1
|
Shiotani K, Tanisumi Y, Osako Y, Murata K, Hirokawa J, Sakurai Y, Manabe H. An intra-oral flavor detection task in freely moving mice. iScience 2024; 27:108924. [PMID: 38327778 PMCID: PMC10847684 DOI: 10.1016/j.isci.2024.108924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/05/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Flavor plays a critical role in the pleasure of food. Flavor research has mainly focused on human subjects and revealed that many brain regions are involved in flavor perception. However, animal models for elucidating the mechanisms of neural circuits are lacking. Herein, we demonstrate the use of a novel behavioral task in which mice are capable of flavor detection. When the olfactory pathways of the mice were blocked, they could not perform the task. However, behavioral accuracy was not affected when the gustatory pathway was blocked by benzocaine. These results indicate that the mice performed this detection task mainly based on the olfaction. We conclude that this novel task can contribute to research on the neural mechanisms of flavor perception.
Collapse
Affiliation(s)
- Kazuki Shiotani
- Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
- Laboratory of Brain Network Information, College of Life Sciences, Ritsumeikan University, Shiga, Japan
| | - Yuta Tanisumi
- Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, National Institute of Natural Sciences, Nagoya, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Tokyo, Japan
| | - Yuma Osako
- Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Koshi Murata
- Division of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Junya Hirokawa
- Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Yoshio Sakurai
- Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Hiroyuki Manabe
- Laboratory of Neural Information, Graduate School of Brain Science, Doshisha University, Kyoto, Japan
- Department of Neurophysiology, Nara Medical University, Nara, Japan
| |
Collapse
|
2
|
Vukmanovic Nosrat I, Palacios JL, Kezian S, Luong G, Tran A, Vu K, Henson BS, Nosrat P, Lutfy K, Nosrat CA. Brain-derived neurotrophic factor overexpression in taste buds diminishes chemotherapy induced taste loss. Eur J Neurosci 2022; 56:4967-4982. [PMID: 35986485 PMCID: PMC9804163 DOI: 10.1111/ejn.15799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 01/05/2023]
Abstract
Vismodegib is used in patients suffering from advanced basal cell carcinoma (BCC), but 100% of the patients taking it report dysgeusia and 50% discontinue the treatment. Treatment with neurotrophic factors can stimulate neuronal survival and functional improvement in injured organs. Here, we analysed novel transgenic mouse lines in which brain-derived neurotrophic factor (BDNF) is overexpressed in taste buds, to examine whether higher levels of BDNF would reduce or prevent negative side effects of vismodegib in the taste system. BDNF plays crucial roles for development, target innervation, and survival of gustatory neurons and taste buds. The behavioural test in this study showed that vehicle-treated wild-type mice prefered 10 mM sucrose over water, whereas vismodegib treatment in wild-type mice caused total taste loss. Gustducin-BDNF mice had a significantly increased preference for low concentration of sucrose solution over water compared to wild-type mice, and most importantly the transgenic mice were able to detect low concentrations of sucrose following vismodegib treatment. We evaluated taste cell morphology, identity, innervation and proliferation using immunohistochemistry. All drug-treated mice exhibited deficits, but because of a possible functional upcycled priming of the peripheral gustatory system, GB mice demonstrated better morphological preservation of the peripheral gustatory system. Our study indicates that overexpression of BDNF in taste buds plays a role in preventing degeneration of taste buds. Counteracting the negative side effects of vismodegib treatment might improve compliance and achieve better outcome in patients suffering from advanced BCC.
Collapse
Affiliation(s)
| | - Jerry L. Palacios
- Graduate College of Biomedical SciencesWestern University of Health SciencesPomonaCaliforniaUSA
| | - Steven Kezian
- Graduate College of Biomedical SciencesWestern University of Health SciencesPomonaCaliforniaUSA
| | - Gloria Luong
- Graduate College of Biomedical SciencesWestern University of Health SciencesPomonaCaliforniaUSA
| | - Andrew Tran
- Graduate College of Biomedical SciencesWestern University of Health SciencesPomonaCaliforniaUSA
| | - Kim Vu
- Graduate College of Biomedical SciencesWestern University of Health SciencesPomonaCaliforniaUSA
| | - Bradley S. Henson
- College of Dental MedicineWestern University of Health SciencesPomonaCaliforniaUSA
| | - Philip Nosrat
- College of Dental MedicineWestern University of Health SciencesPomonaCaliforniaUSA
| | - Kabirullah Lutfy
- Department of Pharmaceutical Sciences, College of PharmacyWestern University of Health SciencesPomonaCaliforniaUSA
| | | |
Collapse
|
3
|
Jiang E, Blonde GD, Garcea M, Spector AC. ENaC-Dependent Sodium Chloride Taste Responses in the Regenerated Rat Chorda Tympani Nerve After Lingual Gustatory Deafferentation Depend on the Taste Bud Field Reinnervated. Chem Senses 2020; 45:249-259. [PMID: 32154568 DOI: 10.1093/chemse/bjaa015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The chorda tympani (CT) nerve is exceptionally responsive to NaCl. Amiloride, an epithelial Na+ channel (ENaC) blocker, consistently and significantly decreases the NaCl responsiveness of the CT but not the glossopharyngeal (GL) nerve in the rat. Here, we examined whether amiloride would suppress the NaCl responsiveness of the CT when it cross-reinnervated the posterior tongue (PT). Whole-nerve electrophysiological recording was performed to investigate the response properties of the intact (CTsham), regenerated (CTr), and cross-regenerated (CT-PT) CT in male rats to NaCl mixed with and without amiloride and common taste stimuli. The intact (GLsham) and regenerated (GLr) GL were also examined. The CT responses of the CT-PT group did not differ from those of the GLr and GLsham groups, but did differ from those of the CTr and CTsham groups for some stimuli. Importantly, the responsiveness of the cross-regenerated CT to a series of NaCl concentrations was not suppressed by amiloride treatment, which significantly decreased the response to NaCl in the CTr and CTsham groups and had no effect in the GLr and GLsham groups. This suggests that the cross-regenerated CT adopts the taste response properties of the GL as opposed to those of the regenerated CT or intact CT. This work replicates the 5 decade-old findings of Oakley and importantly extends them by providing compelling evidence that the presence of functional ENaCs, essential for sodium taste recognition in regenerated taste receptor cells, depends on the reinnervated lingual region and not on the reinnervating gustatory nerve, at least in the rat.
Collapse
Affiliation(s)
- Enshe Jiang
- Institutes of Nursing and Health, College of Nursing and Health, Henan University, Kaifeng, China.,Henan International Joint Laboratory of Nuclear Protein Regulation, Henan University, Kaifeng, China.,Department of Psychology, University of Florida, Gainesville, FL, USA.,Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Ginger D Blonde
- Department of Psychology, University of Florida, Gainesville, FL, USA.,Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Mircea Garcea
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | - Alan C Spector
- Department of Psychology, University of Florida, Gainesville, FL, USA.,Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
4
|
No effect of sex on ethanol intake and preference after dopamine transporter (DAT) knockdown in adult mice. Psychopharmacology (Berl) 2019; 236:1349-1365. [PMID: 30539268 DOI: 10.1007/s00213-018-5144-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 12/03/2018] [Indexed: 10/27/2022]
Abstract
RATIONALE Dopamine levels are controlled in part by transport across the cell membrane by the dopamine transporter (DAT), and recent evidence showed that a polymorphism in the gene encoding DAT is associated with alcoholism. However, research in animal models using DAT knockout mice has yielded conflicting results. OBJECTIVES The present study was planned to evaluate the effects of DAT knockdown in the nucleus accumbens (Nacc) on voluntary ethanol consumption and preference in male and female C57BL/6J mice. METHODS For this purpose, animals were stereotaxically injected with DAT siRNA-expressing lentiviral vectors in the Nacc, and using a voluntary, continuous access two-bottle choice model of alcohol, we investigated the importance of accumbal DAT expression in voluntary alcohol intake and preference. We also investigated the effects of DAT knockdown on saccharin and quinine consumption and ethanol metabolism. RESULTS We show that females consumed more alcohol than males. Interestingly, DAT knockdown in the Nacc significantly decreased alcohol intake and preference in both groups, but no significant sex by group interaction was observed. Also, DAT knockdown did not alter total fluid consumption, saccharin or quinine consumption, or blood ethanol concentrations. Using Pearson correlation, results indicated a strong positive relationship between DAT mRNA expression and ethanol consumption and preference. CONCLUSIONS Taken together, these data provide further evidence that DAT plays an important role in controlling ethanol intake and that accumbal DAT contributes in the modulation of the reinforcing effects of ethanol. Overall, the results suggest that DAT inhibitors may be valuable in the pharmacotherapy of alcoholism.
Collapse
|
5
|
Blonde GD, Travers SP, Spector AC. Taste sensitivity to a mixture of monosodium glutamate and inosine 5'-monophosphate by mice lacking both subunits of the T1R1+T1R3 amino acid receptor. Am J Physiol Regul Integr Comp Physiol 2018; 314:R802-R810. [PMID: 29443544 DOI: 10.1152/ajpregu.00352.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The taste of l-glutamate and its synergism with 5'-ribonucleotides is thought to be primarily mediated through the T1R1+T1R3 heterodimer in some mammals, including rodents and humans. While knockout (KO) mice lacking either receptor subunit show impaired sensitivity to a range of monosodium glutamate (MSG) concentrations mixed with 2.5 mM inosine 5'-monophosphate (IMP) in amiloride, wild-type (WT) controls can detect this IMP concentration, hindering direct comparison between genotypes. Moreover, some residual sensitivity persists in the KO group, suggesting that the remaining subunit could maintain a limited degree of function. Here, C57BL/6J, 129X1/SvJ, and T1R1+T1R3 double KO mice ( n = 16 each to start the experiment) were trained in a two-response operant task in gustometers and then tested for their ability to discriminate 100 µM amiloride from MSG (starting with 0.6 M) and IMP (starting with 2.5 mM) in amiloride (MSG+I+A). Testing continued with successive dilutions of both MSG and IMP (in amiloride). The two WT strains were similarly sensitive to MSG+I+A ( P > 0.8). KO mice, however, were significantly impaired relative to either WT strain ( P < 0.01), although they were able to detect the highest concentrations. Thus, normal detectability of MSG+I+A requires an intact T1R1+T1R3 receptor, without regard for allelic variation in the T1R3 gene between the WT strains. Nevertheless, residual sensitivity by the T1R1+T1R3 KO mice demonstrates that a T1R-independent mechanism can contribute to the detectability of high concentrations of this prototypical umami compound stimulus.
Collapse
Affiliation(s)
- Ginger D Blonde
- Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| | - Susan P Travers
- Division of Biosciences, College of Dentistry, Ohio State University , Columbus, Ohio
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University , Tallahassee, Florida
| |
Collapse
|
6
|
Blonde GD, Spector AC. An Examination of the Role of L-Glutamate and Inosine 5'-Monophosphate in Hedonic Taste-Guided Behavior by Mice Lacking the T1R1 + T1R3 Receptor. Chem Senses 2017; 42:393-404. [PMID: 28334294 DOI: 10.1093/chemse/bjx015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The heterodimeric T1R1 + T1R3 receptor is considered critical for normal signaling of L-glutamate and 5'-ribonucleotides in the oral cavity. However, some taste-guided responsiveness remains in mice lacking one subunit of the receptor, suggesting that other receptors are sufficient to support some behaviors. Here, mice lacking both receptor subunits (KO) and wild-type (WT, both n = 13) mice were tested in a battery of behavioral tests. Mice were trained and tested in gustometers with a concentration series of Maltrin-580, a maltodextrin, in a brief-access test (10-s trials) as a positive control. Similar tests followed with monosodium glutamate (MSG) with and without the ribonucleotide inosine 5'-monophosphate (IMP), but always in the presence of the epithelial sodium channel blocker amiloride (A). Brief-access tests were repeated following short-term (30-min) and long-term (48-h) exposures to MSG + A + IMP and were also conducted with sodium gluconate replacing MSG. Finally, progressive ratio tests were conducted with Maltrin-580 or MSG + A + IMP, to assess appetitive behavior while minimizing satiation. Overall, MSG generated little concentration-dependent responding in either food-restricted WT or KO mice, even in combination with IMP. However, KO mice licked less to the amino acid stimuli, a measure of consummatory behavior in the brief-access tests. In contrast, both groups initiated a similar number of trials and had a similar breakpoint in the progressive ratio task, both measures of appetitive (approach) behavior. Collectively, these results suggest that while the T1R1 + T1R3 receptor is necessary for consummatory responding to MSG (+IMP), other receptors are sufficient to maintain appetitive responding to this "umami" stimulus complex in food-restricted mice.
Collapse
Affiliation(s)
- Ginger D Blonde
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
7
|
Spector AC. Behavioral analyses of taste function and ingestion in rodent models. Physiol Behav 2015; 152:516-26. [PMID: 25892670 PMCID: PMC4608852 DOI: 10.1016/j.physbeh.2015.04.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/09/2015] [Indexed: 12/31/2022]
Abstract
In 1975, at the start of my junior year in college, I took a course on experimental methods in psychology from Dr. James C. Smith, when he was a Visiting Professor at Penn State University. That experience set me on the professional path of studying the neural bases of taste function and ingestion on which I remain to this day. Along the way, I did my graduate work at Florida State University under the tutelage of Jim, I did my postdoctoral training at the University of Pennsylvania under the supervision of Harvey Grill, and I also worked closely with Ralph Norgren, who was at the Penn State Medical College. This article briefly summarizes some of the lessons I learned from my mentors and highlights a few key research findings arising from my privilege of working with gifted students and postdocs. After close to 40 years of being a student of the gustatory system and ingestive behavior, it is still with the greatest conviction that I believe rigorous analysis of behavior is indispensable to any effort seeking to understand brain function.
Collapse
Affiliation(s)
- Alan C Spector
- Department of Psychology, Florida State University, Tallahassee, FL, USA; Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
8
|
Ciullo DL, Dotson CD. Using Animal Models to Determine the Role of Gustatory Neural Input in the Control of Ingestive Behavior and the Maintenance of Body Weight. CHEMOSENS PERCEPT 2015; 8:61-77. [PMID: 26557212 PMCID: PMC4636125 DOI: 10.1007/s12078-015-9190-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Decades of research have suggested that nutritional intake contributes to the development of human disease, mainly by influencing the development of obesity and obesity-related conditions. A relatively large body of research indicates that functional variation in human taste perception can influence nutritional intake as well as body mass accumulation. However, there are a considerable number of studies that suggest that no link between these variables actually exists. These discrepancies in the literature likely result from the confounding influence of a variety of other, uncontrolled, factors that can influence ingestive behavior. STRATEGY In this review, the use of controlled animal experimentation to alleviate at least some of these issues related to the lack of control of experimental variables is discussed. Specific examples of the use of some of these techniques are examined. DISCUSSION AND CONCLUSIONS The review will close with some specific suggestions aimed at strengthening the link between gustatory neural input and its putative influence on ingestive behaviors and the maintenance of body weight.
Collapse
Affiliation(s)
- Dana L Ciullo
- Departments of Neuroscience and Psychiatry, Division of Addiction Medicine, University of Florida College of Medicine, and Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA,
| | - Cedrick D Dotson
- Departments of Neuroscience and Psychiatry, Division of Addiction Medicine, University of Florida College of Medicine, and Center for Smell and Taste, University of Florida, Gainesville, FL 32611, USA,
| |
Collapse
|
9
|
Spector AC, Blonde GD, Henderson RP, Treesukosol Y, Hendrick P, Newsome R, Fletcher FH, Tang T, Donaldson JA. A new gustometer for taste testing in rodents. Chem Senses 2015; 40:187-96. [PMID: 25616763 DOI: 10.1093/chemse/bju072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In recent years, to circumvent the interpretive limitations associated with intake tests commonly used to assess taste function in rodents, investigators have developed devices called gustometers to deliver small volumes of taste samples and measure immediate responses, thereby increasing confidence that the behavior of the animal is under orosensory control. Most of these gustometers can be used to measure unconditioned licking behavior to stimuli presented for short durations and/or can be used to train the animal to respond to various fluid stimuli differentially so as to obtain a reward and/or avoid punishment. Psychometric sensitivity and discrimination functions can thus be derived. Here, we describe a new gustometer design, successfully used in behavioral experiments, that was guided by our experience with an older version used for over 2 decades. The new computer-controlled gustometer features no dead space in stimulus delivery lines, effective cleaning of the licking substrate, and the ability to measure licking without passing electrical current through the animal. The parts and dimensions are detailed, and the benefits and limitations of certain design features are discussed. Schematics for key circuits are provided as supplemental information. Accordingly, it should be possible to fabricate this device in a fashion customized for one's needs.
Collapse
Affiliation(s)
- Alan C Spector
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA and
| | - Ginger D Blonde
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA and
| | - Ross P Henderson
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA and
| | - Yada Treesukosol
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul Hendrick
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA and
| | - Ryan Newsome
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA and
| | - Fred H Fletcher
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA and
| | - Te Tang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA and
| | - James A Donaldson
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA and
| |
Collapse
|
10
|
Smith KR, Treesukosol Y, Paedae AB, Contreras RJ, Spector AC. Contribution of the TRPV1 channel to salt taste quality in mice as assessed by conditioned taste aversion generalization and chorda tympani nerve responses. Am J Physiol Regul Integr Comp Physiol 2012; 303:R1195-205. [PMID: 23054171 DOI: 10.1152/ajpregu.00154.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In rodents, at least two transduction mechanisms are involved in salt taste: 1) the sodium-selective epithelial sodium channel, blocked by topical amiloride administration, and 2) one or more amiloride-insensitive cation-nonselective pathways. Whereas electrophysiological evidence from the chorda tympani nerve (CT) has implicated the transient receptor potential vanilloid-1 (TRPV1) channel as a major component of amiloride-insensitive salt taste transduction, behavioral results have provided only equivocal support. Using a brief-access taste test, we examined generalization profiles of water-deprived C57BL/6J (WT) and TRPV1 knockout (KO) mice conditioned (via LiCl injection) to avoid 100 μM amiloride-prepared 0.25 M NaCl and tested with 0.25 M NaCl, sodium gluconate, KCl, NH(4)Cl, 6.625 mM citric acid, 0.15 mM quinine, and 0.5 M sucrose. Both LiCl-injected WT and TRPV1 KO groups learned to avoid NaCl+amiloride relative to controls, but their generalization profiles did not differ; LiCl-injected mice avoided the nonsodium salts and quinine suggesting that a TRPV1-independent pathway contributes to the taste quality of the amiloride-insensitive portion of the NaCl signal. Repeating the experiment but doubling all stimulus concentrations revealed a difference in generalization profiles between genotypes. While both LiCl-injected groups avoided the nonsodium salts and quinine, only WT mice avoided the sodium salts and citric acid. CT responses to these stimuli and a concentration series of NaCl and KCl with and without amiloride did not differ between genotypes. Thus, in our study, TRPV1 did not appear to contribute to sodium salt perception based on gustatory signals, at least in the CT, but may have contributed to the oral somatosensory features of sodium.
Collapse
Affiliation(s)
- Kimberly R Smith
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA
| | | | | | | | | |
Collapse
|
11
|
Treesukosol Y, Spector AC. Orosensory detection of sucrose, maltose, and glucose is severely impaired in mice lacking T1R2 or T1R3, but Polycose sensitivity remains relatively normal. Am J Physiol Regul Integr Comp Physiol 2012; 303:R218-35. [PMID: 22621968 DOI: 10.1152/ajpregu.00089.2012] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Evidence in the literature supports the hypothesis that the T1R2+3 heterodimer binds to compounds that humans describe as sweet. Here, we assessed the necessity of the T1R2 and T1R3 subunits in the maintenance of normal taste sensitivity to carbohydrate stimuli. We trained and tested water-restricted T1R2 knockout (KO), T1R3 KO and their wild-type (WT) same-sex littermate controls in a two-response operant procedure to sample a fluid and differentially respond on the basis of whether the stimulus was water or a tastant. Correct responses were reinforced with water and incorrect responses were punished with a time-out. Testing was conducted with a modified descending method of limits procedure across daily 25-min sessions. Both KO groups displayed severely impaired performance and markedly decreased sensitivity when required to discriminate water from sucrose, glucose, or maltose. In contrast, when Polycose was tested, KO mice had normal EC(50) values for their psychometric functions, with some slight, but significant, impairment in performance. Sensitivity to NaCl did not differ between these mice and their WT controls. Our findings support the view that the T1R2+3 heterodimer is the principal receptor that mediates taste detection of natural sweeteners, but not of all carbohydrate stimuli. The combined presence of T1R2 and T1R3 appears unnecessary for the maintenance of relatively normal sensitivity to Polycose, at least in this task. Some detectability of sugars at high concentrations might be mediated by the putative polysaccharide taste receptor, the remaining T1R subunit forming either a homodimer or heteromer with another protein(s), or nontaste orosensory cues.
Collapse
Affiliation(s)
- Yada Treesukosol
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | | |
Collapse
|
12
|
Abstract
Molecular mechanisms of salty taste in mammals are not completely understood. We use genetic approaches to study these mechanisms. Previously, we developed a high-throughput procedure to measure NaCl taste thresholds, which involves conditioning mice to avoid LiCl and then examining avoidance of NaCl solutions presented in 48-h 2-bottle preference tests. Using this procedure, we measured NaCl taste thresholds of mice from 13 genealogically divergent inbred stains: 129P3/J, A/J, BALB/cByJ, C3H/HeJ, C57BL/6ByJ, C57BL/6J, CBA/J, CE/J, DBA/2J, FVB/NJ, NZB/BlNJ, PWK/PhJ, and SJL/J. We found substantial strain variation in NaCl taste thresholds: mice from the A/J and 129P3/J strains had high thresholds (were less sensitive), whereas mice from the BALB/cByJ, C57BL/6J, C57BL/6ByJ, CE/J, DBA/2J, NZB/BINJ, and SJL/J had low thresholds (were more sensitive). NaCl taste thresholds measured in this study did not significantly correlate with NaCl preferences or amiloride sensitivity of chorda tympani nerve responses to NaCl determined in the same strains in other studies. To examine whether strain differences in NaCl taste thresholds could have been affected by variation in learning ability or sensitivity to toxic effects of LiCl, we used the same method to measure citric acid taste thresholds in 4 inbred strains with large differences in NaCl taste thresholds but similar acid sensitivity in preference tests (129P3/J, A/J, C57BL/6J, and DBA/2J). Citric acid taste thresholds were similar in these 4 strains. This suggests that our technique measures taste quality-specific thresholds that are likely to represent differences in peripheral taste responsiveness. The strain differences in NaCl taste sensitivity found in this study provide a basis for genetic analysis of this phenotype.
Collapse
Affiliation(s)
- Yutaka Ishiwatari
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
13
|
Treesukosol Y, Mathes CM, Spector AC. Citric acid and quinine share perceived chemosensory features making oral discrimination difficult in C57BL/6J mice. Chem Senses 2011; 36:477-89. [PMID: 21421543 DOI: 10.1093/chemse/bjr010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Evidence in the literature shows that in rodents, some taste-responsive neurons respond to both quinine and acid stimuli. Also, under certain circumstances, rodents display some degree of difficulty in discriminating quinine and acid stimuli. Here, C57BL/6J mice were trained and tested in a 2-response operant discrimination task. Mice had severe difficulty discriminating citric acid from quinine and 6-n-propylthiouracil (PROP) with performance slightly, but significantly, above chance. In contrast, mice were able to competently discriminate sucrose from citric acid, NaCl, quinine, and PROP. In another experiment, mice that were conditioned to avoid quinine by pairings with LiCl injections subsequently suppressed licking responses to quinine and citric acid but not to NaCl or sucrose in a brief-access test, relative to NaCl-injected control animals. However, mice that were conditioned to avoid citric acid did not display cross-generalization to quinine. These mice significantly suppressed licking only to citric acid, and to a much lesser extent NaCl, compared with controls. Collectively, the findings from these experiments suggest that in mice, citric acid and quinine share chemosensory features making discrimination difficult but are not perceptually identical.
Collapse
Affiliation(s)
- Yada Treesukosol
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL 32306-4301, USA
| | | | | |
Collapse
|
14
|
Treesukosol Y, Smith KR, Spector AC. The functional role of the T1R family of receptors in sweet taste and feeding. Physiol Behav 2011; 105:14-26. [PMID: 21376068 DOI: 10.1016/j.physbeh.2011.02.030] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 02/17/2011] [Accepted: 02/17/2011] [Indexed: 01/02/2023]
Abstract
The discovery of the T1R family of Class C G protein-coupled receptors in the peripheral gustatory system a decade ago has been a tremendous advance for taste research, and its conceptual reach has extended to other organ systems. There are three proteins in the family, T1R1, T1R2, and T1R3, encoded by their respective genes, Tas1r1, Tas1r2, and Tas1r3. T1R2 combines with T1R3 to form a heterodimer that binds with sugars and other sweeteners. T1R3 also combines with T1R1 to form a heterodimer that binds with l-amino acids. These proteins are expressed not only in taste bud cells, but one or more of these T1Rs have also been identified in the nasal epithelium, gut, pancreas, liver, kidney, testes and brain in various mammalian species. Here we review current perspectives regarding the functional role of these receptors, concentrating on sweet taste and feeding. We also discuss behavioral findings suggesting that a glucose polymer mixture, Polycose, which rodents avidly prefer, appears to activate a receptor that does not depend on the combined expression of T1R2 and T1R3. In addition, although the T1Rs have been implicated as playing a role in glucose sensing, T1R2 knock-out (KO) and T1R3 KO mice display normal chow and fluid intake as well as normal body weight compared with same-sex littermate wild type (WT) controls. Moreover, regardless of whether they are fasted or not, these KO mice do not differ from their WT counterparts in their Polycose intake across a broad range of concentrations in 30-minute intake tests. The functional implications of these results and those in the literature are considered.
Collapse
Affiliation(s)
- Yada Treesukosol
- Department of Psychology and Program in Neuroscience, Florida State University, 1107 West Call Street, P.O. Box 3064301, Tallahassee FL 32306, USA
| | | | | |
Collapse
|
15
|
Baquero AF, Gilbertson TA. Insulin activates epithelial sodium channel (ENaC) via phosphoinositide 3-kinase in mammalian taste receptor cells. Am J Physiol Cell Physiol 2010; 300:C860-71. [PMID: 21106690 DOI: 10.1152/ajpcell.00318.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetes is a profound disease that results in a severe lack of regulation of systemic salt and water balance. From our earlier work on the endocrine regulation of salt taste at the level of the epithelial sodium channel (ENaC), we have begun to investigate the ability of insulin to alter ENaC function with patch-clamp recording on isolated mouse taste receptor cells (TRCs). In fungiform and vallate TRCs that exhibit functional ENaC currents (e.g., amiloride-sensitive Na(+) influx), insulin (5-20 nM) caused a significant increase in Na(+) influx at -80 mV (EC(50) = 7.53 nM). The insulin-enhanced currents were inhibited by amiloride (30 μM). Similarly, in ratiometric Na(+) imaging using SBFI, insulin treatment (20 nM) enhanced Na(+) movement in TRCs, consistent with its action in electrophysiological assays. The ability of insulin to regulate ENaC function is dependent on the enzyme phosphoinositide 3-kinase since treatment with the inhibitor LY294002 (10 μM) abolished insulin-induced changes in ENaC. To test the role of insulin in the regulation of salt taste, we have characterized behavioral responses to NaCl using a mouse model of acute hyperinsulinemia. Insulin-treated mice show significant avoidance of NaCl at lower concentrations than the control group. Interestingly, these differences between groups were abolished when amiloride (100 μM) was added into NaCl solutions, suggesting that insulin was regulating ENaC. Our results are consistent with a role for insulin in maintaining functional expression of ENaC in mouse TRCs.
Collapse
Affiliation(s)
- Arian F Baquero
- Department of Biology and The Center for Advanced Nutrition, Utah State University, Logan, USA.
| | | |
Collapse
|
16
|
Ishiwatari Y, Bachmanov AA. A high-throughput method to measure NaCl and acid taste thresholds in mice. Chem Senses 2009; 34:277-93. [PMID: 19188279 PMCID: PMC2671883 DOI: 10.1093/chemse/bjp001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2008] [Indexed: 11/14/2022] Open
Abstract
To develop a technique suitable for measuring NaCl taste thresholds in genetic studies, we conducted a series of experiments with outbred CD-1 mice using conditioned taste aversion (CTA) and two-bottle preference tests. In Experiment 1, we compared conditioning procedures involving either oral self-administration of LiCl or pairing NaCl intake with LiCl injections and found that thresholds were the lowest after LiCl self-administration. In Experiment 2, we compared different procedures (30-min and 48-h tests) for testing conditioned mice and found that the 48-h test is more sensitive. In Experiment 3, we examined the effects of varying strength of conditioned (NaCl or LiCl taste intensity) and unconditioned (LiCl toxicity) stimuli and concluded that 75-150 mM LiCl or its mixtures with NaCl are the optimal stimuli for conditioning by oral self-administration. In Experiment 4, we examined whether this technique is applicable for measuring taste thresholds for other taste stimuli. Results of these experiments show that conditioning by oral self-administration of LiCl solutions or its mixtures with other taste stimuli followed by 48-h two-bottle tests of concentration series of a conditioned stimulus is an efficient and sensitive method to measure taste thresholds. Thresholds measured with this technique were 2 mM for NaCl and 1 mM for citric acid. This approach is suitable for simultaneous testing of large numbers of animals, which is required for genetic studies. These data demonstrate that mice, like several other species, generalize CTA from LiCl to NaCl, suggesting that they perceive taste of NaCl and LiCl as qualitatively similar, and they also can generalize CTA of a binary mixture of taste stimuli to mixture components.
Collapse
Affiliation(s)
- Yutaka Ishiwatari
- Monell Chemical Senses Center, 3500 Market Street, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
17
|
Quantitative assessment of TRPM5-dependent oral aversiveness of pharmaceuticals using a mouse brief-access taste aversion assay. Behav Pharmacol 2008; 19:673-82. [DOI: 10.1097/fbp.0b013e3283123cd6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Vandenbeuch A, Clapp TR, Kinnamon SC. Amiloride-sensitive channels in type I fungiform taste cells in mouse. BMC Neurosci 2008; 9:1. [PMID: 18171468 PMCID: PMC2235881 DOI: 10.1186/1471-2202-9-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Accepted: 01/02/2008] [Indexed: 11/16/2022] Open
Abstract
Background Taste buds are the sensory organs of taste perception. Three types of taste cells have been described. Type I cells have voltage-gated outward currents, but lack voltage-gated inward currents. These cells have been presumed to play only a support role in the taste bud. Type II cells have voltage-gated Na+ and K+ current, and the receptors and transduction machinery for bitter, sweet, and umami taste stimuli. Type III cells have voltage-gated Na+, K+, and Ca2+ currents, and make prominent synapses with afferent nerve fibers. Na+ salt transduction in part involves amiloride-sensitive epithelial sodium channels (ENaCs). In rodents, these channels are located in taste cells of fungiform papillae on the anterior part of the tongue innervated by the chorda tympani nerve. However, the taste cell type that expresses ENaCs is not known. This study used whole cell recordings of single fungiform taste cells of transgenic mice expressing GFP in Type II taste cells to identify the taste cells responding to amiloride. We also used immunocytochemistry to further define and compare cell types in fungiform and circumvallate taste buds of these mice. Results Taste cell types were identified by their response to depolarizing voltage steps and their presence or absence of GFP fluorescence. TRPM5-GFP taste cells expressed large voltage-gated Na+ and K+ currents, but lacked voltage-gated Ca2+ currents, as expected from previous studies. Approximately half of the unlabeled cells had similar membrane properties, suggesting they comprise a separate population of Type II cells. The other half expressed voltage-gated outward currents only, typical of Type I cells. A single taste cell had voltage-gated Ca2+ current characteristic of Type III cells. Responses to amiloride occurred only in cells that lacked voltage-gated inward currents. Immunocytochemistry showed that fungiform taste buds have significantly fewer Type II cells expressing PLC signalling components, and significantly fewer Type III cells than circumvallate taste buds. Conclusion The principal finding is that amiloride-sensitive Na+ channels appear to be expressed in cells that lack voltage-gated inward currents, likely the Type I taste cells. These cells were previously assumed to provide only a support function in the taste bud.
Collapse
Affiliation(s)
- Aurelie Vandenbeuch
- Department of Biomedical Science, Colorado State University, Fort Collins, USA.
| | | | | |
Collapse
|
19
|
Roper SD. Signal transduction and information processing in mammalian taste buds. Pflugers Arch 2007; 454:759-76. [PMID: 17468883 PMCID: PMC3723147 DOI: 10.1007/s00424-007-0247-x] [Citation(s) in RCA: 191] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2006] [Accepted: 01/04/2007] [Indexed: 10/23/2022]
Abstract
The molecular machinery for chemosensory transduction in taste buds has received considerable attention within the last decade. Consequently, we now know a great deal about sweet, bitter, and umami taste mechanisms and are gaining ground rapidly on salty and sour transduction. Sweet, bitter, and umami tastes are transduced by G-protein-coupled receptors. Salty taste may be transduced by epithelial Na channels similar to those found in renal tissues. Sour transduction appears to be initiated by intracellular acidification acting on acid-sensitive membrane proteins. Once a taste signal is generated in a taste cell, the subsequent steps involve secretion of neurotransmitters, including ATP and serotonin. It is now recognized that the cells responding to sweet, bitter, and umami taste stimuli do not possess synapses and instead secrete the neurotransmitter ATP via a novel mechanism not involving conventional vesicular exocytosis. ATP is believed to excite primary sensory afferent fibers that convey gustatory signals to the brain. In contrast, taste cells that do have synapses release serotonin in response to gustatory stimulation. The postsynaptic targets of serotonin have not yet been identified. Finally, ATP secreted from receptor cells also acts on neighboring taste cells to stimulate their release of serotonin. This suggests that there is important information processing and signal coding taking place in the mammalian taste bud after gustatory stimulation.
Collapse
Affiliation(s)
- Stephen D Roper
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA.
| |
Collapse
|
20
|
Eylam S, Moore M, Haskell-Luevano C, Spector AC. Melanocortin-4 receptor-null mice display normal affective licking responses to prototypical taste stimuli in a brief-access test. Peptides 2005; 26:1712-9. [PMID: 15993983 DOI: 10.1016/j.peptides.2004.11.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 11/11/2004] [Indexed: 11/24/2022]
Abstract
We tested whether MC4R null mice display altered gustatory function relative to wild-type controls that may contribute to the characteristic hyperphagia and obesity associated with this gene deletion. Mice were tested for their licking responses to prototypical taste solutions (sucrose, NaCl, quinine, citric acid) in series of daily 30-min sessions in which a range of concentrations of each tastant was available in randomized blocks of 5-s trials. Notwithstanding some minor deviations, the concentration-response functions of the MC4R null and wild-type mice were basically the same for all of the prototypical compounds tested here. Thus, taste-based appetitive and avoidance behavior is expressed in the absence of the MC4 receptor, demonstrating that this critical component in the melanocortin system is not required for normal affective gustatory function to be maintained.
Collapse
Affiliation(s)
- Shachar Eylam
- Department of Psychology and the Center for Smell and Taste, University of Florida, P.O. Box 112250, Gainesville, FL 32611-2250, USA
| | | | | | | |
Collapse
|
21
|
Boughter JD, Raghow S, Nelson TM, Munger SD. Inbred mouse strains C57BL/6J and DBA/2J vary in sensitivity to a subset of bitter stimuli. BMC Genet 2005; 6:36. [PMID: 15967025 PMCID: PMC1183203 DOI: 10.1186/1471-2156-6-36] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Accepted: 06/20/2005] [Indexed: 11/10/2022] Open
Abstract
Background Common inbred mouse strains are genotypically diverse, but it is still poorly understood how this diversity relates to specific differences in behavior. To identify quantitative trait genes that influence taste behavior differences, it is critical to utilize assays that exclusively measure the contribution of orosensory cues. With a few exceptions, previous characterizations of behavioral taste sensitivity in inbred mouse strains have generally measured consumption, which can be confounded by post-ingestive effects. Here, we used a taste-salient brief-access procedure to measure taste sensitivity to eight stimuli characterized as bitter or aversive in C57BL/6J (B6) and DBA/2J (D2) mice. Results B6 mice were more sensitive than D2 mice to a subset of bitter stimuli, including quinine hydrochloride (QHCl), 6-n-propylthiouracil (PROP), and MgCl2. D2 mice were more sensitive than B6 mice to the bitter stimulus raffinose undecaacetate (RUA). These strains did not differ in sensitivity to cycloheximide (CYX), denatonium benzoate (DB), KCl or HCl. Conclusion B6-D2 taste sensitivity differences indicate that differences in consumption of QHCl, PROP, MgCl2 and RUA are based on immediate orosensory cues, not post-ingestive effects. The absence of a strain difference for CYX suggests that polymorphisms in a T2R-type taste receptor shown to be differentially sensitive to CYX in vitro are unlikely to differentially contribute to the CYX behavioral response in vivo. The results of these studies point to the utility of these common mouse strains and their associated resources for investigation into the genetic mechanisms of taste.
Collapse
Affiliation(s)
- John D Boughter
- Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Sandeep Raghow
- Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Theodore M Nelson
- Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Steven D Munger
- Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
22
|
Eylam S, Spector AC. Taste discrimination between NaCl and KCl is disrupted by amiloride in inbred mice with amiloride-insensitive chorda tympani nerves. Am J Physiol Regul Integr Comp Physiol 2005; 288:R1361-8. [PMID: 15821286 DOI: 10.1152/ajpregu.00796.2004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The amiloride-sensitive salt transduction pathway is thought to be critical for the discrimination between sodium and nonsodium salts in rodents. In rats, lingual application of amiloride appears to render NaCl qualitatively indistinguishable from KCl. In this study, we tested four strains of mice for salt discriminability. In one strain (C57BL/6J), chorda tympani nerve (CT) responses to NaCl are attenuated by amiloride, and in the other three strains (BALB/cByJ, 129P3/J, DBA/2J) they are not. Under water-restriction conditions, these mice (7 mice/strain) were trained in a gustometer to lick for water from one reinforcement spout in response to a five-lick presentation of NaCl and to lick from another in response to KCl [salt concentration was varied (0.1-1 M) to render intensity irrelevant]. Mice were then tested with the stimuli dissolved in amiloride hydrochloride, and the latter was used as the reinforcer as well. Each concentration of amiloride (0.1-100 microM) was used on 2 separate days with control sessions interposed. Mice from all four strains were able to discriminate NaCl from KCl reliably. Amiloride impaired this discrimination in a dose-dependent fashion. Moreover, performance on NaCl trials appeared to be more affected by amiloride than that on KCl trials in all four strains. Thus, in contrast to the predictions based on CT recordings, discrimination in all four strains appeared to depend on the amiloride-sensitive transduction pathway, which, in the case of BALB/cByJ, 129P3/J, and DBA/2J (and perhaps C57BL/6 as well), may exist in taste buds innervated by nerves other than the CT.
Collapse
Affiliation(s)
- Shachar Eylam
- Dept. of Psychology, PO Box 112250, Univ. of Florida, Gainesville, FL 32611-2250, USA
| | | |
Collapse
|
23
|
Rowland NE, Farnbauch LJ, Crews EC. Sodium deficiency and salt appetite in ICR: CD1 mice. Physiol Behav 2004; 80:629-35. [PMID: 14984796 DOI: 10.1016/j.physbeh.2003.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Revised: 09/29/2003] [Accepted: 11/07/2003] [Indexed: 11/24/2022]
Abstract
Using an outbred strain of mouse, we examined several characteristics of sodium appetite induced by depletion. We found that an appetite for 0.15 M NaCl solution was stimulated 24 h after injection of furosemide and access to a low-sodium diet, but not by low-sodium diet alone. When the duration of exposure to low-sodium diet was increased from 1 to 7 days, there was no additional effect on either the appetite or the blood plasma changes including elevated hematocrit ratio, protein and aldosterone concentrations, and plasma renin activity (PRA). Mice also showed an appetite for hypertonic (0.5 M) NaCl in solutions or in a gel matrix; the intakes of these two were comparable but the gel measurement was gravimetric so maybe more accurate. In the same study, we showed that single injections of either 10 or 40 mg/kg furosemide followed by a 24-h low-sodium diet produced similar appetites, but that 2.5 mg/kg had a submaximal effect. Lastly, we further validated the use of the gel matrix by showing in chronically depleted mice that intake was inversely related to NaCl concentration in the range 0.5-1.5 M, and that appetite was selective for sodium but not the anion with which it was paired.
Collapse
Affiliation(s)
- Neil E Rowland
- Department of Psychology, University of Florida, PO Box 112250, Gainesville, FL 32611-2250, USA.
| | | | | |
Collapse
|