1
|
Sun L, Li S, Ren P, Liu Q, Li Z, Liang X. Pattern Separation and Pattern Completion Within the Hippocampal Circuit During Naturalistic Stimuli. Hum Brain Mapp 2025; 46:e70150. [PMID: 39878229 PMCID: PMC11775762 DOI: 10.1002/hbm.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/05/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Pattern separation and pattern completion in the hippocampus play a critical role in episodic learning and memory. However, there is limited empirical evidence supporting the role of the hippocampal circuit in these processes during complex continuous experiences. In this study, we analyzed high-resolution fMRI data from the "Forrest Gump" open-access dataset (16 participants) using a sliding-window temporal autocorrelation approach to investigate whether the canonical hippocampal circuit (DG-CA3-CA1-SUB) shows evidence consistent with the occurrence of pattern separation or pattern completion during a naturalistic audio movie task. Our results revealed that when processing continuous naturalistic stimuli, the DG-CA3 pair exhibited evidence consistent with the occurrence of the pattern separation process, whereas both the CA3-CA1 and CA1-SUB pairs showed evidence consistent with pattern completion. Moreover, during the latter half of the audio movie, we observed evidence consistent with a reduction in pattern completion in the CA3-CA1 pair and an increase in pattern completion in the CA1-SUB pair. Overall, these findings improve our understanding of the evidence related to the occurrence of pattern separation and pattern completion processes during natural experiences.
Collapse
Affiliation(s)
- Lili Sun
- School of Life Science and Technology, HIT Faculty of Life Science and MedicineHarbin Institute of TechnologyHarbinChina
- Research Center for Social Computing and Information RetrievalHarbin Institute of TechnologyHarbinChina
| | | | - Peng Ren
- Institute of Science and Technology for Brain‐Inspired Intelligence and Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Qiuyi Liu
- School of Life Science and Technology, HIT Faculty of Life Science and MedicineHarbin Institute of TechnologyHarbinChina
- Research Center for Social Computing and Information RetrievalHarbin Institute of TechnologyHarbinChina
| | - Zhipeng Li
- School of Life Science and Technology, HIT Faculty of Life Science and MedicineHarbin Institute of TechnologyHarbinChina
- Research Center for Social Computing and Information RetrievalHarbin Institute of TechnologyHarbinChina
| | - Xia Liang
- Research Center for Social Computing and Information RetrievalHarbin Institute of TechnologyHarbinChina
- Frontiers Science Center for Matter Behave in Space EnvironmentHarbin Institute of TechnologyHarbinChina
| |
Collapse
|
2
|
Zhang M, Qian X, Wei Z, Chen K, Ding H, Jia J, Li Y, Liu S, Yang K, Wang J, Chen H, Zhang W. Micro-Infusion of 5-HT1a Receptor Antagonists into the Ventral Subiculum Ameliorate MK-801 Induced Schizophrenia-Like Behavior in Rats. Neuroscience 2024; 552:115-125. [PMID: 38909674 DOI: 10.1016/j.neuroscience.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/25/2024]
Abstract
Recent studies have shown that the 5-HT1a receptor (5-HT1aR) in the central 5-HT (Serotonergic) system is involved in the pathophysiology of schizophrenia through its various receptors, and the dysfunction of the ventral hippocampus may be a key causative factor in schizophrenia. To date, whether the 5-HT1a receptor is involved in ventral hippocampal dysfunction and its internal mechanism remain unclear. In this study, schizophrenia-like animal model was induced by intraperitoneal injection of aspartate receptor antagonist MK-801 in male Sprague Dawley rats, and the role of 5-HT1aR in this animal model was investigated by bilaterally micro-infusing the 5-HT1aR antagonist WAY100635 into the ventral subiculum (vSub) of the hippocampus of rats. Behavioral experiments such as open field test (OFT) and prepulse inhibition (PPI) were performed. The results showed that MK-801 induced hyperactivity and impaired prepulse inhibition in rats, whereas, micro-infusion of 5-HT1aR antagonist WAY100635 into the vSub ameliorated these phenomena. Immunofluorescence analysis revealed that WAY100635 significantly increased the c-Fos expression in vSub. Western blot and immunohistochemical analysis showed that MK-801 induced up-regulation of 5-HT1aR and phospho-extracellular regulated protein kinase (p-ERK) pathway, while micro-infusion of the WAY100635 down-regulated 5-HT1aR and p-ERK in the vSub. Therefore, the results of the present study suggested that in vSub, the 5-HT1aR antagonist WAY100635 may attenuate MK-801-induced schizophrenia-like activity by modulating excitatory neurons and downregulating p-ERK.
Collapse
Affiliation(s)
- Mengyu Zhang
- Department of Clinical Laboratory, The First People's Hospital of Kunshan, Kunshan 215300, Jiangsu Province, PR China; School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Xin Qian
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Ziwei Wei
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Kai Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Hongqun Ding
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Junhai Jia
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Ying Li
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Siyu Liu
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Kun Yang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China
| | - Jia Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China.
| | - Huanxin Chen
- Huzhou Third Municipal Hospital, The Affiliated Hospital of Huzhou University, Huzhou, Zhejiang, China.
| | - Weining Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu Province, PR China.
| |
Collapse
|
3
|
de Melo MB, Daldegan-Bueno D, Favaro VM, Oliveira MGM. The subiculum role on learning and memory tasks using rats and mice: A scoping review. Neurosci Biobehav Rev 2023; 155:105460. [PMID: 37939978 DOI: 10.1016/j.neubiorev.2023.105460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
This scoping review aimed to systematically identify and summarize data related to subiculum involvement in learning and memory behavioral tasks in rats and mice. Following a systematic strategy based on PICO and PRISMA guidelines, we searched five indexed databases (PubMed, Web of Science, EMBASE, Scopus, and PsycInfo) using a standardized search strategy to identify peer-reviewed articles published in English (pre-registration: osf.io/hm5ea). We identified 31 articles investigating the role of the subiculum in spatial, working, and recognition memories (n = 11), memories related to addiction models (n = 9), aversive memories (n = 7), and memories related to appetitive learning (n = 5). We highlight a dissociation in the dorsoventral axis of the subiculum with many studies exploring the ventral subiculum (n = 21) but only a few exploring the dorsal one (n = 10). We also observe the necessity of more data including mice, female animals, genetic tools, and better statistical approaches for replication purposes and research refinement. These findings provide a broad framework of the subiculum involvement in learning and memory, showing essential questions that can be explored by further studies.
Collapse
Affiliation(s)
- Márcio Braga de Melo
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Dimitri Daldegan-Bueno
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Vanessa Manchim Favaro
- Setor de Investigação de Doenças Neuromusculares, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | |
Collapse
|
4
|
Ding SL, Yao Z, Hirokawa KE, Nguyen TN, Graybuck LT, Fong O, Bohn P, Ngo K, Smith KA, Koch C, Phillips JW, Lein ES, Harris JA, Tasic B, Zeng H. Distinct Transcriptomic Cell Types and Neural Circuits of the Subiculum and Prosubiculum along the Dorsal-Ventral Axis. Cell Rep 2021; 31:107648. [PMID: 32433957 DOI: 10.1016/j.celrep.2020.107648] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/23/2020] [Accepted: 04/22/2020] [Indexed: 01/02/2023] Open
Abstract
Subicular regions play important roles in spatial processing and many cognitive functions, and these are mainly attributed to the subiculum (Sub) rather than the prosubiculum (PS). Using single-cell RNA sequencing, we identify 27 transcriptomic cell types residing in sub-domains of the Sub and PS. Based on in situ expression of reliable transcriptomic markers, the precise boundaries of the Sub and PS are consistently defined along the dorsoventral axis. Using these borders to evaluate Cre-line specificity and tracer injections, we find bona fide Sub projections topographically to structures important for spatial processing and navigation. In contrast, the PS sends its outputs to widespread brain regions crucial for motivation, emotion, reward, stress, anxiety, and fear. The Sub and PS, respectively, dominate dorsal and ventral subicular regions and receive different afferents. These results reveal two molecularly and anatomically distinct circuits centered in the Sub and PS, respectively, providing a consistent explanation for historical data and a clearer foundation for future studies.
Collapse
Affiliation(s)
- Song-Lin Ding
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | | - Olivia Fong
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Phillip Bohn
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Kiet Ngo
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Christof Koch
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Julie A Harris
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| |
Collapse
|
5
|
Cembrowski MS, Spruston N. Heterogeneity within classical cell types is the rule: lessons from hippocampal pyramidal neurons. Nat Rev Neurosci 2019; 20:193-204. [PMID: 30778192 DOI: 10.1038/s41583-019-0125-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanistic operation of brain regions is often interpreted by partitioning constituent neurons into 'cell types'. Historically, such cell types were broadly defined by their correspondence to gross features of the nervous system (such as cytoarchitecture). Modern-day neuroscientific techniques, enabling a more nuanced examination of neuronal properties, have illustrated a wealth of heterogeneity within these classical cell types. Here, we review the extent of this within-cell-type heterogeneity in one of the simplest cortical regions of the mammalian brain, the rodent hippocampus. We focus on the mounting evidence that the classical CA3, CA1 and subiculum pyramidal cell types all exhibit prominent and spatially patterned within-cell-type heterogeneity, and suggest these cell types provide a model system for exploring the organization and function of such heterogeneity. Given that the hippocampus is structurally simple and evolutionarily ancient, within-cell-type heterogeneity is likely to be a general and crucial feature of the mammalian brain.
Collapse
Affiliation(s)
- Mark S Cembrowski
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| | - Nelson Spruston
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA.
| |
Collapse
|
6
|
Stubbendorff C, Hale E, Cassaday HJ, Bast T, Stevenson CW. Dopamine D1-like receptors in the dorsomedial prefrontal cortex regulate contextual fear conditioning. Psychopharmacology (Berl) 2019; 236:1771-1782. [PMID: 30656366 PMCID: PMC6602997 DOI: 10.1007/s00213-018-5162-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/21/2018] [Indexed: 11/29/2022]
Abstract
RATIONALE Dopamine D1 receptor (D1R) signalling is involved in contextual fear conditioning. The D1R antagonist SCH23390 impairs the acquisition of contextual fear when administered systemically or infused locally into the dorsal hippocampus or basolateral amygdala. OBJECTIVES We determined if state dependency may account for the impairment in contextual fear conditioning caused by systemic SCH23390 administration. We also examined if the dorsomedial prefrontal cortex (dmPFC), nucleus accumbens (NAc), and ventral hippocampus (VH) are involved in mediating the effect of systemic SCH23390 treatment on contextual fear conditioning. METHODS In experiment 1, SCH23390 (0.1 mg/kg) or vehicle was given before contextual fear conditioning and/or retrieval. In experiment 2, SCH23390 (2.5 μg/0.5 uL) or vehicle was infused locally into dmPFC, NAc, or VH before contextual fear conditioning, and retrieval was tested drug-free. Freezing was quantified as a measure of contextual fear. RESULTS In experiment 1, SCH23390 given before conditioning or before both conditioning and retrieval decreased freezing at retrieval, whereas SCH23390 given only before retrieval had no effect. In experiment 2, SCH23390 infused into dmPFC before conditioning decreased freezing at retrieval, while infusion of SCH23390 into NAc or VH had no effect. CONCLUSIONS The results of experiment 1 confirm those of previous studies indicating that D1Rs are required for the acquisition but not retrieval of contextual fear and rule out state dependency as an explanation for these findings. Moreover, the results of experiment 2 provide evidence that dmPFC is also part of the neural circuitry through which D1R signalling regulates contextual fear conditioning.
Collapse
Affiliation(s)
- Christine Stubbendorff
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
| | - Ed Hale
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| | - Helen J. Cassaday
- School of Psychology@Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD UK ,School of Neuroscience@Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Tobias Bast
- School of Psychology@Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD UK ,School of Neuroscience@Nottingham, University of Nottingham, University Park, Nottingham, NG7 2RD UK
| | - Carl W. Stevenson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD UK
| |
Collapse
|
7
|
Lindenbach D, Seamans JK, Phillips AG. Activation of the ventral subiculum reinvigorates behavior after failure to achieve a goal: Implications for dopaminergic modulation of motivational processes. Behav Brain Res 2018; 356:266-270. [PMID: 30201390 DOI: 10.1016/j.bbr.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/30/2018] [Accepted: 09/05/2018] [Indexed: 11/20/2022]
Abstract
Previous studies confirm that brief electrical stimulation of glutamatergic afferents from the ventral subiculum (vSub) can significantly enhance dopamine release in the ventral striatum for an extended duration (>20 min). However, the functional significance of this effect on motivated behavior remains to be specified. Here we tested the hypothesis that brief electrical stimulation of the ventral subiculum (20 Hz for 10 s) might increase effort expenditure for food rewards. Motivation was assessed by a progressive ratio lever pressing task, which requires continuous escalation of the numbers of lever presses to receive each subsequent sucrose pellet, eventually resulting in the failure to achieve the required ratio for a food reward. vSub stimulation at the start of a session did not affect the rate or total number of lever presses prior to reaching the "break point". In contrast, stimulation of the vSub with identical parameters on a post break point trial resulted in a significant increase in total responses. These findings demonstrate that activation of the vSub with parameters that modulate dopamine efflux in the nucleus accumbens can re-activate goal-directed behavior after failure to achieve a goal. Our data highlight a possible role for the vSub in the pathophysiology and potential treatment of motivational processes linked to psychiatric disease.
Collapse
Affiliation(s)
- David Lindenbach
- Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Jeremy K Seamans
- Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| | - Anthony G Phillips
- Djavad Mowafaghian Centre for Brain Health, Department of Psychiatry, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
8
|
Wang Y, Yin F, Guo H, Zhang J, Yan P, Lai J. The Role of Dopamine D1 and D3 Receptors in N-Methyl-D-Aspartate (NMDA)/GlycineB Site-Regulated Complex Cognitive Behaviors following Repeated Morphine Administration. Int J Neuropsychopharmacol 2017; 20:562-574. [PMID: 28199666 PMCID: PMC5492807 DOI: 10.1093/ijnp/pyx010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/08/2017] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Opiate addiction is associated with complex cognitive impairment, which contributes to the development of compulsive drug use and relapses. Dopamine and N-methyl-D-aspartate receptors play critical roles in opiate-induced cognitive deficits. However, the roles of D1 and D3 receptors in the N-methyl-D-aspartate/glycineB receptor-regulated cognitive behaviors induced by morphine remain unknown. METHODS The 5-choice serial reaction time task was used to investigate the cognitive profiles associated with repeated morphine administration in D1 (D1-/-)- and D3 (D3-/-)-receptor knockout mice. The expression of phosphorylated NR1, Ca2+/calmodulin-dependent protein kinase II (CaMKII), and cAMP response element-binding protein (CREB) in the brain was examined by western blotting. D1-/- and D3-/- mice were treated with the N-methyl-D-aspartate/glycineB site agonist l-aminocyclopropanecarboxylic acid and the antagonist L-701,324 to chronically disrupt N-methyl-D-aspartate receptor function and investigate their effects on morphine-induced cognitive changes. RESULTS Repeated morphine administration impaired attentional function and caused impulsive and compulsive behaviors. D1-/- mice exhibited hardly any premature nosepokes. D3-/- mice showed robustly increased morphine-induced impulsive behavior. The numbers of premature responses were decreased by L-701,324 administration and increased by ACPC administration; these effects were completely abolished in D1-/- mice due to their inability to perform reward-based tasks. In contrast, the inhibitory effects of L-701,324 on impulsive behavior were significantly augmented in D3-/- mice. CONCLUSIONS N-methyl-D-aspartate/glycineB site functions may contribute to morphine-induced cognitive deficits, especially those related to impulsive behavior. D1 and D3 receptors may have contrasting effects with respect to modulating impulsive behavior. D3 receptors have inhibitory effects on impulsive behaviors, and these effects are clearly mediated by N-methyl-D-aspartate/glycineB receptor and μ-opioid receptor interactions.
Collapse
Affiliation(s)
- Yunpeng Wang
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Fangyuan Yin
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Hao Guo
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Jing Zhang
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Peng Yan
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Jianghua Lai
- College of Forensic Science, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| |
Collapse
|
9
|
Tantot F, Parkes SL, Marchand AR, Boitard C, Naneix F, Layé S, Trifilieff P, Coutureau E, Ferreira G. The effect of high-fat diet consumption on appetitive instrumental behavior in rats. Appetite 2017; 108:203-211. [DOI: 10.1016/j.appet.2016.10.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 09/14/2016] [Accepted: 10/02/2016] [Indexed: 11/25/2022]
|
10
|
Andrzejewski ME, Ryals C. Dissociable hippocampal and amygdalar D1-like receptor contribution to discriminated Pavlovian conditioned approach learning. Behav Brain Res 2016; 299:111-21. [PMID: 26632336 PMCID: PMC4866504 DOI: 10.1016/j.bbr.2015.11.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 11/19/2015] [Accepted: 11/23/2015] [Indexed: 11/28/2022]
Abstract
Pavlovian conditioning is an elementary form of reward-related behavioral adaptation. The mesolimbic dopamine system is widely considered to mediate critical aspects of reward-related learning. For example, initial acquisition of positively-reinforced operant behavior requires dopamine (DA) D1 receptor (D1R) activation in the basolateral amygdala (BLA), central nucleus of the amygdala (CeA), and the ventral subiculum (vSUB). However, the role of D1R activation in these areas on appetitive, non-drug-related, Pavlovian learning is not currently known. In separate experiments, microinfusions of the D1-like receptor antagonist SCH-23390 (3.0 nmol/0.5 μL per side) into the amygdala and subiculum preceded discriminated Pavlovian conditioned approach (dPCA) training sessions. D1-like antagonism in all three structures impaired the acquisition of discriminated approach, but had no effect on performance after conditioning was asymptotic. Moreover, dissociable effects of D1-like antagonism in the three structures on components of discriminated responding were obtained. Lastly, the lack of latent inhibition in drug-treated groups may elucidate the role of D1-like in reward-related Pavlovian conditioning. The present data suggest a role for the D1 receptors in the amygdala and hippocampus in learning the significance of conditional stimuli, but not in the expression of conditional responses.
Collapse
Affiliation(s)
- Matthew E Andrzejewski
- Department of Psychology, University of Wisconsin-Whitewater, 800 N. Main St., Whitewater, WI 53719, United States.
| | - Curtis Ryals
- Department of Psychology, University of Wisconsin-Madison, United States
| |
Collapse
|
11
|
Chase HW, Clos M, Dibble S, Fox P, Grace AA, Phillips ML, Eickhoff SB. Evidence for an anterior-posterior differentiation in the human hippocampal formation revealed by meta-analytic parcellation of fMRI coordinate maps: focus on the subiculum. Neuroimage 2015; 113:44-60. [PMID: 25776219 DOI: 10.1016/j.neuroimage.2015.02.069] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 12/17/2014] [Accepted: 02/25/2015] [Indexed: 02/05/2023] Open
Abstract
Previous studies, predominantly in experimental animals, have suggested the presence of a differentiation of function across the hippocampal formation. In rodents, ventral regions are thought to be involved in emotional behavior while dorsal regions mediate cognitive or spatial processes. Using a combination of modeling the co-occurrence of significant activations across thousands of neuroimaging experiments and subsequent data-driven clustering of these data we were able to provide evidence of distinct subregions within a region corresponding to the human subiculum, a critical hub within the hippocampal formation. This connectivity-based model consists of a bilateral anterior region, as well as separate posterior and intermediate regions on each hemisphere. Functional connectivity assessed both by meta-analytic and resting fMRI approaches revealed that more anterior regions were more strongly connected to the default mode network, and more posterior regions were more strongly connected to 'task positive' regions. In addition, our analysis revealed that the anterior subregion was functionally connected to the ventral striatum, midbrain and amygdala, a circuit that is central to models of stress and motivated behavior. Analysis of a behavioral taxonomy provided evidence for a role for each subregion in mnemonic processing, as well as implication of the anterior subregion in emotional and visual processing and the right posterior subregion in reward processing. These findings lend support to models which posit anterior-posterior differentiation of function within the human hippocampal formation and complement other early steps toward a comparative (cross-species) model of the region.
Collapse
Affiliation(s)
- Henry W Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Mareike Clos
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Germany; Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Germany
| | - Sofia Dibble
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Fox
- Research Imaging Center, University of Texas Health Science Center San Antonio, San Antonio, TX, USA; South Texas Veterans Administration Medical Center, San Antonio, TX, USA
| | - Anthony A Grace
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Germany; Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University Düsseldorf, Germany
| |
Collapse
|
12
|
Clissold KA, Pratt WE. The effects of nucleus accumbens μ-opioid and adenosine 2A receptor stimulation and blockade on instrumental learning. Behav Brain Res 2014; 274:84-94. [PMID: 25101542 DOI: 10.1016/j.bbr.2014.07.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 06/10/2014] [Accepted: 07/25/2014] [Indexed: 11/28/2022]
Abstract
Prior research has shown that glutamate and dopamine receptors in the nucleus accumbens (NAcc) core are critical for the learning of an instrumental response for food reinforcement. It has also been demonstrated that μ-opioid and adenosine A2A receptors within the NAcc impact feeding and motivational processes. In these experiments, we examined the potential roles of NAcc μ-opioid and A2A receptors on instrumental learning and performance. Sprague-Dawley rats were food restricted and trained to lever press following daily intra-accumbens injections of the A2A receptor agonist CGS 21680 (at 0.0, 6.0, or 24.0ng/side), the A2A antagonist pro-drug MSX-3 (at 0.0, 1.0, or 3.0μg/side), the μ-opioid agonist DAMGO (at 0.0, 0.025, or 0.025μg/side), or the opioid receptor antagonist naltrexone (at 0.0, 2.0 or 20.0μg/side). After five days, rats continued training without drug injections until lever pressing rates stabilized, and were then tested with a final drug test to assess potential performance effects. Stimulation, but not inhibition, of NAcc adenosine A2A receptors depressed lever pressing during learning and performance tests, but did not impact lever pressing on non-drug days. Both μ-opioid receptor stimulation and blockade inhibited learning of the lever-press response, though only naltrexone treatment caused impairments in lever-pressing after the task had been learned. The effect of A2A receptor stimulation on learning and performance were consistent with known effects of adenosine on effort-related processes, whereas the pattern of lever presses, magazine approaches, and pellet consumption following opioid receptor manipulations suggested that their effects may have been driven by drug-induced shifts in the incentive value of the sugar reinforcer.
Collapse
Affiliation(s)
- Kara A Clissold
- Department of Psychology, Wake Forest University, Winston-Salem, NC, United States.
| | - Wayne E Pratt
- Department of Psychology, Wake Forest University, Winston-Salem, NC, United States.
| |
Collapse
|
13
|
Hansen N, Manahan-Vaughan D. Dopamine D1/D5 receptors mediate informational saliency that promotes persistent hippocampal long-term plasticity. Cereb Cortex 2014; 24:845-58. [PMID: 23183712 PMCID: PMC3948488 DOI: 10.1093/cercor/bhs362] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Dopamine (DA) plays an essential role in the enablement of cognition. It adds color to experience-dependent information storage, conferring salience to the memories that result. At the synaptic level, experience-dependent information storage is enabled by synaptic plasticity, and given its importance for memory formation, it is not surprising that DA comprises a key neuromodulator in the enablement of synaptic plasticity, and particularly of plasticity that persists for longer periods of time: Analogous to long-term memory. The hippocampus, that is a critical structure for the synaptic processing of semantic, episodic, spatial, and declarative memories, is specifically affected by DA, with the D1/D5 receptor proving crucial for hippocampus-dependent memory. Furthermore, D1/D5 receptors are pivotal in conferring the properties of novelty and reward to information being processed by the hippocampus. They also facilitate the expression of persistent forms of synaptic plasticity, and given reports that both long-term potentiation and long-term depression encode different aspects of spatial representations, this suggests that D1/D5 receptors can drive the nature and qualitative content of stored information in the hippocampus. In light of these observations, we propose that D1/D5 receptors gate hippocampal long-term plasticity and memory and are pivotal in conferring the properties of novelty and reward to information being processed by the hippocampus.
Collapse
Affiliation(s)
| | - Denise Manahan-Vaughan
- Department of Neurophysiology, Medical Faculty,Ruhr University Bochum, 44780 Bochum, Germany
| |
Collapse
|
14
|
The clinical relevance of neuroplasticity in corticostriatal networks during operant learning. Neurosci Biobehav Rev 2013; 37:2071-80. [PMID: 23567518 DOI: 10.1016/j.neubiorev.2013.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 03/14/2013] [Accepted: 03/27/2013] [Indexed: 11/23/2022]
Abstract
Dopamine and glutamate serve crucial functions in neural plasticity, learning and memory, and addiction. Contemporary theories contend that these two, widely-distributed neurotransmitter systems play an integrative role in motivational and associative information processing. Combined signaling of these systems, particularly through the dopamine (DA) D1 and glutamate (Glu) N-methyl-d-aspartate receptors (NMDAR), triggers critical intracellular signaling cascades that lead to changes in chromatin structure, gene expression, synaptic plasticity, and ultimately behavior. Addictive drugs also induce long-term neuroadaptations at the molecular and genomic levels causing structural changes that alter basic connectivity. Indeed, evidence that drugs of abuse engage D1- and NMDA-mediated neuronal cascades shared with normal reward learning provides one of the most important insights from contemporary studies on the neurobiology of addiction. Such drug-induced neuroadaptations likely contribute to abnormal information processing and behavior, resulting in the poor decision-making, loss of control, and compulsivity that characterize addiction. Such features are also common to many other neuropsychiatric disorders. Behavior problems, construed as difficulties associated with operant learning and behavior, present compelling challenges and unique opportunities for their treatment that require further study. The present review highlights the integrative work of Ann E. Kelley and colleagues, demonstrating a critical role not only for NMDAR, D1 receptors (D1R), and their associated signaling cascades, but also for other Glu receptors and protein synthesis in operant learning throughout a cortico-striatal-limbic network. Recent work has extended the impact of appetitive learning to epigenetic processes. A better understanding of these processes will likely assist in discovering therapeutics to engage neural plasticity-related processes and promote functional behavioral adaptations.
Collapse
|
15
|
McGinty VB, Hayden BY, Heilbronner SR, Dumont EC, Graves SM, Mirrione MM, du Hoffmann J, Sartor GC, España RA, Millan EZ, Difeliceantonio AG, Marchant NJ, Napier TC, Root DH, Borgland SL, Treadway MT, Floresco SB, McGinty JF, Haber S. Emerging, reemerging, and forgotten brain areas of the reward circuit: Notes from the 2010 Motivational Neural Networks conference. Behav Brain Res 2011; 225:348-57. [PMID: 21816177 DOI: 10.1016/j.bbr.2011.07.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 07/18/2011] [Indexed: 10/17/2022]
Abstract
On April 24-27, 2010, the Motivational Neuronal Networks meeting took place in Wrightsville Beach, North Carolina. The conference was devoted to "Emerging, re-emerging, and forgotten brain areas" of the reward circuit. A central feature of the conference was four scholarly discussions of cutting-edge topics related to the conference's theme. These discussions form the basis of the present review, which summarizes areas of consensus and controversy, and serves as a roadmap for the next several years of research.
Collapse
Affiliation(s)
- Vincent B McGinty
- Department of Neurobiology, Stanford University, Stanford, CA 94305-5125, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Quintero E, Díaz E, Vargas JP, de la Casa G, López JC. Ventral subiculum involvement in latent inhibition context specificity. Physiol Behav 2011; 102:414-20. [DOI: 10.1016/j.physbeh.2010.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 11/30/2010] [Accepted: 12/02/2010] [Indexed: 11/25/2022]
|
17
|
O'Mara S. Integrating the subiculum into hippocampal formation circuitry and the control of instrumental behavior: theoretical comment on Andrzejewski, Spencer, and Kelley (2006). Behav Neurosci 2009; 120:739-43. [PMID: 16768627 DOI: 10.1037/0735-7044.120.3.739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The functional role of subiculum within the hippocampal formation circuit remains largely unexplored, and a theoretical and experimental consensus on its functions has yet to emerge. In the present issue, M. E. Andrzejewski, R. C. Spencer, and A. E. Kelley (2006) provided evidence using pharmacological methods of a possible dissociation of function between dorsal and ventral subiculum in instrumental learning. Their findings provide an important contribution toward testing an emerging framework for understanding the functions of this key and underinvestigated component of the hippocampal formation.
Collapse
Affiliation(s)
- Shane O'Mara
- Institute of Neuroscience and School of Psychology, University of Dublin, Trinity College, Dublin, Ireland.
| |
Collapse
|
18
|
O'Mara SM, Sanchez-Vives MV, Brotons-Mas JR, O'Hare E. Roles for the subiculum in spatial information processing, memory, motivation and the temporal control of behaviour. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:782-90. [PMID: 19393282 DOI: 10.1016/j.pnpbp.2009.03.040] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Accepted: 03/30/2009] [Indexed: 10/20/2022]
Abstract
The subiculum is in a pivotal position governing the output of the hippocampal formation. Despite this, it is a rather under-explored and sometimes ignored structure. Here, we discuss recent data indicating that the subiculum participates in a wide range of neurocognitive functions and processes. Some of the functions of subiculum are relatively well-known-these include providing a relatively coarse representation of space and participating in, and supporting certain aspects of, memory (particularly in the dynamic bridging of temporal intervals). The subiculum also participates in a wide variety of other neurocognitive functions too, however. Much less well-known are roles for the subiculum, and particularly the ventral subiculum, in the response to fear, stress and anxiety, and in the generation of motivated behaviour (particularly the behaviour that underlies drug addiction and the response to reward). There is an emerging suggestion that the subiculum participates in the temporal control of behaviour. It is notable that these latter findings have emerged from a consideration of instrumental behaviour using operant techniques; it may well be the case that the use of the watermaze or similar spatial tasks to assess subicular function (on the presumption that its functions are very similar to the hippocampus proper) has obscured rather than revealed neurocognitive functions of subiculum. The anatomy of subiculum suggests it participates in a rather subtle fashion in a very broad range of functions, rather than in a relatively more isolated fashion in a narrower range of functions, as might be the case for "earlier" components of hippocampal circuitry, such as the CA1 and CA3 subfields. Overall, there appears to a strong dorso-ventral segregation of function within subiculum, with the dorsal subiculum relatively more concerned with space and memory, and the ventral hippocampus concerned with stress, anxiety and reward. Finally, it may be the case that the whole subiculum participates in the temporal control of reinforced behaviour, although further experimentation is required to clarify this hypothesis.
Collapse
Affiliation(s)
- Shane M O'Mara
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College-University of Dublin, Dublin 2, Ireland
| | | | | | | |
Collapse
|
19
|
Controlling hippocampal output: the central role of subiculum in hippocampal information processing. Behav Brain Res 2006; 174:304-12. [PMID: 17034873 DOI: 10.1016/j.bbr.2006.08.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Accepted: 08/04/2006] [Indexed: 10/24/2022]
Abstract
The subiculum has a central position between the hippocampus proper and entorhinal and other cortices, as well as a range of subcortical structures. The functional role of subiculum within the hippocampal formation circuit remains largely unexplored and a theoretical and experimental consensus on its functions has yet to emerge. Presented here is a simple and speculative model of the functions of the subiculum, based partly on anatomical, behavioural and neurophysiological considerations. The model suggests, firstly, that the subiculum acts to amplify hippocampal output, given the prominent bursting behaviour of its neurons and, secondly, that there is a dorso-ventral segregation of function within the subiculum. The dorsal component appears principally concerned with the processing of information about space, movement and memory, whereas the ventral component appears to play a major regulatory role in the inhibition of the HPA axis.
Collapse
|