctive feature between mammalian phagocytes and free-living cells is the need for osmoregulation. Therefore Dictyostelium cells possess a contractile vacuole that has occasionally obscured analysis of endocytosis but is now found to be entirely separate from endocytic organelles. In conclusion, the potential of Dictyostelium amoebas to provide a model system of mammalian phagocytes is ever increasing.
Collapse
Affiliation(s)
- Markus Maniak
- Department of Cell Biology, Universitaet Kassel, 34109 Kassel, Germany
| |
Collapse
|
38
|
Wang N, Wu WI, De Lozanne A. BEACH family of proteins: phylogenetic and functional analysis of six Dictyostelium BEACH proteins. J Cell Biochem 2003; 86:561-70. [PMID: 12210762 DOI: 10.1002/jcb.10254] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The beige and Chediak-Higashi syndrome (BEACH)-domain containing proteins constitute a new family of proteins found in all eukaryotes. The function of these proteins, which include the Chediak-Higashi syndrome (CHS) protein, Neurobeachin, LvsA, and FAN, is still poorly understood. To understand the diversity of this novel protein family, we analyzed a large array of BEACH-family protein sequences from several organisms. Comparison of all these sequences suggests that they can be classified into five distinct groups that may represent five distinct functional classes. In Dictyostelium we identified six proteins in this family, named LvsA-F, that belong to four of those classes. To test the function of these proteins in Dictyostelium we created disruption mutants in each of the lvs genes. Phenotypic analyses of these mutants indicate that LvsA is required for cytokinesis and osmoregulation and LvsB functions in lysosomal traffic. The LvsC-F proteins are not required for these or other processes such as growth and development. These results strongly support the concept that BEACH proteins from different classes have distinct cellular functions. Having six distinct BEACH proteins, Dictyostelium should be an excellent model system to dissect the molecular function of this interesting family of proteins.
Collapse
Affiliation(s)
- Ning Wang
- Section of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | |
Collapse
|
39
|
Abstract
The BEACH family of proteins is a novel group of proteins with diverse roles in eukaryotic cells. The identifying feature of these proteins is the BEACH domain named after the founding members of this family, the mouse beige and the human Chediak-Higashi syndrome proteins. Although all BEACH proteins share a similar structural organization, they appear to have very distinct cellular roles, ranging from lysosomal traffic to apoptosis and cytokinesis. Very little is currently known about the function of most of these proteins, few binding-partner proteins have been identified, and no molecular mechanism for any of these proteins has been discovered. Thus, it is important to establish good model systems for the study of these novel proteins. Dictyostelium contains six BEACH proteins that can be classified into four subclasses. Two of them, LvsA and LvsB, have clearly distinct roles in the cell. LvsA is localized on the contractile vacuole membrane and is essential for cytokinesis and osmoregulation. LvsB is most similar in sequence to the mammalian beige/Chediak-Higashi syndrome proteins and shares with them a common function in lysosomal trafficking. Structural and functional analysis of these proteins in Dictyostelium will help elucidate the function of this enigmatic novel family of proteins.
Collapse
Affiliation(s)
- Arturo De Lozanne
- Section of Molecular Cell & Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
40
|
Shiflett SL, Kaplan J, Ward DM. Chediak-Higashi Syndrome: a rare disorder of lysosomes and lysosome related organelles. PIGMENT CELL RESEARCH 2002; 15:251-7. [PMID: 12100490 DOI: 10.1034/j.1600-0749.2002.02038.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chediak-Higashi Syndrome (CHS) is a rare autosomal recessive disorder characterized by severe immunologic defects including recurrent bacterial infections, impaired chemotaxis and abnormal natural killer (NK) cell function. Patients with this syndrome exhibit other symptoms such as an associated lymphoproliferative syndrome, bleeding tendencies, partial albinism and peripheral neuropathies. The classic diagnostic feature of CHS is the presence of huge lysosomes and cytoplasmic granules within cells. Similar defects are found in other mammals, the most well studied being the beige mouse and Aleutian mink. A positional cloning approach resulted in the identification of the Beige gene on chromosome 13 in mice and the CHS1/LYST gene on chromosome 1 in humans. The protein encoded by this gene is 3801 amino acids and is highly conserved throughout evolution. The identification of CHS1/Beige has defined a family of genes containing a common BEACH motif. The function of these proteins in vesicular trafficking remains unknown.
Collapse
Affiliation(s)
- Shelly L Shiflett
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | | | | |
Collapse
|
41
|
Harris E, Wang N, Wu Wl WL, Weatherford A, De Lozanne A, Cardelli J. Dictyostelium LvsB mutants model the lysosomal defects associated with Chediak-Higashi syndrome. Mol Biol Cell 2002; 13:656-69. [PMID: 11854420 PMCID: PMC65657 DOI: 10.1091/mbc.01-09-0454] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Chediak-Higashi syndrome is a genetic disorder caused by mutations in a gene encoding a protein named LYST in humans ("lysosomal trafficking regulator") or Beige in mice. A prominent feature of this disease is the accumulation of enlarged lysosome-related granules in a variety of cells. The genome of Dictyostelium discoideum contains six genes encoding proteins that are related to LYST/Beige in amino acid sequence, and disruption of one of these genes, lvsA (large volume sphere), results in profound defects in cytokinesis. To better understand the function of this family of proteins in membrane trafficking, we have analyzed mutants disrupted in lvsA, lvsB, lvsC, lvsD, lvsE, and lvsF. Of all these, only lvsA and lvsB mutants displayed interesting phenotypes in our assays. lvsA-null cells exhibited defects in phagocytosis and contained abnormal looking contractile vacuole membranes. Loss of LvsB, the Dictyostelium protein most similar to LYST/Beige, resulted in the formation of enlarged vesicles that by multiple criteria appeared to be acidic lysosomes. The rates of endocytosis, phagocytosis, and fluid phase exocytosis were normal in lvsB-null cells. Also, the rates of processing and the efficiency of targeting of lysosomal alpha-mannosidase were normal, although lvsB mutants inefficiently retained alpha-mannosidase, as well as two other lysosomal cysteine proteinases. Finally, results of pulse-chase experiments indicated that an increase in fusion rates accounted for the enlarged lysosomes in lvsB-null cells, suggesting that LvsB acts as a negative regulator of fusion. Our results support the notion that LvsB/LYST/Beige function in a similar manner to regulate lysosome biogenesis.
Collapse
Affiliation(s)
- Edward Harris
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130, USA
| | | | | | | | | | | |
Collapse
|