1
|
Mukherjee A, Paladino MS, McSain SL, Gilles-Thomas EA, Lichte DD, Camadine RD, Willock S, Sontate KV, Honeycutt SC, Loney GC. Escalation of alcohol intake is associated with regionally decreased insular cortex activity but not changes in taste quality. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:868-881. [PMID: 36941800 PMCID: PMC10289132 DOI: 10.1111/acer.15060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/27/2023] [Accepted: 03/11/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Intermittent access to ethanol drives persistent escalation of intake and rapid transition from moderate to compulsive-like drinking. Intermittent ethanol drinking may facilitate escalation of intake in part by altering aversion-sensitive neural substrates, such as the insular cortex (IC), thus driving greater approach toward stimuli previously treated as aversive. METHODS We conducted a series of experiments in rats to examine behavioral and neural responses associated with escalation of ethanol intake. First, taste reactivity analyses quantified the degree to which intermittent brief-access ethanol exposure (BAEE) alters sensitivity to the aversive properties of ethanol. Next, we determined whether pharmacological IC inhibition facilitated ethanol escalation. Finally, given that the IC is primary gustatory cortex, we employed psychophysical paradigms to assess whether escalation of ethanol intake induced changes in ethanol taste. These paradigms measured changes in sensitivity to the intensity of ethanol taste and whether escalation in intake shifts the salient taste quality of ethanol by measuring the degree to which the taste of ethanol generalized to a sucrose-like ("sweet") or quinine-like ("bitter") percept. RESULTS We found a near-complete loss of aversive oromotor responses in ethanol-exposed relative to ethanol-naïve rats. Additionally, we observed significantly lower expression of ethanol-induced c-Fos expression in the posterior IC in exposed rats relative to naïve rats. Inhibition of the IC resulted in a modest, but statistically reliable increase in the acceptance of higher ethanol concentrations in naïve rats. Finally, we found no evidence of changes in the psychophysical assessment of the taste of ethanol in exposed, relative to naïve, rats. CONCLUSIONS Our results demonstrate that neural activity within the IC adapts following repeated presentations of ethanol in a manner that correlates with reduced sensitivity to the aversive hedonic properties of ethanol. These data help to establish that alterations in IC activity may be driving exposure-induced escalations in ethanol intake.
Collapse
Affiliation(s)
- Ashmita Mukherjee
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Morgan S Paladino
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Shannon L McSain
- Program in Biological Sciences, Department of Biology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Elizabeth A Gilles-Thomas
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - David D Lichte
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Rece D Camadine
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Saidah Willock
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Kajol V Sontate
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Sarah C Honeycutt
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Gregory C Loney
- Program in Behavioral Neuroscience, Department of Psychology, State University of New York, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
2
|
Duriez A, Bergerot C, Cone JJ, Roitman MF, Gutkin B. Homeostatic Reinforcement Theory Accounts for Sodium Appetitive State- and Taste-Dependent Dopamine Responding. Nutrients 2023; 15:nu15041015. [PMID: 36839372 PMCID: PMC9968091 DOI: 10.3390/nu15041015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/22/2023] Open
Abstract
Seeking and consuming nutrients is essential to survival and the maintenance of life. Dynamic and volatile environments require that animals learn complex behavioral strategies to obtain the necessary nutritive substances. While this has been classically viewed in terms of homeostatic regulation, recent theoretical work proposed that such strategies result from reinforcement learning processes. This theory proposed that phasic dopamine (DA) signals play a key role in signaling potentially need-fulfilling outcomes. To examine links between homeostatic and reinforcement learning processes, we focus on sodium appetite as sodium depletion triggers state- and taste-dependent changes in behavior and DA signaling evoked by sodium-related stimuli. We find that both the behavior and the dynamics of DA signaling underlying sodium appetite can be accounted for by a homeostatically regulated reinforcement learning framework (HRRL). We first optimized HRRL-based agents to sodium-seeking behavior measured in rodents. Agents successfully reproduced the state and the taste dependence of behavioral responding for sodium as well as for lithium and potassium salts. We then showed that these same agents account for the regulation of DA signals evoked by sodium tastants in a taste- and state-dependent manner. Our models quantitatively describe how DA signals evoked by sodium decrease with satiety and increase with deprivation. Lastly, our HRRL agents assigned equal preference for sodium versus the lithium containing salts, accounting for similar behavioral and neurophysiological observations in rodents. We propose that animals use orosensory signals as predictors of the internal impact of the consumed good and our results pose clear targets for future experiments. In sum, this work suggests that appetite-driven behavior may be driven by reinforcement learning mechanisms that are dynamically tuned by homeostatic need.
Collapse
Affiliation(s)
- Alexia Duriez
- Group for Neural Theory, LNC2 DEC ENS, PSL University, 75005 Paris, France
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Clémence Bergerot
- Group for Neural Theory, LNC2 DEC ENS, PSL University, 75005 Paris, France
- Charité—Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
- Institute for Theoretical Biology, Department of Biology, Humboldt-Universität zu Berlin, Philippstraße 13, 10115 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Jackson J. Cone
- Hotchkiss Brain Institute, Department of Psychology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Mitchell F. Roitman
- Department of Psychology, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Boris Gutkin
- Group for Neural Theory, LNC2 DEC ENS, PSL University, 75005 Paris, France
- Correspondence: ; Tel.: +33-(0)6-8631-6231
| |
Collapse
|
3
|
Santollo J, Daniels D, Leshem M, Schulkin J. Sex Differences in Salt Appetite: Perspectives from Animal Models and Human Studies. Nutrients 2023; 15:208. [PMID: 36615865 PMCID: PMC9824138 DOI: 10.3390/nu15010208] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Salt ingestion by animals and humans has been noted from prehistory. The search for salt is largely driven by a physiological need for sodium. There is a large body of literature on sodium intake in laboratory rats, but the vast majority of this work has used male rats. The limited work conducted in both male and female rats, however, reveals sex differences in sodium intake. Importantly, while humans ingest salt every day, with every meal and with many foods, we do not know how many of these findings from rodent studies can be generalized to men and women. This review provides a synthesis of the literature that examines sex differences in sodium intake and highlights open questions. Sodium serves many important physiological functions and is inextricably linked to the maintenance of body fluid homeostasis. Indeed, from a motivated behavior perspective, the drive to consume sodium has largely been studied in conjunction with the study of thirst. This review will describe the neuroendocrine controls of fluid balance, mechanisms underlying sex differences, sex differences in sodium intake, changes in sodium intake during pregnancy, and the possible neuronal mechanisms underlying these differences in behavior. Having reviewed the mechanisms that can only be studied in animal experiments, we address sex differences in human dietary sodium intake in reproduction, and with age.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Derek Daniels
- Department of Biology, University at Buffalo, Buffalo, NY 14260, USA
| | - Micah Leshem
- School of Psychological Sciences, The University of Haifa, Haifa 3498838, Israel
| | - Jay Schulkin
- School of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Breza JM, St. John SJ. Analysis of the rat chorda tympani nerve response to "super salty" sodium carbonate. Chem Senses 2023; 48:bjad015. [PMID: 37224503 PMCID: PMC10413316 DOI: 10.1093/chemse/bjad015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Indexed: 05/26/2023] Open
Abstract
In behavioral experiments, rats perceive sodium carbonate (Na2CO3) as super salty. In fact, when the dissociated Na+ ions are accounted for, rats perceive Na2CO3 as 5× saltier than equinormal concentrations of NaCl. The chorda tympani nerve (CT) responds to salts through at least two receptor mechanisms and is a model system for understanding how salt taste is transmitted to the brain. Here, we recorded CT nerve activity to a broad range of NaCl (3-300 mM) and Na2CO3 (3-300 mN) to investigate why Na2CO3 tastes so salty to rats. Benzamil, a specific epithelial sodium channel (ENaC) antagonist, was used to determine the relative contribution of apical ENaCs in Na2CO3 transduction. The benzamil-insensitive component of CT nerve responses was enhanced by increasing the adapted tongue temperature from 23°C to 30°C. Na2CO3 solutions are alkaline, so we compared neural responses (with and without benzamil) to 100 mM NaCl alone (6.2 pH) and at a pH (11.2 pH) that matched 100 mN Na2CO3. As expected, NaCl responses increased progressively with increasing concentration and temperature. Responses to 3 mN Na2CO3 were greater than 3 mM NaCl with and without benzamil, but the shape of the first log-fold range of was relatively flat. Adjusting the pH of NaCl to 11.2 abolished the thermal enhancement of 100 mN NaCl through the benzamil-insensitive pathway. Rinsing Na2CO3 off the tongue resulted in robust aftertaste that was concentration dependent, thermally sensitive, and benzamil-insensitive. Responses to alkaline NaCl did not recapitulate Na2CO3 responses or aftertaste, suggesting multiple transduction mechanisms for the cations (2Na+) and anion (CO3-2).
Collapse
Affiliation(s)
- Joseph M Breza
- Department of Psychology, Program in Neuroscience, Eastern Michigan University, Ypsilanti, MI 48197, USA
| | | |
Collapse
|
5
|
Hyde KM, Blonde GD, Nisi AV, Spector AC. The Influence of Roux-en-Y Gastric Bypass and Diet on NaCl and Sucrose Taste Detection Thresholds and Number of Circumvallate and Fungiform Taste Buds in Female Rats. Nutrients 2022; 14:nu14040877. [PMID: 35215527 PMCID: PMC8880222 DOI: 10.3390/nu14040877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 11/16/2022] Open
Abstract
Roux-en-Y gastric bypass (RYGB) in rats attenuates preference for, and intake of, sugar solutions. Additionally, maintenance on a high-fat diet (HFD) reportedly alters behavioral responsiveness to sucrose in rodents in short-term drinking tests. Due to the fact that the behavioral tests to date rely on the hedonic value of the stimulus to drive responsiveness, we sought to determine whether taste detection thresholds to sucrose and NaCl are affected by these manipulations as measured in an operant two-response signal detection paradigm. Female rats were maintained on HFD or chow for 10 weeks, at which point animals received either RYGB or SHAM surgery followed by a gel-based diet and then powdered chow. Upon recovery, half of the rats that were previously on HFD were switched permanently to chow, and the other rats were maintained on their presurgical diets (n = 5–9/diet condition x surgery group for behavioral testing). The rats were then trained and tested in a gustometer. There was a significant interaction between diet condition and surgery on NaCl threshold that was attributable to a lower value in RYGB vs. SHAM rats in the HFD condition, but this failed to survive a Bonferroni correction. Importantly, there were no effects of diet condition or surgery on sucrose thresholds. Additionally, although recent evidence suggests that maintenance on HFD alters taste bud number in the circumvallate papillae (CV) of mice, in a subset of rats, we did not find that diet significantly influenced taste pores in the anterior tongue or CV of female rats. These results suggest that any changes in sucrose responsiveness in intake/preference or hedonically oriented tests in rats as a function of HFD maintenance or RYGB are not attributable to alterations in taste sensitivity.
Collapse
|
6
|
Jiang E, Blonde GD, Garcea M, Spector AC. ENaC-Dependent Sodium Chloride Taste Responses in the Regenerated Rat Chorda Tympani Nerve After Lingual Gustatory Deafferentation Depend on the Taste Bud Field Reinnervated. Chem Senses 2020; 45:249-259. [PMID: 32154568 DOI: 10.1093/chemse/bjaa015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The chorda tympani (CT) nerve is exceptionally responsive to NaCl. Amiloride, an epithelial Na+ channel (ENaC) blocker, consistently and significantly decreases the NaCl responsiveness of the CT but not the glossopharyngeal (GL) nerve in the rat. Here, we examined whether amiloride would suppress the NaCl responsiveness of the CT when it cross-reinnervated the posterior tongue (PT). Whole-nerve electrophysiological recording was performed to investigate the response properties of the intact (CTsham), regenerated (CTr), and cross-regenerated (CT-PT) CT in male rats to NaCl mixed with and without amiloride and common taste stimuli. The intact (GLsham) and regenerated (GLr) GL were also examined. The CT responses of the CT-PT group did not differ from those of the GLr and GLsham groups, but did differ from those of the CTr and CTsham groups for some stimuli. Importantly, the responsiveness of the cross-regenerated CT to a series of NaCl concentrations was not suppressed by amiloride treatment, which significantly decreased the response to NaCl in the CTr and CTsham groups and had no effect in the GLr and GLsham groups. This suggests that the cross-regenerated CT adopts the taste response properties of the GL as opposed to those of the regenerated CT or intact CT. This work replicates the 5 decade-old findings of Oakley and importantly extends them by providing compelling evidence that the presence of functional ENaCs, essential for sodium taste recognition in regenerated taste receptor cells, depends on the reinnervated lingual region and not on the reinnervating gustatory nerve, at least in the rat.
Collapse
Affiliation(s)
- Enshe Jiang
- Institutes of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, Henan University, Kaifeng, China.,Department of Psychology, University of Florida, Gainesville, FL, USA.,Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Ginger D Blonde
- Department of Psychology, University of Florida, Gainesville, FL, USA.,Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Mircea Garcea
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Alan C Spector
- Department of Psychology, University of Florida, Gainesville, FL, USA.,Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
7
|
Maluly HDB, Arisseto‐Bragotto AP, Reyes FGR. Monosodium glutamate as a tool to reduce sodium in foodstuffs: Technological and safety aspects. Food Sci Nutr 2017; 5:1039-1048. [PMID: 29188030 PMCID: PMC5694874 DOI: 10.1002/fsn3.499] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/25/2017] [Accepted: 05/31/2017] [Indexed: 11/10/2022] Open
Abstract
Sodium chloride (NaCl) is the most commonly used ingredient to provide salty taste to foods. However, excess sodium in the bloodstream has been associated with the development of several chronic noncommunicable diseases. In order to limit sodium intake to levels considered safe, the World Health Organization (WHO) recommends for adults a daily intake of not more than 5 g of NaCl (less than 2 g of sodium). One of the strategic actions recommended by the Pan American Health Organization (PAHO) to reduce sodium intake is reformulation of processed foods. This recommendation indicates there is an urgent need to find salt substitutes, and umami compounds have been pointed as an alternative strategy. Like salty, umami is also a basic taste and the major compound associated to umami is monosodium L-glutamate (MSG). The available scientific data on the toxicity of MSG has been evaluated by scientific committees and regulatory agencies. The Joint FAO/WHO Expert Committee on Food Additives and the Scientific Committee on Food of the European Commission established an acceptable daily intake (ADI) not specified, which indicated that the substance offers no health risk when used as a food additive. The United States Food and Drug Administration and the Federation of American Societies for Experimental Biology classified MSG as a Generally Recognized as Safe (GRAS) substance. In this paper, an overview about salty and umami taste physiology, the potential applications of MSG use to reduce sodium content in specific industrialized foods and safety aspects of MSG as food additive are presented.
Collapse
Affiliation(s)
- Hellen D. B. Maluly
- Department of Food ScienceSchool of Food EngineeringUniversity of CampinasRua Monteiro LobatoCampinasSão PauloBrazil
| | - Adriana P. Arisseto‐Bragotto
- Department of Food ScienceSchool of Food EngineeringUniversity of CampinasRua Monteiro LobatoCampinasSão PauloBrazil
| | - Felix G. R. Reyes
- Department of Food ScienceSchool of Food EngineeringUniversity of CampinasRua Monteiro LobatoCampinasSão PauloBrazil
| |
Collapse
|
8
|
Blonde GD, Spector AC. An Examination of the Role of L-Glutamate and Inosine 5'-Monophosphate in Hedonic Taste-Guided Behavior by Mice Lacking the T1R1 + T1R3 Receptor. Chem Senses 2017; 42:393-404. [PMID: 28334294 DOI: 10.1093/chemse/bjx015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The heterodimeric T1R1 + T1R3 receptor is considered critical for normal signaling of L-glutamate and 5'-ribonucleotides in the oral cavity. However, some taste-guided responsiveness remains in mice lacking one subunit of the receptor, suggesting that other receptors are sufficient to support some behaviors. Here, mice lacking both receptor subunits (KO) and wild-type (WT, both n = 13) mice were tested in a battery of behavioral tests. Mice were trained and tested in gustometers with a concentration series of Maltrin-580, a maltodextrin, in a brief-access test (10-s trials) as a positive control. Similar tests followed with monosodium glutamate (MSG) with and without the ribonucleotide inosine 5'-monophosphate (IMP), but always in the presence of the epithelial sodium channel blocker amiloride (A). Brief-access tests were repeated following short-term (30-min) and long-term (48-h) exposures to MSG + A + IMP and were also conducted with sodium gluconate replacing MSG. Finally, progressive ratio tests were conducted with Maltrin-580 or MSG + A + IMP, to assess appetitive behavior while minimizing satiation. Overall, MSG generated little concentration-dependent responding in either food-restricted WT or KO mice, even in combination with IMP. However, KO mice licked less to the amino acid stimuli, a measure of consummatory behavior in the brief-access tests. In contrast, both groups initiated a similar number of trials and had a similar breakpoint in the progressive ratio task, both measures of appetitive (approach) behavior. Collectively, these results suggest that while the T1R1 + T1R3 receptor is necessary for consummatory responding to MSG (+IMP), other receptors are sufficient to maintain appetitive responding to this "umami" stimulus complex in food-restricted mice.
Collapse
Affiliation(s)
- Ginger D Blonde
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
9
|
Spector AC. Behavioral analyses of taste function and ingestion in rodent models. Physiol Behav 2015; 152:516-26. [PMID: 25892670 PMCID: PMC4608852 DOI: 10.1016/j.physbeh.2015.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/09/2015] [Indexed: 12/31/2022]
Abstract
In 1975, at the start of my junior year in college, I took a course on experimental methods in psychology from Dr. James C. Smith, when he was a Visiting Professor at Penn State University. That experience set me on the professional path of studying the neural bases of taste function and ingestion on which I remain to this day. Along the way, I did my graduate work at Florida State University under the tutelage of Jim, I did my postdoctoral training at the University of Pennsylvania under the supervision of Harvey Grill, and I also worked closely with Ralph Norgren, who was at the Penn State Medical College. This article briefly summarizes some of the lessons I learned from my mentors and highlights a few key research findings arising from my privilege of working with gifted students and postdocs. After close to 40 years of being a student of the gustatory system and ingestive behavior, it is still with the greatest conviction that I believe rigorous analysis of behavior is indispensable to any effort seeking to understand brain function.
Collapse
Affiliation(s)
- Alan C Spector
- Department of Psychology, Florida State University, Tallahassee, FL, USA; Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
10
|
Spector AC, Blonde GD, Henderson RP, Treesukosol Y, Hendrick P, Newsome R, Fletcher FH, Tang T, Donaldson JA. A new gustometer for taste testing in rodents. Chem Senses 2015; 40:187-96. [PMID: 25616763 DOI: 10.1093/chemse/bju072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In recent years, to circumvent the interpretive limitations associated with intake tests commonly used to assess taste function in rodents, investigators have developed devices called gustometers to deliver small volumes of taste samples and measure immediate responses, thereby increasing confidence that the behavior of the animal is under orosensory control. Most of these gustometers can be used to measure unconditioned licking behavior to stimuli presented for short durations and/or can be used to train the animal to respond to various fluid stimuli differentially so as to obtain a reward and/or avoid punishment. Psychometric sensitivity and discrimination functions can thus be derived. Here, we describe a new gustometer design, successfully used in behavioral experiments, that was guided by our experience with an older version used for over 2 decades. The new computer-controlled gustometer features no dead space in stimulus delivery lines, effective cleaning of the licking substrate, and the ability to measure licking without passing electrical current through the animal. The parts and dimensions are detailed, and the benefits and limitations of certain design features are discussed. Schematics for key circuits are provided as supplemental information. Accordingly, it should be possible to fabricate this device in a fashion customized for one's needs.
Collapse
Affiliation(s)
- Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA and
| | - Ginger D Blonde
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA and
| | - Ross P Henderson
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA and
| | - Yada Treesukosol
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul Hendrick
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA and
| | - Ryan Newsome
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA and
| | - Fred H Fletcher
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA and
| | - Te Tang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA and
| | - James A Donaldson
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA and
| |
Collapse
|
11
|
Treesukosol Y, Spector AC. Orosensory detection of sucrose, maltose, and glucose is severely impaired in mice lacking T1R2 or T1R3, but Polycose sensitivity remains relatively normal. Am J Physiol Regul Integr Comp Physiol 2012; 303:R218-35. [PMID: 22621968 DOI: 10.1152/ajpregu.00089.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Evidence in the literature supports the hypothesis that the T1R2+3 heterodimer binds to compounds that humans describe as sweet. Here, we assessed the necessity of the T1R2 and T1R3 subunits in the maintenance of normal taste sensitivity to carbohydrate stimuli. We trained and tested water-restricted T1R2 knockout (KO), T1R3 KO and their wild-type (WT) same-sex littermate controls in a two-response operant procedure to sample a fluid and differentially respond on the basis of whether the stimulus was water or a tastant. Correct responses were reinforced with water and incorrect responses were punished with a time-out. Testing was conducted with a modified descending method of limits procedure across daily 25-min sessions. Both KO groups displayed severely impaired performance and markedly decreased sensitivity when required to discriminate water from sucrose, glucose, or maltose. In contrast, when Polycose was tested, KO mice had normal EC(50) values for their psychometric functions, with some slight, but significant, impairment in performance. Sensitivity to NaCl did not differ between these mice and their WT controls. Our findings support the view that the T1R2+3 heterodimer is the principal receptor that mediates taste detection of natural sweeteners, but not of all carbohydrate stimuli. The combined presence of T1R2 and T1R3 appears unnecessary for the maintenance of relatively normal sensitivity to Polycose, at least in this task. Some detectability of sugars at high concentrations might be mediated by the putative polysaccharide taste receptor, the remaining T1R subunit forming either a homodimer or heteromer with another protein(s), or nontaste orosensory cues.
Collapse
Affiliation(s)
- Yada Treesukosol
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | | |
Collapse
|
12
|
Abstract
The purpose of this study was to investigate the influence of anion size and the contribution of the epithelial sodium channel (ENaC) and the transient receptor potential vanilloid-1 (TRPV1) channel on sodium-taste responses in rat chorda tympani (CT) neurons. We recorded multiunit responses from the severed CT nerve and single-cell responses from intact, narrowly tuned and broadly tuned, salt-sensitive neurons in the geniculate ganglion simultaneously with stimulus-evoked summated potentials to signal when the stimulus contacted the lingual epithelium. Artificial saliva served as the rinse and solvent for all stimuli (0.3 M NH(4)Cl, 0.5 M sucrose, 0.03-0.5 M NaCl, 0.01 M citric acid, 0.02 M quinine hydrochloride, 0.1 M KCl, and 0.03-0.5 M Na-gluconate). We used the pharmacological antagonist benzamil to assess NaCl responses mediated by ENaC, and SB-366791 and cetylpyridinium chloride to assess responses mediated by TRPV1. CT nerve responses were greater to NaCl than Na-gluconate at each concentration; this was attributed mostly to broadly tuned, acid-generalist neurons that responded with higher frequency and shorter latency to NaCl than Na-gluconate. In contrast, narrowly tuned NaCl-specialist neurons responded more similarly to the two salts, but with subtle differences in temporal pattern. Benzamil reduced CT nerve and single-cell responses only of narrowly tuned neurons to NaCl. Surprisingly, SB-366791 and cetylpyridinium chloride were without effect on CT nerve or single-cell NaCl responses. Collectively, our data demonstrate the critical role that apical ENaCs in fungiform papillae play in processing information about sodium by peripheral gustatory neurons; the role of TRPV1 channels is an enigma.
Collapse
Affiliation(s)
- Joseph M Breza
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, Florida 32306-4301, USA
| | | |
Collapse
|
13
|
Alterations of sucrose preference after Roux-en-Y gastric bypass. Physiol Behav 2011; 104:709-21. [DOI: 10.1016/j.physbeh.2011.07.025] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/24/2011] [Accepted: 07/26/2011] [Indexed: 12/25/2022]
|
14
|
Blonde GD, Garcea M, Spector AC. The relative effects of transection of the gustatory branches of the seventh and ninth cranial nerves on NaCl taste detection in rats. Behav Neurosci 2006; 120:580-9. [PMID: 16768610 DOI: 10.1037/0735-7044.120.3.580] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chorda tympani nerve (CT) transection in rats severely impairs NaCl taste detection. These rats can detect higher concentrations of NaCl, however, suggesting that remaining oral nerves maintain some salt sensibility. Rats were tested in a gustometer with a 2-response operant taste-detection task before and after sham surgery (n = 5), combined transection of the CT and the greater superficial petrosal nerves (GSP; 7x, n = 6), or transection of the glossopharyngeal nerve (GL; 9x, n = 4). Thresholds did not significantly change after sham surgery. Although the GL responds to NaCl and innervates nearly 60% of total taste buds, 9x surgery had no effect. However, 7x surgery increased NaCl detection threshold by approximately 2.5 log(10) units, greater than that reported for CT transection alone. These results suggest that the GSP contributes to NaCl sensitivity in rats and also demonstrate that the GL and perhaps the superior laryngeal and lingual nerve proper can maintain some NaCl detectability at high concentrations. These findings confirm the primacy of the 7th nerve relative to the 9th nerve in sensibility of NaCl in the rat model.
Collapse
Affiliation(s)
- Ginger D Blonde
- Department of Psychology and Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA
| | | | | |
Collapse
|
15
|
St John SJ, Hallagan LD. Psychophysical investigations of cetylpyridinium chloride in rats: its inherent taste and modifying effects on salt taste. Behav Neurosci 2005; 119:265-79. [PMID: 15727531 DOI: 10.1037/0735-7044.119.1.265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Salts are transduced by at least 2 mechanisms: (a) antagonized by amiloride and (b) antagonized by cetylpyridinium chloride (CPC). The authors report on 4 behavioral experiments in rats that characterize the orosensory properties of CPC itself as well as its effect in suppressing the intensity of NaCl and KCl taste. Experiments 1 and 2 indicated that CPC has a quinine-like taste quality. Experiments 3 and 4 demonstrated that the recognition of KCl, but not NaCl, is modestly reduced by mixture with CPC. However, control experiments call into question the mechanism of the salt suppression of CPC, because both CPC-salt and quinine-salt mixtures had similar effects. The relevance of these studies for understanding salt and bitter taste coding is discussed.
Collapse
Affiliation(s)
- Steven J St John
- Department of Psychology, Reed College, Portland, OR 97202, USA.
| | | |
Collapse
|
16
|
Spector AC. The functional organization of the peripheral gustatory system: Lessons from behavior. PROGRESS IN PSYCHOBIOLOGY AND PHYSIOLOGICAL PSYCHOLOGY 2005. [DOI: 10.1016/s0363-0951(03)80008-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
17
|
Rowland NE, Farnbauch LJ, Crews EC. Sodium deficiency and salt appetite in ICR: CD1 mice. Physiol Behav 2004; 80:629-35. [PMID: 14984796 DOI: 10.1016/j.physbeh.2003.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 09/29/2003] [Accepted: 11/07/2003] [Indexed: 11/24/2022]
Abstract
Using an outbred strain of mouse, we examined several characteristics of sodium appetite induced by depletion. We found that an appetite for 0.15 M NaCl solution was stimulated 24 h after injection of furosemide and access to a low-sodium diet, but not by low-sodium diet alone. When the duration of exposure to low-sodium diet was increased from 1 to 7 days, there was no additional effect on either the appetite or the blood plasma changes including elevated hematocrit ratio, protein and aldosterone concentrations, and plasma renin activity (PRA). Mice also showed an appetite for hypertonic (0.5 M) NaCl in solutions or in a gel matrix; the intakes of these two were comparable but the gel measurement was gravimetric so maybe more accurate. In the same study, we showed that single injections of either 10 or 40 mg/kg furosemide followed by a 24-h low-sodium diet produced similar appetites, but that 2.5 mg/kg had a submaximal effect. Lastly, we further validated the use of the gel matrix by showing in chronically depleted mice that intake was inversely related to NaCl concentration in the range 0.5-1.5 M, and that appetite was selective for sodium but not the anion with which it was paired.
Collapse
Affiliation(s)
- Neil E Rowland
- Department of Psychology, University of Florida, PO Box 112250, Gainesville, FL 32611-2250, USA.
| | | | | |
Collapse
|
18
|
Geran LC, Spector AC. Anion size does not compromise sodium recognition by rats after acute sodium depletion. Behav Neurosci 2004; 118:178-83. [PMID: 14979795 DOI: 10.1037/0735-7044.118.1.178] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Amiloride-insensitive sodium taste transduction is severely limited by large anions (i.e., gluconate). We found that in a brief-access taste test, sodium-depleted rats exhibited similar levels of increased licking to several sodium salts regardless of anion but did not increase licking to nonsodium salts compared with water. The enhanced licking of sodium salts was abolished in the presence of amiloride. These results suggest that the amiloride-sensitive taste transduction pathway is not only necessary but that it is also sufficient for sodium identification in rats. Sodium-depleted rats tested with amiloride initiated significantly more trials than nondepleted rats; hence, appetitive behavior was mildly potentiated by depletion, even in the absence of a sodium taste cue. Overall, these findings provide compelling support for the primacy of the amiloride-sensitive taste transduction mechanism and its associated neural pathway in the recognition of the sodium cation.
Collapse
Affiliation(s)
- Laura C Geran
- Department of Psychology and Center for Smell and Taste, University of Florida, Gainesville, FL 32611-2250, USA
| | | |
Collapse
|
19
|
Sudo S, Sudo M, Simons CT, Dessirier JM, Iodi Carstens M, Carstens E. Activation of neurons in trigeminal caudalis by noxious oral acidic or salt stimuli is not reduced by amiloride. Brain Res 2003; 969:237-43. [PMID: 12676384 DOI: 10.1016/s0006-8993(03)02341-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We investigated the possible role of amiloride-sensitive ion channels of the ENaC/DEGenerin superfamily in the activation of trigeminal nociceptive neurons elicited by noxious chemical stimulation of the oral mucosa using two methodologies, single-unit recording and c-fos immunohistochemistry. In pentobarbital-anesthetized rats, single-unit recordings were made from neurons in superficial laminae of dorsomedial trigeminal subnucleus caudalis (Vc) that responded to noxious thermal and chemical stimuli applied to the dorsal tongue. Successive application of each of three chemicals (250 mM pentanoic acid, n=6 units; 250 mM citric acid, n=8; 5 M NaCl, n=6) evoked responses that were not affected following topical application of amiloride (1 mM). In separate experiments, pentobarbital-anesthetized rats received one of the following stimuli delivered to the dorsal tongue: 250 mM pentanoic acid (n=6); 1 mM amiloride followed by 250 mM pentanoic (N=6); 5 M NaCl (n=5); or 1 mM amiloride followed by 5 M NaCl (n=5). Two hours later they were perfused with 4% paraformaldehyde and the brain stems processed for c-fos immunoreactivity. Both pentanoic acid and 5 M NaCl evoked similar numbers and patterns of fos-like immunoreactivity (FLI) in dorsomedial Vc and other brain stem regions, with no significant difference in counts of FLI in animals pretreated with amiloride. These results suggest that amiloride-sensitive Na(+) channels are not essential in mediating the activation of intraoral trigeminal nociceptors.
Collapse
Affiliation(s)
- Satoko Sudo
- Department of Anesthesiology and Resuscitology, Ehime University School of Medicine, Ehime, Shigenobu, Japan
| | | | | | | | | | | |
Collapse
|
20
|
Eylam S, Spector AC. The effect of amiloride on operantly conditioned performance in an NaCl taste detection task and NaCl preference in C57BL/6J mice. Behav Neurosci 2002. [DOI: 10.1037/0735-7044.116.1.149] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Norwich KH. Determination of saltiness from the laws of thermodynamics--estimating the gas constant from psychophysical experiments. Chem Senses 2001; 26:1015-22. [PMID: 11595678 DOI: 10.1093/chemse/26.8.1015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
One can relate the saltiness of a solution of a given substance to the concentration of the solution by means of one of the well-known psychophysical laws. One can also compare the saltiness of solutions of different solutes which have the same concentration, since different substances are intrinsically more salty or less salty. We develop here an equation that relates saltiness both to the concentration of the substance (psychophysical) and to a distinguishing physical property of the salt (intrinsic). For a fixed standard molar entropy of the salt being tasted, the equation simplifies to Fechner's law. When one allows for the intrinsic 'noise' in the chemoreceptor, the equation generalizes to include Stevens's law, with corresponding decrease in the threshold for taste. This threshold reduction exemplifies the principle of stochastic resonance. The theory is validated with reference to experimental data.
Collapse
Affiliation(s)
- K H Norwich
- Department of Physiology and Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada.
| |
Collapse
|
22
|
Kopka SL, Spector AC. Functional recovery of taste sensitivity to sodium chloride depends on regeneration of the chorda tympani nerve after transection in the rat. Behav Neurosci 2001. [DOI: 10.1037/0735-7044.115.5.1073] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|