1
|
Jacobs DS, Bogachuk AP, Moghaddam B. Orbitofrontal and Prelimbic Cortices Serve Complementary Roles in Adapting Reward Seeking to Learned Anxiety. Biol Psychiatry 2024; 96:727-738. [PMID: 38460582 DOI: 10.1016/j.biopsych.2024.02.1015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/26/2024] [Accepted: 02/28/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Anxiety is a common symptom of several mental health disorders and adversely affects motivated behaviors. Anxiety can emerge from associating risk of future harm while engaged in goal-guided actions. Using a recently developed behavioral paradigm to model this aspect of anxiety, we investigated the role of 2 cortical subregions, the prelimbic medial frontal cortex (PL) and lateral orbitofrontal cortex (lOFC), which have been implicated in anxiety and outcome expectation, in flexible representation of actions associated with harm risk. METHODS A seek-take reward-guided instrumental task design was used to train animals (N = 8) to associate the seek action with a variable risk of punishment. After learning, animals underwent extinction training for this association. Fiber photometry was used to measure and compare neuronal activity in the PL and lOFC during learning and extinction. RESULTS Animals increased action suppression in response to punishment contingencies. This increase dissipated after extinction training. These behavioral changes were associated with region-specific changes in neuronal activity. PL neuronal activity preferentially adapted to the threat of punishment, whereas lOFC activity adapted to safe aspects of the task. Moreover, correlated activity between these regions was suppressed during actions associated with harm risk, suggesting that these regions may guide behavior independently under anxiety. CONCLUSIONS These findings suggest that the PL and lOFC serve distinct but complementary roles in the representation of learned anxiety. This dissociation may provide a mechanism to explain how overlapping cortical systems are implicated in reward-guided action execution during anxiety.
Collapse
Affiliation(s)
- David S Jacobs
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Alina P Bogachuk
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon
| | - Bita Moghaddam
- Department of Psychiatry, Oregon Health and Science University, Portland, Oregon; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, Oregon.
| |
Collapse
|
2
|
Kuan HY, Chang CH. The Role of the Orbitofrontal Cortex in the Regulation of Fear Coping Strategies. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:233-241. [PMID: 39347695 DOI: 10.4103/ejpi.ejpi-d-24-00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024]
Abstract
ABSTRACT Under threats, individuals exhibit freezing behavior and prepare for active coping. The ability to flexibly shift between freezing and active coping increases survival chances in animals and decreases susceptibility to mental disorders among human beings. For example, patients with psychiatric disorders, such as obsessive-compulsive disorder and posttraumatic stress disorder, often show maladaptive coping behaviors. The orbitofrontal cortex (OFC) is a critical hub to process higher cognitive functions, sensory inputs, reward learning, and decision-making. It also regulates negative emotions and its aberrant activation level often correlates with numerous mental disorders. The rodent OFC comprises different subdivisions with varying connections to cortical and subcortical regions. Among these subdivisions, the medial orbital area (MO) and the lateral orbital area (LO) have distinct functions in the regulation of fear. Here, we updated the existing rodent literature studying the function of the OFC, with a particular focus on the MO and the LO in different coping strategies of animals. By examining the role of the OFC in the mediation of defensive coping strategies, we aim to deepen the understanding of its functional importance on mental health.
Collapse
Affiliation(s)
- Hsun-Yi Kuan
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Hui Chang
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
- Brain Research Center, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
3
|
Ramos L, Harr AE, Zakas FL, Essig SR, Kempskie GJ, Fadil NA, Schmid MG, Pompy MD, Curley MC, Gabel LA, Hallock HL. Overexpression of the Apoe gene in the frontal cortex of mice causes sex-dependent changes in learning, attention, and anxiety-like behavior. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.08.607225. [PMID: 39149404 PMCID: PMC11326296 DOI: 10.1101/2024.08.08.607225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Apolipoprotein E (ApoE) is a protein that is important for lipid storage, transport, and metabolism. APOE gene variants are associated with Alzheimer's disease (AD), as well as attentional function in healthy humans. Previous research has shown that Apoe transcription is increased following stimulation of the pathway between the locus coeruleus (LC) and frontal cortex (FC) in mice. This result suggests that Apoe may affect attentional function by virtue of its expression in circuits that control attention. Does Apoe causally regulate attention, or is its expression simply a byproduct of neuronal activity in the LC and FC? To answer this question, we synthetically induced Apoe transcription in the FC of male and female mice, and subsequently tested their ability to learn a touchscreen-based rodent version of the continuous performance test of sustained attention (the rCPT). We found that increased Apoe transcription impaired performance when attentional demand was increased in male mice, while in female mice, increased Apoe transcription significantly accelerated rCPT learning. We further found that this increase in Apoe transcription affected subsequent anxiety-like behavior and cellular activity in the FC in a sex-dependent manner. The results of this study provide insight into how Apoe causally regulates translationally relevant behaviors in rodent models.
Collapse
Affiliation(s)
- Lizbeth Ramos
- Neuroscience Program, Lafayette College, Easton, PA, 18042, USA
| | - Abigail E. Harr
- Neuroscience Program, Lafayette College, Easton, PA, 18042, USA
| | - Finian L. Zakas
- Neuroscience Program, Lafayette College, Easton, PA, 18042, USA
| | - Samuel R. Essig
- Neuroscience Program, Lafayette College, Easton, PA, 18042, USA
| | | | - Nelly A. Fadil
- Neuroscience Program, Lafayette College, Easton, PA, 18042, USA
| | | | | | | | - Lisa A. Gabel
- Neuroscience Program, Lafayette College, Easton, PA, 18042, USA
| | | |
Collapse
|
4
|
Barabás B, Reéb Z, Papp OI, Hájos N. Functionally linked amygdala and prefrontal cortical regions are innervated by both single and double projecting cholinergic neurons. Front Cell Neurosci 2024; 18:1426153. [PMID: 39049824 PMCID: PMC11266109 DOI: 10.3389/fncel.2024.1426153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024] Open
Abstract
Cholinergic cells have been proposed to innervate simultaneously those cortical areas that are mutually interconnected with each other. To test this hypothesis, we investigated the cholinergic innervation of functionally linked amygdala and prefrontal cortical regions. First, using tracing experiments, we determined that cholinergic cells located in distinct basal forebrain (BF) areas projected to the different nuclei of the basolateral amygdala (BLA). Specifically, cholinergic cells in the ventral pallidum/substantia innominata (VP/SI) innervated the basal nucleus (BA), while the horizontal limb of the diagonal band of Broca (HDB) projected to its basomedial nucleus (BMA). In addition, cholinergic neurons in these two BF areas gave rise to overlapping innervation in the medial prefrontal cortex (mPFC), yet their axons segregated in the dorsal and ventral regions of the PFC. Using retrograde-anterograde viral tracing, we demonstrated that a portion of mPFC-projecting cholinergic neurons also innervated the BLA, especially the BA. By injecting retrograde tracers into the mPFC and BA, we found that 28% of retrogradely labeled cholinergic cells were double labeled, which typically located in the VP/SI. In addition, we found that vesicular glutamate transporter type 3 (VGLUT3)-expressing neurons within the VP/SI were also cholinergic and projected to the mPFC and BA, implicating that a part of the cholinergic afferents may release glutamate. In contrast, we uncovered that GABA is unlikely to be a co-transmitter molecule in HDB and VP/SI cholinergic neurons in adult mice. The dual innervation strategy, i.e., the existence of cholinergic cell populations with single as well as simultaneous projections to the BLA and mPFC, provides the possibility for both synchronous and independent control of the operation in these cortical areas, a structural arrangement that may maximize computational support for functionally linked regions. The presence of VGLUT3 in a portion of cholinergic afferents suggests more complex functional effects of cholinergic system in cortical structures.
Collapse
Affiliation(s)
- Bence Barabás
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
- The Linda and Jack Gill Center for Molecular Bioscience, Indiana University Bloomington, Bloomington, IN, United States
| | - Zsófia Reéb
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Orsolya I. Papp
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
| | - Norbert Hájos
- HUN-REN Institute of Experimental Medicine, Budapest, Hungary
- The Linda and Jack Gill Center for Molecular Bioscience, Indiana University Bloomington, Bloomington, IN, United States
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, United States
| |
Collapse
|
5
|
Botterill JJ, Khlaifia A, Appings R, Wilkin J, Violi F, Premachandran H, Cruz-Sanchez A, Canella AE, Patel A, Zaidi SD, Arruda-Carvalho M. Dorsal peduncular cortex activity modulates affective behavior and fear extinction in mice. Neuropsychopharmacology 2024; 49:993-1006. [PMID: 38233571 PMCID: PMC11039686 DOI: 10.1038/s41386-024-01795-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
The medial prefrontal cortex (mPFC) is critical to cognitive and emotional function and underlies many neuropsychiatric disorders, including mood, fear and anxiety disorders. In rodents, disruption of mPFC activity affects anxiety- and depression-like behavior, with specialized contributions from its subdivisions. The rodent mPFC is divided into the dorsomedial prefrontal cortex (dmPFC), spanning the anterior cingulate cortex (ACC) and dorsal prelimbic cortex (PL), and the ventromedial prefrontal cortex (vmPFC), which includes the ventral PL, infralimbic cortex (IL), and in some studies the dorsal peduncular cortex (DP) and dorsal tenia tecta (DTT). The DP/DTT have recently been implicated in the regulation of stress-induced sympathetic responses via projections to the hypothalamus. While many studies implicate the PL and IL in anxiety-, depression-like and fear behavior, the contribution of the DP/DTT to affective and emotional behavior remains unknown. Here, we used chemogenetics and optogenetics to bidirectionally modulate DP/DTT activity and examine its effects on affective behaviors, fear and stress responses in C57BL/6J mice. Acute chemogenetic activation of DP/DTT significantly increased anxiety-like behavior in the open field and elevated plus maze tests, as well as passive coping in the tail suspension test. DP/DTT activation also led to an increase in serum corticosterone levels and facilitated auditory fear extinction learning and retrieval. Activation of DP/DTT projections to the dorsomedial hypothalamus (DMH) acutely decreased freezing at baseline and during extinction learning, but did not alter affective behavior. These findings point to the DP/DTT as a new regulator of affective behavior and fear extinction in mice.
Collapse
Affiliation(s)
- Justin J Botterill
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - Abdessattar Khlaifia
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Ryan Appings
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Jennifer Wilkin
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Francesca Violi
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Hanista Premachandran
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Arely Cruz-Sanchez
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada
| | - Anna Elisabete Canella
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Ashutosh Patel
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - S Danyal Zaidi
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada
| | - Maithe Arruda-Carvalho
- Department of Psychology, University of Toronto Scarborough, Toronto, ON, M1C1A4, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada.
| |
Collapse
|
6
|
Yang X, Geng F. Corticotropin-releasing factor signaling and its potential role in the prefrontal cortex-dependent regulation of anxiety. J Neurosci Res 2023; 101:1781-1794. [PMID: 37592912 DOI: 10.1002/jnr.25238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/08/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
A large body of literature has highlighted the significance of the corticotropin-releasing factor (CRF) system in the regulation of neuropsychiatric diseases. Anxiety disorders are among the most common neuropsychiatric disorders. An increasing number of studies have demonstrated that the CRF family mediates and regulates the development and maintenance of anxiety. Thus, the CRF family is considered to be a potential target for the treatment of anxiety disorders. The prefrontal cortex (PFC) plays a role in the occurrence and development of anxiety, and both CRF and CRF-R1 are widely expressed in the PFC. This paper begins by reviewing CRF-related signaling pathways and their different roles in anxiety and related processes. Then, the role of the CRF system in other neuropsychiatric diseases is reviewed and the potential role of PFC CRF signaling in the regulation of anxiety disorders is discussed. Although other signaling pathways are potentially involved in the process of anxiety, CRF in the PFC primarily modulates anxiety disorders through the activation of corticotropin-releasing factor type1 receptors (CRF-R1) and the excitation of the cAMP/PKA signaling pathway. Moreover, the main signaling pathways of CRF involved in sex differentiation in the PFC appear to be different. In summary, this review suggests that the CRF system in the PFC plays a critical role in the occurrence of anxiety. Thus, CRF signaling is of great significance as a potential target for the treatment of stress-related disorders in the future.
Collapse
Affiliation(s)
- Xin Yang
- Department of Physiology, Shantou University Medical College, Shantou, China
- Department of Transfusion Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fei Geng
- Department of Physiology, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, China
| |
Collapse
|
7
|
Reis FMCV, Mobbs D, Canteras NS, Adhikari A. Orchestration of innate and conditioned defensive actions by the periaqueductal gray. Neuropharmacology 2023; 228:109458. [PMID: 36773777 DOI: 10.1016/j.neuropharm.2023.109458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
The midbrain periaqueductal gray (PAG) has been recognized for decades as having a central role in the control of a wide variety of defensive responses. Initial discoveries relied primarily on lesions, electrical stimulation and pharmacology. Recent developments in neural activity imaging and in methods to control activity with anatomical and genetic specificity have revealed additional streams of data informing our understanding of PAG function. Here, we discuss both classic and modern studies reporting on how PAG-centered circuits influence innate as well as learned defensive actions in rodents and humans. Though early discoveries emphasized the PAG's role in rapid induction of innate defensive actions, emerging new data indicate a prominent role for the PAG in more complex processes, including representing behavioral states and influencing fear learning and memory. This article is part of the Special Issue on "Fear, Anxiety and PTSD".
Collapse
Affiliation(s)
- Fernando M C V Reis
- Department of Psychology, University of California, Los Angeles, CA, United States.
| | - Dean Mobbs
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, United States; Computation and Neural Systems Program, California Institute of Technology, Pasadena, CA, United States
| | - Newton S Canteras
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Avishek Adhikari
- Department of Psychology, University of California, Los Angeles, CA, United States.
| |
Collapse
|
8
|
Morgan AA, Alves ND, Stevens GS, Yeasmin TT, Mackay A, Power S, Sargin D, Hanna C, Adib AL, Ziolkowski-Blake A, Lambe EK, Ansorge MS. Medial Prefrontal Cortex Serotonin Input Regulates Cognitive Flexibility in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534775. [PMID: 37034804 PMCID: PMC10081203 DOI: 10.1101/2023.03.30.534775] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The medial prefrontal cortex (mPFC) regulates cognitive flexibility and emotional behavior. Neurons that release serotonin project to the mPFC, and serotonergic drugs influence emotion and cognition. Yet, the specific roles of endogenous serotonin release in the mPFC on neurophysiology and behavior are unknown. We show that axonal serotonin release in the mPFC directly inhibits the major mPFC output neurons. In serotonergic neurons projecting from the dorsal raphe to the mPFC, we find endogenous activity signatures pre-reward retrieval and at reward retrieval during a cognitive flexibility task. In vivo optogenetic activation of this pathway during pre-reward retrieval selectively improved extradimensional rule shift performance while inhibition impaired it, demonstrating sufficiency and necessity for mPFC serotonin release in cognitive flexibility. Locomotor activity and anxiety-like behavior were not affected by either optogenetic manipulation. Collectively, our data reveal a powerful and specific modulatory role of endogenous serotonin release from dorsal raphe-to-mPFC projecting neurons in cognitive flexibility.
Collapse
|
9
|
Uliana DL, Zhu X, Gomes FV, Grace AA. Using animal models for the studies of schizophrenia and depression: The value of translational models for treatment and prevention. Front Behav Neurosci 2022; 16:935320. [PMID: 36090659 PMCID: PMC9449416 DOI: 10.3389/fnbeh.2022.935320] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Abstract
Animal models of psychiatric disorders have been highly effective in advancing the field, identifying circuits related to pathophysiology, and identifying novel therapeutic targets. In this review, we show how animal models, particularly those based on development, have provided essential information regarding circuits involved in disorders, disease progression, and novel targets for intervention and potentially prevention. Nonetheless, in recent years there has been a pushback, largely driven by the US National Institute of Mental Health (NIMH), to shift away from animal models and instead focus on circuits in normal subjects. This has been driven primarily from a lack of discovery of new effective therapeutic targets, and the failure of targets based on preclinical research to show efficacy. We discuss why animal models of complex disorders, when strongly cross-validated by clinical research, are essential to understand disease etiology as well as pathophysiology, and direct new drug discovery. Issues related to shortcomings in clinical trial design that confound translation from animal models as well as the failure to take patient pharmacological history into account are proposed to be a source of the failure of what are likely effective compounds from showing promise in clinical trials.
Collapse
Affiliation(s)
- Daniela L. Uliana
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xiyu Zhu
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Felipe V. Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Anthony A. Grace
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Albernaz-Mariano KA, Souza RR, Canto-de-Souza A. Blockade of the mineralocorticoid receptors in the medial prefrontal cortex prevents the acquisition of one-trial tolerance in mice. Behav Brain Res 2022; 431:113938. [PMID: 35618080 DOI: 10.1016/j.bbr.2022.113938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 11/17/2022]
Abstract
One-trial tolerance (OTT) is characterized by the lack of anxiolytic-like effects of benzodiazepines in animals submitted to a trial 2 in the elevated plus-maze (EPM) and is described to be influenced by learning mechanisms. Mineralocorticoid receptors (MR) in the infralimbic subregion (IL) of the medial prefrontal cortex (mPFC) are important modulators of emotional learning, but the MR involvement in the establishment of OTT remains unclear. We investigated the effects of intra-IL infusions of RU 28318 (an MR antagonist) on the OTT to the anxiolytic effects of midazolam (MDZ, GABAA-benzodiazepine agonist) in mice exposed to a two-trial protocol in the EPM. First, mice were treated with saline or MDZ (2mgkg-1, i.p.) 30minutes before trial 1 or 2 in the EPM, to characterize the OTT. To investigate the role of MR in the OTT, independent groups of mice received intra-IL infusions of vehicle or RU 28318 (5 or 10ng 0.1µL-1) immediately before or after first trial in the EPM. Twenty-four hours later, the same mice received injections of saline or MDZ and were re-tested in the EPM. The MDZ decreased anxiety-like behaviors in trial 1, but the same anxiolytic-like effect was not observed in MDZ-mice prior to the second EPM test, confirming the OTT. Blockade of MR in the IL before, but not after, trial 1 restored the anxiolytic effects if MDZ administered in trial 2. These findings indicate that the MR in the IL-mPFC contributing to the OTT by mediating the acquisition, but not the consolidation of emotional learning.
Collapse
Affiliation(s)
- Kairo Alan Albernaz-Mariano
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil.
| | - Rimenez Rodrigues Souza
- The University of Texas at Dallas, School of Behavior and Brain Sciences, 800 West Campbell Road, Richardson, TX 75080-3021, United States; The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, United States.
| | - Azair Canto-de-Souza
- Psychobiology Group/Department of Psychology/CECH-UFSCar, São Carlos, SP 13565-905, Brazil; Joint Graduate Program in Physiological Sciences UFSCar/UNESP, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil; Graduate Program in Psychology UFSCar, Rod. Washington Luís, Km 235, São Carlos, SP 13565-905, Brazil; Neuroscience and Behavioral Institute, Av. do Café, 2.450, 14050-220 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
11
|
Sexton HG, Olszewski NA, Risher ML. The Effects of Rosiglitazone on Task Specific Anxiety-Like Behavior and Novelty Seeking in a Model of Chronic Adolescent Unpredictable Stress. Front Behav Neurosci 2022; 16:830310. [PMID: 35221947 PMCID: PMC8874210 DOI: 10.3389/fnbeh.2022.830310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/20/2022] [Indexed: 12/02/2022] Open
Abstract
Adolescence is characterized as a period of increased social behavior, risk taking, and novelty seeking, partly due to ongoing maturation in critical brain areas and the hypothalamic-pituitary-adrenal (HPA) negative-feedback system. During this period there is heightened vulnerability to stress that can drive neuro-immune-endocrine remodeling, resulting in the emergence of maladaptive behaviors that increase susceptibility to alcohol and substance abuse. Here we used a rat model to investigate the impact of chronic adolescent unpredictable stress on a battery of behavioral measures to assess anxiety, novelty seeking, risk taking, depression, and voluntary ethanol consumption while determining whether the PPARγ agonist rosiglitazone can attenuate these effects. Adolescent female rats that experienced stress showed increased risk taking behavior and novelty seeking behavior with no change in ethanol consumption. The administration of rosiglitazone during stress induction attenuated stress-induced cortisol elevation, normalized risk taking behavior in a model anxiety, and attenuated novelty seeking in a task-specific manner. Depressive-like behavior was not impacted by adolescent unpredictable stress or the administration of rosiglitazone. The results from this study demonstrate that exposure to unpredictable stress during adolescence increases the prevalence of maladaptive behaviors that are known to increase susceptibility to alcohol and substance abuse, and that rosiglitazone may be an effective therapeutic to attenuate the emergence of select risk taking and novelty seeking behaviors in females.
Collapse
Affiliation(s)
- Hannah G. Sexton
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
- Hershel ‘Woody’ Williams Veterans Affairs Medical Center, Huntington, WV, United States
| | - Nathan A. Olszewski
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Mary-Louise Risher
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
- Hershel ‘Woody’ Williams Veterans Affairs Medical Center, Huntington, WV, United States
| |
Collapse
|
12
|
Mack NR, Deng SX, Yang SS, Shu YS, Gao WJ. Prefrontal Cortical Control of Anxiety: Recent Advances. Neuroscientist 2022:10738584211069071. [PMID: 35086369 PMCID: PMC9869286 DOI: 10.1177/10738584211069071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dysfunction in the prefrontal cortex is commonly implicated in anxiety disorders, but the mechanisms remain unclear. Approach-avoidance conflict tasks have been extensively used in animal research to better understand how changes in neural activity within the prefrontal cortex contribute to avoidance behaviors, which are believed to play a major role in the maintenance of anxiety disorders. In this article, we first review studies utilizing in vivo electrophysiology to reveal the relationship between changes in neural activity and avoidance behavior in rodents. We then review recent studies that take advantage of optical and genetic techniques to test the unique contribution of specific prefrontal cortex circuits and cell types to the control of anxiety-related avoidance behaviors. This new body of work reveals that behavior during approach-avoidance conflict is dynamically modulated by individual cell types, distinct neural pathways, and specific oscillatory frequencies. The integration of these different pathways, particularly as mediated by interactions between excitatory and inhibitory neurons, represents an exciting opportunity for the future of understanding anxiety.
Collapse
Affiliation(s)
- Nancy R. Mack
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Sui-Xin Deng
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Sha-Sha Yang
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - You-Sheng Shu
- Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China,Corresponding author: You-Sheng Shu, Ph.D., Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, Fudan University, 131 Dong’an Road, Xuhui District, Shanghai, 200032, China, ; Wen-Jun Gao, M.D., Ph.D.,
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129,Corresponding author: You-Sheng Shu, Ph.D., Department of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, Fudan University, 131 Dong’an Road, Xuhui District, Shanghai, 200032, China, ; Wen-Jun Gao, M.D., Ph.D.,
| |
Collapse
|
13
|
Evidence That Methylphenidate Treatment Evokes Anxiety-Like Behavior Through Glucose Hypometabolism and Disruption of the Orbitofrontal Cortex Metabolic Networks. Neurotox Res 2021; 39:1830-1845. [PMID: 34797528 DOI: 10.1007/s12640-021-00444-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
Methylphenidate (MPH) has been widely misused by children and adolescents who do not meet all diagnostic criteria for attention-deficit/hyperactivity disorder without a consensus about the consequences. Here, we evaluate the effect of MPH treatment on glucose metabolism and metabolic network in the rat brain, as well as on performance in behavioral tests. Wistar male rats received intraperitoneal injections of MPH (2.0 mg/kg) or an equivalent volume of 0.9% saline solution (controls), once a day, from the 15th to the 44th postnatal day. Fluorodeoxyglucose-18 was used to investigate cerebral metabolism, and a cross-correlation matrix was used to examine the brain metabolic network in MPH-treated rats using micro-positron emission tomography imaging. Performance in the light-dark transition box, eating-related depression, and sucrose preference tests was also evaluated. While MPH provoked glucose hypermetabolism in the auditory, parietal, retrosplenial, somatosensory, and visual cortices, hypometabolism was identified in the left orbitofrontal cortex. MPH-treated rats show a brain metabolic network more efficient and connected, but careful analyses reveal that the MPH interrupts the communication of the orbitofrontal cortex with other brain areas. Anxiety-like behavior was also observed in MPH-treated rats. This study shows that glucose metabolism evaluated by micro-positron emission tomography in the brain can be affected by MPH in different ways according to the region of the brain studied. It may be related, at least in part, to a rewiring in the brain the metabolic network and behavioral changes observed, representing an important step in exploring the mechanisms and consequences of MPH treatment.
Collapse
|
14
|
Santos-Costa N, Baptista-de-Souza D, Canto-de-Souza L, Fresca da Costa V, Nunes-de-Souza RL. Glutamatergic Neurotransmission Controls the Functional Lateralization of the mPFC in the Modulation of Anxiety Induced by Social Defeat Stress in Male Mice. Front Behav Neurosci 2021; 15:695735. [PMID: 34497496 PMCID: PMC8419264 DOI: 10.3389/fnbeh.2021.695735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/26/2021] [Indexed: 12/01/2022] Open
Abstract
The rodent medial prefrontal cortex (mPFC) is anatomically divided into cingulate (Cg1), prelimbic (PrL), and infralimbic (IL) subareas. The left and right mPFC (L and RmPFC) process emotional responses induced by stress-related stimuli, and LmPFC and RmPFC inhibition elicit anxiogenesis and anxiolysis, respectively. Here we sought to investigate (i) the mPFC functional laterality on social avoidance/anxiogenic-like behaviors in male mice subjected to chronic social defeat stress (SDS), (ii) the effects of left prelimbic (PrL) inhibition (with local injection of CoCl2) on the RmPFC glutamatergic neuronal activation pattern (immunofluorescence assay), and (iii) the effects of the dorsal right mPFC (Cg1 + PrL) NMDA receptor blockade (with local injection of AP7) on the anxiety induced by left dorsal mPFC inhibition in mice exposed to the elevated plus maze (EPM). Results showed that chronic SDS induced anxiogenic-like behaviors followed by the rise of ΔFosB labeling and by ΔFosB + CaMKII double-labeling bilaterally in the Cg1 and IL subareas of the mPFC. Chronic SDS also increased ΔFosB and by ΔFosB + CaMKII labeling only on the right PrL. Also, the left PrL inhibition increased cFos + CaMKII labeling in the contralateral PrL and IL. Moreover, anxiogenesis induced by the left PrL inhibition was blocked by NMDA receptor antagonist AP7 injected into the right PrL. These findings suggest the lateralized control of the glutamatergic neurotransmission in the modulation of emotional-like responses in mice subjected to chronic SDS.
Collapse
Affiliation(s)
- Nathália Santos-Costa
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista, Araraquara, Brazil.,Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar- Universidade Estadual Paulista, São Carlos, Brazil
| | - Daniela Baptista-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista, Araraquara, Brazil
| | - Lucas Canto-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista, Araraquara, Brazil
| | - Vinícius Fresca da Costa
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista, Araraquara, Brazil.,Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar- Universidade Estadual Paulista, São Carlos, Brazil
| | - Ricardo Luiz Nunes-de-Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences, Universidade Estadual Paulista, Araraquara, Brazil.,Joint Graduate Program in Physiological Sciences (PIPGCF) UFSCar- Universidade Estadual Paulista, São Carlos, Brazil
| |
Collapse
|
15
|
Bao X, Qi C, Liu T, Zheng X. Information transmission in mPFC-BLA network during exploratory behavior in the open field. Behav Brain Res 2021; 414:113483. [PMID: 34302874 DOI: 10.1016/j.bbr.2021.113483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022]
Abstract
Exploratory behavior plays a fundamental role in motivation, learning, and well-being of organisms. The open field test (OFT) is a classic method to investigate the exploratory behavior in rodents, also a widely adopted and pharmacologically validated procedure for evaluating anxiety and depression. Several lines of evidence have shown that medial prefrontal cortex (mPFC) and basolateral amygdala (BLA) play crucial roles in anxiety-like or depression-like exploratory behavior. However, the dynamic characterization of the mPFC-BLA network in exploratory behavior is less well understood. Therefore, this study aimed to investigate the information transmission mechanism in the mPFC-BLA network during exploratory behavior. Local field potentials (LFPs) from mPFC and BLA were simultaneously recorded while the rats performed the OFT. Directed transfer function (DTF), which was derived from Granger causal connectivity analysis, was applied to measure the functional connectivity among LFPs. Information flow (IF) was calculated to explore the dynamics of information transmission in the mPFC-BLA network. Our results revealed that, for both mPFC and BLA, the theta-band functional connectivity in periphery was significantly higher than that in center of the open field. The IF from BLA to mPFC in the open field task was significantly higher than that from mPFC to BLA. These results suggest that the functional connectivity and IF in the mPFC-BLA network are related to the exploratory behavior, and information transmission from BLA to mPFC could be predominant for exploratory behavior.
Collapse
Affiliation(s)
- Xuehui Bao
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, China
| | - Chengxi Qi
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, China
| | - Tiaotiao Liu
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, China
| | - Xuyuan Zheng
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
16
|
Chen YH, Wu JL, Hu NY, Zhuang JP, Li WP, Zhang SR, Li XW, Yang JM, Gao TM. Distinct projections from the infralimbic cortex exert opposing effects in modulating anxiety and fear. J Clin Invest 2021; 131:e145692. [PMID: 34263737 DOI: 10.1172/jci145692] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 06/03/2021] [Indexed: 01/07/2023] Open
Abstract
Anxiety-related disorders can be treated by cognitive therapies and transcranial magnetic stimulation, which involve the medial prefrontal cortex (mPFC). Subregions of the mPFC have been implicated in mediating different and even opposite roles in anxiety-related behaviors. However, precise causal targets of these top-down connections among diverse possibilities have not been established. Here, we show that the lateral septum (LS) and the central nucleus of the amygdala (CeA) represent 2 direct targets of the infralimbic cortex (IL), a subregion of the mPFC that modulates anxiety and fear. Two projections were unexpectedly found to exert opposite effects on the anxious state and learned freezing: the IL-LS projection promoted anxiety-related behaviors and fear-related freezing, whereas the IL-CeA projection exerted anxiolytic and fear-releasing effects for the same features. Furthermore, selective inhibition of corresponding circuit elements showed opposing behavioral effects compared with excitation. Notably, the IL-CeA projection implemented top-down control of the stress-induced high-anxiety state. These results suggest that distinct IL outputs exert opposite effects in modulating anxiety and fear and that modulating the excitability of these projections with distinct strategies may be beneficial for the treatment of anxiety disorders.
Collapse
|
17
|
Yuan R, Nechvatal JM, Buckmaster CL, Ayash S, Parker KJ, Schatzberg AF, Lyons DM, Menon V. Long-term effects of intermittent early life stress on primate prefrontal-subcortical functional connectivity. Neuropsychopharmacology 2021; 46:1348-1356. [PMID: 33495547 PMCID: PMC8134590 DOI: 10.1038/s41386-021-00956-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 11/12/2020] [Accepted: 12/29/2020] [Indexed: 01/30/2023]
Abstract
Correlational studies of humans suggest that exposure to early life stress has long-term effects on neural circuits involved in vulnerability and resilience to mental health disorders. Stress-related mental health disorders are more prevalent in women than in men. Here, female squirrel monkeys are randomized to intermittently stressful (IS) social separations or a non-separated (NS) control condition conducted from 17 to 27 weeks of age. Nine years later in mid-life adulthood, resting-state functional magnetic resonance imaging was employed to parcellate prefrontal cortex (PFC). Resulting subdivisions were then used to characterize functional connectivity within PFC, and between PFC subdivisions and subcortical regions that are known to be altered by stress. Extensive hyper-connectivity of medial and orbitofrontal PFC with amygdala, hippocampus, and striatum was observed in IS compared to NS monkeys. Functional hyper-connectivity in IS monkeys was associated with previously reported indications of diminished anxiety-like behavior induced by prepubertal stress. Hyper-connectivity of PFC with amygdala and with hippocampus was also associated with increased ventral striatal dopamine D2 and/or D3 receptor (DRD2/3) availability assessed with positron emission tomography (PET) of [11C]raclopride binding in adulthood. Ventral striatal DRD2/3 availability has been linked to cognitive control, which plays a key role in stress coping as an aspect of emotion regulation. These findings provide causal support for enduring neurobiological effects of early life stress and suggest novel targets for new treatments of stress-related mental health disorders.
Collapse
Affiliation(s)
- Rui Yuan
- grid.168010.e0000000419368956Department of Psychiatry and Behavioral Sciences, Stanford, USA
| | - Jordan M. Nechvatal
- grid.168010.e0000000419368956Department of Psychiatry and Behavioral Sciences, Stanford, USA ,grid.240952.80000000087342732Department of Neurology and Neurological Sciences, Stanford, USA
| | - Christine L. Buckmaster
- grid.168010.e0000000419368956Department of Psychiatry and Behavioral Sciences, Stanford, USA
| | - Sarah Ayash
- grid.168010.e0000000419368956Department of Psychiatry and Behavioral Sciences, Stanford, USA ,grid.410607.4Translational Psychiatry, Department of Psychiatry and Psychotherapy, Johannes Gutenberg University Medical Center, Hanns-Dieter-Huesch Weg 19, 55128 Mainz, Germany ,grid.509458.50000 0004 8087 0005Leibniz Institute for Resilience Research, Hanns-Dieter-Huesch Weg 19, 55128 Mainz, Germany
| | - Karen J. Parker
- grid.168010.e0000000419368956Department of Psychiatry and Behavioral Sciences, Stanford, USA ,grid.168010.e0000000419368956Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Alan F. Schatzberg
- grid.168010.e0000000419368956Department of Psychiatry and Behavioral Sciences, Stanford, USA ,grid.168010.e0000000419368956Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - David M. Lyons
- grid.168010.e0000000419368956Department of Psychiatry and Behavioral Sciences, Stanford, USA ,grid.168010.e0000000419368956Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford, USA. .,Department of Neurology and Neurological Sciences, Stanford, USA. .,Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
18
|
Kirouac GJ. The Paraventricular Nucleus of the Thalamus as an Integrating and Relay Node in the Brain Anxiety Network. Front Behav Neurosci 2021; 15:627633. [PMID: 33732118 PMCID: PMC7959748 DOI: 10.3389/fnbeh.2021.627633] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/28/2021] [Indexed: 12/25/2022] Open
Abstract
The brain anxiety network is composed of a number of interconnected cortical regions that detect threats and execute appropriate defensive responses via projections to the shell of the nucleus accumbens (NAcSh), dorsolateral region of the bed nucleus of the stria terminalis (BSTDL) and lateral region of the central nucleus of the amygdala (CeL). The paraventricular nucleus of the thalamus (PVT) is anatomically positioned to integrate threat- and arousal-related signals from cortex and hypothalamus and then relay these signals to neural circuits in the NAcSh, BSTDL, and CeL that mediate defensive responses. This review describes the anatomical connections of the PVT that support the view that the PVT may be a critical node in the brain anxiety network. Experimental findings are reviewed showing that the arousal peptides orexins (hypocretins) act at the PVT to promote avoidance of potential threats especially following exposure of rats to a single episode of footshocks. Recent anatomical and experimental findings are discussed which show that neurons in the PVT provide divergent projections to subcortical regions that mediate defensive behaviors and that the projection to the NAcSh is critical for the enhanced social avoidance displayed in rats exposed to footshocks. A theoretical model is proposed for how the PVT integrates cortical and hypothalamic signals to modulate the behavioral responses associated with anxiety and other challenging situations.
Collapse
Affiliation(s)
- Gilbert J. Kirouac
- Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
19
|
Prefrontal NMDA-receptor antagonism disrupts encoding or consolidation but not retrieval of incidental context learning. Behav Brain Res 2021; 405:113175. [PMID: 33596432 DOI: 10.1016/j.bbr.2021.113175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 01/12/2021] [Accepted: 02/07/2021] [Indexed: 01/27/2023]
Abstract
The Context Preexposure Facilitation Effect (CPFE) is a variant of contextual fear conditioning in which learning about the context, acquiring a context-shock association, and retrieval of this association occur separately across three phases (context preexposure, immediate-shock training, and retention). We have shown that prefrontal inactivation or muscarinic-receptor antagonism prior to any phase disrupts retention test freezing during the CPFE in adolescent rats (Heroux et al., 2017; Robinson-Drummer et al., 2017). Furthermore, the medial prefrontal cortex (mPFC) is the only region in which robust learning-related expression of the immediate early genes c-Fos, Arc, Egr-1 and Npas4 is observed during immediate-shock training in the CPFE (Asok et al., 2013; Heroux et al., 2018; Schreiber et al., 2014). However, the role of prefrontal NMDA-receptor plasticity in supporting preexposure- and training-day processes of the CPFE is not known. Therefore, the current study examined the effects of intra-mPFC infusion of the NMDA-receptor antagonist MK-801 or saline vehicle prior to context preexposure (Experiment 1) or immediate-shock training (Experiment 2) in adolescent Long-Evans male and female rats. This infusion given prior to context preexposure but not training abolished retention test freezing, with no difference between MK-801-infused rats and non-associative controls preexposed to an alternative context (pooled across drug). These results demonstrate a role of prefrontal NMDA-receptor plasticity in the acquisition and/or consolidation of incidental context learning (i.e., encoded in the absence of reinforcement). In contrast, this plasticity is not required for context retrieval, or acquisition, expression, or consolidation of a context-shock association during immediate-shock training in the CPFE. These experiments add to a growing body of work implicating the mPFC in Pavlovian contextual fear conditioning processes in rodents.
Collapse
|
20
|
Takita M, Izawa-Sugaya Y. Neurocircuit differences between memory traces of persistent hypoactivity and freezing following fear conditioning among the amygdala, hippocampus, and prefrontal cortex. AIMS Neurosci 2021; 8:195-211. [PMID: 33709024 PMCID: PMC7940113 DOI: 10.3934/neuroscience.2021010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/07/2020] [Indexed: 11/18/2022] Open
Abstract
We aimed to investigate the persistent trace of one traumatic event on neurocircuit controls in rats. Conditioning was reflected by reductions in rates of 'freezing' and 'other-than-freezing' motor activities, between which rats could alternate on delivery of pulsed footshocks of intensity 0.5 mA but not 1.0 mA. At the latter intensity, freezing began to suppress motor activity. The conditional responses evident during both the context and tone sessions persisted when the tests were repeated on post-conditioning days 7 and 8. Thus, difficulties with fear extinction/reduction remained. However, persistence was not evident on post-conditioning days 1 and 2. One day after the 1.0 mA pulsed footshock, ibotenate lesions and corresponding sham surgeries were performed in unilateral and bilateral hemispheres of the amygdala, hippocampus, and prefrontal cortex, as well as three different disconnections (one unilateral and another contralateral lesions out of three regions, a total of nine groups), and were tested on days 7-8. The drastic restoration of freezing following bilateral amygdala lesions was also evident in animals with three types of disconnection; however, this was not the case for hypoactivity. These results imply that a serious experience can drive different neurocircuits that all involve the amygdala, forming persistent concurrent memories of explicit (e.g., 'freezing') or implicit (e.g., 'other-than-freezing' motor activity) emotions, which may exhibit mutual interference.
Collapse
Affiliation(s)
- Masatoshi Takita
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Yumi Izawa-Sugaya
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8566, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
21
|
Green TA, Baracz SJ, Everett NA, Robinson KJ, Cornish JL. Differential effects of GABA A receptor activation in the prelimbic and orbitofrontal cortices on anxiety. Psychopharmacology (Berl) 2020; 237:3237-3247. [PMID: 32666257 DOI: 10.1007/s00213-020-05606-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
RATIONALE The development of effective anxiety treatments has been hindered by limited understanding of the neurobiological mechanisms involved in anxiety regulation. Whilst gamma-aminobutyric acid (GABA) neurotransmission in the prefrontal cortex (PFC) is one mechanism consistently implicated in anxiety regulation, PFC subregions may contribute uniquely. OBJECTIVES The present study examined the effects of inactivating the PFC subregions of the prelimbic cortex (PrL) or orbitofrontal cortex (OFC) through GABAA receptor (GABAAR) activation, on anxiety behaviours in male Wistar rats. METHODS Sixty-six male Wistar rats were surgically implanted with bilateral cannulae into the PrL (n = 33) or the OFC (n = 33). Rats then received a microinjection of either the GABAA receptor agonist muscimol or vehicle prior to each experiment, conducted 1 week apart. Measures of anxiety were examined using the elevated plus maze (EPM) and the emergence test (ET). The effect on locomotor activity (baseline or methamphetamine-induced) was also tested. RESULTS Differential effects of brain region inactivation on anxiety-like behaviour were shown by measures in the EPM and ET; muscimol infused into the PrL-reduced anxiety-like behaviour, yet had no significant effect when infused into the OFC, compared with control treated rats. No effects on locomotor activity at baseline or following methamphetamine treatment were found. CONCLUSIONS This study highlights that activation of GABAARs specifically within the PrL, but not OFC, reduces anxiety behaviours in male rats. This suggests that activity of the PrL plays a more important role than the OFC in the neurobiological mechanisms of unconditioned anxiety and should be targeted for future therapies.
Collapse
Affiliation(s)
- Trudy A Green
- Department of Psychology, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sarah J Baracz
- Department of Psychology, Macquarie University, Sydney, NSW, 2109, Australia.,Centre for Emotional Health, Macquarie University, Sydney, NSW, 2109, Australia
| | - Nick A Everett
- Department of Psychology, Macquarie University, Sydney, NSW, 2109, Australia
| | - Katherine J Robinson
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Jennifer L Cornish
- Department of Psychology, Macquarie University, Sydney, NSW, 2109, Australia. .,Centre for Emotional Health, Macquarie University, Sydney, NSW, 2109, Australia.
| |
Collapse
|
22
|
Bloch S, Rinker JA, Marcus MM, Mulholland PJ. Absence of effects of intermittent access to alcohol on negative affective and anxiety-like behaviors in male and female C57BL/6J mice. Alcohol 2020; 88:91-99. [PMID: 32777473 DOI: 10.1016/j.alcohol.2020.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/03/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
Alcohol use disorder is highly comorbid with other neuropsychiatric disorders such as depression and anxiety. Importantly, women and men are affected differentially by heavy drinking, with women experiencing longer negative affective states after intoxication and increased likelihood to present with comorbid mood or anxiety disorders. In rodents, several studies using different alcohol administration models have shown the development of depressive-like or anxiety-like phenotypes that emerge during abstinence. In this study, we compared the emergence of negative affective behaviors during abstinence from 7 weeks of two-bottle choice intermittent access to 20% alcohol in male and female C57BL/6J mice, a drinking paradigm little studied in this context. Half of the mice were tested 24 hours into abstinence on the elevated zero maze and 19-20 days into abstinence in a novel object in the home cage encounter test. The other half of the mice were tested 27-28 days into abstinence with the novelty-suppressed feeding test. As expected, females drank more than males across the 7 weeks of access to alcohol. Drinking history did not affect performance on these tasks, with the exception of increasing the number of open arm entries on the elevated zero maze. Interestingly, in alcohol-naïve mice, females showed fewer anxiety-like behaviors than males in the elevated zero maze and the novelty-suppressed feeding test. Our results suggest that the intermittent access model does not reliably induce negative affective behaviors on these tasks, and that behavior in female and male mice differs across these tests. Rather, intermittent alcohol drinking may induce a mild form of behavioral disinhibition. Thus, the model of alcohol access is a critical factor in determining the appearance of behavioral disturbances that emerge during abstinence.
Collapse
|
23
|
Roberge EM, Bryan CJ. An integrated model of chronic trauma-induced insomnia. Clin Psychol Psychother 2020; 28:79-92. [PMID: 32761851 DOI: 10.1002/cpp.2495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/15/2020] [Accepted: 08/01/2020] [Indexed: 01/10/2023]
Abstract
Insomnia is the most commonly reported symptom of posttraumatic stress disorder (PTSD), with at least 70% of patients with PTSD reporting disturbed sleep. Although posttraumatic insomnia has traditionally been conceptualized as a consequence of PTSD, it is the most likely symptom to not remit following otherwise successful PTSD treatment. This suggests that the relationship between PTSD and insomnia is more complex, such that they likely share underlying pathological mechanisms and that factors non-specific to PTSD maintain chronic trauma-induced insomnia. Although several theories and hypotheses have been presented to explain the relationship between PTSD and insomnia, neurobiological and psychological models have not been integrated, thereby limiting their comprehensiveness and abilities to inform effective intervention. Further, existing models have not addressed how acute trauma-induced insomnia becomes chronic. The present review examined models of PTSD and insomnia separately, as well as existing theorized mechanisms of their co-morbidity. The distinct characteristics of trauma-induced insomnia were also reviewed and presented to describe the unique clinical presentation of trauma-induced insomnia. Review and integration of the literature were used to propose an integrated model of chronic trauma-induced insomnia informed by a neuropsychobiological framework. Clinical implications and future research directions are presented and discussed.
Collapse
Affiliation(s)
- Erika M Roberge
- National Center for Veterans Studies, The University of Utah, Salt Lake City, UT, USA.,Mental Health Service, George E. Wahlen Veterans Affairs Medical Center, Salt Lake City, UT, USA
| | - Craig J Bryan
- National Center for Veterans Studies, The University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
24
|
Markowitz S, Fanselow M. Exposure Therapy for Post-Traumatic Stress Disorder: Factors of Limited Success and Possible Alternative Treatment. Brain Sci 2020; 10:E167. [PMID: 32183089 PMCID: PMC7139336 DOI: 10.3390/brainsci10030167] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 11/16/2022] Open
Abstract
Recent research indicates that there is mixed success in using exposure therapies on patients with post-traumatic stress disorder (PTSD). Our study argues that there are two major reasons for this: The first is that there are nonassociative aspects of PTSD, such as hyperactive amygdala activity, that cannot be attenuated using the exposure therapy; The second is that exposure therapy is conceptualized from the theoretical framework of Pavlovian fear extinction, which we know is heavily context dependent. Thus, reducing fear response in a therapist's office does not guarantee reduced response in other situations. This study also discusses work relating to the role of the hippocampus in context encoding, and how these findings can be beneficial for improving exposure therapies.
Collapse
Affiliation(s)
| | - Michael Fanselow
- Psychology Department, University of California, Los Angeles, CA 90095, USA;
| |
Collapse
|
25
|
Ishikawa J, Sakurai Y, Ishikawa A, Mitsushima D. Contribution of the prefrontal cortex and basolateral amygdala to behavioral decision-making under reward/punishment conflict. Psychopharmacology (Berl) 2020; 237:639-654. [PMID: 31912190 DOI: 10.1007/s00213-019-05398-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/08/2019] [Indexed: 01/09/2023]
Abstract
RATIONALE Control of reward-seeking behavior under conditions of punishment is an important function for survival. OBJECTIVES AND METHODS We designed a task in which rats could choose to either press a lever and obtain a food pellet accompanied by a footshock or refrain from pressing the lever to avoid footshock, in response to tone presentation. In the task, footshock intensity steadily increased, and the task was terminated when the lever press probability reached < 25% (last intensity). Rats were trained until the last intensity was stable. Subsequently, we investigated the effects of the pharmacological inactivation of the ventromedial prefrontal cortex (vmPFC), lateral orbitofrontal cortex (lOFC), and basolateral amygdala (BLA) on task performance. RESULTS Bilateral inactivation of the vmPFC, lOFC, and BLA did not alter lever press responses at the early stage of the task. The number of lever presses increased following vmPFC and BLA inactivation but decreased following lOFC inactivation during the later stage of the task. The last intensity was elevated by vmPFC or BLA inactivation but lowered by lOFC inactivation. Disconnection of the vmPFC-BLA pathway induced behavioral alterations that were similar to vmPFC or BLA inactivation. Inactivation of any regions did not alter footshock sensitivity and anxiety levels. CONCLUSIONS Our results demonstrate a strong role of the vmPFC and BLA and their interactions in reward restraint to avoid punishment and a prominent role of the lOFC in reward-seeking under reward/punishment conflict situations.
Collapse
Affiliation(s)
- Junko Ishikawa
- Neurophysiology, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - Yoshio Sakurai
- Laboratory of Neural Information, Systems Neuroscience, Doshisha University Graduate School of Brain Science, 1-3 Tatara Miyakodani, Kyotanabe-shi, Kyoto, 610-0394, Japan
| | - Akinori Ishikawa
- Neurophysiology, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Dai Mitsushima
- Neurophysiology, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, 1-1-1 Minamikogushi, Ube, Yamaguchi, 755-8505, Japan
| |
Collapse
|
26
|
Victoriano G, Santos-Costa N, Mascarenhas DC, Nunes-de-Souza RL. Inhibition of the left medial prefrontal cortex (mPFC) prolongs the social defeat-induced anxiogenesis in mice: Attenuation by NMDA receptor blockade in the right mPFC. Behav Brain Res 2020; 378:112312. [PMID: 31629003 DOI: 10.1016/j.bbr.2019.112312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/24/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022]
Abstract
Chemical inhibition and nitrergic stimulation of the left and right medial prefrontal cortex (L and RmPFC), respectively, provoke anxiety in mice. Moreover, LmPFC inhibition immediately followed by a single social defeat stress (SDS) led to anxiogenesis in mice exposed to the elevated plus maze (EPM) 24 h later. Given that glutamate NMDA (N-methyl-D-aspartate) receptors are densely present in the mPFC, we investigated (i) the time course of LmPFC inhibition + SDS-induced anxiogenesis and (ii) the effects of intra-RmPFC injection of AP-7 (a NMDA receptor antagonist) on this long-lasting anxiety. Male Swiss mice received intra-LmPFC injection of CoCl2 (1 mM) and 10 min later were subjected to a single SDS episode and then (i) exposed to the EPM 2, 5, or 10 days later or (ii) 2 days later, received intra-RmPFC injection of AP-7 (0.05 nmol) and were exposed to the EPM to observe the percentage of open arm entries and time (%OE; %OT) and frequency of closed arm entries (CE). Dorsal but not ventral LmPFC inhibition + SDS reduced open arm exploration 2, 5, and 10 days later relative to that of saline-treated or non-defeated mice. Moreover, this effect is not due to locomotor impairment as assessed using the general activity. Intra-RmPFC AP-7 injection 2 days after LmPFC inhibition + SDS prevented this type of anxiogenesis. These results suggest that the integrity of the LmPFC is important for mice to properly cope with SDS, and that NMDA receptor blockade in the RmPFC facilitates resilience to SDS-induced anxiogenesis in mice.
Collapse
Affiliation(s)
- Gabriel Victoriano
- Joint Graduate Program in Physiological Sciences, UFSCar/UNESP - São Carlos, SP, 13565-905, Brazil; School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, 14800-903, Araraquara, SP, Brazil
| | - Nathália Santos-Costa
- Joint Graduate Program in Physiological Sciences, UFSCar/UNESP - São Carlos, SP, 13565-905, Brazil; School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, 14800-903, Araraquara, SP, Brazil
| | - Diego Cardozo Mascarenhas
- School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, 14800-903, Araraquara, SP, Brazil
| | - Ricardo Luiz Nunes-de-Souza
- Joint Graduate Program in Physiological Sciences, UFSCar/UNESP - São Carlos, SP, 13565-905, Brazil; School of Pharmaceutical Sciences, Univ. Estadual Paulista - UNESP, 14800-903, Araraquara, SP, Brazil.
| |
Collapse
|
27
|
Wu Z, Wang T, Li L, Hui Y, Zhang Q, Yuan H. Activation and blockade of α 2-adrenoceptors in the prelimbic cortex regulate anxiety-like behaviors in hemiparkinsonian rats. Biochem Biophys Res Commun 2019; 519:697-704. [PMID: 31542234 DOI: 10.1016/j.bbrc.2019.09.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 09/11/2019] [Indexed: 11/28/2022]
Abstract
At present, whether α2-adrenoceptors in the prelimbic cortex (PrL) are involved in Parkinson's disease-related anxiety is unclear. We examined the effects of PrL α2-adrenoceptors on anxiety-like behaviors in rats with unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. Compared to the sham operation, the lesion induced anxiety-like responses as measured by the open field test and elevated plus-maze test. Intra-PrL injection of the α2-adrenoceptor agonist clonidine (1.25, 2.5 or 5 μg/rat) produced anxiolytic effects in sham-operated and lesioned rats. Furthermore, intra-PrL injection of the α2-adrenoceptor antagonist idazoxan (1, 2 or 4 μg/rat) induced anxiogenic effects in two groups of rats. The effective doses produced by clonidine and idazoxan in lesioned rats were higher than those in sham-operated rats. Neurochemical results showed that intra-PrL injection of clonidine (5 μg/rat) or idazoxan (4 μg/rat) decreased or increased dopamine (DA) and noradrenaline (NA) and serotonin (5-HT) levels in the medial prefrontal cortex (mPFC) and amygdala in sham-operated and lesioned rats, respectively. These results suggest that α2-adrenoceptors in the PrL are involved in the regulation of anxiety-like behaviors, which is attributable to changes in DA, NA and 5-HT levels in the mPFC and amygdala after activation and blockade of α2-adrenoceptors.
Collapse
Affiliation(s)
- Zhongheng Wu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Tao Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, China
| | - Libo Li
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yanping Hui
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Qiaojun Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Haifeng Yuan
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
28
|
Abstract
Regions of the prefrontal and cingulate cortices play important roles in the regulation of behaviors elicited by threat. Dissecting out their differential involvement will greatly increase our understanding of the varied etiology of symptoms of anxiety. I review evidence for altered activity within the major divisions of the prefrontal cortex, including orbitofrontal, ventrolateral, dorsolateral, and ventromedial sectors, along with the anterior cingulate cortex in patients with clinical anxiety. This review is integrated with a discussion of current knowledge about the causal role of these different prefrontal and cingulate regions in threat-elicited behaviors from experimental studies in rodents and monkeys. I highlight commonalities and inconsistencies between species and discuss the current state of our translational success in relating findings across species. Finally, I identify key issues that, if addressed, may improve that success in the future.
Collapse
Affiliation(s)
- Angela C. Roberts
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, United Kingdom;
| |
Collapse
|
29
|
Delgado H, Agrati D, Machado L, Reyes L, Savio E, Engler H, Ferreira A. Cocaine treatment before pregnancy differentially affects the anxiety and brain glucose metabolism of lactating rats if performed during adulthood or adolescence. Behav Brain Res 2019; 372:112070. [PMID: 31276701 DOI: 10.1016/j.bbr.2019.112070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
Cocaine exposure disrupts the maternal behavior of lactating rats, yet it is less known whether it alters the affective changes that accompany motherhood. As the long-term action of cocaine on anxiety varies according to the developmental stage of the individuals, this study aimed to compare the effect of a chronic treatment with cocaine to adult and adolescent non-pregnant females on their anxiety-like behavior and basal brain metabolic activity during lactation. Thus, adult and adolescent virgin rats were exposed to cocaine (0.0 or 15.0 mg/kg ip) during 10 days and were mated four days later. Anxiety behavior was evaluated on postpartum days 3-4 in the elevated plus maze test, and the basal brain glucose metabolism was determined on postpartum days 7-9 by means of [18F] fluorodeoxyglucose positron emission tomography. Cocaine treatment during adulthood increased the anxiety-like behavior of lactating females whereas its administration during adolescence decreased it. Also, the basal glucose metabolism of the medial prefrontal cortex differed between lactating females treated with cocaine during adulthood and adolescence. These differential effects of cocaine, according to the age at which the drug was administered, support the idea that the adolescent and adult brains have a distinct susceptibility to this drug, which leads to divergent long-term changes in the neural circuits that regulate anxiety during lactation.
Collapse
Affiliation(s)
- Hernán Delgado
- Department of Physiology and Nutrition, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Basic Research Center in Psychology, Facultad de Psicología, Universidad de la República, Montevideo, Uruguay.
| | - Daniella Agrati
- Department of Physiology and Nutrition, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Luna Machado
- Department of Physiology and Nutrition, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Laura Reyes
- Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Eduardo Savio
- Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Henry Engler
- Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Annabel Ferreira
- Department of Physiology and Nutrition, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
30
|
Schneider ML, Moore CF, Ahlers EO, Barnhart TE, Christian BT, DeJesus OT, Engle JW, Holden JE, Larson JA, Moirano JM, Murali D, Nickles RJ, Resch LM, Converse AK. PET Measures of D1, D2, and DAT Binding Are Associated With Heightened Tactile Responsivity in Rhesus Macaques: Implications for Sensory Processing Disorder. Front Integr Neurosci 2019; 13:29. [PMID: 31379528 PMCID: PMC6652150 DOI: 10.3389/fnint.2019.00029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/02/2019] [Indexed: 01/11/2023] Open
Abstract
Sensory processing disorder (SPD), a developmental regulatory condition characterized by marked under- or over-responsivity to non-noxious sensory stimulation, is a common but poorly understood disorder that can profoundly affect mood, cognition, social behavior and adaptive life skills. Little is known about the etiology and neural underpinnings. Clinical research indicates that children with SPD show greater prevalence of difficulties in complex cognitive behavior including working memory, behavioral flexibility, and regulation of sensory and affective functions, which are related to prefrontal cortex (PFC), striatal, and midbrain regions. Neuroimaging may provide insight into mechanisms underlying SPD, and animal experiments provide important evidence that is not available in human studies. Rhesus monkeys (N = 73) were followed over a 20-year period from birth into old age. We focused on a single sensory modality, the tactile system, measured at 5-7 years, because of its critical importance for nourishment, attachment, and social reward in development. Positron emission tomography imaging was conducted at ages 12-18 years to quantify the availability of the D1 and D2 subtypes of the DA receptor (D1R and D2R), and the DA transporter (DAT). Heightened tactile responsivity was related to (a) elevated D1R in PFC overall, including lateral, ventrolateral, medial, anterior cingulate (aCg), frontopolar, and orbitofrontal (OFC) subregions, as well as nucleus accumbens (Acb), (b) reduced D2R in aCg, OFC, and substantia nigra/ventral tegmental area, and (c) elevated DAT in putamen. These findings suggest a mechanism by which DA pathways may be altered in SPD. These pathways are associated with reward processing and pain regulation, providing top-down regulation of sensory and affective processes. The balance between top-down cognitive control in the PFC-Acb pathway and bottom-up motivational function of the VTA-Acb-PFC pathway is critical for successful adaptive function. An imbalance in these two systems might explain DA-related symptoms in children with SPD, including reduced top-down regulatory function and exaggerated responsivity to stimuli. These results provide more direct evidence that SPD may involve altered DA receptor and transporter function in PFC, striatal, and midbrain regions. More work is needed to extend these results to humans.
Collapse
Affiliation(s)
- Mary L Schneider
- Occupational Therapy Program, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States.,Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, WI, United States
| | - Colleen F Moore
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Psychology, Montana State University, Bozeman, MT, United States
| | - Elizabeth O Ahlers
- Waisman Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Bradley T Christian
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Onofre T DeJesus
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - James E Holden
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Julie A Larson
- Occupational Therapy Program, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States.,Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jeffrey M Moirano
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Dhanabalan Murali
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Robert J Nickles
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI, United States
| | - Leslie M Resch
- Occupational Therapy Program, Department of Kinesiology, University of Wisconsin-Madison, Madison, WI, United States.,Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, WI, United States
| | | |
Collapse
|
31
|
Dorsomedial prefrontal cortex 5-HT6 receptors regulate anxiety-like behavior. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 18:58-67. [PMID: 29204799 DOI: 10.3758/s13415-017-0552-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The dorsomedial prefrontal cortex (dmPFC) plays a very important role in decision-related and anxiety-related information processing. It has enriched 5-HT6 receptors; however, the precise role of dmPFC 5-HT6 receptors in anxiety remains to be fully investigated. In this study, we injected dmPFC with the 5-HT6 receptor agonist EMD 386088 and antagonist SB 271046 using stereotactic technology. 5-HT6 receptor activation in mice increased time spent in the center area on the open-field test, increased exploration of the open arms on the elevated plus maze test, and increased ratio on the social interaction test. 5-HT6 receptor inactivation induced the opposite effects. In brain slices, EMD 386088 decreased both spontaneous inhibitory postsynaptic currents (sIPSC) and spontaneous excitatory postsynaptic currents (sEPSC), while SB 271046 only increased sEPSC. These effects of EMD 386088 and SB 271046 could be reversed by the GABAA receptor antagonist bicuculline (BMI) and positive allosteric modulator clonazepam (CLZ), respectively. Our results suggest that neurotransmission in the dmPFC by 5-HT6 receptor activation and inhibition may play an important role in anxiety-like behavior, and may provide new insight into the pathological mechanism and potential target of anxiety disorders.
Collapse
|
32
|
Berg L, Eckardt J, Masseck OA. Enhanced activity of pyramidal neurons in the infralimbic cortex drives anxiety behavior. PLoS One 2019; 14:e0210949. [PMID: 30677060 PMCID: PMC6345483 DOI: 10.1371/journal.pone.0210949] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/06/2019] [Indexed: 01/17/2023] Open
Abstract
We show that in an animal model of anxiety the overall excitation, particularly in the infralimbic region of the medial prefrontal cortex (IL), is increased and that the activity ratio between excitatory pyramidal neurons and inhibitory interneurons (AR PN/IN) is shifted towards excitation. The same change in AR PN/IN is evident for wildtype mice, which have been exposed to an anxiety stimulus. We hypothesize, that an elevated activity and the imbalance of excitation (PN) and inhibition (IN) within the neuronal microcircuitry of the prefrontal cortex is responsible for anxiety behaviour and employed optogenetic methods in freely moving mice to verify our findings. Consistent with our hypothesis elevation of pyramidal neuron activity in the infralimbic region of the prefrontal cortex significantly enhanced anxiety levels in several behavioural tasks by shifting the AR PN/IN to excitation, without affecting motor behaviour, thus revealing a novel mechanism by which anxiety is facilitated.
Collapse
Affiliation(s)
- Laura Berg
- Advanced Fluorescence Microscopy, Ruhr University Bochum, Bochum, Germany
| | - Josephine Eckardt
- Department of Systems Neuroscience Ruhr University Bochum, Bochum, Germany
| | - Olivia Andrea Masseck
- Advanced Fluorescence Microscopy, Ruhr University Bochum, Bochum, Germany
- University of Bremen, Synthetic Biology, Bremen, Germany
- * E-mail:
| |
Collapse
|
33
|
Goes TC, Almeida Souza TH, Marchioro M, Teixeira-Silva F. Excitotoxic lesion of the medial prefrontal cortex in Wistar rats: Effects on trait and state anxiety. Brain Res Bull 2018; 142:313-319. [PMID: 30120930 DOI: 10.1016/j.brainresbull.2018.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/17/2018] [Accepted: 08/13/2018] [Indexed: 01/08/2023]
Abstract
The neural substrate of anxiety response (state anxiety) to a threatening situation is well defined. However, a lot less is known about brain structures implicated in the individual's predisposition to anxiety (trait anxiety). Scientific evidences lead us to suppose that the medial prefrontal cortex (mPFC) is involved in both trait and state anxiety. Thus, the aim of this study was to investigate the involvement of mPFC in trait anxiety and to further evaluate its participation in state anxiety. Sixty six adult, Wistar, male rats were first tested in the free-exploratory paradigm (FEP) and were categorized according to their levels of trait anxiety (high, medium and low). Three to six days after this exposure, all animals were submitted to stereotaxic brain surgery. Half the animals from each anxiety category was allocated to the mPFC-lesioned group and the other half to the Sham-lesioned group. After seven to nine days, all animals were again tested in FEP. Eight to 10 days later, the animals were tested in the Hole Board test, a model of state anxiety. The mPFC lesion decreased levels of trait anxiety of highly anxious rats, whereas it reduced the state anxiety of all animals, regardless the level of trait anxiety. These data extend evidence of the participation of the mPFC in state anxiety and it demonstrate the involvement of this brain structure in trait anxiety, a personality trait supposed to be a predisposing factor for anxiety disorders.
Collapse
Affiliation(s)
- Tiago Costa Goes
- Departamento de Educação em Saúde, Universidade Federal de Sergipe, Campus Prof. Antônio Garcia Filho, 49400-000, Lagarto, SE, Brazil.
| | - Thiago Henrique Almeida Souza
- Departamento de Fisiologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, Cidade Universitária "Prof. José Aloísio de Campos", 49100-000, São Cristóvão, SE, Brazil.
| | - Murilo Marchioro
- Departamento de Fisiologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, Cidade Universitária "Prof. José Aloísio de Campos", 49100-000, São Cristóvão, SE, Brazil.
| | - Flavia Teixeira-Silva
- Departamento de Fisiologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, Cidade Universitária "Prof. José Aloísio de Campos", 49100-000, São Cristóvão, SE, Brazil.
| |
Collapse
|
34
|
Avery MC, Krichmar JL. Neuromodulatory Systems and Their Interactions: A Review of Models, Theories, and Experiments. Front Neural Circuits 2017; 11:108. [PMID: 29311844 PMCID: PMC5744617 DOI: 10.3389/fncir.2017.00108] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/14/2017] [Indexed: 01/01/2023] Open
Abstract
Neuromodulatory systems, including the noradrenergic, serotonergic, dopaminergic, and cholinergic systems, track environmental signals, such as risks, rewards, novelty, effort, and social cooperation. These systems provide a foundation for cognitive function in higher organisms; attention, emotion, goal-directed behavior, and decision-making derive from the interaction between the neuromodulatory systems and brain areas, such as the amygdala, frontal cortex, hippocampus, and sensory cortices. Given their strong influence on behavior and cognition, these systems also play a key role in disease states and are the primary target of many current treatment strategies. The fact that these systems interact with each other either directly or indirectly, however, makes it difficult to understand how a failure in one or more systems can lead to a particular symptom or pathology. In this review, we explore experimental evidence, as well as focus on computational and theoretical models of neuromodulation. Better understanding of neuromodulatory systems may lead to the development of novel treatment strategies for a number of brain disorders.
Collapse
Affiliation(s)
- Michael C Avery
- SNL-R, Systems Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Jeffrey L Krichmar
- Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States.,Department of Computer Science, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
35
|
Kjaerby C, Athilingam J, Robinson SE, Iafrati J, Sohal VS. Serotonin 1B Receptors Regulate Prefrontal Function by Gating Callosal and Hippocampal Inputs. Cell Rep 2017; 17:2882-2890. [PMID: 27974203 DOI: 10.1016/j.celrep.2016.11.036] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 10/03/2016] [Accepted: 11/10/2016] [Indexed: 12/29/2022] Open
Abstract
Both medial prefrontal cortex (mPFC) and serotonin play key roles in anxiety; however, specific mechanisms through which serotonin might act on the mPFC to modulate anxiety-related behavior remain unknown. Here, we use a combination of optogenetics and synaptic physiology to show that serotonin acts presynaptically via 5-HT1B receptors to selectively suppress inputs from the contralateral mPFC and ventral hippocampus (vHPC), while sparing those from mediodorsal thalamus. To elucidate how these actions could potentially regulate prefrontal circuit function, we infused a 5-HT1B agonist into the mPFC of freely behaving mice. Consistent with previous studies that have optogenetically inhibited vHPC-mPFC projections, activating prefrontal 5-HT1B receptors suppressed theta-frequency mPFC activity (4-12 Hz), and reduced avoidance of anxiogenic regions in the elevated plus maze. These findings suggest a potential mechanism, linking specific receptors, synapses, patterns of circuit activity, and behavior, through which serotonin may regulate prefrontal circuit function, including anxiety-related behaviors.
Collapse
Affiliation(s)
- Celia Kjaerby
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Weil Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, San Francisco, CA 94143-0444, USA
| | - Jegath Athilingam
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Weil Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, San Francisco, CA 94143-0444, USA
| | - Sarah E Robinson
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Weil Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, San Francisco, CA 94143-0444, USA
| | - Jillian Iafrati
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Weil Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, San Francisco, CA 94143-0444, USA
| | - Vikaas S Sohal
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Weil Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA 94143-0444, USA; Sloan-Swartz Center for Theoretical Neurobiology, University of California, San Francisco, San Francisco, CA 94143-0444, USA.
| |
Collapse
|
36
|
Plasticity in the Interoceptive System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1015:59-74. [DOI: 10.1007/978-3-319-62817-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
37
|
Wu HF, Chen PS, Hsu YT, Lee CW, Wang TF, Chen YJ, Lin HC. D-Cycloserine Ameliorates Autism-Like Deficits by Removing GluA2-Containing AMPA Receptors in a Valproic Acid-Induced Rat Model. Mol Neurobiol 2017; 55:4811-4824. [PMID: 28733898 DOI: 10.1007/s12035-017-0685-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/10/2017] [Indexed: 12/15/2022]
Abstract
Valproic acid (VPA)-exposed rat offspring have demonstrated autism spectrum disorder (ASD) phenotypes and impaired N-methyl-D-aspartate receptor (NMDAR)-dependent long-term depression (LTD) in the lateral nucleus of the amygdala. NMDAR partial agonist D-cycloserine (DCS) has been reported to act as a cognitive enhancer by increasing the NMDAR response to improve autistic-like phenotypes in animals. However, the mechanism of DCS in alleviating the ASD is still unknown. Using combined behavioral, electrophysiological, and molecular approaches, we found that DCS administration rescued social interaction deficits and anxiety/repetitive-like behaviors observed in VPA-exposed offspring. In the amygdala synapses, DCS treatment reversed the decreased paired pulse ratio (PPR) and the impaired NMDAR-dependent LTD, increased the frequency and amplitude of miniature excitatory post-synaptic currents (mEPSCs), and resulted in a higher dendritic spine density at the amygdala synapses in the VPA-exposed offspring. Moreover, we found that DCS facilitated the removal of GluA2-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (GluA2/AMPARs) by inducing NMDAR-dependent LTD in the VPA-exposed offspring. We further established that the effects of DCS treatment, including increased GluA2/AMPAR removal and rescues of impaired social behavior, were blocked by Tat-GluA23Y, a GluA2-derived peptide that disrupted regulation of AMPAR endocytosis. These results provided the first evidence that rescue of the ASD-like phenotype by DCS is mediated by the mechanism of GluA2/AMPAR removal in VPA-exposed rat offspring.
Collapse
Affiliation(s)
- Han-Fang Wu
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Addiction Research Center, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ya-Ting Hsu
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Chi-Wei Lee
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Tzu-Feng Wang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei, Taiwan
| | - Yi-Ju Chen
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Hui-Ching Lin
- Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan.
- Brain Research Center, National Yang-Ming University, Taipei, 11221, Taiwan.
- Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
38
|
Gomes FV, Grace AA. Prefrontal Cortex Dysfunction Increases Susceptibility to Schizophrenia-Like Changes Induced by Adolescent Stress Exposure. Schizophr Bull 2017; 43:592-600. [PMID: 28003467 PMCID: PMC5464092 DOI: 10.1093/schbul/sbw156] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Stress during adolescence is a risk factor for schizophrenia, and medial prefrontal cortex (mPFC) dysfunction is proposed to interfere with stress control, increasing the susceptibility to stress. We evaluated the impact of different stressful events during adolescence (restraint stress [RS], footshock [FS], or the combination of FS and RS) on behaviors correlated with schizophrenia in rats as adults. At adulthood, animals were tested for anxiety responses (elevated plus-maze), cognitive function (novel-object recognition test) and dopamine (DA) system responsivity (locomotor response to amphetamine and DA neuron activity in the ventral tegmental area (VTA) using in vivo electrophysiology). All adolescent stressors impaired weight gain and induced anxiety-like responses in adults. FS and FS + RS also disrupted cognitive function. Interestingly, only the combination of FS and RS induced a DA hyper-responsivity as indicated by augmented locomotor response to amphetamine and increased number of spontaneously active DA neurons which was confined to the lateral VTA. Additionally, prelimbic (pl) mPFC lesions triggered a DA hyper-responsivity in animals exposed to FS alone during adolescence. Our results are consistent with previous studies showing long-lasting changes induced by stressful events during adolescence. The impact on DA system activity, however, seems to depend on intense multiple stressors. Our data also suggest that plPFC dysfunction increases the vulnerability to stress in terms of changes in the DA system. Hence, stress during adolescence could be a precipitating factor for the transition to schizophrenia, and stress control at this vulnerable period may circumvent these changes to prevent the emergence of psychosis.
Collapse
Affiliation(s)
- Felipe V. Gomes
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
39
|
Motta SC, Carobrez AP, Canteras NS. The periaqueductal gray and primal emotional processing critical to influence complex defensive responses, fear learning and reward seeking. Neurosci Biobehav Rev 2017; 76:39-47. [DOI: 10.1016/j.neubiorev.2016.10.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/26/2016] [Accepted: 10/13/2016] [Indexed: 12/22/2022]
|
40
|
Kirlic N, Young J, Aupperle RL. Animal to human translational paradigms relevant for approach avoidance conflict decision making. Behav Res Ther 2017; 96:14-29. [PMID: 28495358 DOI: 10.1016/j.brat.2017.04.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 04/17/2017] [Accepted: 04/20/2017] [Indexed: 12/29/2022]
Abstract
Avoidance behavior in clinical anxiety disorders is often a decision made in response to approach-avoidance conflict, resulting in a sacrifice of potential rewards to avoid potential negative affective consequences. Animal research has a long history of relying on paradigms related to approach-avoidance conflict to model anxiety-relevant behavior. This approach includes punishment-based conflict, exploratory, and social interaction tasks. There has been a recent surge of interest in the translation of paradigms from animal to human, in efforts to increase generalization of findings and support the development of more effective mental health treatments. This article briefly reviews animal tests related to approach-avoidance conflict and results from lesion and pharmacologic studies utilizing these tests. We then provide a description of translational human paradigms that have been developed to tap into related constructs, summarizing behavioral and neuroimaging findings. Similarities and differences in findings from analogous animal and human paradigms are discussed. Lastly, we highlight opportunities for future research and paradigm development that will support the clinical utility of this translational work.
Collapse
Affiliation(s)
- Namik Kirlic
- Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, OK 74136, United States.
| | - Jared Young
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093, United States; VA San Diego Healthcare System, 3350 La Jolla Village Dr, San Diego, CA 92161, United States.
| | - Robin L Aupperle
- Laureate Institute for Brain Research, 6655 S Yale Ave, Tulsa, OK 74136, United States; School of Community Medicine, University of Tulsa, 800 S Tucker Dr, Tulsa, OK 74104, United States.
| |
Collapse
|
41
|
Jean-Richard-Dit-Bressel P, McNally GP. Lateral, not medial, prefrontal cortex contributes to punishment and aversive instrumental learning. Learn Mem 2016; 23:607-617. [PMID: 27918280 PMCID: PMC5066604 DOI: 10.1101/lm.042820.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/24/2016] [Indexed: 12/13/2022]
Abstract
Aversive outcomes punish behaviors that cause their occurrence. The prefrontal cortex (PFC) has been implicated in punishment learning and behavior, although the exact roles for different PFC regions in instrumental aversive learning and decision-making remain poorly understood. Here, we assessed the role of the orbitofrontal (OFC), rostral agranular insular (RAIC), prelimbic (PL), and infralimbic (IL) cortex in instrumental aversive learning and decision-making. Rats that pressed two individually presented levers for pellet rewards rapidly suppressed responding to one lever if it also caused mild punishment (punished lever) but continued pressing the other lever that did not cause punishment (unpunished lever). Inactivations of OFC, RAIC, IL, or PL via the GABA agonists baclofen and muscimol (BM) had no effect on the acquisition of instrumental learning. OFC inactivations increased responding on the punished lever during expression of well-learned instrumental aversive learning, whereas RAIC inactivations increased responding on the punished lever when both levers were presented simultaneously in an unpunished choice test. There were few effects of medial PFC (PL and IL) inactivation. These results suggest that lateral PFC, notably OFC and RAIC, have complementary functions in aversive instrumental learning and decision-making; OFC is important for using established aversive instrumental memories to guide behavior away from actions that cause punishment, whereas RAIC is important for aversive decision-making under conditions of choice.
Collapse
Affiliation(s)
| | - Gavan P McNally
- School of Psychology, The University of New South Wales, Sydney, 2052, New South Wales, Australia
| |
Collapse
|
42
|
Jacinto LR, Cerqueira JJ, Sousa N. Patterns of Theta Activity in Limbic Anxiety Circuit Preceding Exploratory Behavior in Approach-Avoidance Conflict. Front Behav Neurosci 2016; 10:171. [PMID: 27713693 PMCID: PMC5031779 DOI: 10.3389/fnbeh.2016.00171] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/24/2016] [Indexed: 12/31/2022] Open
Abstract
Theta oscillations within the hippocampus-amygdala-medial prefrontal cortex (HPC-AMY-mPFC) circuit have been consistently implicated in the regulation of anxiety behaviors, including risk-assessment. To study if theta activity during risk-assessment was correlated with exploratory behavior in an approach/avoidance paradigm we recorded simultaneous local field potentials from this circuit in rats exploring the elevated-plus maze (EPM). Opposing patterns of power variations in the ventral hippocampus (vHPC), basolateral amygdala (BLA), and prelimbic (PrL) mPFC, but not in the dorsal hippocampus (dHPC), during exploratory risk-assessment of the open arms preceded further exploration of the open arms or retreat back to the safer closed arms. The same patterns of theta power variations in the HPC-BLA-mPFC(PrL) circuit were also displayed by animals submitted to chronic unpredictable stress protocol known to induce an anxious state. Diverging patterns of vHPC-mPFC(PrL) theta coherence were also significantly correlated with forthcoming approach or avoidance behavior in the conflict situation in both controls and stressed animals; interestingly, vHPC-BLA, and BLA-mPFC(PrL) theta coherence correlated with future behavior only in stressed animals, underlying the pivotal role of the amygdala on the stress response.
Collapse
Affiliation(s)
- Luis R Jacinto
- Life and Health Sciences Research Institute, University of MinhoBraga, Portugal; ICVS/3B's - PT Government Associate LaboratoryBraga/Guimarães, Portugal
| | - João J Cerqueira
- Life and Health Sciences Research Institute, University of MinhoBraga, Portugal; ICVS/3B's - PT Government Associate LaboratoryBraga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute, University of MinhoBraga, Portugal; ICVS/3B's - PT Government Associate LaboratoryBraga/Guimarães, Portugal
| |
Collapse
|
43
|
Costa N, Vicente M, Cipriano A, Miguel T, Nunes-de-Souza R. Functional lateralization of the medial prefrontal cortex in the modulation of anxiety in mice: Left or right? Neuropharmacology 2016; 108:82-90. [DOI: 10.1016/j.neuropharm.2016.04.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 04/04/2016] [Accepted: 04/10/2016] [Indexed: 01/13/2023]
|
44
|
Makovac E, Watson DR, Meeten F, Garfinkel SN, Cercignani M, Critchley HD, Ottaviani C. Amygdala functional connectivity as a longitudinal biomarker of symptom changes in generalized anxiety. Soc Cogn Affect Neurosci 2016; 11:1719-1728. [PMID: 27369066 PMCID: PMC5091683 DOI: 10.1093/scan/nsw091] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/20/2016] [Indexed: 11/22/2022] Open
Abstract
Generalized anxiety disorder (GAD) is characterized by excessive worry, autonomic dysregulation and functional amygdala dysconnectivity, yet these illness markers have rarely been considered together, nor their interrelationship tested longitudinally. We hypothesized that an individual’s capacity for emotion regulation predicts longer-term changes in amygdala functional connectivity, supporting the modification of GAD core symptoms. Sixteen patients with GAD (14 women) and individually matched controls were studied at two time points separated by 1 year. Resting-state fMRI data and concurrent measurement of vagally mediated heart rate variability were obtained before and after the induction of perseverative cognition. A greater rise in levels of worry following the induction predicted a stronger reduction in connectivity between right amygdala and ventromedial prefrontal cortex, and enhanced coupling between left amygdala and ventral tegmental area at follow-up. Similarly, amplified physiological responses to the induction predicted increased connectivity between right amygdala and thalamus. Longitudinal shifts in a distinct set of functional connectivity scores were associated with concomitant changes in GAD symptomatology over the course of the year. Results highlight the prognostic value of indices of emotional dysregulation and emphasize the integral role of the amygdala as a critical hub in functional neural circuitry underlying the progression of GAD symptomatology.
Collapse
Affiliation(s)
- Elena Makovac
- Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy.,Psychiatry, Division of Medicine, Brighton and Sussex Medical School, Brighton, UK
| | - David R Watson
- Psychiatry, Division of Medicine, Brighton and Sussex Medical School, Brighton, UK
| | - Frances Meeten
- Psychiatry, Division of Medicine, Brighton and Sussex Medical School, Brighton, UK.,Kings College London, London, UK.,Sussex Partnership NHS Foundation Trust Sussex, Sussex UK
| | - Sarah N Garfinkel
- Psychiatry, Division of Medicine, Brighton and Sussex Medical School, Brighton, UK.,Sackler Centre for Consciousness Science, University of Sussex, Sussex, UK
| | - Mara Cercignani
- Psychiatry, Division of Medicine, Brighton and Sussex Medical School, Brighton, UK
| | - Hugo D Critchley
- Psychiatry, Division of Medicine, Brighton and Sussex Medical School, Brighton, UK.,Sussex Partnership NHS Foundation Trust Sussex, Sussex UK.,Sackler Centre for Consciousness Science, University of Sussex, Sussex, UK
| | | |
Collapse
|
45
|
The infralimbic and prelimbic medial prefrontal cortices have differential functions in the expression of anxiety-like behaviors in mice. Behav Brain Res 2016; 304:120-4. [DOI: 10.1016/j.bbr.2016.01.044] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/15/2016] [Accepted: 01/17/2016] [Indexed: 11/17/2022]
|
46
|
Shiba Y, Santangelo AM, Roberts AC. Beyond the Medial Regions of Prefrontal Cortex in the Regulation of Fear and Anxiety. Front Syst Neurosci 2016; 10:12. [PMID: 26941618 PMCID: PMC4761915 DOI: 10.3389/fnsys.2016.00012] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/04/2016] [Indexed: 12/28/2022] Open
Abstract
Fear and anxiety are adaptive responses but if left unregulated, or inappropriately regulated, they become biologically and socially maladaptive. Dysregulated emotions are manifest in a wide variety of psychiatric and neurological conditions but the external expression gives little indication of the underlying causes, which are inevitably multi-determined. To go beyond the overt phenotype and begin to understand the causal mechanisms leading to conditions characterized by anxiety and disorders of mood, it is necessary to identify the base psychological processes that have become dysregulated, and map them on to their associated neural substrates. So far, attention has been focused primarily on the medial regions of prefrontal cortex (PFC) and in particular their contribution to the expression and extinction of conditioned fear. However, functional neuroimaging studies have shown that the sphere of influence within the PFC is not restricted to its medial regions, but extends into dorsal, ventrolateral (vlPFC) and orbitofrontal (OFC) regions too; although the causal role of these other areas in the regulation of fear and anxiety remains to be determined and in the case of the OFC, existing findings are conflicting. Here, we review the evidence for the contribution of these other regions in negative emotion regulation in rodents and old world and new world monkeys. We consider a variety of different contexts, including conditioned and innate fear, learned and unlearned anxiety and cost-benefit decision-making, and a range of physiological and behavioral measures of emotion. It is proposed that both the OFC and vlPFC contribute to emotion regulation via their involvement, respectively, in the prediction of future outcomes and higher-order attentional control. The fractionation of these neurocognitive and neurobehavioral systems that regulate fear and anxiety opens up new opportunities for diagnostic stratification and personalized treatment strategies.
Collapse
Affiliation(s)
- Yoshiro Shiba
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of CambridgeCambridge, UK
| | - Andrea M. Santangelo
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of CambridgeCambridge, UK
| | - Angela C. Roberts
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridge, UK
- Behavioural and Clinical Neuroscience Institute, University of CambridgeCambridge, UK
| |
Collapse
|
47
|
Sharpe MJ, Killcross S. The prelimbic cortex directs attention toward predictive cues during fear learning. ACTA ACUST UNITED AC 2015; 22:289-93. [PMID: 25979990 PMCID: PMC4436653 DOI: 10.1101/lm.038273.115] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 03/25/2015] [Indexed: 11/29/2022]
Abstract
The prelimbic cortex is argued to promote conditioned fear expression, at odds with appetitive research implicating this region in attentional processing. Consistent with an attentional account, we report that the effect of prelimbic lesions on fear expression depends on the degree of competition between contextual and discrete cues. Further, when competition from contextual cues is low, we found that PL inactivation resulted in animals expressing fear toward irrelevant discrete cues; an effect selective to inactivation during the learning phase and not during retrieval. These data demonstrate that the prelimbic cortex modulates attention toward cues to preferentially direct fear responding on the basis of their predictive value.
Collapse
Affiliation(s)
- Melissa J Sharpe
- School of Psychology, University of New South Wales Australia, Kensington, New South Wales 2052, Australia
| | - Simon Killcross
- School of Psychology, University of New South Wales Australia, Kensington, New South Wales 2052, Australia
| |
Collapse
|
48
|
Bi LL, Chen M, Pei L, Shu S, Jin HJ, Yan HL, Wei N, Wang S, Yang X, Yan HH, Xu MM, Yao CY, Li N, Tang N, Wu JH, Zhu HZ, Li H, Cai Y, Guo Y, Shi Y, Tian Q, Zhu LQ, Lu YM. Infralimbic Endothelin1 Is Critical for the Modulation of Anxiety-Like Behaviors. Mol Neurobiol 2015; 53:2054-2064. [PMID: 25899174 DOI: 10.1007/s12035-015-9163-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 03/26/2015] [Indexed: 10/23/2022]
Abstract
Endothelin1 (ET1) is a potent vasoconstrictor that is also known to be a neuropeptide that is involved in neural circuits. We examined the role of ET1 that has been implicated in the anxiogenic process. We found that infusing ET1 into the IL cortex increased anxiety-like behaviors. The ET(A) receptor (ET(A)R) antagonist (BQ123) but not the ET(B) receptor (ET(B)R) antagonist (BQ788) alleviated ET1-induced anxiety. ET1 had no effect on GABAergic neurotransmission or NMDA receptor (NMDAR)-mediated neurotransmission, but increased AMPA receptor (AMPAR)-mediated excitatory synaptic transmission. The changes in AMPAR-mediated excitatory postsynaptic currents were due to presynaptic mechanisms. Finally, we found that the AMPAR antagonists (CNQX) and BQ123 reversed ET1's anxiogenic effect, with parallel and corresponding electrophysiological changes. Moreover, infusing CNQX + BQ123 into the IL had no additional anxiolytic effect compared to CNQX treatment alone. Altogether, our findings establish a previously unknown anxiogenic action of ET1 in the IL cortex. AMPAR-mediated glutamatergic neurotransmission may underlie the mechanism of ET1-ET(A)R signaling pathway in the regulation of anxiety.
Collapse
Affiliation(s)
- Lin-Lin Bi
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.
| | - Ming Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Pei
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Shu Shu
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Juan Jin
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Lin Yan
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Na Wei
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Wang
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Yang
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Huan-Huan Yan
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Meng-Meng Xu
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng-Ye Yao
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Na Li
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Na Tang
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Hua Wu
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Hou-Ze Zhu
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Li
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - You Cai
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Guo
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Shi
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Tian
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China
| | - You-Ming Lu
- Department of Pathophysiology and Key Laboratory of Neurological Diseases of Ministry of Education, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,Institute of Brain Research, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
49
|
Abstract
Long-range synchrony between distant brain regions accompanies multiple forms of behavior. This review compares and contrasts the methods by which long-range synchrony is evaluated in both humans and model animals. Three examples of behaviorally relevant long-range synchrony are discussed in detail: gamma-frequency synchrony during visual perception, hippocampal-prefrontal synchrony during working memory, and prefrontal-amygdala synchrony during anxiety. Implications for circuit mechanism, translation, and clinical relevance are discussed.
Collapse
Affiliation(s)
- Alexander Z Harris
- Department of Psychiatry, Columbia University, New York, New York 10032; ,
| | | |
Collapse
|
50
|
Hui YP, Wang T, Han LN, Li LB, Sun YN, Liu J, Qiao HF, Zhang QJ. Anxiolytic effects of prelimbic 5-HT1A receptor activation in the hemiparkinsonian rat. Behav Brain Res 2015; 277:211-20. [DOI: 10.1016/j.bbr.2014.04.053] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/28/2014] [Accepted: 04/07/2014] [Indexed: 10/25/2022]
|