1
|
James JG, McCall NM, Hsu AI, Oswell CS, Salimando GJ, Mahmood M, Wooldridge LM, Wachira M, Jo A, Sandoval Ortega RA, Wojick JA, Beattie K, Farinas SA, Chehimi SN, Rodrigues A, Ejoh LSL, Kimmey BA, Lo E, Azouz G, Vasquez JJ, Banghart MR, Creasy KT, Beier KT, Ramakrishnan C, Crist RC, Reiner BC, Deisseroth K, Yttri EA, Corder G. Mimicking opioid analgesia in cortical pain circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591113. [PMID: 38746090 PMCID: PMC11092437 DOI: 10.1101/2024.04.26.591113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The anterior cingulate cortex plays a pivotal role in the cognitive and affective aspects of pain perception. Both endogenous and exogenous opioid signaling within the cingulate mitigate cortical nociception, reducing pain unpleasantness. However, the specific functional and molecular identities of cells mediating opioid analgesia in the cingulate remain elusive. Given the complexity of pain as a sensory and emotional experience, and the richness of ethological pain-related behaviors, we developed a standardized, deep-learning platform for deconstructing the behavior dynamics associated with the affective component of pain in mice-LUPE (Light aUtomated Pain Evaluator). LUPE removes human bias in behavior quantification and accelerated analysis from weeks to hours, which we leveraged to discover that morphine altered attentional and motivational pain behaviors akin to affective analgesia in humans. Through activity-dependent genetics and single-nuclei RNA sequencing, we identified specific ensembles of nociceptive cingulate neuron-types expressing mu-opioid receptors. Tuning receptor expression in these cells bidirectionally modulated morphine analgesia. Moreover, we employed a synthetic opioid receptor promoter-driven approach for cell-type specific optical and chemical genetic viral therapies to mimic morphine's pain-relieving effects in the cingulate, without reinforcement. This approach offers a novel strategy for precision pain management by targeting a key nociceptive cortical circuit with on-demand, non-addictive, and effective analgesia.
Collapse
Affiliation(s)
- Justin G. James
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nora M. McCall
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex I. Hsu
- Dept. of Biobehavioral Health Sciences, School of Nursing, and Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Corinna S. Oswell
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory J. Salimando
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Malaika Mahmood
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lisa M. Wooldridge
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meghan Wachira
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adrienne Jo
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jessica A. Wojick
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine Beattie
- Dept. of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sofia A. Farinas
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samar N. Chehimi
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amrith Rodrigues
- Dept. of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lind-say L. Ejoh
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Blake A. Kimmey
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily Lo
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ghalia Azouz
- Dept. of Physiology and Biophysics, University of California Irvine, CA, USA
| | - Jose J. Vasquez
- Dept. of Physiology and Biophysics, University of California Irvine, CA, USA
| | - Matthew R. Banghart
- Dept. of Neurobiology, School of Biological Sciences, University of California San Diego, CA, USA
| | - Kate Townsend Creasy
- Dept. of Biobehavioral Health Sciences, School of Nursing, and Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kevin T. Beier
- Dept. of Physiology and Biophysics, University of California Irvine, CA, USA
| | | | - Richard C. Crist
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin C. Reiner
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Karl Deisseroth
- CNC Program, Stanford University, Stanford, CA, USA
- Dept. of Bioengineering, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Dept. of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Eric A. Yttri
- Dept. of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Gregory Corder
- Dept. of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dept. of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
McBenedict B, Hauwanga WN, Pires MP, Netto JGM, Petrus D, Kanchwala JA, Joshi R, Alurkar SRA, Chankseliani O, Mansoor Z, Subash S, Alphonse B, Abrahão A, Lima Pessôa B. Cingulotomy for Intractable Pain: A Systematic Review of an Underutilized Procedure. Cureus 2024; 16:e56746. [PMID: 38650773 PMCID: PMC11033963 DOI: 10.7759/cureus.56746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Pain management is a critical aspect of cancer treatment and palliative care, where pain can significantly impact quality of life. Chronic pain, which affects a significant number of people worldwide, remains a prevalent and challenging symptom for patients. While medications and psychosocial support systems play a role in pain management, surgical and radiological interventions, including cingulotomy, may be necessary for refractory cases. Cingulotomy, a neurosurgical procedure targeting the cingulate gyrus, aims to disrupt neural pathways associated with emotional processing and pain sensation, thereby reducing the affective component of pain. Although cingulotomy has shown promise in providing pain relief, particularly in patients refractory to traditional medical treatment, its use has declined in recent years due to advancements in non-destructive therapies and concerns about long-term efficacy and patient suitability. Modern stereotactic methods have enhanced the precision and safety of cingulotomy, reducing associated complications and mortality rates. Despite these advancements, questions remain regarding its long-term efficacy and suitability for patients with limited life expectancy, particularly those with cancer. A comprehensive systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines, aimed at providing insights into the efficacy, potential benefits, and limitations of this neurosurgical procedure in managing intractable pain. An electronic search of PubMed, Embase, Scopus, and Web of Science was conducted with open database coverage dates. The review focused on outcomes such as pain intensity and quality of life. The inclusion criteria encompassed human studies of any age experiencing intractable cancer or non-cancer pain, with cingulotomy as the primary intervention. Various study designs were considered, including observational studies, clinical trials, and reviews focusing on pain and cingulotomy. Exclusion criteria included non-human studies, non-peer-reviewed articles, and studies unrelated to pain or cingulotomy. This review highlights the efficacy of stereotactic anterior cingulotomy in managing intractable pain, particularly when conventional treatments fail. Advanced MRI-guided techniques enhance precision, but challenges like cost and expertise persist. Studies included in this review showed significant pain relief with minimal adverse effects, although the optimal target remains debated. Neurocognitive risks exist, but outcomes are generally favorable. Expected adverse events include transient effects like urinary incontinence and confusion. Reoperation may be necessary for inadequate pain control, with a median pain relief duration of three months to a year. A double stereotactic cingulotomy appears to be safe and effective for refractory pain.
Collapse
Affiliation(s)
| | - Wilhelmina N Hauwanga
- Family Medicine, Faculty of Medicine, Federal University of the State of Rio de Janeiro, Rio de Janeiro, BRA
| | | | | | - Dulci Petrus
- Family Health, Directorate of Special Programs, Ministry of Health and Social Services, Namibia, Windhoek, NAM
| | | | - Rhea Joshi
- Medicine and Surgery, Tbilisi State Medical University, Tbilisi, GEO
| | | | | | - Zaeemah Mansoor
- Faculty of Health Sciences, Karachi Medical & Dental College, Karachi, PAK
| | - Sona Subash
- Medicine and Surgery, Tbilisi State Medical University, Tbilisi, GEO
| | - Berley Alphonse
- Internal Medicine, University Notre Dame of Haiti, Port-au-Prince, HTI
| | - Ana Abrahão
- Public Health, Universidade Federal Fluminense, Niterói, BRA
| | | |
Collapse
|
3
|
Matyi MA, Spielberg JM. Negative emotion differentiation and white matter microstructure. J Affect Disord 2023; 332:238-246. [PMID: 37059190 DOI: 10.1016/j.jad.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/17/2023] [Accepted: 04/07/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND Deficits in the differentiation of negative emotions - the ability to specifically identify one's negative emotions - are associated with poorer mental health outcomes. However, the processes that lead to individual differences in negative emotion differentiation are not well understood, hampering our understanding of why this process is related to poor mental health outcomes. Given that disruptions in some affective processes are associated with white matter microstructure, identifying the circuitry associated with different affective processes can inform our understanding of how disturbances in these networks may lead to psychopathology. Thus, examination of how white matter microstructure relates to individual differences in negative emotion differentiation (NED) may provide insights into (i) its component processes and (ii) its relationship to brain structure. METHOD The relationship between white matter microstructure and NED was examined. RESULTS NED was related to white matter microstructure in right anterior thalamic radiation and inferior fronto-occipital fasciculus and left peri-genual cingulum. LIMITATIONS Although participants self-reported psychiatric diagnoses and previous psychological treatment, psychopathology was not directly targeted, and thus, the extent to which microstructure related to NED could be examined in relation to maladaptive outcomes is limited. CONCLUSIONS Results indicate that NED is related to white matter microstructure and suggest that pathways subserving processes that facilitate memory, semantics, and affective experience are important for NED. Our findings provide insights into the mechanisms by which individual differences in NED arise, suggesting intervention targets that may disrupt the relationship between poor differentiation and psychopathology.
Collapse
Affiliation(s)
- Melanie A Matyi
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Jeffrey M Spielberg
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
4
|
Plachti A, Baaré WFC, Johansen LB, Thompson WK, Siebner HR, Madsen KS. Stability of associations between neuroticism and microstructural asymmetry of the cingulum during late childhood and adolescence: Insights from a longitudinal study with up to 11 waves. Hum Brain Mapp 2023; 44:1548-1564. [PMID: 36426846 PMCID: PMC9921236 DOI: 10.1002/hbm.26157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/15/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
Adolescence is characterized by significant brain development and marks a period of the life span with an increased incidence of mood disorders, especially in females. The risk of developing mood disorders is also higher in individuals scoring high on neuroticism, a personality trait characterized by a tendency to experience negative and anxious emotions. We previously found in a cross-sectional study that neuroticism is associated with microstructural left-right asymmetry of the fronto-limbic white matter involved in emotional processing, with opposite effects in female and male adolescents. We now have extended this work collecting longitudinal data in 76 typically developing children and adolescents aged 7-18 years, including repeated MRI sampling up to 11 times. This enabled us, for the first time, to address the critical question, whether the association between neuroticism and frontal-limbic white matter asymmetry changes or remains stable across late childhood and adolescence. Neuroticism was assessed up to four times and showed good intraindividual stability and did not significantly change with age. Conforming our cross-sectional results, females scoring high on neuroticism displayed increased left-right cingulum fractional anisotropy (FA), while males showed decreased left-right cingulum FA asymmetry. Despite ongoing age-related increases in FA in cingulum, the association between neuroticism and cingulum FA asymmetry was already expressed in females in late childhood and remained stable across adolescence. In males, the association appeared to become more prominent during adolescence. Future longitudinal studies need to cover an earlier age span to elucidate the time point at which the relationship between neuroticism and cingulum FA asymmetry arises.
Collapse
Affiliation(s)
- Anna Plachti
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - William F C Baaré
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Louise Baruël Johansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Wesley K Thompson
- Department of Radiology and Division of Biostatistics, Population Neuroscience and Genetics Lab, University of California San Diego, San Diego School of Medicine, La Jolla, California, USA
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark.,Department of Neurology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark.,Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kathrine Skak Madsen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark.,Radiography, Department of Technology, University College Copenhagen, Denmark
| |
Collapse
|
5
|
Sheng W, Cui Q, Jiang K, Chen Y, Tang Q, Wang C, Fan Y, Guo J, Lu F, He Z, Chen H. Individual variation in brain network topology is linked to course of illness in major depressive disorder. Cereb Cortex 2022; 32:5301-5310. [PMID: 35152289 DOI: 10.1093/cercor/bhac015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 12/09/2021] [Accepted: 01/13/2022] [Indexed: 12/27/2022] Open
Abstract
Major depressive disorder (MDD) is a chronic and highly recurrent disorder. The functional connectivity in depression is affected by the cumulative effect of course of illness. However, previous neuroimaging studies on abnormal functional connection have not mainly focused on the disease duration, which is seen as a secondary factor. Here, we used a data-driven analysis (multivariate distance matrix regression) to examine the relationship between the course of illness and resting-state functional dysconnectivity in MDD. This method identified a region in the anterior cingulate cortex, which is most linked to course of illness. Specifically, follow-up seed analyses show this phenomenon resulted from the individual differences in the topological distribution of three networks. In individuals with short-duration MDD, the connection to the default mode network was strong. By contrast, individuals with long-duration MDD showed hyperconnectivity to the ventral attention network and the frontoparietal network. These results emphasized the centrality of the anterior cingulate cortex in the pathophysiology of the increased course of illness and implied critical links between network topography and pathological duration. Thus, dissociable patterns of connectivity of the anterior cingulate cortex is an important dimension feature of the disease process of depression.
Collapse
Affiliation(s)
- Wei Sheng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.,MOE Key Lab for Neuroinformation, High Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qian Cui
- School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Kexing Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yuyan Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Qin Tang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chong Wang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yunshuang Fan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jing Guo
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.,MOE Key Lab for Neuroinformation, High Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
6
|
Allam AK, Larkin MB, Katlowitz KA, Shofty B, Viswanathan A. Case report: MR-guided laser induced thermal therapy for palliative cingulotomy. FRONTIERS IN PAIN RESEARCH (LAUSANNE, SWITZERLAND) 2022; 3:1028424. [PMID: 36387414 PMCID: PMC9663803 DOI: 10.3389/fpain.2022.1028424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/11/2022] [Indexed: 01/24/2023]
Abstract
In end-stage cancer, oncologic pain refractory to medical management significantly reduces patients' quality of life. In recent years, ablative surgery has seen a resurgence in treating diffuse and focal cancer pain in terminal patients. The anterior cingulate gyrus has been a key focus as it plays a role in the cognitive and emotional processing of pain. While radiofrequency ablation of the dorsal anterior cingulate is well described for treating cancer pain, MRI-guided laser-induced thermal therapy (LITT) is novel. Our paper describes a patient treated with an MRI-guided LITT therapy of the anterior cingulate gyrus for intractable debilitating pain secondary to terminal metastatic cancer.
Collapse
Affiliation(s)
- Anthony K. Allam
- School of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - M. Benjamin Larkin
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Kalman A. Katlowitz
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Ben Shofty
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Ashwin Viswanathan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States,Department of Neurosurgery, University of Texas, MD Anderson, Houston, TX, United States,Correspondence: Ashwin Viswanathan
| |
Collapse
|
7
|
Isagulyan ED, Makashova ES, Myasnikova LK, Sergeenko EV, Aslakhanova KS, Tomskiy AA, Voloshin AG, Kashcheev AA. Psychogenic (nociplastic) pain: Current state of diagnosis, treatment options, and potentials of neurosurgical management. PROGRESS IN BRAIN RESEARCH 2022; 272:105-123. [PMID: 35667797 DOI: 10.1016/bs.pbr.2022.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Classification of pain syndromes is quite multifaceted. However, pathogenetic classification by which chronic pain syndromes are usually divided into nociceptive, neuropathic and psychogenic, is crucial in choosing treatment tactics. In modern classifications, psychogenic pain is distinguished from nociceptive pain (associated with direct tissue injury or damage) and neuropathic pain (in which lesion can only be determined morphologically). Mental disorders play a leading role in psychogenic pain. Here, somatic/neurological disorders, if any, are of no pathogenetic significance in the dynamics of pain syndrome. There are certain algorithms (though not yet fully developed) and even guidelines for diagnosing and treating nociceptive and neuropathic pain, whereas psychogenic pain has been and still is almost out of sight for a long time. Despite its considerable prevalence, attitude towards it is still uncertain. Until now, it has no single classification, nor any strategy with regards to diagnosis, treatment and prevention.
Collapse
Affiliation(s)
- Emil D Isagulyan
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation.
| | - Elizaveta S Makashova
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| | | | - Elizaveta V Sergeenko
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| | - Karina S Aslakhanova
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| | - Alexey A Tomskiy
- Department of Functional Neurosurgery, Burdenko National Medical Research Center of Neurosurgery, Moscow, Russian Federation
| | - Alexey G Voloshin
- Pain Clinic, Center of Endosurgery and Lithotripsy, Moscow, Russian Federation
| | - Alexey A Kashcheev
- Department of Neurosurgery, Research Center of Neurology, Moscow, Russian Federation
| |
Collapse
|
8
|
Piretti L, Pappaianni E, Gobbo S, Rumiati RI, Job R, Grecucci A. Dissociating the role of dACC and dlPFC for emotion appraisal and mood regulation using cathodal tDCS. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:304-315. [PMID: 34676495 DOI: 10.3758/s13415-021-00952-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Several neuroimaging studies have shown that a distributed network of brain regions is involved in our ability to appraise the emotions we experience in daily life. In particular, scholars suggested that the dorsal anterior cingulate cortex (dACC) may play a role in the appraisal of emotional stimuli together with subcortical regions, especially when stimuli are negatively valenced, and the dorsolateral prefrontal cortex (dlPFC) may play a role in regulating emotions. However, proofs of the causal role of these regions are lacking. In the present study, we aim at testing this model by stimulating both the dACC and the left dlPFC via cathodal tDCS. Twenty-four participants were asked to attend and rate the arousal and valence of negative and neutral emotional stimuli (pictures and words) in three different experimental sessions: cathodal stimulation of dACC, left dlPFC, or sham. In addition to the experimental task, the baseline affective state was measured before and after the stimulation to further assess the effect of stimulation over the baseline affective state after the experimental session. Results showed that cathodal stimulation of dACC, but not the left dlPFC, was associated with reduced arousal ratings of emotional stimuli, both compared with the sham condition. Moreover, cathodal stimulation of left dlPFC decreased participant's positive affective state after the session. These findings suggest for the first time, a dissociation between the dACC and dlPFC, with the former more involved in emotion appraisal, and the latter more involved in mood modulation.
Collapse
Affiliation(s)
- L Piretti
- Department of Psychology and Cognitive Sciences - DipSCo, University of Trento, Corso Bettini 33, Rovereto, Italy.
- Marica De Vincenzi onlus Foundation, Rovereto, Italy.
| | - E Pappaianni
- Department of Psychology and Cognitive Sciences - DipSCo, University of Trento, Corso Bettini 33, Rovereto, Italy
| | - S Gobbo
- University of Padua, Padua, Italy
| | - R I Rumiati
- Neuroscience and Society Lab, Neuroscience Area, SISSA, Trieste, Italy
| | - R Job
- Department of Psychology and Cognitive Sciences - DipSCo, University of Trento, Corso Bettini 33, Rovereto, Italy
- Marica De Vincenzi onlus Foundation, Rovereto, Italy
- Center for Medical Sciences - CISMed, University of Trento, Trento, Italy
| | - A Grecucci
- Department of Psychology and Cognitive Sciences - DipSCo, University of Trento, Corso Bettini 33, Rovereto, Italy
- Center for Medical Sciences - CISMed, University of Trento, Trento, Italy
| |
Collapse
|
9
|
Husain AM. Dorsal root entry zone procedure and other surgeries for pain. HANDBOOK OF CLINICAL NEUROLOGY 2022; 186:271-292. [PMID: 35772891 DOI: 10.1016/b978-0-12-819826-1.00007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Pain is a very common symptom that often serves a protective function. It is typically treated medically. When pain becomes chronic and intractable, it no longer serves a protective function and often requires more aggressive forms of treatment. Many types of surgeries can be performed for the management of pain. These surgeries can involve ablation (destruction) or augmentation (stimulation or facilitation) of some part of the nervous system. In many of these surgeries, neurophysiologic intraoperative monitoring (NIOM) is not needed, however, in others neuromonitoring serves a mapping and monitoring purpose. The prototype of pain surgery for this chapter is the dorsal root entry zone (DREZ) procedure. Both mapping and monitoring can help improve lesioning precision and outcomes in this surgery. In this chapter, the DREZ procedures and other surgeries for primarily pain relief in which NIOM is used are discussed. Surgeries, such as spinal stenosis, in which pain relief is important but not the sole purpose, are not discussed here and are covered elsewhere.
Collapse
Affiliation(s)
- Aatif M Husain
- Department of Neurology, Duke University Medical Center and Neurodiagnostic Center, Veterans Affairs Medical Center, Durham, NC, United States.
| |
Collapse
|
10
|
Rasmussen SA, Goodman WK. The prefrontal cortex and neurosurgical treatment for intractable OCD. Neuropsychopharmacology 2022; 47:349-360. [PMID: 34433915 PMCID: PMC8616947 DOI: 10.1038/s41386-021-01149-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 01/03/2023]
Abstract
Over the past two decades, circuit-based neurosurgical procedures have gained increasing acceptance as a safe and efficacious approach to the treatment of the intractable obsessive-compulsive disorder (OCD). Lesions and deep brain stimulation (DBS) of the longitudinal corticofugal white matter tracts connecting the prefrontal cortex with the striatum, thalamus, subthalamic nucleus (STN), and brainstem implicate orbitofrontal, medial prefrontal, frontopolar, and ventrolateral cortical networks in the symptoms underlying OCD. The highly parallel distributed nature of these networks may explain the relative lack of adverse effects observed following surgery. Additional pre-post studies of cognitive tasks in more surgical patients are needed to confirm the role of these networks in OCD and to define therapeutic responses to surgical intervention.
Collapse
Affiliation(s)
- Steven A. Rasmussen
- grid.40263.330000 0004 1936 9094Department of Psychiatry and Human Behavior, Alpert School of Medicine, Brown University, Providence, RI USA ,grid.40263.330000 0004 1936 9094Carney Brain Science Institute, Brown University, Providence, RI USA
| | - Wayne K. Goodman
- grid.39382.330000 0001 2160 926XMenninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX USA
| |
Collapse
|
11
|
Seamans JK, Floresco SB. Event-based control of autonomic and emotional states by the anterior cingulate cortex. Neurosci Biobehav Rev 2021; 133:104503. [PMID: 34922986 DOI: 10.1016/j.neubiorev.2021.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/25/2021] [Accepted: 12/14/2021] [Indexed: 12/25/2022]
Abstract
Despite being an intensive area of research, the function of the anterior cingulate cortex (ACC) remains somewhat of a mystery. Human imaging studies implicate the ACC in various cognitive functions, yet surgical ACC lesions used to treat emotional disorders have minimal lasting effects on cognition. An alternative view is that ACC regulates autonomic states, consistent with its interconnectivity with autonomic control regions and that stimulation evokes changes in autonomic/emotional states. At the cellular level, ACC neurons are highly multi-modal and promiscuous, and can represent a staggering array of task events. These neurons nevertheless combine to produce highly event-specific ensemble patterns that likely alter activity in downstream regions controlling emotional and autonomic tone. Since neuromodulators regulate the strength of the ensemble activity patterns, they would regulate the impact these patterns have on downstream targets. Through these mechanisms, the ACC may determine how strongly to react to the very events its ensembles represent. Pathologies arise when specific event-related representations gain excessive control over autonomic/emotional states.
Collapse
Affiliation(s)
- Jeremy K Seamans
- Depts. of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6B2T5, Canada.
| | - Stan B Floresco
- Depts. of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, V6B2T5, Canada
| |
Collapse
|
12
|
Banovac I, Sedmak D, Judaš M, Petanjek Z. Von Economo Neurons - Primate-Specific or Commonplace in the Mammalian Brain? Front Neural Circuits 2021; 15:714611. [PMID: 34539353 PMCID: PMC8440978 DOI: 10.3389/fncir.2021.714611] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
The pioneering work by von Economo in 1925 on the cytoarchitectonics of the cerebral cortex revealed a specialized and unique cell type in the adult human fronto-insular (FI) and anterior cingulate cortex (ACC). In modern studies, these neurons are termed von Economo neurons (VENs). In his work, von Economo described them as stick, rod or corkscrew cells because of their extremely elongated and relatively thin cell body clearly distinguishable from common oval or spindle-shaped infragranular principal neurons. Before von Economo, in 1899 Cajal depicted the unique somato-dendritic morphology of such cells with extremely elongated soma in the FI. However, although VENs are increasingly investigated, Cajal’s observation is still mainly being neglected. On Golgi staining in humans, VENs have a thick and long basal trunk with horizontally oriented terminal branching (basilar skirt) from where the axon arises. They are clearly distinguishable from a spectrum of modified pyramidal neurons found in infragranular layers, including oval or spindle-shaped principal neurons. Spindle-shaped cells with highly elongated cell body were also observed in the ACC of great apes, but despite similarities in soma shape, their dendritic and axonal morphology has still not been described in sufficient detail. Studies identifying VENs in non-human species are predominantly done on Nissl or anti-NeuN staining. In most of these studies, the dendritic and axonal morphology of the analyzed cells was not demonstrated and many of the cells found on Nissl or anti-NeuN staining had a cell body shape characteristic for common oval or spindle-shaped cells. Here we present an extensive literature overview on VENs, which demonstrates that human VENs are specialized elongated principal cells with unique somato-dendritic morphology found abundantly in the FI and ACC of the human brain. More research is needed to properly evaluate the presence of such specialized cells in other primates and non-primate species.
Collapse
Affiliation(s)
- Ivan Banovac
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research and Center of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dora Sedmak
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research and Center of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Miloš Judaš
- Croatian Institute for Brain Research and Center of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia.,Croatian Institute for Brain Research and Center of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
13
|
Seamans JK. The anterior cingulate cortex and event-based modulation of autonomic states. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 158:135-169. [PMID: 33785144 DOI: 10.1016/bs.irn.2020.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In spite of being an intensive area of research focus, the anterior cingulate cortex (ACC) remains somewhat of an enigma. Many theories have focused on its role in various aspects of cognition yet surgically precise lesions of the ACC, used to treat severe emotional disorders in human patients, typically have no lasting effects on cognition. An alternative view is that the ACC has a prominent role in regulating autonomic states. This view is consistent with anatomical data showing that a main target of the ACC are regions involved in autonomic control and with the observation that stimulation of the ACC evokes changes in autonomic states in both animals and humans. From an electrophysiological perspective, ACC neurons appear able to represent virtually any event or internal state, even though there is not always a strong link between these representations and behavior. Ensembles of neurons form robust contextual representations that strongly influence how specific events are encoded. The activity patterns associated with these contextually-based event representations presumably impact activity in downstream regions that control autonomic state. As a result, the ACC may regulate the autonomic and perhaps emotional reactions to events it is representing. This event-based control of autonomic tone by the ACC would likely arise during all types of cognitive and affective processes, without necessarily being critical for any of them.
Collapse
Affiliation(s)
- Jeremy K Seamans
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
14
|
Abstract
Humans are highly adept at differentiating, regulating, and responding to their emotions. At the core of all these functions is emotional awareness: the conscious feeling states that are central to human mental life. Disrupted emotional awareness-a subclinical construct commonly referred to as alexithymia-is present in a range of psychiatric and neurological disorders and can have a deleterious impact on functional outcomes and treatment response. This chapter is a selective review of the current state of the science on alexithymia. We focus on two separate but related issues: (i) the functional deficits associated with alexithymia and what they reveal about the importance of emotional awareness for shaping normative human functioning, and (ii) the neural correlates of alexithymia and what they can inform us about the biological bases of emotional awareness. Lastly, we outline challenges and opportunities for alexithymia research, focusing on measurement issues and the potential utility of formal computational models of emotional awareness for advancing the fields of clinical and affective science.
Collapse
Affiliation(s)
- Jeremy Hogeveen
- Department of Psychology and Psychology Clinical Neuroscience Center, University of New Mexico, Albuquerque, NM, United States.
| | - Jordan Grafman
- Cognitive Neuroscience Laboratory, Brain Injury Research, Shirley Ryan AbilityLab, Chicago, IL, United States; Departments of Physical Medicine and Rehabilitation, Neurology, and Psychiatry, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
15
|
Hui A. Exploring the utility of RDoC in differentiating effectiveness amongst antidepressants: A systematic review using proposed psychometrics as the unit of analysis for the Negative Valence Systems domain. PLoS One 2020; 15:e0243057. [PMID: 33326436 PMCID: PMC7743972 DOI: 10.1371/journal.pone.0243057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/14/2020] [Indexed: 01/26/2023] Open
Abstract
Background RDoC conceptualises psychopathology as neurobiologically-rooted behavioural psychological “constructs” that span dimensionally from normality to pathology, but its clinical utility remains controversial. Aim To explore RDoC’s potential clinical utility by examining antidepressant effectiveness through Negative Valence Systems (NVS) domain constructs. Method A systematic review was conducted on Web of Science, MEDLINE, EMBASE and PsycINFO for antidepressant trials that included psychometric instruments assessed by Watson, Stanton & Clark (2017) to represent NVS constructs of Acute Threat, Potential Threat and Loss. Results 221 citations were identified; 13 were included in qualitative synthesis, none for quantitative analysis. All suffered from significant bias risks. 9 antidepressants were investigated, most within 1 construct, and most were found to be effective. Paroxetine, citalopram and fluvoxamine were found to be effective for Acute Threat, fluoxetine, desvenlafaxine and sertraline for Potential Threat, and sertraline, fluvoxamine, fluoxetine and desvenlafaxine effective for Loss. Nefazodone was found to be ineffective for acute fear. Conclusion Preliminary evidence supports RDoC NVS constructs’ clinical utility in assessing antidepressant effectiveness, but lack of discriminant validity between Potential Threat and Loss supports their recombination into a single Distress construct. Finding of effectiveness within “normal” construct levels support the utility of a dimensional approach. Testable hypotheses were generated that can further test RDoC’s clinical utility.
Collapse
Affiliation(s)
- Andrew Hui
- NorthWestern Mental Health, The Royal Melbourne Hospital, Melbourne, Australia
- * E-mail:
| |
Collapse
|
16
|
Attentional control abnormalities in posttraumatic stress disorder: Functional, behavioral, and structural correlates. J Affect Disord 2019; 253:343-351. [PMID: 31078834 PMCID: PMC6857173 DOI: 10.1016/j.jad.2019.04.098] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/19/2019] [Accepted: 04/30/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND Attentional disruptions are common in PTSD, but findings across neuropsychological and neuroimaging studies have been variable. Few PTSD studies have investigated abnormalities in attention networks using a multi-modal imaging approach and attentional tasks that include emotionally-salient images. This study combined a behavioral task that included these images (emotional Stroop) with functional and structural neuroimaging (fMRI and diffusion tensor imaging; DTI) methods to comprehensively investigate attentional control abnormalities in a highly-traumatized civilian sample. METHODS 48 traumatized women with and without PTSD received clinical assessments, fMRI and DTI. During fMRI, the Affective Stroop (AS), an attentional control task that includes emotionally-salient distractor images (trauma-relevant, positive, neutral) and variable task demands, was administered. RESULTS In response to more difficult AS trials, participants with PTSD demonstrated lower activation in the dorsal and rostral anterior cingulate cortex and greater activation in the insula. This group also showed comparatively poorer performance on positive AS distractor trials, even after adjusting for trauma exposure. Performance on these trials inversely correlated with structural integrity of the cingulum bundle and uncinate fasciculus. CONCLUSIONS Even after adjusting for trauma exposure, participants with PTSD showed worse performance on an attentional control task in the context of emotional stimuli. They also showed relatively lower cognitive control network activation and greater salience network activation. Fronto-parietal and fronto-limbic white matter connectivity corresponded with AS performance. Our findings indicate that attentional control impairments in PTSD are most evident in the context of emotional cues, and are related to decrements in function and structure of cognitive control and salience networks.
Collapse
|
17
|
Versace A, Graur S, Greenberg T, Lima Santos JP, Chase HW, Bonar L, Stiffler RS, Hudak R, Kim T, Yendiki A, Greenberg B, Rasmussen S, Liu H, Haber S, Phillips ML. Reduced focal fiber collinearity in the cingulum bundle in adults with obsessive-compulsive disorder. Neuropsychopharmacology 2019; 44:1182-1188. [PMID: 30802896 PMCID: PMC6784994 DOI: 10.1038/s41386-019-0353-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/17/2019] [Accepted: 02/04/2019] [Indexed: 12/31/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a disabling condition, often associated with a chronic course. Given its role in attentional control, decision-making, and emotional regulation, the anterior cingulate cortex is considered to have a key role in the pathophysiology of the disorder. Notably, the cingulum bundle, being the major white matter tract connecting to this region, has been historically a target for the surgical treatment of intractable OCD. In this study, we aimed to identify the extent to which focal-more than diffuse-abnormalities in fiber collinearity of the cingulum bundle could distinguish 48 adults with OCD (mean age [SD] = 23.3 [4.5] years; F/M = 30/18) from 45 age- and sex-matched healthy control adults (CONT; mean age [SD] = 23.2 [3.8] years; F/M = 28/17) and further examine if these abnormalities correlated with symptom severity. Use of tract-profiles rather than a conventional diffusion imaging approach allowed us to characterize white matter microstructural properties along (100 segments), as opposed to averaging these measures across, the entire tract. To account for these 100 different segments of the cingulum bundle, a repeated measures analysis of variance revealed a main effect of group (OCD < CONT; F[1,87] = 5.3; P = 0.024) upon fractional anisotropy (FA, a measure of fiber collinearity and/or white matter integrity), in the cingulum bundle, bilaterally. Further analyses revealed that these abnormalities were focal (middle portion) within the left and right cingulum bundle, although did not correlate with symptom severity in OCD. Findings indicate that focal abnormalities in connectivity between the anterior cingulate cortex and other prefrontal cortical regions may represent neural mechanisms of OCD.
Collapse
Affiliation(s)
- A. Versace
- 0000 0004 1936 9000grid.21925.3dDepartment of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA USA
| | - S. Graur
- 0000 0004 1936 9000grid.21925.3dDepartment of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA USA
| | - T. Greenberg
- 0000 0004 1936 9000grid.21925.3dDepartment of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA USA
| | - J. P. Lima Santos
- 0000 0004 1936 9000grid.21925.3dDepartment of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA USA
| | - H. W. Chase
- 0000 0004 1936 9000grid.21925.3dDepartment of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA USA
| | - L. Bonar
- 0000 0004 1936 9000grid.21925.3dDepartment of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA USA
| | - R. S. Stiffler
- 0000 0004 1936 9000grid.21925.3dDepartment of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA USA
| | - R. Hudak
- 0000 0004 1936 9000grid.21925.3dDepartment of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA USA
| | - Tae Kim
- 0000 0004 1936 9000grid.21925.3dDepartment of Radiology, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA USA
| | - A. Yendiki
- 000000041936754Xgrid.38142.3cAthinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - B. Greenberg
- 0000 0004 0420 4094grid.413904.bDepartment of Psychiatry and Human Behavior, Brown Medical School, Butler Hospital and Providence VA Medical Center, Providence, RI USA
| | - S. Rasmussen
- 0000 0004 0420 4094grid.413904.bDepartment of Psychiatry and Human Behavior, Brown Medical School, Butler Hospital and Providence VA Medical Center, Providence, RI USA
| | - H. Liu
- 000000041936754Xgrid.38142.3cAthinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - S. Haber
- 0000 0004 1936 9166grid.412750.5Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642 USA
| | - M. L. Phillips
- 0000 0004 1936 9000grid.21925.3dDepartment of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
18
|
Ball T, Sharma M, White A, Neimat J. Anterior Corpus Callosotomy Using Laser Interstitial Thermal Therapy for Refractory Epilepsy. Stereotact Funct Neurosurg 2019; 96:406-411. [DOI: 10.1159/000495414] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 11/13/2018] [Indexed: 11/19/2022]
|
19
|
Bubb EJ, Metzler-Baddeley C, Aggleton JP. The cingulum bundle: Anatomy, function, and dysfunction. Neurosci Biobehav Rev 2018; 92:104-127. [PMID: 29753752 PMCID: PMC6090091 DOI: 10.1016/j.neubiorev.2018.05.008] [Citation(s) in RCA: 436] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 12/16/2022]
Abstract
The cingulum bundle is a prominent white matter tract that interconnects frontal, parietal, and medial temporal sites, while also linking subcortical nuclei to the cingulate gyrus. Despite its apparent continuity, the cingulum's composition continually changes as fibres join and leave the bundle. To help understand its complex structure, this review begins with detailed, comparative descriptions of the multiple connections comprising the cingulum bundle. Next, the impact of cingulum bundle damage in rats, monkeys, and humans is analysed. Despite causing extensive anatomical disconnections, cingulum bundle lesions typically produce only mild deficits, highlighting the importance of parallel pathways and the distributed nature of its various functions. Meanwhile, non-invasive imaging implicates the cingulum bundle in executive control, emotion, pain (dorsal cingulum), and episodic memory (parahippocampal cingulum), while clinical studies reveal cingulum abnormalities in numerous conditions, including schizophrenia, depression, post-traumatic stress disorder, obsessive compulsive disorder, autism spectrum disorder, Mild Cognitive Impairment, and Alzheimer's disease. Understanding the seemingly diverse contributions of the cingulum will require better ways of isolating pathways within this highly complex tract.
Collapse
Affiliation(s)
- Emma J Bubb
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK
| | | | - John P Aggleton
- School of Psychology, Cardiff University, 70 Park Place, Cardiff, CF10 3AT, Wales, UK.
| |
Collapse
|
20
|
Lempka SF, Malone DA, Hu B, Baker KB, Wyant A, Ozinga JG, Plow EB, Pandya M, Kubu CS, Ford PJ, Machado AG. Randomized clinical trial of deep brain stimulation for poststroke pain. Ann Neurol 2017; 81:653-663. [DOI: 10.1002/ana.24927] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Scott F. Lempka
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center
| | | | - Bo Hu
- Department of Quantitative Health Sciences; Cleveland Clinic
| | - Kenneth B. Baker
- Department of Neurosciences; Lerner Research Institute, Cleveland Clinic
| | - Alexandria Wyant
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic
| | - John G. Ozinga
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic
| | - Ela B. Plow
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic
- Department of Biomedical Engineering; Lerner Research Institute, Cleveland Clinic
- Department of Physical Medicine and Rehabilitation; Neurological Institute, Cleveland Clinic
| | - Mayur Pandya
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic
| | - Cynthia S. Kubu
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic
- Department of Psychiatry and Psychology; Cleveland Clinic
| | - Paul J. Ford
- NeuroEthics Program, Cleveland Clinic; Cleveland OH
| | - Andre G. Machado
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic
- Department of Neurosciences; Lerner Research Institute, Cleveland Clinic
| |
Collapse
|
21
|
Ito T, Yokokawa K, Yahata N, Isato A, Suhara T, Yamada M. Neural basis of negativity bias in the perception of ambiguous facial expression. Sci Rep 2017; 7:420. [PMID: 28341827 PMCID: PMC5428736 DOI: 10.1038/s41598-017-00502-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/28/2017] [Indexed: 01/04/2023] Open
Abstract
Negativity bias, which describes the tendency to interpret ambiguous stimuli or events as negative, is often observed in patients with depression and may prevent psychological well-being. Here, we used ambiguous facial stimuli, with negative (sad) and positive (happy) emotions simultaneously accessible, to examine neural activation during perceptual decision-making in healthy participants. The negativity bias was positively correlated with the activity of the bilateral pregenual anterior cingulate cortex (pgACC) when ambiguous faces were perceived as sad versus happy. Additionally, the strength of the functional connectivity between the bilateral pgACC and the right dorsal ACC (dACC)/right thalamus was positively correlated with hopelessness, one of the core characteristics of depression. Given the role of the pgACC as a major site of depressive affect and the roles of the dACC and thalamus in conflict monitoring and vigilance, respectively, our results reveal valid and important neuroanatomical correlates of the association between negativity bias and hopelessness in the healthy individuals.
Collapse
Affiliation(s)
- Takehito Ito
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Keita Yokokawa
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Noriaki Yahata
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Ayako Isato
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Makiko Yamada
- Department of Functional Brain Imaging Research, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan. .,Group of Quantum and Cellular Systems Biology, QST Advanced Study Laboratory, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| |
Collapse
|
22
|
Xin Q, Ogura Y, Uno L, Matsushima T. Selective contribution of the telencephalic arcopallium to the social facilitation of foraging efforts in the domestic chick. Eur J Neurosci 2016; 45:365-380. [DOI: 10.1111/ejn.13475] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/28/2016] [Accepted: 11/08/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Qiuhong Xin
- Graduate School of Life Science; Hokkaido University; Sapporo Japan
| | - Yukiko Ogura
- JSPS Fellow (PD); Japan Society for Promotion of Sciences; Tokyo Japan
- Department of Psychiatry; Graduate School of Medicine; Hokkaido University; Sapporo Japan
| | - Leo Uno
- Graduate School of Life Science; Hokkaido University; Sapporo Japan
| | - Toshiya Matsushima
- Department of Biology; Faculty of Science; Hokkaido University; N10-W8, Kita-ku Sapporo 060-0810 Japan
| |
Collapse
|
23
|
Hogeveen J, Salvi C, Grafman J. 'Emotional Intelligence': Lessons from Lesions. Trends Neurosci 2016; 39:694-705. [PMID: 27647325 DOI: 10.1016/j.tins.2016.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 08/19/2016] [Accepted: 08/23/2016] [Indexed: 01/12/2023]
Abstract
'Emotional intelligence' (EI) is one of the most highly used psychological terms in popular nomenclature, yet its construct, divergent, and predictive validities are contentiously debated. Despite this debate, the EI construct is composed of a set of emotional abilities - recognizing emotional states in the self and others, using emotions to guide thought and behavior, understanding how emotions shape behavior, and emotion regulation - that undoubtedly influence important social and personal outcomes. In this review, evidence from human lesion studies is reviewed in order to provide insight into the necessary brain regions for each of these core emotional abilities. Critically, we consider how this neuropsychological evidence might help to guide efforts to define and measure EI.
Collapse
Affiliation(s)
- J Hogeveen
- MIND Institute, University of California-Davis, Sacramento, CA, USA; Department of Psychiatry & Behavioral Sciences, University of California-Davis, Sacramento, CA, USA.
| | - C Salvi
- Cognitive Neuroscience Laboratory, Rehabilitation Institute of Chicago, Chicago, IL, USA; Department of Psychology, Northwestern University, Evanston, IL, USA
| | - J Grafman
- Cognitive Neuroscience Laboratory, Rehabilitation Institute of Chicago, Chicago, IL, USA; Department of Psychology, Northwestern University, Evanston, IL, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
24
|
Harris-Bozer AL, Peng YB. Inflammatory pain by carrageenan recruits low-frequency local field potential changes in the anterior cingulate cortex. Neurosci Lett 2016; 632:8-14. [PMID: 27524675 DOI: 10.1016/j.neulet.2016.08.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/27/2022]
Abstract
The anterior cingulate cortex (ACC) has been extensively cited as a key area for processing pain affect. While local field potential (LFP) studies in other fields have yielded a great deal of information about neural oscillations, there is a poverty in the pain literature about the neural LFP profile related to pain, particularly in freely moving animals. In this study, we revealed the LFP profile in the ACC in freely moving rats during carrageenan inflammation. Mechanical allodynia was recorded before and after unilateral injection of carrageenan/saline in the left hindpaw. LFP activity in the ACC was recorded at baseline, after injection, and after injection with mechanical stimulation to the paw using a von Frey filament. This study uniquely reveals that carrageenan injection significantly recruited ACC LFP activity in delta, theta, and alpha bands (0-13Hz). Application of von Frey mechanical stimulation to the carrageenan-injected paw resulted in a significant increase in delta, theta, and alpha bands over and above what was recruited by carrageenan alone and further expanded the LFP range to additionally include beta activity (13-30Hz). Taken together, these data reveal significant changes in the lowest-frequency activities in the LFP range during painful inflammation, which merit attention. LFP is a powerful window to reveal wide-range, integrated synaptic processing by low-frequency cellular events during behavior. Information about LFP during pain broadens the scope of our understanding of pain mechanisms, our greatest resource for designing management approaches.
Collapse
Affiliation(s)
- Amber L Harris-Bozer
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Yuan B Peng
- Department of Psychology, The University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
25
|
Russo JF, Sheth SA. Deep brain stimulation of the dorsal anterior cingulate cortex for the treatment of chronic neuropathic pain. Neurosurg Focus 2016; 38:E11. [PMID: 26030699 DOI: 10.3171/2015.3.focus1543] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chronic neuropathic pain is estimated to affect 3%-4.5% of the worldwide population. It is associated with significant loss of productive time, withdrawal from the workforce, development of mood disorders such as depression and anxiety, and disruption of family and social life. Current medical therapeutics often fail to adequately treat chronic neuropathic pain. Deep brain stimulation (DBS) targeting subcortical structures such as the periaqueductal gray, the ventral posterior lateral and medial thalamic nuclei, and the internal capsule has been investigated for the relief of refractory neuropathic pain over the past 3 decades. Recent work has identified the dorsal anterior cingulate cortex (dACC) as a new potential neuromodulation target given its central role in cognitive and affective processing. In this review, the authors briefly discuss the history of DBS for chronic neuropathic pain in the United States and present evidence supporting dACC DBS for this indication. They review existent literature on dACC DBS and summarize important findings from imaging and neurophysiological studies supporting a central role for the dACC in the processing of chronic neuropathic pain. The available neurophysiological and empirical clinical evidence suggests that dACC DBS is a viable therapeutic option for the treatment of chronic neuropathic pain and warrants further investigation.
Collapse
Affiliation(s)
- Jennifer F Russo
- 1Columbia University College of Physicians and Surgeons and.,2Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Sameer A Sheth
- 2Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| |
Collapse
|
26
|
De Ridder D, Vanneste S, Gillett G, Manning P, Glue P, Langguth B. Psychosurgery Reduces Uncertainty and Increases Free Will? A Review. Neuromodulation 2016; 19:239-48. [DOI: 10.1111/ner.12405] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 11/20/2015] [Accepted: 12/17/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Dirk De Ridder
- Department of Surgical Sciences; Section of Neurosurgery, Dunedin School of Medicine, University of Otago; Dunedin New Zealand
| | - Sven Vanneste
- Laboratory for Clinical and Integrative Neuroscience, School of Behavioral and Brain Sciences; University of Texas at Dallas; Dallas TX USA
| | - Grant Gillett
- Department of Philosophy; Section of Medical Ethics, Dunedin School of Medicine, University of Otago; Dunedin New Zealand
| | - Patrick Manning
- Department of Internal Medicine; Section of Endocrinology, Dunedin School of Medicine, University of Otago; Dunedin New Zealand
| | - Paul Glue
- Department of Psychological Medicine; Dunedin School of Medicine, University of Otago; Dunedin New Zealand
| | - Berthold Langguth
- Department of Psychiatry and Psychotherapy; Interdisciplinary Tinnitus Clinic, University of Regensburg; Regensburg Germany
| |
Collapse
|
27
|
Feinstein JS, Khalsa SS, Salomons TV, Prkachin KM, Frey-Law LA, Lee JE, Tranel D, Rudrauf D. Preserved emotional awareness of pain in a patient with extensive bilateral damage to the insula, anterior cingulate, and amygdala. Brain Struct Funct 2015; 221:1499-511. [PMID: 25577137 PMCID: PMC4734900 DOI: 10.1007/s00429-014-0986-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 12/30/2014] [Indexed: 12/30/2022]
Abstract
Functional neuroimaging investigations of pain have discovered a reliable pattern of activation within limbic regions of a putative "pain matrix" that has been theorized to reflect the affective dimension of pain. To test this theory, we evaluated the experience of pain in a rare neurological patient with extensive bilateral lesions encompassing core limbic structures of the pain matrix, including the insula, anterior cingulate, and amygdala. Despite widespread damage to these regions, the patient's expression and experience of pain was intact, and at times excessive in nature. This finding was consistent across multiple pain measures including self-report, facial expression, vocalization, withdrawal reaction, and autonomic response. These results challenge the notion of a "pain matrix" and provide direct evidence that the insula, anterior cingulate, and amygdala are not necessary for feeling the suffering inherent to pain. The patient's heightened degree of pain affect further suggests that these regions may be more important for the regulation of pain rather than providing the decisive substrate for pain's conscious experience.
Collapse
Affiliation(s)
- Justin S Feinstein
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA. .,Department of Psychology, University of Iowa, Iowa City, IA, 52242, USA. .,Department of Psychology and School of Community Medicine, University of Tulsa, Tulsa, OK, 74104, USA. .,Laureate Institute for Brain Research, 6655 S. Yale Avenue, Tulsa, OK, 74136-3326, USA.
| | - Sahib S Khalsa
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA.,Laureate Institute for Brain Research, 6655 S. Yale Avenue, Tulsa, OK, 74136-3326, USA.,Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Tim V Salomons
- School of Psychology and Clinical Language Sciences, University of Reading, Reading, RG6 6AL, UK
| | - Kenneth M Prkachin
- Department of Psychology, University of Northern British Columbia, Prince George, BC, V2N 4Z9, Canada
| | - Laura A Frey-Law
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, 52242, USA
| | - Jennifer E Lee
- Department of Physical Therapy and Rehabilitation Science, University of Iowa, Iowa City, IA, 52242, USA
| | - Daniel Tranel
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA.,Department of Psychology, University of Iowa, Iowa City, IA, 52242, USA
| | - David Rudrauf
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA.,Laboratory of Functional Imaging, INSERM U678s/UPMC, 75013, Paris, France
| |
Collapse
|
28
|
Lench HC, Bench SW, Darbor KE, Moore M. A Functionalist Manifesto: Goal-Related Emotions From an Evolutionary Perspective. EMOTION REVIEW 2014. [DOI: 10.1177/1754073914553001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Functional theories posit that emotions are elicited by particular goal-related situations that represented adaptive problems and that emotions are evolved features of coordinated responses to those situations. Yet little theory or research has addressed the evolutionary aspects of these theories. We apply five criteria that can be used to judge whether features are adaptations. There is evidence that sadness, anger, and anxiety relate to unique changes in physiology, cognition, and behavior, those changes are correlated, situations that give rise to emotions are consistent, and emotions are complex. To date, there is little experimental evidence regarding whether discrete emotions resolve adaptive problems and do so relatively efficiently. Evidence supporting all criteria is required to claim that discrete emotions are evolved features.
Collapse
Affiliation(s)
| | | | | | - Melody Moore
- Department of Psychology, Texas A&M University, USA
| |
Collapse
|
29
|
Kelly ML, Malone D, Okun MS, Booth J, Machado AG. Barriers to investigator-initiated deep brain stimulation and device research. Neurology 2014; 82:1465-73. [PMID: 24670888 PMCID: PMC4001198 DOI: 10.1212/wnl.0000000000000345] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/15/2014] [Indexed: 11/15/2022] Open
Abstract
The success of device-based research in the clinical neurosciences has overshadowed a critical and emerging problem in the biomedical research environment in the United States. Neuroprosthetic devices, such as deep brain stimulation (DBS), have been shown in humans to be promising technologies for scientific exploration of neural pathways and as powerful treatments. Large device companies have, over the past several decades, funded and developed major research programs. However, both the structure of clinical trial funding and the current regulation of device research threaten investigator-initiated efforts in neurologic disorders. The current atmosphere dissuades clinical investigators from pursuing formal and prospective research with novel devices or novel indications. We review our experience in conducting a federally funded, investigator-initiated, device-based clinical trial that utilized DBS for thalamic pain syndrome. We also explore barriers that clinical investigators face in conducting device-based clinical trials, particularly in early-stage studies or small disease populations. We discuss 5 specific areas for potential reform and integration: (1) alternative pathways for device approval; (2) eliminating right of reference requirements; (3) combining federal grant awards with regulatory approval; (4) consolidation of oversight for human subjects research; and (5) private insurance coverage for clinical trials. Careful reformulation of regulatory policy and funding mechanisms is critical for expanding investigator-initiated device research, which has great potential to benefit science, industry, and, most importantly, patients.
Collapse
Affiliation(s)
- Michael L Kelly
- From the Departments of Neurosurgery (M.L.K., A.G.M.) and Psychiatry (D.M.) and the Center for Neurological Restoration (A.G.M.), Neurological Institute, and the Center for Clinical Research (J.B.), Cleveland Clinic, OH; MacLean Center for Clinical Medical Ethics (M.L.K.), Department of Medicine, The University of Chicago, IL; and the Departments of Neurology and Neurosurgery (M.S.O.), University of Florida Center for Movement Disorders and Neurorestoration, Gainesville
| | | | | | | | | |
Collapse
|
30
|
Wager M, Du Boisgueheneuc F, Pluchon C, Bouyer C, Stal V, Bataille B, Guillevin CM, Gil R. Intraoperative monitoring of an aspect of executive functions: administration of the Stroop test in 9 adult patients during awake surgery for resection of frontal glioma. Neurosurgery 2013; 72:ons169-80; discussion ons180-1. [PMID: 23149965 DOI: 10.1227/neu.0b013e31827bf1d6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Awake brain surgery allows extensive intraoperative monitoring of not only motor and sensory functions and language but also executive functions. OBJECTIVE To administer the Stroop test intraoperatively to avoid dramatic side effects such as akinetic mutism and to monitor executive functions in an attempt to optimize the benefit/risk balance of surgery. METHODS A series of 9 adult patients with frontal glioma were operated on for gross tumor resection under local anesthesia. All procedures involved the anterior cingulate cortex (ACC). RESULTS Three types of response to the Stroop test were observed: 3 patients had a Stroop effect only for stimulation of the contralateral ACC; 3 patients had a Stroop effect for stimulation of the ipsilateral ACC; and 3 patients had no Stroop effect. Preoperative and postoperative neuropsychological and surgical results are presented and discussed. Stimulation sites eliciting a Stroop effect are compared with published image-based data, and insight provided by these surgical data regarding ACC function and plasticity is discussed. No operative complication related to intraoperative administration of the Stroop test was observed. CONCLUSION Administration of the Stroop test during resection of gliomas involving the ACC in adult patients is an option for intraoperative monitoring of executive functions during awake surgery. Globally, these results suggest functional compensation, mediated by plasticity mechanisms, by contralateral homologous regions of the ACC in adult patients with frontal glioma.
Collapse
Affiliation(s)
- Michel Wager
- Department of Neurosurgery, Imaging Laboratory, University Hospital Poitiers, 2 Rue de La Miletrie, Poitiers Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
De Ridder D, Plazier M, Kamerling N, Menovsky T, Vanneste S. Burst Spinal Cord Stimulation for Limb and Back Pain. World Neurosurg 2013; 80:642-649.e1. [DOI: 10.1016/j.wneu.2013.01.040] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 01/07/2013] [Accepted: 01/11/2013] [Indexed: 10/27/2022]
|
32
|
Reidy DE, Wilson LF, Sloan CA, Cohn AM, Smart LM, Zeichner A. Psychopathic traits and men’s anger response to interpersonal conflict: A pilot study. PERSONALITY AND INDIVIDUAL DIFFERENCES 2013. [DOI: 10.1016/j.paid.2013.07.473] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
33
|
Gu X, Hof PR, Friston KJ, Fan J. Anterior insular cortex and emotional awareness. J Comp Neurol 2013; 521:3371-88. [PMID: 23749500 PMCID: PMC3999437 DOI: 10.1002/cne.23368] [Citation(s) in RCA: 440] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 04/30/2013] [Accepted: 05/23/2013] [Indexed: 12/30/2022]
Abstract
This paper reviews the foundation for a role of the human anterior insular cortex (AIC) in emotional awareness, defined as the conscious experience of emotions. We first introduce the neuroanatomical features of AIC and existing findings on emotional awareness. Using empathy, the awareness and understanding of other people's emotional states, as a test case, we then present evidence to demonstrate: 1) AIC and anterior cingulate cortex (ACC) are commonly coactivated as revealed by a meta-analysis, 2) AIC is functionally dissociable from ACC, 3) AIC integrates stimulus-driven and top-down information, and 4) AIC is necessary for emotional awareness. We propose a model in which AIC serves two major functions: integrating bottom-up interoceptive signals with top-down predictions to generate a current awareness state and providing descending predictions to visceral systems that provide a point of reference for autonomic reflexes. We argue that AIC is critical and necessary for emotional awareness.
Collapse
Affiliation(s)
- Xiaosi Gu
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom WC1N 3BG
- Virginia Tech Carilion Research Institute, Roanoke, Virginia 24011
| | - Patrick R. Hof
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Karl J. Friston
- Wellcome Trust Centre for Neuroimaging, University College London, London, United Kingdom WC1N 3BG
| | - Jin Fan
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Psychology, Queens College, The City University of New York, Flushing, New York 11367
| |
Collapse
|
34
|
Pain and analgesia: the value of salience circuits. Prog Neurobiol 2013; 104:93-105. [PMID: 23499729 DOI: 10.1016/j.pneurobio.2013.02.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 02/07/2023]
Abstract
Evaluating external and internal stimuli is critical to survival. Potentially tissue-damaging conditions generate sensory experiences that the organism must respond to in an appropriate, adaptive manner (e.g., withdrawal from the noxious stimulus, if possible, or seeking relief from pain and discomfort). The importance we assign to a signal generated by a noxious state, its salience, reflects our belief as to how likely the underlying situation is to impact our chance of survival. Importantly, it has been hypothesized that aberrant functioning of the brain circuits which assign salience values to stimuli may contribute to chronic pain. We describe examples of this phenomenon, including 'feeling pain' in the absence of a painful stimulus, reporting minimal pain in the setting of major trauma, having an 'analgesic' response in the absence of an active treatment, or reporting no pain relief after administration of a potent analgesic medication, which may provide critical insights into the role that salience circuits play in contributing to numerous conditions characterized by persistent pain. Collectively, a refined understanding of abnormal activity or connectivity of elements within the salience network may allow us to more effectively target interventions to relevant components of this network in patients with chronic pain.
Collapse
|
35
|
Machado AG, Baker KB, Plow E, Malone DA. Cerebral stimulation for the affective component of neuropathic pain. Neuromodulation 2012; 16:514-8. [PMID: 23094938 DOI: 10.1111/j.1525-1403.2012.00517.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 07/30/2012] [Accepted: 08/30/2012] [Indexed: 12/19/2022]
Abstract
OBJECTIVES To review the current state of cerebral stimulation for neuropathic pain and to propose that cerebral stimulation should aim also at the affective sphere of chronic pain rather than solely focusing on the primary sensory-discriminative sphere. METHODS The past and current goals of cerebral stimulation are reviewed as well as its limitations. A novel deep brain stimulation approach is proposed to evaluate this conceptual shift from somatosensory to affective sphere of pain targeting. APPROACH Thalamic and other central pain syndromes are typically intractable to current treatment methods, including cerebral neuromodulation of somatosensory pathways, leading to long-term distress and disability. Our modern understanding of chronic pain pathophysiology is based largely on the neuromatrix theory, where cognitive, affective, and sensory-discriminative spheres contribute equally to the overall pain experience. During the last decade, the safety and feasibility of chronic stimulation of neural pathways related to mood and affect has been explored with promising results. Here, we propose a novel approach to modulate the affective sphere of chronic pain by targeting similar networks in patients with treatment-refractory central pain. Our primary goal is not to produce (or measure) analgesia, but rather to modulate the affective burden of chronic pain. DISCUSSION Cerebral neuromodulation for neuropathic pain has had limited efficacy thus far. Shifting our aim to neural networks related to the affective sphere of pain may allow us to reduce pain conditioning and pain-related disability. Our ultimate goal is to promote rehabilitation from chronic pain-social and occupational.
Collapse
Affiliation(s)
- Andre G Machado
- Center for Neurological Restoration, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA; Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | | | |
Collapse
|
36
|
Involvement of Cingulate Cortex in the Formation of Defensive Behavior in Rats. Bull Exp Biol Med 2010; 149:667-70. [DOI: 10.1007/s10517-010-1020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Epistasis of the DRD2/ANKK1 Taq Ia and the BDNF Val66Met polymorphism impacts novelty seeking and harm avoidance. Neuropsychopharmacology 2010; 35:1860-7. [PMID: 20410875 PMCID: PMC3055626 DOI: 10.1038/npp.2010.55] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Mounting evidence from animal studies show that the mesolimbic dopaminergic pathways are modulated by the brain-derived neurotrophic factor (BDNF). This study investigates in N=768 healthy Caucasian participants the influence of two prominent functional single-nucleotide polymorphisms (SNPs) on the BDNF gene (BDNF Val66Met SNP) and the ankyrin repeat and kinase domain containing 1 (ANKK1) gene (DRD2 Taq Ia/ANKK1 SNP) on the personality traits of Novelty Seeking and Harm Avoidance, which are mediated, in part, through dopaminergic mesolimbic circuitry. Carriers of the 66Met+/A1+ variant scored lowest on Novelty Seeking and highest on Harm Avoidance, compared to all other genotype groups. These participants are characterized by a relatively low D(2) receptor density in the striatum and an impaired activity-dependent secretion of BDNF. This is one of the first genetic association studies to show a modulatory role for BDNF genetic variation on genetically mediated differences in the mesolimbic dopaminergic system in the context of human personality.
Collapse
|
38
|
Clinical effects of insular damage in humans. Brain Struct Funct 2010; 214:397-410. [DOI: 10.1007/s00429-010-0256-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 04/21/2010] [Indexed: 01/23/2023]
|
39
|
Functional dissociation of the frontoinsular and anterior cingulate cortices in empathy for pain. J Neurosci 2010; 30:3739-44. [PMID: 20220007 DOI: 10.1523/jneurosci.4844-09.2010] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The frontoinsular cortex (FI) and the anterior cingulate cortex (ACC) are thought to be involved in empathy for others' pain. However, the functional roles of FI and ACC in empathetic responses have not yet been clearly dissociated in previous studies. In this study, participants viewed color photographs depicting human body parts in painful or nonpainful situations and performed either pain judgment (painful/nonpainful) or laterality judgment (left/right) of the body parts. We found that activation of FI, rather than ACC, showed significant increase for painful compared with nonpainful images, regardless of the task requirement. Our data suggest a clear functional dissociation between FI and ACC in which FI is more domain-specific than ACC when processing empathy for pain.
Collapse
|
40
|
Impact of bilateral anterior cingulotomy on neurocognitive function in patients with intractable pain. J Clin Neurosci 2009; 16:214-9. [DOI: 10.1016/j.jocn.2008.04.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 04/10/2008] [Accepted: 04/15/2008] [Indexed: 11/17/2022]
|
41
|
Pain-related effects of trait anger expression: neural substrates and the role of endogenous opioid mechanisms. Neurosci Biobehav Rev 2008; 33:475-91. [PMID: 19146872 DOI: 10.1016/j.neubiorev.2008.12.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 10/17/2008] [Accepted: 12/15/2008] [Indexed: 11/23/2022]
Abstract
Literature is reviewed indicating that greater tendency to manage anger via direct verbal or physical expression (trait anger-out) is associated with increased acute and chronic pain responsiveness. Neuroimaging data are overviewed supporting overlapping neural circuits underlying regulation of both pain and anger, consisting of brain regions including the rostral anterior cingulate cortex, orbitofrontal cortex, anterior insula, amygdala, and periaqueductal gray. These circuits provide a potential neural basis for observed positive associations between anger-out and pain responsiveness. The role of endogenous opioids in modulating activity in these interlinked brain regions is explored, and implications for understanding pain-related effects of anger-out are described. An opioid dysfunction hypothesis is presented in which inadequate endogenous opioid inhibitory activity in these brain regions contributes to links between trait anger-out and pain. A series of studies is presented that supports the opioid dysfunction hypothesis, further suggesting that gender and genetic factors may moderate these effects. Finally, possible implications of interactions between trait anger-out and state behavioral anger expression on endogenous opioid analgesic activity are described.
Collapse
|
42
|
Bahia VS. Pain and apathy. Dement Neuropsychol 2008; 2:362-365. [PMID: 29213600 PMCID: PMC5619095 DOI: 10.1590/s1980-57642009dn20400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abstract In this case report we discuss the lack of emotional reactivity and evasive motor motivation to nociceptive stimuli presented by a patient with frontotemporal degenerative disease and apathy as a predominant behavioral symptom.
Collapse
|
43
|
Hirano T, Zeredo JL, Kimoto M, Moritaka K, Nasution FH, Toda K. Disinhibitory involvement of the anterior cingulate cortex in the descending antinociceptive effect induced by electroacupuncture stimulation in rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2008; 36:569-77. [PMID: 18543389 DOI: 10.1142/s0192415x08005989] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The present study was conducted to clarify the role of the anterior cingulate cortex (ACCX) in acupuncture analgesia. Experiments were performed on 35 female Wistar albino rats weighing about 300 g. Single unit recordings were made from ACCX neurons with a tungsten microelectrode. Descending ACCX neurons were identified by antidromic activation from electrical shocks applied to the ventral part of the ipsilateral PAG through a concentric needle electrode. Cathodal electroacupuncture stimulation of Ho-Ku (0.1 ms in duration, 45 Hz) for 15 min was done by inserting stainless steel needles bilaterally. An anodal silver-plate electrode (30 mm x 30 mm) was placed on the center of the abdomen. Naloxone (1.0 mg/kg, i.v.) was used to test whether changes of ACCX activities were induced by the endogenous opioid system. Data were collected from a total of 73 ACCX neurons. Forty-seven neurons had descending projection to the PAG, and the other 26 had no projections to the PAG. A majority of descending ACCX neurons were inhibited by electroacupuncture stimulation. By contrast, non-projection ACCX neurons were mainly unaffected by electroacupuncture. Naloxone did not reverse acupuncture effects on the changes of ACCX neuronal activities. Acupuncture stimulation had predominantly inhibitory effects on the activities of descending ACCX neurons. Since the functional connection between ACCX and PAG is inhibitory, electroacupuncture caused disinhibition of PAG neurons, whose activity is closely related to descending antinociception to the spinal cord. This disinhibitory effect elicited by acupuncture stimulation is thought to play a significant role in acupuncture analgesia.
Collapse
Affiliation(s)
- Takafumi Hirano
- Integrative Sensory Physiology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Association between trait emotional awareness and dorsal anterior cingulate activity during emotion is arousal-dependent. Neuroimage 2008; 41:648-55. [PMID: 18406175 DOI: 10.1016/j.neuroimage.2008.02.030] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 01/14/2008] [Accepted: 02/13/2008] [Indexed: 12/30/2022] Open
Abstract
The dorsal anterior cingulate cortex (dACC) is commonly thought to subserve primarily cognitive functions, but has been strongly implicated in the allocation of attention to emotional information. In a previous positron emission tomography (PET) study, we observed that women with higher emotional awareness as measured by the Levels of Emotional Awareness Scale (LEAS) showed greater changes in regional cerebral blood flow (rCBF) in dACC induced by emotional films and recall. In the current study, we tested whether these effects were due to the processing of any non-neutral stimulus, or were specific to conditions of high emotional arousal. Our results extend the previous finding by demonstrating a positive correlation between emotional awareness and dACC activity only in the context of viewing highly arousing pictures. No such relationship was observed when comparing pleasant or unpleasant pictures to neutral or to each other. We also observed that the relationship between LEAS and dACC activity was present in both sexes but stronger in women than men. These results reinforce the concept that greater trait awareness of one's own emotional experiences is associated with greater engagement of the dACC during emotional arousal, which we suggest may reflect greater attentional processing of emotional information.
Collapse
|
45
|
Neural substrates of implicit and explicit emotional processes: a unifying framework for psychosomatic medicine. Psychosom Med 2008; 70:214-31. [PMID: 18256335 DOI: 10.1097/psy.0b013e3181647e44] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
There are two broad themes in psychosomatic medicine research that relate emotions to physical disease outcomes. Theme 1 holds that self-reported negative affect has deleterious effects and self-reported positive affect has salubrious effects on health. Theme 2 holds that interference with the experience or expression of negative affect has adverse health consequences. From the perspective of self-report these two traditions appear contradictory. A key thesis of this paper is that the foundational distinction in cognitive neuroscience between explicit (conscious) and implicit (unconscious) processes, corresponding to Themes 1 and 2, respectively, provides a unifying framework that makes empirical research on unconscious emotional processes more tractable. A psychological model called "levels of emotional awareness" is presented first that places implicit and explicit emotional processes on a cognitive-developmental continuum. This model holds that the ability to become consciously aware of one's own feelings is a cognitive skill that goes through a developmental process similar to that which Piaget described for other cognitive functions. Empirical findings using the Levels of Emotional Awareness Scale are presented. A parallel hierarchical model of the neural substrates of emotional awareness is presented next supported by recent neuroimaging and lesion work. The evidence presented in this review suggests that the neural substrates of implicit and explicit emotional processes are distinct, that the latter have a modulatory effect on the former, and that at the neural level Theme 1 and Theme 2 phenomena share critical similarities. The implications of this psychobiological model for research in psychosomatic medicine are discussed.
Collapse
|
46
|
Eisenberger NI, Way BM, Taylor SE, Welch WT, Lieberman MD. Understanding genetic risk for aggression: clues from the brain's response to social exclusion. Biol Psychiatry 2007; 61:1100-8. [PMID: 17137563 DOI: 10.1016/j.biopsych.2006.08.007] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Revised: 08/09/2006] [Accepted: 08/10/2006] [Indexed: 11/28/2022]
Abstract
BACKGROUND Although research indicates a relationship between the monoamine oxidase-A (MAOA) gene and aggression, the intervening neural and psychological mechanisms are unknown. Individuals with the low expression allele (MAOA-L) of a functional polymorphism in the MAOA gene might be prone to aggression because they are socially or emotionally hyposensitive and thus care less about harming others or because they are socially or emotionally hypersensitive and thus respond to negative social experiences with defensively aggressive behavior. METHODS We investigated the relationships between the MAOA polymorphism, trait aggression, trait interpersonal hypersensitivity, and neural responses to social exclusion in 32 healthy men and women. RESULTS The MAOA-L individuals (men and women) reported higher trait aggression than individuals with the high expression allele (MAOA-H). The MAOA-L individuals reported higher trait interpersonal hypersensitivity and showed greater dorsal anterior cingulate cortex (dACC) activity (associated with rejection-related distress) to social exclusion compared with MAOA-H individuals, consistent with a social hypersensitivity hypothesis. Moreover, the MAOA-aggression relationship was mediated by greater dACC reactivity to social exclusion, suggesting that MAOA might relate to aggression through socioemotional hypersensitivity. CONCLUSIONS These data suggest that the relationship between MAOA and aggression might be due to a heightened rather than a reduced sensitivity to negative socioemotional experiences like social rejection.
Collapse
Affiliation(s)
- Naomi I Eisenberger
- Department of Psychiatry & Biobehavioral Sciences, Cousins Center for Psychoneuroimmunology, Los Angeles, California 90095-7076, USA.
| | | | | | | | | |
Collapse
|
47
|
Eisenberger NI, Taylor SE, Gable SL, Hilmert CJ, Lieberman MD. Neural pathways link social support to attenuated neuroendocrine stress responses. Neuroimage 2007; 35:1601-12. [PMID: 17395493 PMCID: PMC2710966 DOI: 10.1016/j.neuroimage.2007.01.038] [Citation(s) in RCA: 287] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 01/22/2007] [Accepted: 01/25/2007] [Indexed: 11/29/2022] Open
Abstract
It is well established that a lack of social support constitutes a major risk factor for morbidity and mortality, comparable to risk factors such as smoking, obesity, and high blood pressure. Although it has been hypothesized that social support may benefit health by reducing physiological reactivity to stressors, the mechanisms underlying this process remain unclear. Moreover, to date, no studies have investigated the neurocognitive mechanisms that translate experiences of social support into the health outcomes that follow. To investigate these processes, thirty participants completed three tasks in which daily social support, neurocognitive reactivity to a social stressor, and neuroendocrine responses to a social stressor were assessed. Individuals who interacted regularly with supportive individuals across a 10-day period showed diminished cortisol reactivity to a social stressor. Moreover, greater social support and diminished cortisol responses were associated with diminished activity in the dorsal anterior cingulate cortex (dACC) and Brodmann's area (BA) 8, regions previously associated with the distress of social separation. Lastly, individual differences in dACC and BA 8 reactivity mediated the relationship between high daily social support and low cortisol reactivity, such that supported individuals showed reduced neurocognitive reactivity to social stressors, which in turn was associated with reduced neuroendocrine stress responses. This study is the first to investigate the neural underpinnings of the social support-health relationship and provides evidence that social support may ultimately benefit health by diminishing neural and physiological reactivity to social stressors.
Collapse
Affiliation(s)
- Naomi I Eisenberger
- Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, CA 90095-7076, USA.
| | | | | | | | | |
Collapse
|
48
|
Yang JW, Shih HC, Shyu BC. Intracortical circuits in rat anterior cingulate cortex are activated by nociceptive inputs mediated by medial thalamus. J Neurophysiol 2006; 96:3409-22. [PMID: 16956990 DOI: 10.1152/jn.00623.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
We investigated the afferents and intracortical synaptic organization of the anterior cingulate cortex (ACC) during noxious electrical stimulation. Extracellular field potentials were recorded simultaneously from 16 electrodes spanning all layers of the ACC in male Sprague-Dawley rats anesthetized by halothane inhalation. Laminar-specific transmembrane currents were calculated with the current source density analysis method. Two major groups of evoked sink currents were identified: an early group (latency = 54.04 +/- 2.12 ms; 0.63 +/- 0.07 mV/mm(2)) in layers V-VI and a more intense late group (latency = 80.07 +/- 4.85 ms; 2.16 +/- 0.22 mV/mm(2)) in layer II/III and layer V. Multiunit activities were evoked mainly in layer V and deep layer II/III with latencies similar to that of the early and late sink groups. The evoked EPSP latencies of pyramidal neurons in layers II/III and V related closely with the sink currents. The sink currents were inhibited by intracortical injection of CNQX (1 mM, 1 microl), a glutaminergic receptor antagonist, and enhanced by intraperitoneal (5 mg/kg) and intracortical (10 microg/microl, 1 microl) injection of morphine, a mu-opioid receptor agonist. Paired-pulse depression was observed with interpulse intervals of 50 to 1,000 ms. High-frequency stimulation (100 Hz, 11 pulses) enhanced evoked responses in the ACC and evoked medial thalamic (MT) unit activities. MT lesions blocked evoked responses in the ACC. Our results demonstrated that two distinct synaptic circuits in the ACC were activated by noxious stimuli and that the MT is the major thalamic relay that transmits nociceptive information to the ACC.
Collapse
Affiliation(s)
- Jenq-Wei Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan, R.O.C
| | | | | |
Collapse
|
49
|
Borsook D, Becerra L, Carlezon WA, Shaw M, Renshaw P, Elman I, Levine J. Reward-aversion circuitry in analgesia and pain: implications for psychiatric disorders. Eur J Pain 2006; 11:7-20. [PMID: 16495096 DOI: 10.1016/j.ejpain.2005.12.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 11/16/2005] [Accepted: 12/13/2005] [Indexed: 01/06/2023]
Abstract
Sensory and emotional systems normally interact in a manner that optimizes an organism's ability to survive using conscious and unconscious processing. Pain and analgesia are interpreted by the nervous system as aversive and rewarding processes that trigger specific behavioral responses. Under normal physiological conditions these processes are adaptive. However, under chronic pain conditions, functional alterations of the central nervous system frequently result in maladaptive behaviors. In this review, we examine: (a) the interactions between sensory and emotional systems involved in processing pain and analgesia in the physiological state; (b) the role of reward/aversion circuitry in pain and analgesia; and (c) the role of alterations in reward/aversion circuitry in the development of chronic pain and co-morbid psychiatric disorders. These underlying features have implications for understanding the neurobiology of functional illnesses such as depression and anxiety and for the development and evaluation of novel therapeutic interventions.
Collapse
Affiliation(s)
- David Borsook
- PAIN Group, Department of Psychiatry, Brain Imaging Center, McLean Hospital and Harvard Medical School, Belmont MA 02748, United States.
| | | | | | | | | | | | | |
Collapse
|
50
|
Yen CP, Kung SS, Su YF, Lin WC, Howng SL, Kwan AL. Stereotactic bilateral anterior cingulotomy for intractable pain. J Clin Neurosci 2005; 12:886-90. [PMID: 16326270 DOI: 10.1016/j.jocn.2004.11.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2004] [Accepted: 11/10/2004] [Indexed: 12/22/2022]
Abstract
To document the value of cingulotomy for pain relief, a series of 22 patients with medically intractable pain, including 15 with cancer pain and seven with non-cancer pain, underwent stereotactic bilateral anterior cingulotomy, between August 2001 and December 2002. Of the 15 patients with cancer pain, significant or meaningful pain relief was achieved in 67% of patients at one month follow-up, which decreased to 58% at three months and 50% at six months. Of the seven patients with intractable pain from non-neoplastic origin, four achieved significant pain relief, one obtained meaningful relief, and two reported no change at one year follow-up. There was no surgical mortality or permanent neurological morbidity. Two patients developed transient confusion and another two had mild gastrointestinal bleeding. No clinically evident personality or emotional changes were noted. However, subtle cognitive impairment, especially attentional deficits, were detected through detailed neuropsychological evaluation.
Collapse
Affiliation(s)
- Chun Po Yen
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Taiwan
| | | | | | | | | | | |
Collapse
|