1
|
Müller GA, Müller TD. (Patho)Physiology of Glycosylphosphatidylinositol-Anchored Proteins I: Localization at Plasma Membranes and Extracellular Compartments. Biomolecules 2023; 13:biom13050855. [PMID: 37238725 DOI: 10.3390/biom13050855] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (APs) are anchored at the outer leaflet of plasma membranes (PMs) of all eukaryotic organisms studied so far by covalent linkage to a highly conserved glycolipid rather than a transmembrane domain. Since their first description, experimental data have been accumulating for the capability of GPI-APs to be released from PMs into the surrounding milieu. It became evident that this release results in distinct arrangements of GPI-APs which are compatible with the aqueous milieu upon loss of their GPI anchor by (proteolytic or lipolytic) cleavage or in the course of shielding of the full-length GPI anchor by incorporation into extracellular vesicles, lipoprotein-like particles and (lyso)phospholipid- and cholesterol-harboring micelle-like complexes or by association with GPI-binding proteins or/and other full-length GPI-APs. In mammalian organisms, the (patho)physiological roles of the released GPI-APs in the extracellular environment, such as blood and tissue cells, depend on the molecular mechanisms of their release as well as the cell types and tissues involved, and are controlled by their removal from circulation. This is accomplished by endocytic uptake by liver cells and/or degradation by GPI-specific phospholipase D in order to bypass potential unwanted effects of the released GPI-APs or their transfer from the releasing donor to acceptor cells (which will be reviewed in a forthcoming manuscript).
Collapse
Affiliation(s)
- Günter A Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| | - Timo D Müller
- Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC) at Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstädter Landstraße 1, 85764 Oberschleissheim, Germany
- German Center for Diabetes Research (DZD), 85764 Oberschleissheim, Germany
| |
Collapse
|
2
|
Aguilera-Romero A, Lucena R, Sabido-Bozo S, Muñiz M. Impact of sphingolipids on protein membrane trafficking. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159334. [PMID: 37201864 DOI: 10.1016/j.bbalip.2023.159334] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Membrane trafficking is essential to maintain the spatiotemporal control of protein and lipid distribution within membrane systems of eukaryotic cells. To achieve their functional destination proteins are sorted and transported into lipid carriers that construct the secretory and endocytic pathways. It is an emerging theme that lipid diversity might exist in part to ensure the homeostasis of these pathways. Sphingolipids, a chemical diverse type of lipids with special physicochemical characteristics have been implicated in the selective transport of proteins. In this review, we will discuss current knowledge about how sphingolipids modulate protein trafficking through the endomembrane systems to guarantee that proteins reach their functional destination and the proposed underlying mechanisms.
Collapse
Affiliation(s)
- Auxiliadora Aguilera-Romero
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| | - Rafael Lucena
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Susana Sabido-Bozo
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain
| | - Manuel Muñiz
- Department of Cell Biology, University of Seville, 41012 Seville, Spain; Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain.
| |
Collapse
|
3
|
Celauro L, Zattoni M, Legname G. Prion receptors, prion internalization, intra- and inter-cellular transport. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 196:15-41. [PMID: 36813357 DOI: 10.1016/bs.pmbts.2022.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Luigi Celauro
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Marco Zattoni
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.
| |
Collapse
|
4
|
Sandoval L, Labarca M, Retamal C, Sánchez P, Larraín J, González A. Sonic hedgehog is basolaterally sorted from the TGN and transcytosed to the apical domain involving Dispatched-1 at Rab11-ARE. Front Cell Dev Biol 2022; 10:833175. [PMID: 36568977 PMCID: PMC9768590 DOI: 10.3389/fcell.2022.833175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
Hedgehog proteins (Hhs) secretion from apical and/or basolateral domains occurs in different epithelial cells impacting development and tissue homeostasis. Palmitoylation and cholesteroylation attach Hhs to membranes, and Dispatched-1 (Disp-1) promotes their release. How these lipidated proteins are handled by the complex secretory and endocytic pathways of polarized epithelial cells remains unknown. We show that polarized Madin-Darby canine kidney cells address newly synthesized sonic hedgehog (Shh) from the TGN to the basolateral cell surface and then to the apical domain through a transcytosis pathway that includes Rab11-apical recycling endosomes (Rab11-ARE). Both palmitoylation and cholesteroylation contribute to this sorting behavior, otherwise Shh lacking these lipid modifications is secreted unpolarized. Disp-1 mediates first basolateral secretion from the TGN and then transcytosis from Rab11-ARE. At the steady state, Shh predominates apically and can be basolaterally transcytosed. This Shh trafficking provides several steps for regulation and variation in different epithelia, subordinating the apical to the basolateral secretion.
Collapse
Affiliation(s)
- Lisette Sandoval
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Mariana Labarca
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia y Vida, Fundación Ciencia para la Vida, Santiago, Chile
| | - Claudio Retamal
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia y Vida, Fundación Ciencia para la Vida, Santiago, Chile
| | - Paula Sánchez
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Larraín
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alfonso González
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia y Vida, Fundación Ciencia para la Vida, Santiago, Chile,Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile,*Correspondence: Alfonso González,
| |
Collapse
|
5
|
Abstract
At least 150 human proteins are glycosylphosphatidylinositol-anchored proteins (GPI-APs). The protein moiety of GPI-APs lacking transmembrane domains is anchored to the plasma membrane with GPI covalently attached to the C-terminus. The GPI consists of the conserved core glycan, phosphatidylinositol and glycan side chains. The entire GPI-AP is anchored to the outer leaflet of the lipid bilayer by insertion of fatty chains of phosphatidylinositol. Because of GPI-dependent membrane anchoring, GPI-APs have some unique characteristics. The most prominent feature of GPI-APs is their association with membrane microdomains or membrane rafts. In the polarized cells such as epithelial cells, many GPI-APs are exclusively expressed in the apical surfaces, whereas some GPI-APs are preferentially expressed in the basolateral surfaces. Several GPI-APs act as transcytotic transporters carrying their ligands from one compartment to another. Some GPI-APs are shed from the membrane after cleavage within the GPI by a GPI-specific phospholipase or a glycosidase. In this review, I will summarize the current understanding of GPI-AP biosynthesis in mammalian cells and discuss examples of GPI-dependent functions of mammalian GPI-APs.
Collapse
Affiliation(s)
- Taroh Kinoshita
- Yabumoto Department of Intractable Disease Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
6
|
Hackl S, Becker CFW. Prion protein-Semisynthetic prion protein (PrP) variants with posttranslational modifications. J Pept Sci 2019; 25:e3216. [PMID: 31713950 PMCID: PMC6899880 DOI: 10.1002/psc.3216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/23/2019] [Accepted: 08/23/2019] [Indexed: 12/16/2022]
Abstract
Deciphering the pathophysiologic events in prion diseases is challenging, and the role of posttranslational modifications (PTMs) such as glypidation and glycosylation remains elusive due to the lack of homogeneous protein preparations. So far, experimental studies have been limited in directly analyzing the earliest events of the conformational change of cellular prion protein (PrPC ) into scrapie prion protein (PrPSc ) that further propagates PrPC misfolding and aggregation at the cellular membrane, the initial site of prion infection, and PrP misfolding, by a lack of suitably modified PrP variants. PTMs of PrP, especially attachment of the glycosylphosphatidylinositol (GPI) anchor, have been shown to be crucially involved in the PrPSc formation. To this end, semisynthesis offers a unique possibility to understand PrP behavior invitro and invivo as it provides access to defined site-selectively modified PrP variants. This approach relies on the production and chemoselective linkage of peptide segments, amenable to chemical modifications, with recombinantly produced protein segments. In this article, advances in understanding PrP conversion using semisynthesis as a tool to obtain homogeneous posttranslationally modified PrP will be discussed.
Collapse
Affiliation(s)
- Stefanie Hackl
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria
| | - Christian F W Becker
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Vienna, Austria
| |
Collapse
|
7
|
Kouadri A, El Khatib M, Cormenier J, Chauvet S, Zeinyeh W, El Khoury M, Macari L, Richaud P, Coraux C, Michaud-Soret I, Alfaidy N, Benharouga M. Involvement of the Prion Protein in the Protection of the Human Bronchial Epithelial Barrier Against Oxidative Stress. Antioxid Redox Signal 2019; 31:59-74. [PMID: 30569742 DOI: 10.1089/ars.2018.7500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Aim: Bronchial epithelium acts as a defensive barrier against inhaled pollutants and microorganisms. This barrier is often compromised in inflammatory airway diseases that are characterized by excessive oxidative stress responses, leading to bronchial epithelial shedding, barrier failure, and increased bronchial epithelium permeability. Among proteins expressed in the junctional barrier and participating to the regulation of the response to oxidative and to environmental stresses is the cellular prion protein (PrPC). However, the role of PrPC is still unknown in the bronchial epithelium. Herein, we investigated the cellular mechanisms by which PrPC protein participates into the junctional complexes formation, regulation, and oxidative protection in human bronchial epithelium. Results: Both PrPC messenger RNA and mature protein were expressed in human epithelial bronchial cells. PrPC was localized in the apical domain and became lateral, at high degree of cell polarization, where it colocalized and interacted with adherens (E-cadherin/γ-catenin) and desmosomal (desmoglein/desmoplakin) junctional proteins. No interaction was detected with tight junction proteins. Disruption of such interactions induced the loss of the epithelial barrier. Moreover, we demonstrated that PrPC protection against copper-associated oxidative stress was involved in multiple processes, including the stability of adherens and desmosomal junctional proteins. Innovation: PrPC is a pivotal protein in the protection against oxidative stress that is associated with the degradation of adherens and desmosomal junctional proteins. Conclusion: Altogether, these results demonstrate that the loss of the integrity of the epithelial barrier by oxidative stress is attenuated by the activation of PrPC expression, where deregulation might be associated with respiratory diseases.
Collapse
Affiliation(s)
- Amal Kouadri
- 1 University of Grenoble Alpes, CNRS, UMR 5249, CEA, BIG, CBM, Grenoble, France
| | - Mariam El Khatib
- 1 University of Grenoble Alpes, CNRS, UMR 5249, CEA, BIG, CBM, Grenoble, France
| | - Johanna Cormenier
- 1 University of Grenoble Alpes, CNRS, UMR 5249, CEA, BIG, CBM, Grenoble, France
| | - Sylvain Chauvet
- 1 University of Grenoble Alpes, CNRS, UMR 5249, CEA, BIG, CBM, Grenoble, France
| | - Wael Zeinyeh
- 1 University of Grenoble Alpes, CNRS, UMR 5249, CEA, BIG, CBM, Grenoble, France
| | - Micheline El Khoury
- 1 University of Grenoble Alpes, CNRS, UMR 5249, CEA, BIG, CBM, Grenoble, France
| | - Laurence Macari
- 1 University of Grenoble Alpes, CNRS, UMR 5249, CEA, BIG, CBM, Grenoble, France
| | - Pierre Richaud
- 2 University of Aix-Marseille, CNRS, CEA, Institute of Bisosciences and Biotechnologies of Aix Marseille (BIAM), UMR 7265, CEA Cadarache, Saint-Paul-lez Durance, France
| | - Christelle Coraux
- 3 National Institute of Health and Medical Research (INSERM), UMR-S 903, Reims, France
| | | | - Nadia Alfaidy
- 4 University of Grenoble Alpes, INSERM U1036, CEA, BIG, BCI, Grenoble, France
| | - Mohamed Benharouga
- 1 University of Grenoble Alpes, CNRS, UMR 5249, CEA, BIG, CBM, Grenoble, France
| |
Collapse
|
8
|
GPI-anchor signal sequence influences PrPC sorting, shedding and signalling, and impacts on different pathomechanistic aspects of prion disease in mice. PLoS Pathog 2019; 15:e1007520. [PMID: 30608982 PMCID: PMC6334958 DOI: 10.1371/journal.ppat.1007520] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/16/2019] [Accepted: 12/11/2018] [Indexed: 12/31/2022] Open
Abstract
The cellular prion protein (PrPC) is a cell surface glycoprotein attached to the membrane by a glycosylphosphatidylinositol (GPI)-anchor and plays a critical role in transmissible, neurodegenerative and fatal prion diseases. Alterations in membrane attachment influence PrPC-associated signaling, and the development of prion disease, yet our knowledge of the role of the GPI-anchor in localization, processing, and function of PrPCin vivo is limited We exchanged the PrPC GPI-anchor signal sequence of for that of Thy-1 (PrPCGPIThy-1) in cells and mice. We show that this modifies the GPI-anchor composition, which then lacks sialic acid, and that PrPCGPIThy-1 is preferentially localized in axons and is less prone to proteolytic shedding when compared to PrPC. Interestingly, after prion infection, mice expressing PrPCGPIThy-1 show a significant delay to terminal disease, a decrease of microglia/astrocyte activation, and altered MAPK signaling when compared to wild-type mice. Our results are the first to demonstrate in vivo, that the GPI-anchor signal sequence plays a fundamental role in the GPI-anchor composition, dictating the subcellular localization of a given protein and, in the case of PrPC, influencing the development of prion disease. The prion protein (PrPC) is a glycoprotein attached to the neuronal surface via a GPI-anchor. When misfolded to PrPSc, it leads to fatal neurodegenerative diseases which propagates from host to host. PrPSc is the principal component of the infectious agent of prion diseases, the “prion”. Misfolding occurs at the plasma membrane, and when PrPC lacks the GPI-anchor, neuropathology and incubation time of prion disease are strongly modified. Moreover, the composition of the PrPC GPI-anchor impacts on the conversion process. To study the role of the GPI-anchor in the pathophysiology of prion diseases in vivo, we have generated transgenic mice where the PrPC GPI-signal sequence (GPI-SS) is replaced for the one of Thy-1, a neuronal protein with a distinct GPI-anchor and membrane localization. We found that the resulting protein, PrPCGPIThy-1, shows a different GPI-anchor composition, increased axonal localization, and reduced enzymatic shedding. After prion infection, disease progression is significantly delayed, and the neuropathology and cellular signaling are changed. The present work demonstrates that the GPI-SS per se determines the GPI-anchor composition and localization of a given protein and it stresses the importance of PrPC membrane anchorage in prion disease.
Collapse
|
9
|
Kokkonen N, Khosrowabadi E, Hassinen A, Harrus D, Glumoff T, Kietzmann T, Kellokumpu S. Abnormal Golgi pH Homeostasis in Cancer Cells Impairs Apical Targeting of Carcinoembryonic Antigen by Inhibiting Its Glycosyl-Phosphatidylinositol Anchor-Mediated Association with Lipid Rafts. Antioxid Redox Signal 2019; 30:5-21. [PMID: 29304557 PMCID: PMC6276271 DOI: 10.1089/ars.2017.7389] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AIMS Carcinoembryonic antigen (CEACAM5, CEA) is a known tumor marker for colorectal cancer that localizes in a polarized manner to the apical surface in normal colon epithelial cells whereas in cancer cells it is present at both the apical and basolateral surfaces of the cells. Since the Golgi apparatus sorts and transports most proteins to these cell surface domains, we set out here to investigate whether any of the factors commonly associated with tumorigenesis, including hypoxia, generation of reactive oxygen species (ROS), altered redox homeostasis, or an altered Golgi pH, are responsible for mistargeting of CEA to the basolateral surface in cancer cells. RESULTS Using polarized nontumorigenic Madin-Darby canine kidney (MDCK) cells and CaCo-2 colorectal cancer cells as targets, we show that apical delivery of CEA is not affected by hypoxia, ROS, nor changes in the Golgi redox state. Instead, we find that an elevated Golgi pH induces basolateral targeting of CEA and increases its TX-100 solubility, indicating impaired association of CEA with lipid rafts. Moreover, disruption of lipid rafts by methyl-β-cyclodextrin induced accumulation of the CEA protein at the basolateral surface in MDCK cells. Experiments with the glycosylphosphatidylinositol (GPI)-anchorless CEA mutant and CEA-specific GPI-anchored enhanced green fluorescent protein (EGFP-GPI) fusion protein revealed that the GPI-anchor was critical for the pH-dependent apical delivery of the CEA in MDCK cells. Innovation and Conclusion: The findings indicate that an abnormal Golgi pH homeostasis in cancer cells is an important factor that causes mistargeting of CEA to the basolateral surface of cancer cells via inhibiting its GPI-anchor-mediated association with lipid rafts.
Collapse
Affiliation(s)
- Nina Kokkonen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Elham Khosrowabadi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Antti Hassinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Deborah Harrus
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Tuomo Glumoff
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
- Address correspondence to: Dr. Sakari Kellokumpu, Faculty of Biochemistry and Molecular Medicine, University of Oulu, PO Box 5400, Oulu FI-90014, Finland
| |
Collapse
|
10
|
Sarnataro D, Pepe A, Zurzolo C. Cell Biology of Prion Protein. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:57-82. [PMID: 28838675 DOI: 10.1016/bs.pmbts.2017.06.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cellular prion protein (PrPC) is a mammalian glycoprotein which is usually found anchored to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. The precise function of PrPC remains elusive but may depend upon its cellular localization. PrPC misfolds to a pathogenic isoform PrPSc, the causative agent of neurodegenerative prion diseases. Nonetheless some forms of prion disease develop in the apparent absence of infectious PrPSc, suggesting that molecular species of PrP distinct from PrPSc may represent the primary neurotoxic culprits. Indeed, in some inherited cases of human prion disease, the predominant form of PrP detectable in the brain is not PrPSc but rather CtmPrP, a transmembrane form of the protein. The relationship between the neurodegeneration occurring in prion diseases involving PrPSc and that associated with CtmPrP remains unclear. However, the different membrane topology of the PrP mutants, as well as the presence of the GPI anchor, could influence both the function and the intracellular localization and trafficking of the protein, all being potentially very important in the pathophysiological mechanism that ultimately causes the disease. Here, we review the latest findings on the fundamental aspects of prions biology, from the PrPC biosynthesis, function, and structure up to its intracellular traffic and analyze the possible roles of the different topological isoforms of the protein, as well as the GPI anchor, in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Daniela Sarnataro
- University of Naples "Federico II", Naples, Italy; Ceinge-Biotecnologie avanzate, s.c.a r.l., Naples, Italy.
| | - Anna Pepe
- University of Naples "Federico II", Naples, Italy; Unité de Trafic Membranaire et Pathogenese, Institut Pasteur, Paris, France
| | - Chiara Zurzolo
- University of Naples "Federico II", Naples, Italy; Unité de Trafic Membranaire et Pathogenese, Institut Pasteur, Paris, France
| |
Collapse
|
11
|
Abstract
Shadoo (Sho), a member of prion protein family, has been shown to prevent embryonic lethality in Prnp0/0 mice and to be reduced in the brains of rodents with terminal prion diseases. Sho can also affect PrP structural dynamics and can increase the prion conversion into its misfolded isoform (PrPSc), which is amyloidogenic and strictly related to expression, intracellular localization and association of PrPC to lipid rafts. We reasoned that if Sho possesses a natural tendency to convert to amyloid-like forms in vitro, it should be able to exhibit “prion-like” properties, such as PK-resistance and aggregation state, also in live cells. We tested this hypothesis, by different approaches in neuronal cells, finding that Sho shows folding properties partially dependent on lipid rafts integrity whose alteration, as well as proteasomal block, regulated generation of intermediate Sho isoforms and exacerbated its misfolding. Moreover, a 18 kDa isoform of Sho, likely bearing the signal peptide, was targeted to mitochondria by interacting with the molecular chaperone TRAP1 which, in turn controlled Sho dual targeting to ER or mitochondria. Our studies contribute to understand the role of molecular chaperones and of PrP-related folding intermediates in “prion-like” conversion.
Collapse
|
12
|
Arkhipenko A, Syan S, Victoria GS, Lebreton S, Zurzolo C. PrPC Undergoes Basal to Apical Transcytosis in Polarized Epithelial MDCK Cells. PLoS One 2016; 11:e0157991. [PMID: 27389581 PMCID: PMC4936696 DOI: 10.1371/journal.pone.0157991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 06/08/2016] [Indexed: 01/05/2023] Open
Abstract
The Prion Protein (PrP) is an ubiquitously expressed glycosylated membrane protein attached to the external leaflet of the plasma membrane via a glycosylphosphatidylinositol anchor (GPI). While the misfolded PrPSc scrapie isoform is the infectious agent of prion disease, the cellular isoform (PrPC) is an enigmatic protein with unclear function. Of interest, PrP localization in polarized MDCK cells is controversial and its mechanism of trafficking is not clear. Here we investigated PrP traffic in MDCK cells polarized on filters and in three-dimensional MDCK cysts, a more physiological model of polarized epithelia. We found that, unlike other GPI-anchored proteins (GPI-APs), PrP undergoes basolateral-to-apical transcytosis in fully polarized MDCK cells. Following this event full-length PrP and its cleavage fragments are segregated in different domains of the plasma membrane in polarized cells in both 2D and 3D cultures.
Collapse
Affiliation(s)
- Alexander Arkhipenko
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, 25-28 rue du docteur Roux, 75015, Paris, France
| | - Sylvie Syan
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, 25-28 rue du docteur Roux, 75015, Paris, France
| | - Guiliana Soraya Victoria
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, 25-28 rue du docteur Roux, 75015, Paris, France
| | - Stéphanie Lebreton
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, 25-28 rue du docteur Roux, 75015, Paris, France
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, 25-28 rue du docteur Roux, 75015, Paris, France
| |
Collapse
|
13
|
Zurzolo C, Simons K. Glycosylphosphatidylinositol-anchored proteins: Membrane organization and transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:632-9. [DOI: 10.1016/j.bbamem.2015.12.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 11/17/2022]
|
14
|
Muñiz M, Riezman H. Trafficking of glycosylphosphatidylinositol anchored proteins from the endoplasmic reticulum to the cell surface. J Lipid Res 2015; 57:352-60. [PMID: 26450970 DOI: 10.1194/jlr.r062760] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 11/20/2022] Open
Abstract
In eukaryotes, many cell surface proteins are attached to the plasma membrane via a glycolipid glycosylphosphatidylinositol (GPI) anchor. GPI-anchored proteins (GPI-APs) receive the GPI anchor as a conserved posttranslational modification in the lumen of the endoplasmic reticulum (ER). After anchor attachment, the GPI anchor is structurally remodeled to function as a transport signal that actively triggers the delivery of GPI-APs from the ER to the plasma membrane, via the Golgi apparatus. The structure and composition of the GPI anchor confer a special mode of interaction with membranes of GPI-APs within the lumen of secretory organelles that lead them to be differentially trafficked from other secretory membrane proteins. In this review, we examine the mechanisms by which GPI-APs are selectively transported through the secretory pathway, with special focus on the recent progress made in their actively regulated export from the ER and the trans-Golgi network.
Collapse
Affiliation(s)
- Manuel Muñiz
- Departamento de Biología Celular, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Howard Riezman
- National Centre of Competence in Research (NCCR) Chemical Biology, Department of Biochemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
15
|
Paladino S, Lebreton S, Zurzolo C. Trafficking and Membrane Organization of GPI-Anchored Proteins in Health and Diseases. CURRENT TOPICS IN MEMBRANES 2015; 75:269-303. [PMID: 26015286 DOI: 10.1016/bs.ctm.2015.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) are a class of lipid-anchored proteins attached to the membranes by a glycolipid anchor that is added, as posttranslation modification, in the endoplasmic reticulum. GPI-APs are expressed at the cell surface of eukaryotes where they play diverse vital functions. Like all plasma membrane proteins, GPI-APs must be correctly sorted along the different steps of the secretory pathway to their final destination. The presence of both a glycolipid anchor and a protein portion confers special trafficking features to GPI-APs. Here, we discuss the recent advances in the field of GPI-AP trafficking, focusing on the mechanisms regulating their biosynthetic pathway and plasma membrane organization. We also discuss how alterations of these mechanisms can result in different diseases. Finally, we will examine the strict relationship between the trafficking and function of GPI-APs in epithelial cells.
Collapse
Affiliation(s)
- Simona Paladino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Napoli, Italy; CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Stéphanie Lebreton
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, Paris, France
| | - Chiara Zurzolo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, Napoli, Italy; Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, Paris, France
| |
Collapse
|
16
|
Puig B, Altmeppen H, Glatzel M. The GPI-anchoring of PrP: implications in sorting and pathogenesis. Prion 2015; 8:11-8. [PMID: 24509692 DOI: 10.4161/pri.27892] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The cellular prion protein (PrP(C)) is an N-glycosylated GPI-anchored protein usually present in lipid rafts with numerous putative functions. When it changes its conformation to a pathological isoform (then referred to as PrP(Sc)), it is an essential part of the prion, the agent causing fatal and transmissible neurodegenerative prion diseases. There is growing evidence that toxicity and neuronal damage on the one hand and propagation/infectivity on the other hand are two distinct processes of the disease and that the GPI-anchor attachment of PrP(C) and PrP(Sc) plays an important role in protein localization and in neurotoxicity. Here we review how the signal sequence of the GPI-anchor matters in PrP(C) localization, how an altered cellular localization of PrP(C) or differences in GPI-anchor composition can affect prion infection, and we discuss through which mechanisms changes on the anchorage of PrP(C) can modify the disease process.
Collapse
|
17
|
Cholesterol balance in prion diseases and Alzheimer's disease. Viruses 2014; 6:4505-35. [PMID: 25419621 PMCID: PMC4246236 DOI: 10.3390/v6114505] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/08/2014] [Accepted: 11/14/2014] [Indexed: 12/16/2022] Open
Abstract
Prion diseases are transmissible and fatal neurodegenerative disorders of humans and animals. They are characterized by the accumulation of PrPSc, an aberrantly folded isoform of the cellular prion protein PrPC, in the brains of affected individuals. PrPC is a cell surface glycoprotein attached to the outer leaflet of the plasma membrane by a glycosyl-phosphatidyl-inositol (GPI) anchor. Specifically, it is associated with lipid rafts, membrane microdomains enriched in cholesterol and sphinoglipids. It has been established that inhibition of endogenous cholesterol synthesis disturbs lipid raft association of PrPC and prevents PrPSc accumulation in neuronal cells. Additionally, prion conversion is reduced upon interference with cellular cholesterol uptake, endosomal export, or complexation at the plasma membrane. Altogether, these results demonstrate on the one hand the importance of cholesterol for prion propagation. On the other hand, growing evidence suggests that prion infection modulates neuronal cholesterol metabolism. Similar results were reported in Alzheimer’s disease (AD): whereas amyloid β peptide formation is influenced by cellular cholesterol, levels of cholesterol in the brains of affected individuals increase during the clinical course of the disease. In this review, we summarize commonalities of alterations in cholesterol homeostasis and discuss consequences for neuronal function and therapy of prion diseases and AD.
Collapse
|
18
|
Petit CSV, Besnier L, Morel E, Rousset M, Thenet S. Roles of the cellular prion protein in the regulation of cell-cell junctions and barrier function. Tissue Barriers 2014; 1:e24377. [PMID: 24665391 PMCID: PMC3887058 DOI: 10.4161/tisb.24377] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/18/2013] [Accepted: 03/19/2013] [Indexed: 01/12/2023] Open
Abstract
The cellular prion protein was historically characterized owing to its misfolding in prion disease. Although its physiological role remains incompletely understood, PrP(C) has emerged as an evolutionary conserved, multifaceted protein involved in a wide-range of biological processes. PrP(C) is a GPI-anchored protein targeted to the plasma membrane, in raft microdomains, where its interaction with a repertoire of binding partners, which differ depending on cell models, mediates its functions. Among identified PrP(C) partners are cell adhesion molecules. This review will focus on the multiple implications of PrP(C) in cell adhesion processes, mainly the regulation of cell-cell junctions in epithelial and endothelial cells and the consequences on barrier properties. We will show how recent findings argue for a role of PrP(C) in the recruitment of signaling molecules, which in turn control the targeting or the stability of adhesion complexes at the plasma membrane.
Collapse
Affiliation(s)
- Constance S V Petit
- Centre de Recherche des Cordeliers; Université Pierre et Marie Curie; Paris, France ; INSERM; Paris, France ; Université Paris Descartes; Paris, France
| | - Laura Besnier
- Centre de Recherche des Cordeliers; Université Pierre et Marie Curie; Paris, France ; INSERM; Paris, France ; Université Paris Descartes; Paris, France
| | - Etienne Morel
- Centre de Recherche des Cordeliers; Université Pierre et Marie Curie; Paris, France ; INSERM; Paris, France ; Université Paris Descartes; Paris, France
| | - Monique Rousset
- Centre de Recherche des Cordeliers; Université Pierre et Marie Curie; Paris, France ; INSERM; Paris, France ; Université Paris Descartes; Paris, France
| | - Sophie Thenet
- Centre de Recherche des Cordeliers; Université Pierre et Marie Curie; Paris, France ; INSERM; Paris, France ; Université Paris Descartes; Paris, France ; Ecole Pratique des Hautes Etudes; Laboratoire de Pharmacologie Cellulaire et Moléculaire ; Paris, France
| |
Collapse
|
19
|
Conserved roles of the prion protein domains on subcellular localization and cell-cell adhesion. PLoS One 2013; 8:e70327. [PMID: 23936187 PMCID: PMC3729945 DOI: 10.1371/journal.pone.0070327] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/17/2013] [Indexed: 11/18/2022] Open
Abstract
Analyses of cultured cells and transgenic mice expressing prion protein (PrP) deletion mutants have revealed that some properties of PrP -such as its ability to misfold, aggregate and trigger neurotoxicity- are controlled by discrete molecular determinants within its protein domains. Although the contributions of these determinants to PrP biosynthesis and turnover are relatively well characterized, it is still unclear how they modulate cellular functions of PrP. To address this question, we used two defined activities of PrP as functional readouts: 1) the recruitment of PrP to cell-cell contacts in Drosophila S2 and human MCF-7 epithelial cells, and 2) the induction of PrP embryonic loss- and gain-of-function phenotypes in zebrafish. Our results show that homologous mutations in mouse and zebrafish PrPs similarly affect their subcellular localization patterns as well as their in vitro and in vivo activities. Among PrP’s essential features, the N-terminal leader peptide was sufficient to drive targeting of our constructs to cell contact sites, whereas lack of GPI-anchoring and N-glycosylation rendered them inactive by blocking their cell surface expression. Importantly, our data suggest that the ability of PrP to homophilically trans-interact and elicit intracellular signaling is primarily encoded in its globular domain, and modulated by its repetitive domain. Thus, while the latter induces the local accumulation of PrPs at discrete punctae along cell contacts, the former counteracts this effect by promoting the continuous distribution of PrP. In early zebrafish embryos, deletion of either domain significantly impaired PrP’s ability to modulate E-cadherin cell adhesion. Altogether, these experiments relate structural features of PrP to its subcellular distribution and in vivo activity. Furthermore, they show that despite their large evolutionary history, the roles of PrP domains and posttranslational modifications are conserved between mouse and zebrafish.
Collapse
|
20
|
Galmes R, Delaunay JL, Maurice M, Aït-Slimane T. Oligomerization is required for normal endocytosis/transcytosis of a GPI-anchored protein in polarized hepatic cells. J Cell Sci 2013; 126:3409-16. [PMID: 23750006 DOI: 10.1242/jcs.126250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Targeting of glycosyl-phosphatidylinositol (GPI)-anchored proteins (GPI-APs) in polarized epithelial cells depends on their association with detergent-resistant membrane microdomains called rafts. In MDCK cells, GPI-APs associate with rafts in the trans-Golgi network and are directly delivered to the apical membrane. It has been shown that oligomerization is required for their stabilization in rafts and their apical targeting. In hepatocytes, GPI-APs are first delivered to the basolateral membrane and secondarily reach the apical membrane by transcytosis. We investigated whether oligomerization is required for raft association and apical sorting of GPI-APs in polarized HepG2 cells, and at which step of the pathway oligomerization occurs. Model proteins were wild-type GFP-GPI and a double cysteine GFP-GPI mutant, in which GFP dimerization was impaired. Unlike wild-type GFP-GPI, which was efficiently endocytosed and transcytosed to the apical surface, the double cysteine mutant was basolaterally internalized, but massively accumulated in early endosomes, and reached the bile canaliculi with delayed kinetics. The double cysteine mutant was less resistant to Triton X-100 extraction, and formed fewer high molecular weight complexes. We conclude from these results that, in hepatocytes, oligomerization plays a key role in targeting GPI-APs to the apical membrane, by increasing their affinity for rafts and allowing their transcytosis.
Collapse
Affiliation(s)
- Romain Galmes
- INSERM, UMR_S938, Centre de Recherche Saint-Antoine, Paris, France
| | | | | | | |
Collapse
|
21
|
Marzo L, Marijanovic Z, Browman D, Chamoun Z, Caputo A, Zurzolo C. 4-hydroxytamoxifen leads to PrPSc clearance by conveying both PrPC and PrPSc to lysosomes independently of autophagy. J Cell Sci 2013; 126:1345-54. [PMID: 23418355 DOI: 10.1242/jcs.114801] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Prion diseases are fatal neurodegenerative disorders involving the abnormal folding of a native cellular protein, named PrP(C), to a malconformed aggregation-prone state, enriched in beta sheet secondary structure, denoted PrP(Sc). Recently, autophagy has garnered considerable attention as a cellular process with the potential to counteract neurodegenerative diseases of protein aggregation such as Alzheimer's disease, Huntington's disease, and Parkinson's disease. Stimulation of autophagy by chemical compounds has also been shown to reduce PrP(Sc) in infected neuronal cells and prolong survival times in mouse models. Consistent with previous reports, we demonstrate that autophagic flux is increased in chronically infected cells. However, in contrast to recent findings we show that autophagy does not cause a reduction in scrapie burden. We report that in infected neuronal cells different compounds known to stimulate autophagy are ineffective in increasing autophagic flux and in reducing PrP(Sc). We further demonstrate that tamoxifen and its metabolite 4-hydroxytamoxifen lead to prion degradation in an autophagy-independent manner by diverting the trafficking of both PrP and cholesterol to lysosomes. Our data indicate that tamoxifen, a well-characterized, widely available pharmaceutical, may have applications in the therapy of prion diseases.
Collapse
Affiliation(s)
- Ludovica Marzo
- Institut Pasteur, Unité de Trafic Membranaire et Pathogenèse, 25 rue du Docteur Roux, 75015 Paris, France
| | | | | | | | | | | |
Collapse
|
22
|
Fujita M, Kinoshita T. GPI-anchor remodeling: Potential functions of GPI-anchors in intracellular trafficking and membrane dynamics. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1050-8. [DOI: 10.1016/j.bbalip.2012.01.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 12/28/2011] [Accepted: 01/04/2012] [Indexed: 01/08/2023]
|
23
|
Petit CSV, Barreau F, Besnier L, Gandille P, Riveau B, Chateau D, Roy M, Berrebi D, Svrcek M, Cardot P, Rousset M, Clair C, Thenet S. Requirement of cellular prion protein for intestinal barrier function and mislocalization in patients with inflammatory bowel disease. Gastroenterology 2012; 143:122-32.e15. [PMID: 22446194 DOI: 10.1053/j.gastro.2012.03.029] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/12/2012] [Accepted: 03/13/2012] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Cell adhesion is one function regulated by cellular prion protein (PrP(c)), a ubiquitous, glycosylphosphatidylinositol-anchored glycoprotein. PrP(c) is located in cell-cell junctions and interacts with desmosome proteins in the intestinal epithelium. We investigated its role in intestinal barrier function. METHODS We analyzed permeability and structure of cell-cell junctions in intestine tissues from PrP(c) knockout (PrP(c-/-)) and wild-type mice. PrP(c) expression was knocked down in cultured human Caco-2/TC7 enterocytes using small hairpin RNAs. We analyzed colon samples from 24 patients with inflammatory bowel disease (IBD). RESULTS Intestine tissues from PrP(c-/-) mice had greater paracellular permeability than from wild-type mice (105.9 ± 13.4 vs 59.6 ± 10.1 mg/mL fluorescein isothiocyanate-dextran flux; P < .05) and impaired intercellular junctions. PrP(c-/-) mice did not develop spontaneous disease but were more sensitive than wild-type mice to induction of colitis with dextran sulfate (32% mortality vs 4%, respectively; P = .0033). Such barrier defects were observed also in Caco-2/TC7 enterocytes following PrP(c) knockdown; the cells had increased paracellular permeability (1.5-fold over 48 hours; P < .001) and reduced transepithelial electrical resistance (281.1 ± 4.9 vs 370.6 ± 5.7 Ω.cm(2); P < .001). Monolayer shape and cell-cell junctions were altered in cultures of PrP(c) knockdown cells; levels of E-cadherin, desmoplakin, plakoglobin, claudin-4, occludin, zonula occludens 1, and tricellulin were decreased at cell contacts. Cell shape and junctions were restored on PrP(c) re-expression. Levels of PrP(c) were decreased at cell-cell junctions in colonic epithelia from patients with Crohn's disease or ulcerative colitis. CONCLUSIONS PrP(c) regulates intestinal epithelial cell-cell junctions and barrier function. Its localization is altered in colonic epithelia from patients with IBD, supporting the concept that disrupted barrier function contributes to this disorder.
Collapse
Affiliation(s)
- Constance S V Petit
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The polarized distribution of proteins and lipids at the surface membrane of epithelial cells results in the formation of an apical and a basolateral domain, which are separated by tight junctions. The generation and maintenance of epithelial polarity require elaborate mechanisms that guarantee correct sorting and vectorial delivery of cargo molecules. This dynamic process involves the interaction of sorting signals with sorting machineries and the formation of transport carriers. Here we review the recent advances in the field of polarized sorting in epithelial cells. We especially highlight the role of lipid rafts in apical sorting.
Collapse
|
25
|
Caveolin 3, flotillin 1 and influenza virus hemagglutinin reside in distinct domains on the sarcolemma of skeletal myofibers. Biochem Res Int 2012; 2012:497572. [PMID: 22500232 PMCID: PMC3303869 DOI: 10.1155/2012/497572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 10/14/2011] [Accepted: 10/21/2011] [Indexed: 11/17/2022] Open
Abstract
We examined the distribution of selected raft proteins on the sarcolemma of skeletal myofibers and the role of cholesterol environment in the distribution. Immunofluorescence staining showed that flotillin-1 and influenza hemagglutinin exhibited rafts that located in the domains deficient of the dystrophin glycoprotein complex, but the distribution patterns of the two proteins were different. Cholesterol depletion from the sarcolemma by means of methyl-β-cyclodextrin resulted in distorted caveolar morphology and redistribution of the caveolin 3 protein. Concomitantly, the water permeability of the sarcolemma increased significantly. However, cholesterol depletion did not reshuffle flotillin 1 or hemagglutinin. Furthermore, a hemagglutinin variant that lacked a raft-targeting signals exhibited a similar distribution pattern as the native raft protein. These findings indicate that each raft protein exhibits a strictly defined distribution in the sarcolemma. Only the distribution of caveolin 3 that binds cholesterol was exclusively dependent on cholesterol environment.
Collapse
|
26
|
Puig B, Altmeppen HC, Thurm D, Geissen M, Conrad C, Braulke T, Glatzel M. N-glycans and glycosylphosphatidylinositol-anchor act on polarized sorting of mouse PrP(C) in Madin-Darby canine kidney cells. PLoS One 2011; 6:e24624. [PMID: 21931781 PMCID: PMC3169634 DOI: 10.1371/journal.pone.0024624] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/14/2011] [Indexed: 11/18/2022] Open
Abstract
The cellular prion protein (PrP(C)) plays a fundamental role in prion disease. PrP(C) is a glycosylphosphatidylinositol (GPI)-anchored protein with two variably occupied N-glycosylation sites. In general, GPI-anchor and N-glycosylation direct proteins to apical membranes in polarized cells whereas the majority of mouse PrP(C) is found in basolateral membranes in polarized Madin-Darby canine kidney (MDCK) cells. In this study we have mutated the first, the second, and both N-glycosylation sites of PrP(C) and also replaced the GPI-anchor of PrP(C) by the Thy-1 GPI-anchor in order to investigate the role of these signals in sorting of PrP(C) in MDCK cells. Cell surface biotinylation experiments and confocal microscopy showed that lack of one N-linked oligosaccharide leads to loss of polarized sorting of PrP(C). Exchange of the PrP(C) GPI-anchor for the one of Thy-1 redirects PrP(C) to the apical membrane. In conclusion, both N-glycosylation and GPI-anchor act on polarized sorting of PrP(C), with the GPI-anchor being dominant over N-glycans.
Collapse
Affiliation(s)
- Berta Puig
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hermann C. Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dana Thurm
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Geissen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Catharina Conrad
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Braulke
- Department of Biochemistry, Children's Hospital University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- * E-mail:
| |
Collapse
|
27
|
Bertoni A, Giuliano P, Galgani M, Rotoli D, Ulianich L, Adornetto A, Santillo MR, Porcellini A, Avvedimento VE. Early and late events induced by polyQ-expanded proteins: identification of a common pathogenic property of polYQ-expanded proteins. J Biol Chem 2010; 286:4727-41. [PMID: 21115499 DOI: 10.1074/jbc.m110.156521] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
To find a common pathogenetic trait induced by polyQ-expanded proteins, we have used a conditional expression system in PC12 cells to tune the expression of these proteins and analyze the early and late consequences of their expression. We find that expression for 3 h of a polyQ-expanded protein stimulates cellular reactive oxygen species (ROS) levels and significantly reduces the mitochondrial electrochemical gradient. 24-36 h later, ROS induce DNA damage and activation of the checkpoint kinase, ATM. DNA damage signatures are reversible and persist as long as polyQ-expanded proteins are expressed. Transcription of neural and stress response genes is down-regulated in these cells. Selective inhibition of ATM or histone deacetylase rescues transcription and restores the expression of silenced genes. Eventually, after 1 week, the expression of polyQ-expanded protein also induces endoplasmic reticulum stress. As to the primary mechanism responsible for ROS generation, we find that polyQ-expanded proteins, including native Ataxin-2 and Huntingtin, are selectively sequestered in the lipid raft membrane compartment and interact with gp91, the membrane NADPH-oxidase subunit. Selective inhibition of NADPH oxidase or silencing of H-Ras signaling dissolves the aggregates and eliminates DNA damage. We suggest that targeting of the polyQ-expanded proteins to the lipid rafts activates the resident NADPH oxidase. This triggers a signal linking H-Ras, ROS, and ERK1/2 that maintains and propagates the ROS wave to the nucleus. This mechanism may represent the common pathogenetic signature of all polyQ-expanded proteins independently of the specific context or the function of the native wild type protein.
Collapse
Affiliation(s)
- Alessandra Bertoni
- Department of Molecular and Cellular Biology and Pathology, School of Medicine, Federico II University of Naples, Naples 80131 Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Luo K, Li S, Xie M, Wu D, Wang W, Chen R, Huang L, Huang T, Pang D, Xiao G. Real-time visualization of prion transport in single live cells using quantum dots. Biochem Biophys Res Commun 2010; 394:493-7. [PMID: 20193663 DOI: 10.1016/j.bbrc.2010.02.159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2010] [Accepted: 02/24/2010] [Indexed: 11/17/2022]
Abstract
Prion diseases are fatal neurodegenerative disorders resulting from structural conversion of the cellular isoform of PrP(C) to the infectious scrapie isoform PrP(Sc). It is believed that such structural alteration may occur within the internalization pathway. However, there is no direct evidence to support this hypothesis. Employing quantum dots (QDs) as a probe, we have recorded a real-time movie demonstrating the process of prion internalization in a living cell for the first time. The entire internalization process can be divided into four discrete but connected stages. In addition, using methyl-beta-cyclodextrin to disrupt cell membrane cholesterol, we show that lipid rafts play an important role in locating cellular PrP(C) to the cell membrane and in initiating PrP(C) endocytosis.
Collapse
Affiliation(s)
- Kan Luo
- State Key Laboratory of Virology and Modern Virology Research Centre, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Weisz OA, Rodriguez-Boulan E. Apical trafficking in epithelial cells: signals, clusters and motors. J Cell Sci 2010; 122:4253-66. [PMID: 19923269 DOI: 10.1242/jcs.032615] [Citation(s) in RCA: 237] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
In the early days of epithelial cell biology, researchers working with kidney and/or intestinal epithelial cell lines and with hepatocytes described the biosynthetic and recycling routes followed by apical and basolateral plasma membrane (PM) proteins. They identified the trans-Golgi network and recycling endosomes as the compartments that carried out apical-basolateral sorting. They described complex apical sorting signals that promoted association with lipid rafts, and simpler basolateral sorting signals resembling clathrin-coated-pit endocytic motifs. They also noticed that different epithelial cell types routed their apical PM proteins very differently, using either a vectorial (direct) route or a transcytotic (indirect) route. Although these original observations have generally held up, recent studies have revealed interesting complexities in the routes taken by apically destined proteins and have extended our understanding of the machinery required to sustain these elaborate sorting pathways. Here, we critically review the current status of apical trafficking mechanisms and discuss a model in which clustering is required to recruit apical trafficking machineries. Uncovering the mechanisms responsible for polarized trafficking and their epithelial-specific variations will help understand how epithelial functional diversity is generated and the pathogenesis of many human diseases.
Collapse
Affiliation(s)
- Ora A Weisz
- Department of Medicine and Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | | |
Collapse
|
30
|
Doppel and PrPC co-immunoprecipitate in detergent-resistant membrane domains of epithelial FRT cells. Biochem J 2009; 425:341-51. [PMID: 19888917 PMCID: PMC2825736 DOI: 10.1042/bj20091050] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dpl (doppel) is a paralogue of the PrPC (cellular prion protein), whose misfolded conformer (the scrapie prion protein, PrPSc) is responsible for the onset of TSEs (transmissible spongiform encephalopathies) or prion diseases. It has been shown that the ectopic expression of Dpl in the brains of some lines of PrP-knockout mice provokes cerebellar ataxia, which can be rescued by the reintroduction of the PrP gene, suggesting a functional interaction between the two proteins. It is, however, still unclear where, and under which conditions, this event may occur. In the present study we addressed this issue by analysing the intracellular localization and the interaction between Dpl and PrPC in FRT (Fischer rat thyroid) cells stably expressing the two proteins separately or together. We show that both proteins localize prevalently on the basolateral surface of FRT cells, in both singly and doubly transfected clones. Interestingly we found that they associate with DRMs (detergent-resistant membranes) or lipid rafts, from where they can be co-immunoprecipitated in a cholesterol-dependent fashion. Although the interaction between Dpl and PrPC has been suggested before, our results provide the first clear evidence that this interaction occurs in rafts and is dependent on the integrity of these membrane microdomains. Furthermore, both Dpl and PrPC could be immunoprecipitated with flotillin-2, a raft protein involved in endocytosis and cell signalling events, suggesting that they share the same lipid environment.
Collapse
|
31
|
Singh A, Kong Q, Luo X, Petersen RB, Meyerson H, Singh N. Prion protein (PrP) knock-out mice show altered iron metabolism: a functional role for PrP in iron uptake and transport. PLoS One 2009; 4:e6115. [PMID: 19568430 PMCID: PMC2699477 DOI: 10.1371/journal.pone.0006115] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 05/20/2009] [Indexed: 11/23/2022] Open
Abstract
Despite overwhelming evidence implicating the prion protein (PrP) in prion disease pathogenesis, the normal function of this cell surface glycoprotein remains unclear. In previous reports we demonstrated that PrP mediates cellular iron uptake and transport, and aggregation of PrP to the disease causing PrP-scrapie (PrPSc) form results in imbalance of iron homeostasis in prion disease affected human and animal brains. Here, we show that selective deletion of PrP in transgenic mice (PrPKO) alters systemic iron homeostasis as reflected in hematological parameters and levels of total iron and iron regulatory proteins in the plasma, liver, spleen, and brain of PrPKO mice relative to matched wild type controls. Introduction of radiolabeled iron (59FeCl3) to Wt and PrPKO mice by gastric gavage reveals inefficient transport of 59Fe from the duodenum to the blood stream, an early abortive spike of erythropoiesis in the long bones and spleen, and eventual decreased 59Fe content in red blood cells and all major organs of PrPKO mice relative to Wt controls. The iron deficient phenotype of PrPKO mice is reversed by expressing Wt PrP in the PrPKO background, demonstrating a functional role for PrP in iron uptake and transport. Since iron is required for essential metabolic processes and is also potentially toxic if mismanaged, these results suggest that loss of normal function of PrP due to aggregation to the PrPSc form induces imbalance of brain iron homeostasis, resulting in disease associated neurotoxicity.
Collapse
Affiliation(s)
- Ajay Singh
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Qingzhong Kong
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Xiu Luo
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Robert B. Petersen
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Howard Meyerson
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Neena Singh
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
32
|
Sarnataro D, Caputo A, Casanova P, Puri C, Paladino S, Tivodar SS, Campana V, Tacchetti C, Zurzolo C. Lipid rafts and clathrin cooperate in the internalization of PrP in epithelial FRT cells. PLoS One 2009; 4:e5829. [PMID: 19503793 PMCID: PMC2688078 DOI: 10.1371/journal.pone.0005829] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 04/27/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The cellular prion protein (PrP(C)) plays a key role in the pathogenesis of Transmissible Spongiform Encephalopathies in which the protein undergoes post-translational conversion to the infectious form (PrP(Sc)). Although endocytosis appears to be required for this conversion, the mechanism of PrP(C) internalization is still debated, as caveolae/raft- and clathrin-dependent processes have all been reported to be involved. METHODOLOGY/PRINCIPAL FINDINGS We have investigated the mechanism of PrP(C) endocytosis in Fischer Rat Thyroid (FRT) cells, which lack caveolin-1 (cav-1) and caveolae, and in FRT/cav-1 cells which form functional caveolae. We show that PrP(C) internalization requires activated Cdc-42 and is sensitive to cholesterol depletion but not to cav-1 expression suggesting a role for rafts but not for caveolae in PrP(C) endocytosis. PrP(C) internalization is also affected by knock down of clathrin and by the expression of dominant negative Eps15 and Dynamin 2 mutants, indicating the involvement of a clathrin-dependent pathway. Notably, PrP(C) co-immunoprecipitates with clathrin and remains associated with detergent-insoluble microdomains during internalization thus indicating that PrP(C) can enter the cell via multiple pathways and that rafts and clathrin cooperate in its internalization. CONCLUSIONS/SIGNIFICANCE These findings are of particular interest if we consider that the internalization route/s undertaken by PrP(C) can be crucial for the ability of different prion strains to infect and to replicate in different cell lines.
Collapse
Affiliation(s)
- Daniela Sarnataro
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Anna Caputo
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, Paris, France
| | - Philippe Casanova
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, Paris, France
| | - Claudia Puri
- FIRC Institute of Molecular Oncology Foundation (IFOM), Milano, Italy
| | - Simona Paladino
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- CEINGE Biotecnologie Avanzate s.c.a.r.l., Napoli, Italy
| | - Simona S. Tivodar
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Vincenza Campana
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, Paris, France
| | - Carlo Tacchetti
- FIRC Institute of Molecular Oncology Foundation (IFOM), Milano, Italy
- MicroscoBio Research Center, Università di Genova, Genova, Italy
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italy
| | - Chiara Zurzolo
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
33
|
Pantera B, Bini C, Cirri P, Paoli P, Camici G, Manao G, Caselli A. PrPc activation induces neurite outgrowth and differentiation in PC12 cells: role for caveolin-1 in the signal transduction pathway. J Neurochem 2009; 110:194-207. [PMID: 19457127 DOI: 10.1111/j.1471-4159.2009.06123.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cellular prion protein (PrP(c)) is a ubiquitous glycoprotein, whose physiological role is poorly characterized. It has been suggested that PrP(c) participates in neuritogenesis, neuroprotection, copper metabolism, and signal transduction. In this study we detailed the intracellular events induced by PrP(c) antibody-mediated cross-linking in PC12 cells. We found a Fyn-dependent activation of the Ras-Raf pathway, which leads to a rapid and transient phosphorylation of extracellular regulated kinases. In addition, this activation cascade relies on the engagement of integrins, and involves focal adhesion kinase activation. We demonstrated the tyrosine phosphorylation of caveolin-1 as a consequence of PrP(c) stimulation, and showed that phosphocaveolin-1 scaffolds and coordinates protein complexes involved in PrP(c)-dependent signaling. Moreover, we found that caveolin-1 phosphorylation, is a mechanism for recruiting the C-terminal Src kinase and inactivating Fyn, so as to terminate cell signaling. Furthermore our data support a significant role for PrP(c) as a response mediator in neuritogenesis and cell differentiation.
Collapse
Affiliation(s)
- Barbara Pantera
- Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Italy
| | | | | | | | | | | | | |
Collapse
|
34
|
Paladino S, Lebreton S, Tivodar S, Campana V, Tempre R, Zurzolo C. Different GPI-attachment signals affect the oligomerisation of GPI-anchored proteins and their apical sorting. J Cell Sci 2009; 121:4001-7. [PMID: 19056670 DOI: 10.1242/jcs.036038] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To understand the mechanism involved in the apical sorting of glycosylphosphatidylinositol (GPI)-anchored proteins (GPI-APs) we fused to the C-terminus of GFP the GPI-anchor-attachment signal of the folate receptor (FR) or of the prion protein (PrP), two native GPI-anchored proteins that are sorted apically or basolaterally, respectively, in MDCK cells. We investigated the behaviour of the resulting fusion proteins GFP-FR and GFP-PrP by analysing three parameters: their association with DRMs, their oligomerisation and their apical sorting. Strikingly, we found that different GPI-attachment signals differently modulate the ability of the resulting GFP-fusion protein to oligomerise and to be apically sorted. This is probably owing to differences in the GPI anchor and/or in the surrounding lipid microenvironment. Accordingly, we show that addition of cholesterol to the cells is necessary and sufficient to drive the oligomerisation and consequent apical sorting of GFP-PrP, which under control conditions does not oligomerise and is basolaterally sorted.
Collapse
Affiliation(s)
- Simona Paladino
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli Federico II
| | | | | | | | | | | |
Collapse
|
35
|
Gassama-Diagne A, Payrastre B. Phosphoinositide signaling pathways: promising role as builders of epithelial cell polarity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 273:313-43. [PMID: 19215908 DOI: 10.1016/s1937-6448(08)01808-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polarity is a prerequisite for proper development and function of epithelia in metazoa. The major feature of polarized epithelial cells is the presence of specialized domains with asymmetric distribution of macromolecular contents including proteins and lipids. The apical domain is involved in exchange with the organ lumen, and the basolateral membrane maintains contact with neighboring cells and the underlying extracellular matrix. The two domains are separated by tight junctions, which act as a diffusion barrier to prevent free mixing of domain-specific proteins and lipids. Extensive studies have shed light on the numerous protein families involved in cell polarization. However, many questions still remain regarding the molecular mechanisms of polarity regulation and in particular very little is known about the role of lipids in building polarity. In this chapter, essential determinants of epithelial polarity will be reviewed with a particular focus on metabolism and function of phosphoinositides.
Collapse
Affiliation(s)
- Ama Gassama-Diagne
- Unité Mixte INSERM U785/Université Paris XI, Centre Hépatobiliaire, Hôpital Paul Brousse, Villejuif, France
| | | |
Collapse
|
36
|
Christensen HM, Harris DA. A deleted prion protein that is neurotoxic in vivo is localized normally in cultured cells. J Neurochem 2008; 108:44-56. [PMID: 19046329 DOI: 10.1111/j.1471-4159.2008.05719.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The prion protein (PrP) possesses sequence-specific domains that endow the molecule with neuroprotective and neurotoxic activities, and that may contribute to the pathogenesis of prion diseases. To further define critical neurotoxic determinants within PrP, we previously generated Tg(DeltaCR) mice that express a form of PrP harboring a deletion of 21 amino acids within the central domain of the protein [Li et al., EMBO J. 26 (2007), 548]. These animals exhibit a neonatal lethal phenotype that is dose-dependently rescued by co-expression of wild-type PrP. In this study, we examined the localization and cell biological properties of the PrP(DeltaCR) protein in cultured cells to further understand the mechanism of PrP(DeltaCR) neurotoxicity. We found that the distribution of PrP(DeltaCR) was identical to that of wild-type PrP in multiple cell lines of both neuronal and non-neuronal origin, and that co-expression of the two proteins did not alter the localization of either one. Both proteins were found in lipid rafts, and both were localized to the apical surface in polarized epithelial cells. Taken together, our results suggest that PrP(DeltaCR) toxicity is not a result of mislocalization or aggregation of the protein, and more likely stems from altered binding interactions leading to the activation of deleterious signaling pathways.
Collapse
Affiliation(s)
- Heather M Christensen
- Department of Cell Biology and Physiology, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | |
Collapse
|
37
|
Morel E, Fouquet S, Strup-Perrot C, Thievend CP, Petit C, Loew D, Faussat AM, Yvernault L, Pinçon-Raymond M, Chambaz J, Rousset M, Thenet S, Clair C. The cellular prion protein PrP(c) is involved in the proliferation of epithelial cells and in the distribution of junction-associated proteins. PLoS One 2008; 3:e3000. [PMID: 18714380 PMCID: PMC2500194 DOI: 10.1371/journal.pone.0003000] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 07/28/2008] [Indexed: 12/20/2022] Open
Abstract
Background The physiological function of the ubiquitous cellular prion protein, PrPc, is still under debate. It was essentially studied in nervous system, but poorly investigated in epithelial cells. We previously reported that PrPc is targeted to cell–cell junctions of polarized epithelial cells, where it interacts with c-Src. Methodology/Findings We show here that, in cultured human enterocytes and in intestine in vivo, the mature PrPc is differentially targeted either to the nucleus in dividing cells or to cell–cell contacts in polarized/differentiated cells. By proteomic analysis, we demonstrate that the junctional PrPc interacts with cytoskeleton-associated proteins, such as gamma- and beta-actin, alpha-spectrin, annexin A2, and with the desmosome-associated proteins desmoglein, plakoglobin and desmoplakin. In addition, co-immunoprecipitation experiments revealed complexes associating PrPc, desmoglein and c-Src in raft domains. Through siRNA strategy, we show that PrPc is necessary to complete the process of epithelial cell proliferation and for the sub-cellular distribution of proteins involved in cell architecture and junctions. Moreover, analysis of the architecture of the intestinal epithelium of PrPc knock-out mice revealed a net decrease in the size of desmosomal junctions and, without change in the amount of BrdU incorporation, a shortening of the length of intestinal villi. Conclusions/Significance From these results, PrPc could be considered as a new partner involved in the balance between proliferation and polarization/differentiation in epithelial cells.
Collapse
Affiliation(s)
- Etienne Morel
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Stéphane Fouquet
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Carine Strup-Perrot
- Radiosensibilité des tissus sains, UPRES EA 27.10, Institut Gustave Roussy PRI, Villejuif F-94805, France
| | - Cathy Pichol Thievend
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Constance Petit
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse Protéomique, Institut Curie, Pavillon Pasteur, 75248 Paris, France
| | - Anne-Marie Faussat
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Lucile Yvernault
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Martine Pinçon-Raymond
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Jean Chambaz
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Monique Rousset
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Sophie Thenet
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
| | - Caroline Clair
- Centre de Recherche des Cordeliers, Université Pierre et Marie Curie-Paris 6, UMR S 872, Paris, F-75006 France
- INSERM, U 872, Paris, F-75006 France
- Université Paris Descartes-Paris 5, UMR S 872, Paris, F-75006 France
- * E-mail:
| |
Collapse
|
38
|
Schiff E, Campana V, Tivodar S, Lebreton S, Gousset K, Zurzolo C. Coexpression of wild-type and mutant prion proteins alters their cellular localization and partitioning into detergent-resistant membranes. Traffic 2008; 9:1101-15. [PMID: 18410485 DOI: 10.1111/j.1600-0854.2008.00746.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of diseases of infectious, sporadic and genetic origin, found in higher organisms and caused by the pathological form of the prion protein. The inheritable subgroup of TSEs is linked to insertional or point mutations in the prion gene prnp, which favour its misfolding and are passed on to offspring in an autosomal-dominant fashion. The large majority of patients with these diseases are heterozygous for the prnp gene, leading to the coexpression of the wild-type (wt) (PrP(C)) and the mutant forms (PrPmut) in the carriers of these mutations. To mimic this situation in vitro, we produced Fischer rat thyroid cells coexpressing PrPwt alongside mutant versions of mouse PrP including A117V, E200K and T182A relevant to the human TSE diseases Gestmann-Sträussler-Scheinker (GSS) disease and familial Creutzfeldt-Jakob disease (fCJD). We found that coexpression of mutant PrP with wt proteins does not affect the glycosylation pattern or the biochemical characteristics of either protein. However, FRET and co-immunoprecipitation experiments suggest an interaction occurring between the wt and mutant proteins. Furthermore, by comparing the intracellular localization and detergent-resistant membrane (DRM) association in single- and double-expressing clones, we found changes in the intracellular/surface ratio and an increased sequestration of both proteins in DRMs, a site believed to be involved in the pathological conversion (or protection thereof) of the prion protein. We, therefore, propose that the mutant forms alter the subcellular localization and the membrane environment of the wt protein in co-transfected cells. These effects may play a role in the development of these diseases.
Collapse
Affiliation(s)
- Edwin Schiff
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
39
|
Polymenidou M, Trusheim H, Stallmach L, Moos R, Julius C, Miele G, Lenz-Bauer C, Aguzzi A. Canine MDCK cell lines are refractory to infection with human and mouse prions. Vaccine 2008; 26:2601-14. [PMID: 18423803 DOI: 10.1016/j.vaccine.2008.03.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 03/05/2008] [Accepted: 03/11/2008] [Indexed: 11/25/2022]
Abstract
Influenza vaccine production in embryonated eggs is associated with many disadvantages, and production in cell culture systems is a viable alternative. Madin Darby canine kidney (MDCK) cells are permissive for a variety of orthomyxoviruses and have proven particularly suitable for vaccine mass production. However, mammalian cells harboring the Prnp gene can theoretically acquire prion infections. Here, we have attempted to infect MDCK cells and substrains thereof with prions. We found that MDCK cells did not produce any protease-resistant PrP(Sc) upon exposure to brain homogenates derived from humans suffering from Creutzfeldt-Jakob disease (CJD) or from mice infected with Rocky Mountain Laboratory (RML) scrapie prions. Further, transmission of MDCK lysates to N2aPK1 cells did not induce formation of PrP(Sc) in the latter. PrP(C) biogenesis and processing in MDCK cells were similar to those of prion-sensitive N2aPK1 cells. However, steady-state levels of PrP(C) were very low, and PrP(C) did not partition with detergent-resistant membranes upon density gradient analysis. These factors may account for their resistance to infection. Alternatively, prion resistance may be related to the specific sequence of canine Prnp, as suggested by the lack of documented prion diseases in dogs.
Collapse
Affiliation(s)
- Magdalini Polymenidou
- Institute of Neuropathology, University Hospital of Zürich, Schmelzbergstrasse 12, Zürich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Cereijido M, Contreras RG, Shoshani L, Flores-Benitez D, Larre I. Tight junction and polarity interaction in the transporting epithelial phenotype. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1778:770-93. [PMID: 18028872 DOI: 10.1016/j.bbamem.2007.09.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 08/28/2007] [Accepted: 09/03/2007] [Indexed: 12/21/2022]
Abstract
Development of tight junctions and cell polarity in epithelial cells requires a complex cellular machinery to execute an internal program in response to ambient cues. Tight junctions, a product of this machinery, can act as gates of the paracellular pathway, fences that keep the identity of plasma membrane domains, bridges that communicate neighboring cells. The polarization internal program and machinery are conserved in yeast, worms, flies and mammals, and in cell types as different as epithelia, neurons and lymphocytes. Polarization and tight junctions are dynamic features that change during development, in response to physiological and pharmacological challenges and in pathological situations like infection.
Collapse
Affiliation(s)
- Marcelino Cereijido
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV, AP 14-740, México D.F. 07000, México.
| | | | | | | | | |
Collapse
|
41
|
Campana V, Caputo A, Sarnataro D, Paladino S, Tivodar S, Zurzolo C. Characterization of the Properties and Trafficking of an Anchorless Form of the Prion Protein. J Biol Chem 2007; 282:22747-56. [PMID: 17556367 DOI: 10.1074/jbc.m701468200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Conversion of PrP(C) into PrP(Sc) is the central event in the pathogenesis of transmissible prion diseases. Although the molecular basis of this event and the intracellular compartment where it occurs are not yet understood, the association of PrP with cellular membranes and in particular its presence in detergent-resistant microdomains appears to be of critical importance. In addition it appears that scrapie conversion requires membrane-bound glycosylphosphatidylinositol (GPI)-linked PrP. The GPI anchor may affect either the conformation, the intracellular localization, or the association of the prion protein with specific membrane domains. However, how this occurs is not known. To understand the relevance of the GPI anchor for the cellular behavior of PrP, we have studied the biosynthesis and localization of a PrP version which lacks the GPI anchor attachment signal (PrP Delta GPI). We found that PrP Delta GPI is tethered to cell membranes and associates to membrane detergent-resistant microdomains but does not assume a transmembrane topology. Differently to PrP(C), this protein does not localize at the cell surface but is mainly released in the culture media in a fully glycosylated soluble form. The cellular behavior of anchorless PrP explains why PrP Delta GPI Tg mice can be infected but do not show the classical signs of the disorder, thus indicating that the plasma membrane localization of PrP(C) and/or of the converted scrapie form might be necessary for the development of a symptomatic disease.
Collapse
Affiliation(s)
- Vincenza Campana
- Unité de Trafic Membranaire et Pathogénèse, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | | | |
Collapse
|
42
|
Lázaro-Diéguez F, Colonna C, Cortegano M, Calvo M, Martínez SE, Egea G. Variable actin dynamics requirement for the exit of different cargo from thetrans-Golgi network. FEBS Lett 2007; 581:3875-81. [PMID: 17651738 DOI: 10.1016/j.febslet.2007.07.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2007] [Revised: 07/06/2007] [Accepted: 07/08/2007] [Indexed: 01/16/2023]
Abstract
Efficient post-Golgi trafficking depends on microtubules, but actin filaments and actin-associated proteins are also postulated. Here we examined, by inverse fluorescence recovery after photobleaching, the role of actin dynamics in the exit from the TGN of fluorescent-tagged apical or basolateral and raft or non-raft-associated cargoes. Either the actin-stabilizing jasplakinolide or the actin-depolymerising latrunculin B variably but significantly inhibited post-Golgi traffic of non-raft associated apical p75NTR and basolateral VSV-G cargoes. The TGN-exit of the apical-destined VSV-G mutant was impaired only by latrunculin B. Strikingly, the raft-associated GPI-anchor protein was not affected by either actin toxin. Results indicate that actin dynamics participates in the TGN egress of both apical- and basolateral-targeted proteins but is not needed for apical raft-associated cargo.
Collapse
Affiliation(s)
- Francisco Lázaro-Diéguez
- Departament de Biologia Cellular i Anatomia Patològica, Facultat de Medicina, Universitat de Barcelona, C/Casanova 143, E-08036 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
43
|
De Keukeleire B, Donadio S, Micoud J, Lechardeur D, Benharouga M. Human cellular prion protein hPrPC is sorted to the apical membrane of epithelial cells. Biochem Biophys Res Commun 2007; 354:949-54. [PMID: 17276393 DOI: 10.1016/j.bbrc.2007.01.096] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 01/13/2007] [Indexed: 11/28/2022]
Abstract
Propagation of the scrapie isoform of the prion protein (PrP(Sc)) depends on the expression of endogenous cellular prion (PrP(C)). During oral infection, PrP(Sc) propagates, by conversion of the PrP(C) to PrP(Sc), from the gastrointestinal tract to the nervous system. Intestinal epithelium could serve as the primary site for PrP(C) conversion. To investigate PrP(C) sorting in epithelia cells, we have generated both a green fluorescent protein (EGFP) or hemagglutinin (HA) tagged human PrP(C) (hPrP(C)). Combined molecular, biochemical, and single living polarized cell imaging characterizations suggest that hPrP(C) is selectively targeted to the apical side of Madin-Darby canine kidney (MDCKII) and of intestinal epithelia (Caco2) cells.
Collapse
Affiliation(s)
- B De Keukeleire
- CEA Grenoble, UMR 5249, CEA/CNRS/Université Joseph Fourrier, Institut de Recherches en Technologies et Sciences pour le Vivant, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
44
|
Purkerson JM, Kittelberger AM, Schwartz GJ. Basolateral carbonic anhydrase IV in the proximal tubule is a glycosylphosphatidylinositol-anchored protein. Kidney Int 2007; 71:407-16. [PMID: 17228367 DOI: 10.1038/sj.ki.5002071] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Carbonic anhydrase (CA) IV facilitates HCO(3) reabsorption in the renal proximal tubule by catalyzing the reversible hydration of CO(2). CAIV is tethered to cell membranes via a glycosylphosphatidylinositol (GPI) lipid anchor. As there is basolateral as well as apical CAIV staining in proximal tubule, the molecular identity of basolateral CAIV was examined. Biotinylation of confluent monolayers of rat inner medullary collecting duct cells stably transfected with rabbit CAIV showed apical and basolateral CAIV, and in the cell transfectants expressing high levels of CAIV, a transmembrane form was targeted to the basolateral membrane. Basolateral expression of CAIV ( approximately 46 kDa) was confirmed in normal kidney tissue by Western blotting of vesicle fractions enriched for basolateral membranes by Percoll density fractionation. We examined the mode of membrane linkage of basolaterally expressed CAIV in the kidney cortex. CAIV detected in basolateral or apical membrane vesicles exhibited similar molecular size by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis following deglycosylation, and was equally sensitive to phosphatidylinositol-specific phospholipase C digestion, indicating that CAIV is expressed on the basolateral membrane as a GPI-anchored protein. Half of the hydratase activity of basolateral vesicles was resistant to SDS denaturation, compatible with being CAIV. Thus, GPI-anchored CAIV resides in the basolateral membrane of proximal tubule epithelia where it may facilitate HCO(3) reabsorption via association with kNBC1.
Collapse
Affiliation(s)
- J M Purkerson
- Department of Pediatrics, Strong Children's Research Center, University of Rochester School of Medicine, Rochester, New York, USA
| | | | | |
Collapse
|
45
|
Abstract
Carbonic anhydrase (CA) catalyzes the reversible hydration of CO(2). CA is expressed in most segments of the kidney. CAII and CAIV predominate in human and rabbit kidneys; in rodent kidneys, CAXII, and CAXIV are also present. CAIX is expressed by renal cell carcinoma (RCC). Most of these isoforms, except for rodent CAIV, have high turnover rates. CAII is a cytoplasmic enzyme, whereas the others are membrane-associated; CAIV is anchored by glycosylphosphatidylinositol linkage. Membrane polarity is apical for CAXIV, basolateral for CAXII, and apical and basolateral for CAIV. Luminal membrane CAs facilitate the dehydration of carbonic acid (H(2)CO(3)) that is formed when secreted protons combine with filtered bicarbonate. Basolateral CA enhances the efflux of bicarbonate via dehydration of H(2)CO(3). CAII and CAIV can associate with bicarbonate transporters (e.g., AE1, kNBC1, NBC3, and SCL26A6), and proton antiporter, NHE1 in a membrane protein complex called a transport metabolon. CAXII and CAXIV may also be associated with transporters in normal kidney and CAIX in RCCs. The multiplicity of CAs implicates their importance in acid-base and other solute transport along the nephron. For example, CAII on the cytoplasmic face and CAIV on the extracellular surface provide the 'push' and 'pull' for bicarbonate transport by supplying and dissipating substrate respectively.
Collapse
Affiliation(s)
- J M Purkerson
- Department of Pediatrics, University of Rochester School of Medicine, Rochester, New York, USA
| | | |
Collapse
|
46
|
Viegas P, Chaverot N, Enslen H, Perrière N, Couraud PO, Cazaubon S. Junctional expression of the prion protein PrPC by brain endothelial cells: a role in trans-endothelial migration of human monocytes. J Cell Sci 2006; 119:4634-43. [PMID: 17062642 DOI: 10.1242/jcs.03222] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The conversion of prion protein (PrPC) to its protease-resistant isoform is involved in the pathogenesis of prion diseases. Although PrPC is highly expressed in neurons and other cell types, its physiological function still remains elusive. Here, we describe how we evaluated its expression, subcellular localization and putative function in brain endothelial cells, which constitute the blood-brain barrier. We detected its expression in microvascular endothelium in mouse brain sections and at intercellular junctions of freshly isolated brain microvessels and cultured brain endothelial cells of mouse, rat and human origin. PrPC co-localized with the adhesion molecule platelet endothelial cell adhesion molecule-1 (PECAM-1); moreover, both PrPC and PECAM-1 were present in raft membrane microdomains. Using mixed cultures of wild-type and PrPC-deficient mouse brain endothelial cells, we observed that PrPC accumulation at cell-cell contacts was probably dependent on homophilic interactions between adjacent cells. Moreover, we report that anti-PrPC antibodies unexpectedly inhibited transmigration of U937 human monocytic cells as well as freshly isolated monocytes through human brain endothelial cells. Significant inhibition was observed with various anti-PrPC antibodies or blocking anti-PECAM-1 antibodies as control. Our results strongly support the conclusion that PrPC is expressed by brain endothelium as a junctional protein that is involved in the trans-endothelial migration of monocytes.
Collapse
Affiliation(s)
- Pedro Viegas
- Institut Cochin, Département Biologie Cellulaire, Paris, France
| | | | | | | | | | | |
Collapse
|
47
|
Sarnataro D, Pisanti S, Santoro A, Gazzerro P, Malfitano AM, Laezza C, Bifulco M. The cannabinoid CB1 receptor antagonist rimonabant (SR141716) inhibits human breast cancer cell proliferation through a lipid raft-mediated mechanism. Mol Pharmacol 2006; 70:1298-306. [PMID: 16822929 DOI: 10.1124/mol.106.025601] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The endocannabinoid system has been shown to modulate key cell-signaling pathways involved in cancer cell growth. In this study, we show that cannabinoid receptor type 1 (CB1) antagonist Rimonabant (SR141716) inhibited human breast cancer cell proliferation, being more effective in highly invasive metastatic MDA-MB-231 cells than in less-invasive T47D and MCF-7 cells. The SR141716 antiproliferative effect was not accompanied by apoptosis or necrosis and was characterized by a G1/S-phase cell cycle arrest, decreased expression of cyclin D and E, and increased levels of cyclin-dependent kinase inhibitor p27KIP1. We have also shown that SR141716 exerted a significant antiproliferative action, in vivo, by reducing the volume of xenograft tumors induced by MDA-MB-231 injection in mice. On the other hand, at the concentration range in which we observed the antiproliferative effect in tumor cells, we did not observe evidence of any genotoxic effect on normal cells. Our data also indicate that the SR141716 antiproliferative effect requires lipid raft/caveolae integrity to occur. Indeed, we found that CB1 receptor (CB1R) is completely displaced from lipid rafts in SR141716-treated MDA-MB-231 cells, and cholesterol depletion by methyl-beta-cyclodextrin strongly prevented SR141716-mediated antiproliferative effect. Taken together, our results suggest that SR141716 inhibits human breast cancer cell growth via a CB1R lipid raft/caveolae-mediated mechanism.
Collapse
Affiliation(s)
- Daniela Sarnataro
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Salerno, Via Ponte don Melillo, 84084 Fisciano (Salerno), Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Tivodar S, Paladino S, Pillich R, Prinetti A, Chigorno V, van Meer G, Sonnino S, Zurzolo C. Analysis of detergent-resistant membranes associated with apical and basolateral GPI-anchored proteins in polarized epithelial cells. FEBS Lett 2006; 580:5705-12. [PMID: 17007841 DOI: 10.1016/j.febslet.2006.09.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Revised: 09/04/2006] [Accepted: 09/12/2006] [Indexed: 02/03/2023]
Abstract
Detergent-resistant membranes (DRMs) represent specialized membrane domains resistant to detergent extraction, which may serve to segregate proteins in a specific environment in order to improve their function. Segregation of glycosylphosphatidylinositol-anchored proteins (GPI-APs) in DRMs has been shown to be involved in their sorting to the apical membrane in polarized epithelial cells. Nonetheless, we have shown that both apical and basolateral GPI-APs associate with DRMs. In this report we investigated the lipid composition of DRMs associated with an apical and a basolateral GPI-AP. We found that apical and basolateral DRMs contain the same lipid species although in different ratios. This specific lipid ratio is maintained after mixing the cells before lysis indicating that DRMs maintain their identity after Triton extraction.
Collapse
Affiliation(s)
- Simona Tivodar
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli Federico II, via S. Pansini 5, 80131 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Farhan H, Freissmuth M, Sitte HH. Oligomerization of neurotransmitter transporters: a ticket from the endoplasmic reticulum to the plasma membrane. Handb Exp Pharmacol 2006:233-49. [PMID: 16722239 DOI: 10.1007/3-540-29784-7_12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cellular localization of neurotransmitter transporters is important for the precise control of synaptic transmission. By removing the neurotransmitters from the synaptic cleft, these transporters terminate signalling and affect duration and intensity of neurotransmission. Thus, a lot of work has been invested in the determination of the cellular compartment to which neurotransmitter transporters localize. In particular, the polarized distribution has received substantial attention. However, trafficking of transporters in the early secretory pathway has been largely ignored. Oligomer formation is a prerequisite for newly formed transporters to pass the stringent quality control mechanisms of the endoplasmic reticulum (ER), and this quaternary structure is also the preferred state which transporters reside in at the plasma membrane. Only properly assembled transporters are able to recruit the coatomer coat proteins that are needed for ER-to-Golgi trafficking. In this review, we will start with a brief description on transporter oligomerization that underlies ER-to-Golgi trafficking, followed by an introduction to ER-to-Golgi trafficking of neurotransmitter transporters. Finally, we will discuss the importance of oligomer formation for the pharmacological action of the illicitly used amphetamines and its derivatives.
Collapse
Affiliation(s)
- H Farhan
- Institute of Pharmacology, Centre for Biomolecular Medicine and Pharmacology, Medical University Vienna, Währingerstrasse 13a, 1090 Vienna, Austria
| | | | | |
Collapse
|
50
|
Didier A, Dietrich R, Steffl M, Gareis M, Groschup MH, Müller-Hellwig S, Märtlbauer E, Amselgruber WM. Cellular Prion Protein in the Bovine Mammary Gland Is Selectively Expressed in Active Lactocytes. J Histochem Cytochem 2006; 54:1255-61. [PMID: 16864892 DOI: 10.1369/jhc.5a6880.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The cellular prion protein (PrPc) is a highly conserved glycoprotein with a still enigmatic physiological function. It is mainly expressed in the central nervous system but accumulating data suggest that PrPc is also found in a broad spectrum of non-neuronal tissue. Here we investigated the cell-type-related PrPc expression in the bovine mammary gland by using immunohistochemistry (IHC), ELISA, Western blot, and real-time RT-PCR. Specific immunostaining of serial sections revealed that PrPc is selectively localized in mammary gland epithelial cells. Particularly strong expression was found at the basolateral surface of those cells showing active secretion. Results obtained by RT-PCR and ELISA complemented IHC findings. No correlation was found between the level of PrPc expression and other parameters such as age of the animals under study or stage of lactation.
Collapse
Affiliation(s)
- Andrea Didier
- Anatomy and Physiology of Domestic Animals, University of Hohenheim, Fruwirthstrasse 35 70599, Stuttgart, Germany
| | | | | | | | | | | | | | | |
Collapse
|